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Geometrical basis for molecular stopping anisotropy
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We consider the effect of shape on the anisotropy of stopping of swift ions by molecular targets. By use of
an anisotropic harmonic-oscillator model and frequencies based on jellium ellipsoids, we show that a mean-
ingful estimate of molecular stopping anisotropy can be obtained from molecular shape alone.
@S1050-2947~98!01912-X#

PACS number~s!: 34.50.Bw, 33.90.1h
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I. INTRODUCTION

The anisotropy in energy deposition by swift ions in m
lecular targets is a subject of increasing interest, given
advent of ever more accurate methods for orienting mole
lar target systems and for measuring energy loss@1–3#. In a
pair of recent papers@4,5#, the topic was considered for sev
eral molecules in some detail. Bethe theory was invoked
the stopping anisotropy calculated from the directional
pendence of independently calculated mean excitation e
gies. A clear correlation of stopping anisotropy with molec
lar shape emerged. The effect was found to be of the orde
5% of the total stopping cross section. The underlying ph
ics of that correlation is investigated here.

The interpretation that emerges is based on the follow
line of argument. At least roughly, the electrons in a m
ecule average out the details of ionic positions. According
one may model the ionic background as jellium with an a
isotropic boundary to include effects of the overall sha
For such a situation the electrons move in an anisotro
confining potential that is harmonic and the characteri
harmonic frequencies coincide with the surface plasmon
quencies of the corresponding jellium ellipsoid. The h
monic potential theorem@6–8# then states that independe
of the electron-electron interaction, those frequencies are
excitation frequencies of the system. Hence both the ave
stopping energy and its anisotropy will be related to tho
frequencies.

Oscillator models have been used frequently in nucle
cluster, and surface physics to predict general trends@9,10#.
One example is the Clemenger model@11# for metal clusters
that is based on the Nilsson model@12# for nuclei. In es-
sence, the valence electrons are assumed to move in a
fective one-electron potential approximated by an ani
tropic ~an!harmonic oscillator. For small clusters th
anharmonic contributions can be neglected. Trends for
bal cluster properties seem to be well predicted, even
small numbers of particles in the cluster@9,10#. At the same
time measurements of photoabsorption cross section
small alkali-metal clusters have shown the existence of re
nant features that can be seen as surface collective~plasmon!
excitations@13,14#. Observed double and triple peaks can
associated with surface plasmons in clusters ofellipsoidal
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shape, i.e., nonspherical clusters@14#. See Fig. 1. Hence ou
approach is to use a harmonic-oscillator model for molecu
with the characteristic excitation frequencies of jellium elli
soids as input.

The rationale rests, as mentioned above, on the fact
details of ionic core structure affect the excitation spectr
of the valence electrons only slightly~the justification for
using effective core potentials for example!; hence, in the
simplest approximation one may neglect the detailed io
core structure@9,15# and treat the cores as simply providin
the neutralizing background. We thus compare stopp
anisotropies for several small molecules based on input f
jellium ellipsoids with the results calculated by substantia
more detailed and rigorous methods of molecular quan
mechanics@4,5#. The comparison should be useful in th
sense of giving both preliminary and interpretive estima
of molecular stopping anisotropy.

Section II first introduces and defines stopping asymme
and then outlines the relationship between the shape and
lective excitation frequencies in a jellium ellipsoid and t
same relationship based on another simple and useful mo
the single-particle Clemenger model@11#. Section III shows

FIG. 1. Jellium ellipsoids of rotation oriented with respect to t
incoming projectile velocity. Stopping anisotropies in small mo
ecules can be understood on a geometrical basis alone; i.e., the
betweena (5b) andc.
4616 © 1998 The American Physical Society
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that the collective excitation frequencies of jellium ellipsoi
happen to enter the single-particle energies in a harmo
oscillator model of the molecule since they determine
curvature of the harmonic potential. Thus a model t
merges the prior two is given in Sec. III and then is used
give the theoretical foundation for the stopping asymme
from shape. As an illustrative test, a group of molecules
mapped into ellipsoids by using tabulated bond lengths
van der Waals radii, whence we find good agreement~within
10%! between the simple estimate and the detailed, fu
quantum-mechanical molecular treatment.

II. THEORETICAL BACKGROUND

In this section we define the stopping asymmetry and
lineate two simple models to calculate it. The first introduc
the relationship between shape and excitation frequencie
ellipsoidal jellium particles. The second is the single-parti
Clemenger model for clusters, which provides another re
tionship between excitation energies and shape.

A. Stopping asymmetry

The linear energy deposition for a spheroidal target o
ented with its major symmetry axis parallel to the laborato
z axis can be written@4#

2S dE

di D5nSi~v !, ~1!

with i 5x,y,z andn the number density of scatterers. For
beam oriented along thez axis the stopping cross sectio
becomes

Sz~v !5
Z1

2Z2e4

4pmv2e0
2
ln

2mv2

I 0
x

, ~2!

while for a beam perpendicular to thez axis @4#

Sx~v !5
Z1

2Z2e4

4pmv2e0
2
ln

2mv2

AI 0
xI 0

z
. ~3!

HereZ1 is the projectile charge,Z2 the number of scattering
electrons in the target molecule~or cluster!, andv the pro-
jectile velocity in the laboratory frame. The directional com
ponents of the mean excitation energyI 0

i are defined in terms
of the corresponding components of the dipole oscilla
strength distributionf i(E) of the target:

ln I 0
i 5

E f i~E!ln EdE

E f i~E!dE

. ~4!

For a molecule with full rotation symmetry about thez
axis ~e.g.,C`v), the directional difference in stopping is

DS~v ![Sx~v !2Sz~v !5
Z1

2Z2e4

8pmv2e0
2
ln

I 0
x

I 0
z

~5!

and an obvious anisotropy parameter@1# is
c-
e
t
o
y
s
d

y

-
s
for
e
-

i-
y

r

A5 ln
I 0

x

I 0
z

. ~6!

The question arises as to the extent to which this anisotr
can be associated with the molecular shape alone and
whether the shape itself can be used as a predictor of
lecular stopping anisotropy.

B. Jellium ellipsoids

In this section we connect stopping and collective exc
tion energies via electron gas considerations. Such con
tions have a venerable history in stopping theory, dating
the homogeneous gas calculation of Kramers@16# and the
related local plasma approximation of Lindhard and Scha
@17#.

A finite, nonspherical jellium object has collective ele
tronic dipolar excitation frequencies associated with the
rection i, which can be written as

vp
i 5Anivp , ~7!

wherevp is the plasma frequency characteristic of the de
sity of the smeared out ionic~jellium! background andni is a
geometry-dependent depolarization factor@18,19#. We do
not consider the bulk plasmon excitation since it is not sh
dependent and hence drop it in Eq.~5!.

Consider a jellium ellipsoid of revolution with rotationa
axis c and semiaxesa5b satisfying

x2

a2
1

y2

b2
1

z2

c2
51 ~8!

and with eccentricity«

«5
1

c
Aua22c2u ~9!

as in Fig. 1. We assume the jellium ellipsoids to have sh
boundaries and to consist of a uniform electron gas. In ke
ing with the aforementioned line of argument@16,17#, it is
reasonable to assume that the mean excitation energy in
rection i , I 0

i , is proportional tovp
i since it is the only exci-

tation frequency in this model~vide infra!. The stopping an-
isotropy for such an ellipsoid then should be proportional
the ratio of the depolarization factors

I 0
x

I 0
z

5Anx

nz
. ~10!

The depolarization factors (0<ni<1) for a jellium ellipsoid
can be written@18#.

ni5
abc

2 E
0

` dl

~ j 21l!A~a21l!~b21l!~c21l!
, ~11!

where j 5a,b,c in order wheni 5x,y,z. Consideration of
oblate and prolate ellipsoids leads, after some algebra
depolarization factors~in terms of the eccentricity« @18,19#!
of
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nz5
11«2

«3
~«2tan21«!, ~12!

nz5
12«2

«3 F lnA11«

12«
2«G ~13!

for oblate and prolate ellipsoids, respectively.
Now nx1ny1nz51 and in the present casea5b, hence

nx5ny5(1/2)(12nz). The ratio of the mean excitation en
ergies perpendicular and parallel to the axis of rotation
such a jellium ellipsoid is then

I 0
x

I 0
z

5A12nz

2nz
. ~14!

Notice that the ratio is function ofc/a alone@cf. Eqs.~9!,
~12!, and~13!# and is unity fora5c ~sphere!. Thus the stop-
ping anisotropy is a function of geometry only.

It should be noted that as a consequence of choosingvp
to be constant, the results discussed above have no ov
scale exceptvp . Thus the formulas and frequencies depe
only on form and, in the absence of retardation effects,
on absolute dimension. Thus these formulas also should
ply to large particles~e.g., nanoparticles!. A practical retar-
dation limit is reached, however, with particles of charact
istic dimension of the order of 10–20 nm.

C. Clemenger model

Another useful way of estimating stopping anisotropy
to use the Clemenger model@11#. In its simplest form~ne-
glecting anharmonic terms!, it is based on an effective
single-particle Hamiltonian

H5
p2

2m
1

1

2
mv0

2@V'
2 ~x21y2!1V i

2z2#, ~15!

where the spheroidal scaling factors for the axes perpend
lar and parallel to molecular symmetry axis,V' and V i ,
may be expressed in terms of a distortion parameterd which
to first order is the difference between the major a
minor axes of an ellipsoid divided by the mean radiu
d'2(c2a)/(c1a). The volume is constrained in the Clem
enger model such thatV'

2 V i51, where V'5@(21d)
/(22d)#1/3. Clearly this Hamiltonian has characteristic e
ergies\v0V' and\v0V i for excitations perpendicular an
parallel to the molecular symmetry axis. Therefore, the m
excitation energies in the Clemenger model should have
unique ratio@11#

I 0
x

I 0
z

5
V'

V i
5V'

3 [
21d

22d
'

c

a
, ~16!

where the last approximation holds near sphericity. The m
refined relationshipd5(3/2)(c22a2)/(c212a2) @19# does
not alter the qualitative directional behavior of the mean
citation energy ratio. There is clearly a connection betwe
shape and mean excitation energies also in this mo
Though not shown here for compactness, in fact, the b
Clemenger model gives somewhat steeper behavior than
r
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jellium model. In the next section we will utilize a
Clemenger-like model but with another estimate of t
single-particle excitation energies, based on the jellium
proach.

III. RESULTS AND DISCUSSION

We first show that the collective excitation frequencies
a jellium ellipsoid considered in Sec. II B can be used as
single-particle excitation energies in a harmonic-oscilla
model such as the one in Sec. II C. We use this to provide
input in a stopping theory based on harmonic oscillato
hence to motivate a general relationship between stopp
asymmetry and shape. We then map actual molecules
ellipsoids via a systematic recipe and compare the results
those molecules with the predictions for the equivalent el
soids in the improved model.

A. Harmonic-oscillator model

The key elements of the previous sections are Eqs.~14!
and ~16! relating the asymmetry to the shape. One way
improve on the previous sections is to relate the ene
scales in the Clemenger cluster model to a more deta
model of the molecules. The distortiond in the original
Clemenger model was inferred from the sum of sing
particle energies being a minimum.

For electrons confined to a jellium ellipsoid, the potent
inside the sharp boundary has a curvature that coincides
the collective excitation frequencies. That is, internal to
sharp boundary of an ellipsoid, the confining potentialV
from the ellipsoidal jellium background is quadratic

V5
mvp

2

2e
~nxx

21nyy
21nzz

21C!, ~17!

where C is a constant~cf. Eq. 20, in Ref.@19#! and the
depolarization factors govern the geometric confinement.
suming that the electrons do not sample the potential out
the jellium ellipsoid to any significant extent, the harmon
potential may be extended to that region with impunity. T
whole object then may be treated as an anisotropic oscilla
similar to what has been done earlier in nuclear and clu
physics@9,10#.

It is known that for such an anisotropic harmonic oscil
tor the excitation energiesvn

i are equidistant, but differ with
direction

vn
i 5nv0

i , ~18!

wheren51,2,3, . . . andi 5x,y,z. As always with harmonic
systems,v0

i is related to the curvature of the confining p
tential for the ellipsoid in directioni, in our case directly
related toAnivp according to Eq.~17!.

Harmonic oscillator models have also been used to
scribe energy deposition@20–22#. In particular, there is a
scheme based on the~quantum! harmonic oscillator for cal-
culation of atomic stopping properties@23–25#. We can use
those results~Eq. 27, Ref.@23#! to show that~to lowest order
in \v0

i /2mv2, where 1
2 mv2 is the projectile kinetic energy!

the mean excitation energyI 0
i is



a
s
cl
he
ly
ce
u

jel

p
t
es
il

gi
r,
or
h
di

o
re

th
he

ri
e
e
te
io
ts
m
ne
s.
ca
on
th
rp

ys-
in

-

e

b-

c.
ter
n

d-

a al

t;

of

adii;
iza-

n
m a
rst-
rve

PRA 58 4619GEOMETRICAL BASIS FOR MOLECULAR STOPPING . . .
I 0
i 5\v0

i [Ani\vp , ~19!

according to the arguments given above.
Observe that Sigmund and Haagerup@23# use individual

atomic oscillators, while the frequencies entering here
characteristic of the confining potential of the ellipsoid a
whole. In alternative language, we utilize the single-parti
energies of the harmonic oscillator that coincide with t
plasma frequencies for the confining jellium ellipsoid. On
the first few excitations are important, as they are spa
rather far apart. This observation is consistent with o
choice of continuing the harmonic potential beyond the
lium edge of the ellipsoid.

We note that this scheme, although approximate, incor
rates a formally exact feature. The result is independen
electron mutual interactions. This is not to say that th
interactions are zero, but rather that their introduction w
not change the relationship among the excitation ener
@Eq. ~18!# @6,7,26#. The model should work best, howeve
for cases in which the low-lying excitations dominate; f
them the extension of the quadratic potential is not suc
severe approximation. To summarize this section our pre
tion is that the stopping asymmetryI 0

x/I 0
z5Anx /nz, the same

as in the plasma model of Sec. II B, but for a different reas
based as it is on single-particle energies. The connecting
son is of course that the jellium background is providing
restoring force both for the collective excitations and t
confinement of the electrons to its interior.

B. Molecular mean excitation energies

To check the proposition that stopping anisotropy is p
marily dependent on molecular geometry against indep
dent molecular data, we need molecular directionally dep
dent mean excitation energies and geometric parame
Such quantities are available from previous polarizat
propagator calculations@5# that utilized rather large basis se
and included electron correlation at the level of the rando
phase approximation. Calculations of this degree of refi
ment have proved reasonably reliable in past application

The determination of appropriate molecular geometri
parameters is a more subtle matter. For simplicity, we c
sider molecules with high axial symmetry and assume
each can be represented adequately for the present pu
by an ellipsoid with a major axis of lengthc pointing along

TABLE I. Mean excitation energy ratios and geometrical p
rameters for some small molecules. The values forI 0

x and I 0
z are

from @5#. The geometrical parameters~in angstroms! are from bond
distances@27,28# and van der Waals radii@29#.

Molecule (I 0
x/I 0

z) a c a/c

C2H2 1.308 1.65 2.962 0.557
HCN 1.259 1.60 2.710 0.590
CO 1.183 1.58 2.144 0.737
N2 1.209 1.55 2.099 0.738

CH4 1.000 1.744 1.744 1.000
NH3 0.943 2.238 2.088 1.072
BH3 0.859 2.833 1.80 1.574
C6H6 0.831 3.781 1.475 2.563
re
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e

d
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-

o-
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e
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e
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n-
rs.
n

-
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the Cn rotational axis. We choosec anda5b by combining
tabulated bond lengths@27,28# and van der Waals radii@29#.
At the least, this mapping of molecules to ellipsoids is s
tematic and well defined. The mapping results in the data
Table I for several representative molecules.

A similar set of data can be generated for H2 as a function
of bond lengthRHH . Using previously determined direc
tional mean excitation energies as a function ofRHH @30# and
constraining the volume of the prolate ellipsoid~determined
by the method just described! to be constant, we obtain th
data in Table II. For comparison we show the valuesa/c if
the volume is not kept fixed@denoted by (a/c)* ].

C. Comparisons

The molecular directional mean excitation energies vsa/c
from Table I are shown in Fig. 2 along with the curves o
tained in a Clemenger harmonic-oscillator model~dashed
curve! @Eq. ~16! with d5(3/2)(c22a2)/(c212a2)] and for
a harmonic-oscillator model with jellium input from Se
III A ~full curve!. We see that the latter model does a bet
job than the former. Similarly, the data in Table II for mea
excitation energies vsa/c as a function of bond length in H2
are plotted in Fig. 3, along with the curve for the correspon

- TABLE II. The mean excitation energy ratios and geometric
parameters for H2 . I 0

x and I 0
z are from@30#. The aspect ratioa/c

is a fixed volume, while (a/c)* values are without that constrain
see the text.

RHH (a.u.) (I 0
x/I 0

z) a/c (a/c)*

0.70 1.111 0.799 0.788
1.10 1.211 0.709 0.703

1.4011 (Req) 1.287 0.650 0.650
1.70 1.363 0.598 0.605
2.10 1.452 0.537 0.553

FIG. 2. Directional mean excitation energy ratio as a function
shape for some small molecules. Shapes~spheroidal parameters! are
determined from tabulated bond lengths and van der Waals r
see the text. The specific molecular anisotropies are from polar
tion propagator calculations@5#. The dashed line is our predictio
based on a Clemenger-like model and the full line the result fro
jellium based model. Note the improved agreement with the fi
principles results; all the points but one are within 10% of the cu
from our model.
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ing prolate jellium ellipsoid. The agreement between the m
lecular data obtained from direct,ab initio calculation of
directional mean excitation energies and anisotropies
tained indirectly from jellium ellipsoids and simplistic mo
lecular geometrical parameters is remarkable.

Since the curves in Figs. 2 and 3 depend on shape o
any anisotropy in the stopping must arise from geometr
factors only, not from any details of the electronic structu
Thus the geometry of the electron cloud, through its infl
ence on molecular excitation energies, is a major facto
the determination of stopping anisotropy. Certainly if ele
tronic structure anisotropies were included in the curves
Fig. 2, even better agreement with the calculated po
would be expected. However, the electrons average out
ionic positions by their motion so that their density distrib
tion is almost unaffected and very well reproduced by a
liumlike model@10,15#. It should be borne in mind, howeve

FIG. 3. Directional mean excitation energy ratio as a function
shape for H2 @30#. The molecular shape again is determined fro
the bond distance and van der Waals radius. The full curve is
calculation via the modified harmonic oscillator model with inp
frequencies from a jellium ellipsoid.
hy

ru

ru

.

-

b-

ly,
l
.
-
in
-
n
ts
he

l-

that the geometry of the molecule indicates only the anis
ropy in the energy deposition. The absolute mean excita
energies cannot be predicted with the same level of accu
directly from molecular geometry. For those, complete
pole oscillator strength distributions are needed for dir
calculation or accurate electron density data are needed i
local plasma approximation@17# is to be employed.

Finally, we note that bulk plasmon losses do not appea
our formulation as for small particles most trajectories a
nonpenetrating and energy losses are dominated by su
excitations. Furthermore as we split the energy loss int
bulk and a surface part the bulk part is by definition sha
independent and drops out of the anisotropy@Eq. ~5!#.

IV. CONCLUSIONS

We have shown, within 10% agreement, that molecu
geometry is a good determiner of energy deposition ani
ropy. In particular, molecular stopping anisotropy is strong
determined by geometrical anisotropy, molecules are w
represented by a harmonic-oscillator model in terms of th
stopping anisotropy~the harmonic frequencies taken from
jellium model of the molecules gives the best predicti
power!; and anisotropy, derived fromDS(v)5Sx(v)
2Sz(v) and defined asA5 ln(I 0

x/I 0
z), is a function only of

the geometrical parametera/c ~ratio of the minor to the ma-
jor axis of the ellipsoid describing the molecule in questio!.
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