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Geometrical basis for molecular stopping anisotropy
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We consider the effect of shape on the anisotropy of stopping of swift ions by molecular targets. By use of
an anisotropic harmonic-oscillator model and frequencies based on jellium ellipsoids, we show that a mean-
ingful estimate of molecular stopping anisotropy can be obtained from molecular shape alone.
[S1050-294®8)01912-X]

PACS numbd(s): 34.50.Bw, 33.90+h

[. INTRODUCTION shape, i.e., nonspherical clustétgl]. See Fig. 1. Hence our
approach is to use a harmonic-oscillator model for molecules
The anisotropy in energy deposition by swift ions in mo- with the characteristic excitation frequencies of jellium ellip-
lecular targets is a subject of increasing interest, given th&oids as input.
advent of ever more accurate methods for orienting molecu- The rationale rests, as mentioned above, on the fact that
lar target systems and for measuring energy [dss3]. In a details of ionic core structure affect the excitation spectrum
pair of recent pape@,s], the topic was considered for sev- of the valence electrons Only Sllght@he jUStification for
eral molecules in some detail. Bethe theory was invoked an¥Sing effective core potentials for exampléience, in the
the stopping anisotropy calculated from the directional deSimplest approximation one may neglect the detailed ionic
pendence of independently calculated mean excitation enefore structurg9,15] and treat the cores as simply providing
gies. A clear correlation of stopping anisotropy with molecu-the neutralizing background. We thus compare stopping
lar shape emerged. The effect was found to be of the order gnisotropies for several small molecules based on input from
5% of the tota| Stopping Cross Section_ The under'ying phys].elhum ellipSOidS with the results calculated by Substantia”y
ics of that correlation is investigated here. more detailed and rigorous methods of molecular quantum
The interpretation that emerges is based on the followingh€chanics[4,5]. The comparison should be useful in the
line of argument. At least roughly, the electrons in a mol-Sense of giving both preliminary and interpretive estimates
ecule average out the details of ionic positions. Accordingly©f molecular stopping anisotropy.
one may model the ionic background as jellium with an an-  Section Il first introduces and defines stopping asymmetry
isotropic boundary to include effects of the overall shape@nd then outlines the relationship between the shape and col-
For such a situation the electrons move in an anisotropitective excitation frequencies in a jellium ellipsoid and the
confining potential that is harmonic and the characteristicéame relationship based on another simple and useful model:
harmonic frequencies coincide with the surface plasmon frethe single-particle Clemenger modéll]. Section Il shows
guencies of the corresponding jellium ellipsoid. The har- E v
monic potential theorem6—8|] then states that independent ;
of the electron-electron interaction, those frequencies are the
excitation frequencies of the system. Hence both the average prolate
stopping energy and its anisotropy will be related to those c>a=b
frequencies. o+
Oscillator models have been used frequently in nuclear, Z4
cluster, and surface physics to predict general tr¢ads).
One example is the Clemenger mofiEl] for metal clusters o
that is based on the Nilsson moddl2] for nuclei. In es- N
sence, the valence electrons are assumed to move in an ef-
fective one-electron potential approximated by an aniso-
tropic (anharmonic oscillator. For small clusters the
anharmonic contributions can be neglected. Trends for glo-
bal cluster properties seem to be well predicted, even for oblate
small numbers of particles in the clus{®&;10]. At the same
time measurements of photoabsorption cross sections in a=b>c
small alkali-metal clusters have shown the existence of reso- FIG. 1. Jellium ellipsoids of rotation oriented with respect to the
nant features that can be seen as surface collegl@smon  incoming projectile velocity. Stopping anisotropies in small mol-
excitations[13,14]. Observed double and triple peaks can beecules can be understood on a geometrical basis alone; i.e., the ratio
associated with surface plasmons in clusterelipsoidal  betweena (=b) andc.
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that the collective excitation frequencies of jellium ellipsoids X
happen to enter the single-particle energies in a harmonic- A:|n—g_ (6)
oscillator model of the molecule since they determine the 1o

curvature of the harmonic potential. Thus a model that ) ] ) ] )
merges the prior two is given in Sec. Ill and then is used tol he question arises as to the extent to which this anisotropy

give the theoretical foundation for the stopping asymmetrye@n be associated with the molecular shape alone and thus
from shape. As an illustrative test, a group of molecules igvhether the shape itself can be used as a predictor of mo-
mapped into ellipsoids by using tabulated bond lengths antfcular stopping anisotropy.

van der Waals radii, whence we find good agreeneithin

10%) between the simple estimate and the detailed, fully B. Jellium ellipsoids
quantum-mechanical molecular treatment. In this section we connect stopping and collective excita-
tion energies via electron gas considerations. Such connec-
Il. THEORETICAL BACKGROUND tions have a venerable history in stopping theory, dating to

he homogeneous gas calculation of Kraml§] and the

. . - : t
In this section we define the stopping asymmetry and Ole-elated local plasma approximation of Lindhard and Scharff

lineate two simple models to calculate it. The first introduce

X X e ) ?_7]_
the relationship between shape and excitation frequencies f A finit herical iell biect h llecti |
ellipsoidal jellium particles. The second is the single-particletr i 'g'l e,lnron;s(pitetrilcg fjre |urr;10i JeC asi (E[Ode\?vi%etﬁ e:’j'i
Clemenger model for clusters, which provides another rela: onic dipoiar excitation Irequencies associate e dr-

tionship between excitation energies and shape. rectioni, which can be written as

wp= Ny, )
A. Stopping asymmetry

The linear energy deposition for a spheroidal target ori-Where, is the plasma frequency characteristic of the den-

ented with its major symmetry axis parallel to the laboratorysity of the smeared out ionigellium) background and is a
z axis can be writter4] geometry-dependent depolarization fac{ds,19. We do

not consider the bulk plasmon excitation since it is not shape
dE . dependent and hence drop it in E§).
di =nS(v), 1) Consider a jellium ellipsoid of revolution with rotational
axis ¢ and semiaxesa="b satisfying
with i=X,y,z andn the number density of scatterers. For a
beam oriented along the axis the stopping cross section x2 y? Z?

becomes 2 + o7 + 2 1 ®)

727,e* - 2mu?

S(v)= In ) and with eccentricitye
4mmu?ed 15 ] L
_ T [a2_n~2
while for a beam perpendicular to tlzeaxis[4] £= 3¢ |a®~c] ©
y 727,e* - 2mu? as in Fig. 1. We assume the jellium ellipsoids to have sharp
S(v)= 4Wmvzez'n\/w- ©) boundaries and to consist of a uniform electron gas. In keep-
0 olo

ing with the aforementioned line of argumdnt6,17), it is

HereZ, is the projectile chargeZ, the number of scattering reas_ongbltia to assume that theimgan excitation energy in di-
electrons in the target moleculer clustey, andov the pro-  '€ctioni, lo, is proportional tow, since it is the only exci-
jectile velocity in the laboratory frame. The directional com- tation frequency in this modevide infra). The stopping an-

ponents of the mean excitation enet@yare defined in terms  1S0tropy for such an ellipsoid then should be proportional to
of the corresponding components of the dipole oscillatofN€ ratio of the depolarization factors
strength distributiorf'(E) of the target: y
I0 Ny
T \E - (10
0

f f'(E)InEdE z

i_

Inlo= . ' (4) The depolarization factors €n;<1) for a jellium ellipsoid

j fi(E)dE can be writter{ 18].
For a molecule with full rotation symmetry about tke abc [~ d\
axis (e.g.,C.,), the directional difference in stopping is ni=—%— 0 (j2+ M) V(@ M) (B2 M) (PN | (12)
77,e* 1§ P : P arati

AS(v)=SX(v)— S(v) = 172 ‘o (5) where j=a,b,c in order wheni=x,y,z. Consideration of

oblate and prolate ellipsoids leads, after some algebra, to
depolarization factor@n terms of the eccentricity [18,19)
and an obvious anisotropy paramefgf is of

n
2.2
8mmuv“ey |
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1+ g2 jellium model. In the next section we will utilize a
n,=——>3 (e—tan le), (12 Clemenger-like model but with another estimate of the
€ single-particle excitation energies, based on the jellium ap-
proach.
1-¢? 1+e
n,= In —& (13
g3 1-¢ Ill. RESULTS AND DISCUSSION
for oblate and prolate ellipsoids, respectively. We first show that the collective excitation frequencies of

Now n,+n,+n,=1 and in the present case=b, hence @ jellium ellipsoid considered in Sec. Il B can be used as the
ny=n,=(1/2)(1—n,). The ratio of the mean excitation en- single-particle excitation energies in a harmonic-oscillator
ergies perpendicular and parallel to the axis of rotation fofmodel such as the one in Sec. Il C. We use this to provide an

such a jellium ellipsoid is then input in a stopping theory based on harmonic oscillators,
hence to motivate a general relationship between stopping
X 1-n, asymmetry and shape. We then map actual molecules into

== T (14 ellipsoids via a systematic recipe and compare the results for
1o z those molecules with the predictions for the equivalent ellip-

Notice that the ratio is function af/a alone[cf. Egs.(9), soids in the improved model.

(12), and(13)] and is unity fora=c (spherg. Thus the stop- _ )
ping anisotropy is a function of geometry only. A. Harmonic-oscillator model

It should be noted that as a consequence of choasing  The key elements of the previous sections are Ebg.
to be constant, the results discussed above have no overahd (16) relating the asymmetry to the shape. One way to
scale excepty, . Thus the formulas and frequencies dependmprove on the previous sections is to relate the energy
only onform and, in the absence of retardation effects, notscales in the Clemenger cluster model to a more detailed
on absolute dimension. Thus these formulas also should apnodel of the molecules. The distortiofi in the original

ply to large particlege.g., nanoparticlgs A practical retar-  Clemenger model was inferred from the sum of single-
dation limit is reached, however, with particles of characterparticle energies being a minimum.

istic dimension of the order of 10-20 nm. For electrons confined to a jellium ellipsoid, the potential
inside the sharp boundary has a curvature that coincides with
C. Clemenger model the collective excitation frequencies. That is, internal to the

sharp boundary of an ellipsoid, the confining potential

Another useful way of estimating stopping anisotropy from the ellipsoidal jellium background is quadratic

to use the Clemenger modgell]. In its simplest form(ne-

glecting anharmonic termsit is based on an effective M2
single-particle Hamiltonian V= z—ep(nxx2+ nyy?+n,z?+C), (17
2
H:%JFEmwg[ﬂf(szfyzHQﬁzz]: (19  whereC is a constantcf. Eq. 20, in Ref.[19]) and the

depolarization factors govern the geometric confinement. As-
where the spheroidal scaling factors for the axes perpendic$uming that the electrons do not sample the potential outside
lar and parallel to molecular symmetry ax@, and Q”' the jellium ellipsoid to any significant extent, the harmonic
may be expressed in terms of a distortion paramétehich ~ potential may be extended to that region with impunity. The
to first order is the difference between the major andwhole object then may be treated as an anisotropic oscillator,
minor axes of an ellipsoid divided by the mean radius:Similar to what has been done earlier in nuclear and cluster
8~2(c—a)/(c+a). The volume is constrained in the Clem- Physics[9,10]. _ . -
enger model such thanJZ_QH:l, where Q, =[(2+ ) It is known that for such an anisotropic harmonic oscilla-
/(2—8)1¥3. Clearly this Hamiltonian has characteristic en- tor the excitation energies,, are equidistant, but differ with
ergiesfiwo{); andfwq ) for excitations perpendicular and direction
parallel to the molecular symmetry axis. Therefore, the mean _ _
excitation energies in the Clemenger model should have the w),=vwy, (18
unique ratio[11]
wherev=1,2,3 ... andi=x,y,z. As always with harmonic
systemswy, is related to the curvature of the confining po-
tential for the ellipsoid in direction, in our case directly
related to\/n_iwp according to Eq(17).
where the last approximation holds near sphericity. The more Harmonic oscillator models have also been used to de-
refined relationships=(3/2)(c?—a?)/(c?+2a?) [19] does scribe energy depositio[20-23. In particular, there is a
not alter the qualitative directional behavior of the mean ex-scheme based on tiiguantum harmonic oscillator for cal-
citation energy ratio. There is clearly a connection betweergulation of atomic stopping properti¢23-25. We can use
shape and mean excitation energies also in this modelhose resultsEq. 27, Ref[23]) to show thafto lowest order
Though not shown here for compactness, in fact, the basi® % wy/2mv?, wherezmu? is the projectile kinetic energy
Clemenger model gives somewhat steeper behavior than tiiee mean excitation enerdy is

(16)
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TABLE I. Mean excitation energy ratios and geometrical pa- TABLE Il. The mean excitation energy ratios and geometrical
rameters for some small molecules. The valueslfpand |3 are  parameters for K. 15 and 1§ are from[30]. The aspect ratia/c
from [5]. The geometrical parameteiia angstromsare from bond is a fixed volume, while §/c)* values are without that constraint;

distanceq27,2§ and van der Waals radi9]. see the text.
Molecule (15/13) a c alc Ryy (a.u.) (1311%) alc (alc)*

C,H, 1.308 1.65 2.962 0.557 0.70 1.111 0.799 0.788

HCN 1.259 1.60 2.710 0.590 1.10 1.211 0.709 0.703
CcoO 1.183 1.58 2.144 0.737 1.4011 Req) 1.287 0.650 0.650
N, 1.209 1.55 2.099 0.738 1.70 1.363 0.598 0.605
CH, 1.000 1.744 1.744 1.000 2.10 1.452 0.537 0.553
NH; 0.943 2.238 2.088 1.072

BH; 0.859 2.833 1.80 1.574

CsHg 0.831 3.781 1.475 2563  the C, rotational axis. We chooseanda=b by combining

tabulated bond lengti27,28 and van der Waals radi29].
At the least, this mapping of molecules to ellipsoids is sys-

lo=hwp=\niko,, (19 tematic and well defined. The mapping results in the data in
_ _ Table | for several representative molecules.
according to the arguments given above. A similar set of data can be generated for&$ a function

Observe that Sigmund and Haagef@3] use individual  of bond lengthR. Using previously determined direc-
atomic oscillators, while the frequencies entering here ar@onal mean excitation energies as a functioiRgf, [30] and
characteristic of the confining potential of the ellipsoid as aconstraining the volume of the prolate ellipsgitetermined
whole. In alternative language, we utilize the single-particlepy the method just describetb be constant, we obtain the
energies of the harmonic oscillator that coincide with thedata in Table Il. For comparison we show the valaés if

plasma frequencies for the confining jellium ellipsoid. Only the volume is not kept fixefdenoted by &/c)*].
the first few excitations are important, as they are spaced

rather far apart. This observation is consistent with our
choice of continuing the harmonic potential beyond the jel- o o )
lium edge of the ellipsoid. The molecular dlrect|o_nal mean excitation energieahts

We note that this scheme, although approximate, incorpofom Table I are shown in Fig. 2 along with the curves ob-
rates a formally exact feature. The result is independent ogined in a Clemenger harmonic-oscillator modeashed
electron mutual interactions. This is not to say that thes€Urve [Eq. (16) with 6=(3/2)(c®—a?)/(c?+2a?)] and for
interactions are zero, but rather that their introduction will@ harmonic-oscillator model with jellium input from Sec.
[Eq. (18)] [6,7,26. The model should work best, however, Job than the former. Similarly, the data in Table Il for mean
for cases in which the low-lying excitations dominate; for €xcitation energies va/c as a function of bond length inH
them the extension of the quadratic potential is not such &re plotted in Fig. 3, along with the curve for the correspond-
severe approximation. To summarize this section our predic-

C. Comparisons

tion is that the stopping asymmetr§/15=/n,/n,, the same _g'l'“m‘ds vodel
as in the plasma model of Sec. Il B, but for a different reason 3 ° _"N:menger o
based as it is on single-particle energies. The connecting ree x  CO
son is of course that the jellium background is providing the m CHy
restoring force both for the collective excitations and the  ,, | ° ﬁgﬁ
confinement of the electrons to its interior. N ﬁ BH,
= O NH,
B. Molecular mean excitation energies ><_o1_00 B ¢ G
To check the proposition that stopping anisotropy is pri- —

marily dependent on molecular geometry against indepen- | T
dent molecular data, we need molecular directionally depen- L |

dent mean excitation energies and geometric parameter: 000 0.80 160 240 320 4,00
Such quantities are available from previous polarization alc
propagator calculatior{$] that utilized rather large basis sets

. . FIG. 2. Directional mean excitation energy ratio as a function of
and included electron correlation at the level of the random-shape for some small molecules. Shagpheroidal parameterare

phase approximation. Calculations of this degree of refin€getermined from tabulated bond lengths and van der Waals radi;
ment have proved reasonably reliable in past applications. see the text. The specific molecular anisotropies are from polariza-

The determination of appropriate molecular geometrication propagator calculation&]. The dashed line is our prediction
parameters is a more subtle matter. For simplicity, we conpased on a Clemenger-like model and the full line the result from a
sider molecules with high axial symmetry and assume théjellium based model. Note the improved agreement with the first-
each can be represented adequately for the present purpgseciples results; all the points but one are within 10% of the curve
by an ellipsoid with a major axis of lengthpointing along  from our model.
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1.60 that the geometry of the molecule indicates only the anisot-
ropy in the energy deposition. The absolute mean excitation
energies cannot be predicted with the same level of accuracy
directly from molecular geometry. For those, complete di-
pole oscillator strength distributions are needed for direct
2 calculation or accurate electron density data are needed if the
local plasma approximatiofl7] is to be employed.

Finally, we note that bulk plasmon losses do not appear in
our formulation as for small particles most trajectories are
nonpenetrating and energy losses are dominated by surface
excitations. Furthermore as we split the energy loss into a

1.00 L. | I I bulk and a surface part the bulk part is by definition shape

040 00 060 ;/72 080 090 ' independent and drops out of the anisotrgBy. (5)].
FIG. 3. Directional mean excitation energy ratio as a function of IV. CONCLUSIONS

shape for H [30]. The molecular shape again is determined from _
the bond distance and van der Waals radius. The full curve is our We have shown, within 10% agreement, that molecular

calculation via the modified harmonic oscillator model with input geometry is a good determiner of energy deposition anisot-

frequencies from a jellium ellipsoid. ropy. In particular, molecular stopping anisotropy is strongly
determined by geometrical anisotropy, molecules are well

represented by a harmonic-oscillator model in terms of their
stopping anisotropythe harmonic frequencies taken from a
d'_ellium model of the molecules gives the best predictive
powep; and anisotropy, derived fromAS(v)=S*(v)
—S%(v) and defined a®\=In(1§/15), is a function only of

he geometrical parametarc (ratio of the minor to the ma-

or axis of the ellipsoid describing the molecule in question

1.40 |- — prolate ellipsoid -

. H

X, z
lo /1o

1.20 —

ing prolate jellium ellipsoid. The agreement between the mo
lecular data obtained from direcab initio calculation of
directional mean excitation energies and anisotropies o
tained indirectly from jellium ellipsoids and simplistic mo-
lecular geometrical parameters is remarkable.

Since the curves in Figs. 2 and 3 depend on shape onl
any anisotropy in the stopping must arise from geometric
factors only, not from any details of the electronic structure.
Thus the geometry of the electron cloud, through its influ-
ence on molecular excitation energies, is a major factor in This work was supported in part by grants from the U.S.
the determination of stopping anisotropy. Certainly if elec-Army Research Offic6Grant No.DAA-H04-95-1-0326 to
tronic structure anisotropies were included in the curves in).R.S. and S.B.J,. and the Swedish Natural Science Re-
Fig. 2, even better agreement with the calculated pointsearch Council and Iberdrola S# S.P.A). We are grateful
would be expected. However, the electrons average out th® Odense University for hospitality during the time that
ionic positions by their motion so that their density distribu- some of this work was done as well as the enlightening at-
tion is almost unaffected and very well reproduced by a jel-mosphere at the Universities of Florida and Basque Country
liumlike model[10,15. It should be borne in mind, however, (S.P.A).
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