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Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays
near a resonance
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Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua
are shown to be functionals of the Beutler-Fano formula using appropriate dimensionless energy units and line
profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are
identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With
the help of new parameters, an analogy with the spin model is pursued fBmtlagrix and time delay matrix
Q. The S matrix is found to be put into eXfa+ba-n)]. The time delay matrixQ is shown to be given as
Q= %Tr(1+ 53- o+ }Sf . &), where the first term is the time delay due to resonance, the second term is the one
due to avoided crossing interaction, and the last term is the one due to a frame change. It is folRfd that
+P?=1.[S1050-294798)06812-7

PACS numbsgs): 03.80:+r, 03.65.Ge, 33.80.Gj, 34.16x

I. INTRODUCTION tichannel processes are not known. According to the numeri-

cal studies, eigenphase shifts in the multichannel system are

Resonances observed in the energy dependence of atonkinown as showing complicated behaviors near a resonance

and molecular processes often correspond to the autoionizaue to the avoided crossing between curves of eigenphase

tion or predissociation observed in photoabsorption, i.e., t&hifts along the energy6,8]. Such a phenomenon of the

the excitation of a quasibound state in a continuum regioryoided crossing along the energy is not conspicuous in the

[1,2]. Their spectra are characterized by rich profiles providcase of the formulas for photodissociation cross sections and

ing a wealth of information on the atomic and molecular s matrices. We report here detailed studies on the behaviors
dissociation or ionization processes. Beutler’s early observags eigenphase shifts and also times delayed by collision
tion of rare-gas levels autoionizing into a single continuum(g 1] for the system of one discrete state and two continua,
with angular-momentum conservation was reproduced byyhich turn out to be described by functionals of the Beutler-

Fano through the formulgg] Fano formula. Their behaviors in the system of one discrete
) state and one continuum have already been stuid@gdlf

o( 6)_00(5_‘1) (1) one more continuum is added to that system, new phenom-

142’ ena of the avoided crossing between curves of eigenphase

shifts and eigentimes delayed and of times delayed due to the
wheree is the reduced energy defined byE2( E,)/T’, E, frame change along the energy besides the resonance behav-
and#/T" represent the resonance energy and the mean lifdO" enter._The avoided crossing interactions between eigen-
time of the quasibound state, respectivety, represents the Phase shifts along the energy always take place near a reso-
photofragmentation cross section to the continuum state, arfé@nce if they are not excluded for symmetry reasons, as we
q is an index that characterizes the line profiere—q is ~ Will see later. The addition of more continua may simply
employed instead of the usual). An extension of the introduce more avoided crossings among the newly added
Beutler-Fano formula to the dissociation into multichannels€igenphase shifts. In this sense, the current system of one
was obtained by Combet-Farnoli4]. The energy depen- discrete state and two continua may serve as a prototypical
dence of theS matrix near an isolated resonance for suchSyStem for the study of the effects of avoid crossings be-
predissociation or autoionization into multichannels was obiWeen eigenphase shifts and times delayed due to the frame
tained long ago and is well knowis]. By diagonalizing the ~change on the resonance phenomena.

S matrix, eigenphase shift§, (i=1,2,...n) are obtained The import of the current work may be in t_he fi_ndings _of
from its eigenvalues as the new parameters for the avoided crossing interaction,
where theS matrix can be put into a form aft', with H the
S=Ue? 7 Hermitian, and the time delay matr{or lifetime matrix, as

called by Smith[10]) can be put into a form of £ P- ¢,

and are utilized frequently as a tool for analyzing the resowhereP is a polarization vector and is the Pauli matrix.

nanceg6,7]. Eigenphase shifts and the corresponding eigenThe analogy with the spin system under a magnetic field is

channels are also extensively used in various forms in mulexploited to find further properties of tt&matrix and time

tichannel quantum-defect theory, which is regarded as one afelay matrix.

the most general and powerful theories of resondfge Section 1l describes the known properties of eigenphase
In contrast to photofragmentation cross sections andthe shifts. Section Il describes the form of ti&matrix near a

matrix, the analytical formulas for eigenphase shifts in mul-resonance and the equation for eigenphase shifts. It also dis-
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cusses some special cases and general characteristics oflll. EQUATIONS FOR EIGENPHASE SHIFTS IN THE
eigenphase shifts and eigentime delays. Section IV obtains NEIGHBORHOOD OF RESONANCE
the formulas of eigenphase shifts as functionals of the

Beutler-Fano formula for the system of one discrete state an . . .
y %ted resonance in multichannel processes is well known and

two continua. Section V obtains the formulas of eigentimehas been repeatedly derived in the past USING VArouS reso-
delays as functionals of the Beutler-Fano formula. Section P y . P sing
. nance theorie§2,5]. Though its form is basically the same
VI summarizes the results. CoI . ;
for all resonance theories, its detailed expressions may look
different from theory to theory. Here Fano’s configuration

Il. KNOWN PROPERTIES OF EIGENPHASE SHIFTS interaction theory is adopted for the treatment of the reso-
It is well known that for an isolated resonance in single"@ncef3]. In the configuration interaction theory, an isolated
channel scattering, the energy dependence of a phase sHifsonance in the multichannel system is treated as regarding

The form of theS matrix in the neighborhood of an iso-

8(E) is described by the formuld] the ;ystem as compqsed f’f. one discrete statend many
continuum wave functiongg 0) The latter are taken to pre-
1 diagonalizeH. In other words, it is assumed that continuum
tar[é(E)—5°]=m=—;, (3 wave functions are unable to interact directly with each

other. They can, however, interact with each other indirectly

where&°, E,, andI” denote the background phase shift, thevia their interactions with the discrete stagdf the integrals
energy, and the width of the resonance, respectively. The —0)

second equality in Eq(3) defines the dimensionless energy. Vie=(yg V|H[#) (7)

It can be deduced from E@3) that 5(E) increases slowly ) ) ] _ )
except for the narrow energy range aroulig where its &€ not zero. This means thidtis no longer diagonalized in
value undergoes a rapid change and is eventually increasé@e combined space spanned by the basis{getiz !'}.

by 7 as energy varies from = to «. Due to the property of ~Eigenfunctions Wz of H in the space spanned by
tangent functiong(E) can be determined only up tor (n {¢,¢g(”} can be obtained analytically as shown by Fano
an integey. It is usually taken to be® at E——«. Then it  [3,4]. By applying the incoming wave boundary conditions
becomess®+ 7 at E—o. In the absence of resonana®js  to those eigenfunctions as

equal tos°. The background phase shiff is a slowly vary-

ing function of energy and is usually taken to be constant as , m . ,
a good approximation. Thus the increases¢E) aroundE, VD= ¢j(w) \/ (e*iRs;—e MiRg;,)),
comes solely from the resonance. Let us denote the differ- i’ 2mk;/

ence betweed(E) and &° by &,(E). With this notation, Eq. (8)

(3) becomes tam,(E)=tan 5,(¢e)=—1/e and with the TheSmatrix may be obtainef4] as
above-mentioned phase convention of setifigg) to &° at

E= —, it can be transformed as VeVl
Sji=2 S| Sy +2mi L , (9
el o€ = —etl _ (4) ! E_Eo_iﬂ'; |Viel?
Vel+1
0 . . .
Macek [8] generalized Eq(3) to multichannel processes Where_Sj,j,, Is th_e S matrix of the background_ scatterln_g.
as Equation(9) is different from that of the outgoing wave in

thati is replaced by—i. The incoming wave, instead of the
n outgoing one, is employed here as our interests are in the
2(E—Eg)= 2 chol[ﬁfk’— Sm(E)]l, m=1,...n, photodissociation processes.
k=1 As stated in Ref[3], 273|V,g|? is the spectral width of
(5 the resonance peak and is denoted ag\ccording to Refs.

where 6,,(E) is the eigenphase shift defined in Ef), &) is [5.8]. Eq. () may be rewritten as

the background phase shifts in chankeandI’ is the par- .

tial decay width to channd&d. Hazi[11] also showed that the S/ = E UJQ,j”(e—zi5].,,5j”jmJr iCjHCj//I)D?,,,]-. (10)
eigenphase sum, which will be denoted AE), satisfies IRk

the “single-channel” formula

In matrix notation, Eq(10) becomes
n

Ss(E)=2D, 8(E)=8&2+tan!
k=1

;1 o e -
m:fsg—ta” ot S=U%e 2" +ict)T°=UC AL, (11)
(6

) wherec is the column vector and itsth element is defined
where I' is the total width of the resonance, i.el, by

=>n_,I',, and 6(2’ is the sum of the background eigen-
phase, i.e.33=3N_,50,. The reduced energy is the one

_ ) r
. ; m : c=e"' 5 \/ S (12
defined in Eq(3), except thal’ now denotes the total width. E—Ey—iI'/2
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I'y is the partial resonance decay width to the background A=Ve 2%y (14)
eigenchannek.
Let us consider obtaining eigenphase shifty the di- S=U%e 20, (15)

agonalization of the&s matrix
From Egs.(13) and(15), U=U°V,

S=Ue 240, (13 Let x denote the eigenvalue?'? of A. Then the eigen-
0, o~ . .
o value of A=e 2% +icc can be obtained by solving the
If A=e 2% +icc is diagonalized as secular equation
e 29 4jc2—x iciCy iciC3
iC2Cy ethg-kicg——x iC,C3
iCSCl iC3C2 872i6g+iC§—X e =0. (16)

If we divide the first row of the above determinant kny, and is more convenient than Macek’s formula in obtaining
the second row byc,, and thekth row byic,, in general, the solution. In particular it shows explicitly that the number

and if we introducex, defined by of roots of Macek’s formula is the same as the number of
. . continuan. We will use it in Sec. IV to obtain the solution
e 2o 4 icﬁ—x e 2% _x for the system of one discrete state and two continua. Before
=T e, or X«=C=—"c. | (17 doing that, let us comment on the general properties of
k K eigenphase shifts obtainable from Macek’s formula.
the secular equation becomes From Macek’s formula we could draw two properties of
eigenphase shifts. First, their differentiation with respect to
Xy Cy C3 ... energy yields
C1 Xz C3
Cl Cz X3 - :0 18 n -1
: : : ( ) %ZZ EL >0, m=1,...n.
dE K=1 Sir?(6p— Spm)
(22)

The above equation for the system wfcontinua can be

transformed into Sardi's forril2] This equation tells us that the first derivatives of eigenphase
shifts with respect to energy near a resonance are positive.

n Second, the asymptotic values of the eigenphase difts

[T (xg—co)|=0. (19 [2(E-Eo)/T|—=] are given aséY,69,69, ...,60 up to

=1

[T —c+ >
k=1 k=

1 CkﬁXk m= multiples of 7.
o o _ Let us assume that)< 89< - - - < % and that they are all
By dividing Eq. (19) by its first term, one obtains in the rangd 0,7], for simplicity, which can be always done
without losing generality by Hazi's formulé). Then the
"¢ above two properties of eigenphase shifts tell us that eigen-
—=1. (20 phase shifts vary between two asymptotic values of their
k=1 G X abscissas given bys?,551,[69,83], ... [82_,,8°]. If &2
By substitution of Eqs(12) and(17), Eq. (20) becomes becomes larger tham, it is shifted by — 7 and increases

again towardé(l). Since the sum of the eigenphase shifts
shows the resonance behavior and increasesrtground
. I'y _ I resonance, each eigenphase shift should similarly show the
‘& e-20-69_1 E-Bo-i3- (21 esonance behavior between two consecutive asymptotes of
the abscissass’, 4%, ,1(i=1, ... n). When the consecutive
Equating the real and imaginary parts, E1) yields two eigenphase shifts are the same, let us&ay s, ,, then one
relations: One is Macek’s formula and the other3igl’,  of the two corresponding eigenphase shifts remains constant
=T". This derivation of Macek’s formula is simpler than the while the other one shows the resonance behavior between
original one. Sardi’'s form is given as a polynomial of order two asymptote$5? , 5?+2].

n
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IV. EIGENPHASE SHIFTS FOR THE SYSTEM OF ONE . _ AT
DISCRETE STATE AND TWO CONTINUA g*idaler) = 2—1{ €,c0osAd,+ Tsmgz
Ve t+
Let us now consider the system of one discrete state and '
two continua. For this system E@L9) becomes _|4r T, ., A o 2112
2 +| €SiNA},— ?cosA12
[(Xy=C1)(Xo—Cp) +C1(Xa—Cp) +Ca(X;—C1)]=0.
(23 (29
Substituting Eq(17) into Eq. (23), we obtain (the notationss, and &, without the bar are also used else-

where if it is desired to express them in termdahstead of

€;). The phase shif, in the first term is the one due to the

resonance as in E¢4). In single-channel scattering, it is the

only term besides the background phase shift contributing to

the eigenphase shifts near a resonance. In two-channel scat-

) ) _ tering, there enters another phase slkdift defined by the

The roots of the quadratic equatié®4) are obtained as second term due to the indirect coupling of two continua via
a quasibound state near a resonance.

0 o0
x2— (e @1 +ict+e ?%+ic)x

+(e" 29 +ic?) (e 2% +ic2)+c2c2=0. (24)

—2i5.(E) e i(81+5) 0 o The functional dependence @k(e,) on energy may be
Xx=e "=+ (E- Eo)C05A12+75'nA12 best seen by considering its cotangent like &et—¢, as in
E—Ep—i 5 single-channel scattering:
AT 2) 12 0 AT ) 0
ii(FlFZJr (E—Eo)sinA(l’z—TcosAg2 } ) (25 o - frCOSAlzJFTS'nAu
cot 5,(€,)= .
o o AT (2 oar,|”?
where[' =T, +T,, AT=T,—T,, andA%= 38— &2. If we €rSiNAL~ C0SA1) +— 5
introduce a dimensionless energy (taken differently from (30)
the usual notatiore in order to avoid the confusion with
another dimensionless energy, which will be defined | gt ys first rewrite Eq(30) as
laten as
cot 5,(€,)
B E— EO a r
“="Tn (26) I'sinA%, AT
———| e, t—=tanAj,
i =—cotA? AN
Equation(25) becomes 12{ FsinAgz( AT N 2 1] 2-
————| ¢~ —=COtAL,|| +
_ e i(87+89) AT 2\ I I
e*Z"sr(f”:—Er_i € cosAf,+ ?sinAfl’2 (31)
4T,T, AT 2712 The term inside the square brackets in the denominator of
+i 2 +| € sinA%,— TCOSAEZ) ] Eq. (31) can be transformed as
27) I'sinAY, AT o | sinAY,
_ 2\ T, r NI
where é is used instead o in order to emphasize that the AT
eigenphase shifts are now functions gfinstead ofE. An —~ cot Acl)z) (32)
analysis of the eigenphase shifts in E7) is done in the 2
next subsection by introducing phase shifts due to the reso-
nance and avoided crossing interaction. This suggests that we can introduce a new energylunit
2 2
A. Phase shifts due to resonance and avoided crossing .= 2\I\ T, _ VIZ-AT (33)
interaction * sinAY, sinAd,
Equation(27) can be decomposed into the product of two
terms of unit modulu$13] For simplicity, let us also introduce a new parameigr,
ey T er+1 AT o
e 'orle= ——— (28 E,=Ey+ ——cotAj, (39

€1 2
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(later it will be shown thak, is the avoided crossing point avoided crossing interaction in one eigenchannel increases at
energy and’, is the strength of the avoided crossing inter- the expense of the phase shift of the other eigenchannel and
action. vice versa. If it increases in one eigenchannel due to attrac-
With these parameters, E@2) becomes 2£—E,)/T",, tion, it decreases in the other one due to repulsion. They are
which may be considered as a new dimensionless energy amgactly canceled out and do not contribute to the eigenphase
will be denoted ag,: sum. The study ob, as a function ok, shows thats, has an
extremum of coTl(\/qaer 1cotA22) at e,= —1/g, (a mini-
2(E-Ea) . (35) mum wheng,>0, a maximum whem,<0). From its defi-

Ia nition, the limiting behavior ofs, at off resonance is ob-
By substituting Eqs(32) and (35 into Eq. (31) we obtain ~‘2"ed 8

€=

5 A9 when e,— —
€a—Ua Oa(€3)— © 2

COt 5,(€,) = —COt AY, ———=, (36)
\/62-1— 1

whered,(e,) is used instead ofa(er) in order to emphasize
that it is now a function ofe, and q, is a new parameter

42

7—A% when e;—x» 42

note that B<A%<=/2 according to the convention men-
12 g

tioned below Eq.(39)]. 3, increases around resonance by
m—2A%,. Thus the phase shift due to the avoided crossing

defined b . ; .
elinea by interaction varies most around resonance wh&p=0 and
—AT least whem‘{z: /2. It passes the middle/2 of two asymp-
U0a= "= > 0 (387)  totes of the abscissas in E@2) when e;=q,. Since the
VI“—Al"cosAy, avoided crossing point enerdg, corresponds to the zero of

€, [see the discussion below E@5)], g, indicates that the

Equation(36) is a functional of the Beutler-Fano function avoided crossing point energy is away from the middle of

defined by two asymptotes of the abscissas. Such a separation is a mea-
(e—q)? sure of the asymmetry of the curves ~6;(53). Figure 1
far(e,q)= 14 €2 (38 shows the variations in the behaviors &f and §- asq,
€ varies.
and can be rewritten as So far, we have obtained eigenvaluesSahatrix for two
open channels near a resonance and decomposed them into
- CotAngfBF( €2.02) when €,<0, contributions from the background, resonance, and avoided
cot 5,(€,)= crossing interactions. Let us now consider obtaining the
—cot Al\fer(€a,0a)  When €,>0,. eigenvectors of th& matrix, which are usually called eigen-

(39 channels. Th&matrix is diagonalized in two steps. It is first

Equation(36) or (39) tells us that the phase shi#, due to transformedjoA by U®, whlqr;~d|agonallzes th&® matrix,
the avoided crossing interaction takes its simplest form whehe., S=U°AU° (°=U%"22U°%. A is then diagonal-
it is parametrized in terms af, andq, . Since we wanf',to  ized as in Eq(14) by the V matrix, which is composed of
be positive, it will be assumed that 31@22 0, which can two eigenvectors , andv _ corresponding t&, andés_ as
always be achieved by the appropriate choice of 1 and 2 for

89 and 83. With this convention in mindl", will be written V= vo) “3
as 2JI'1T'5/[sinAg hereinafter. After a lengthy derivation, eigenvectors are obtained as
With the above phase shifts, eigenphase shifts are ob-
tained as 5( 0a) . ea)
CO 7 —SIn ?
25.(E)= 587+ 83+ 8(E) = 55(E) (40) b= | o= PR P
. a a
(for the choice of the sign sg&3]). It is interesting to note sm( ?) CO{ 7)
that phase shifts of different origins are added up linearly to
eigenphase shifts. with 6, defined by
Using Eq.(6), Eq. (40) may be expressed in terms of the
eigenphase suris(E) 0 €, ing 1 45
COSH=— 5, SiNf,= —.
28, (E)=85(E)* 8,(E). (42) Vite Vite;

The eigenphase sunds(E) consists of the background It is interesting to note that eigenvec_tors are independent of
eigenphase sur@g and the phase shif6,(E) due to the Ya- They depend o_nly 0B, . As €, varies from— o through
resonance. The phase shifts due to the resonance contrib 8" ©0:  0a varies from zero throughr/2 to = andv .
positively from zero tom as energy varies around a reso- varies from §) through (142)(3) to (3). Thus, ate,=0 or
nance. The phase shift is positive since particles are attracted E=Ey+ (AI'/2) cotA‘iz, two background channels are
and bound temporarily near a resonance. Fhsign in front  mixed equally, indicating that two eigenphase shifts are
of 5,(E) in Eq. (40) tells us that the phase shift due to the avoided most. For this reaso,=0 is considered as the
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€r

FIG. 1. ?Sa(E) VS €, andgt(er) vs ¢, are plotted forg,=0, =1, and=3. The values for&f and 62 are /3 and /6, respectively.

avoided crossing point energgAnother way to see that,  the eigenvectors of th8 matrix are obtained as
=0 is the avoided crossing point energy might be to remove

the cause of the avoidance of two eigenphase shift curves, let , ,
them cross each other, and see whether the crossing point is cos( Ha) —sin( 9a>

€,=0. This was done and,=0 was confirmed to be the 2
crossing poiny. u,= g [ U-7 o | (48
Let us parametrize thg® matrix as sin( é") cos( 73)
cosd®® —sing® where 6, is defined by
=| . , 46
( sing®  cos#® ) (46
0,=0,+26°. (49)

where ¢° may be considered the angle by which the frame
for background eigenchannels is rotated from the frame for

: . . B. S matrix in terms of new parameters
background asymptotic channels. By calculating the multi- P

plication of U=U® and by noting that théJ matrix is Let us now express th® matrix in terms of the param-
composed of eigenvectots. andu_ of the S matrix as eters introduced in the preceding subsection. Reassembling
by using its eigenvalues 2%+ ande 2%~ (8. =485+ 8,)
U=(u, u.), (47 and eigenvector§d4), A becomes
|
e + 0 v [ cosd,—1 sind,cosh —18ind,sind
A:(u+ v,) s =eties : e o (50)
0 e “-)\y —1SiNnd,sinf, C0Sd,t1 Sin 5,086,
From the relatiors=UCAU® with U° matrix defined in Eq(46), the S matrix is obtained as
[ cosé,—i sin,c0s6, —isind,sing
S=e % . o o e (52)
—isind,sin g, C0Sd,+1 Sind,c0s6,
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where 6} is defined in Eq(49). Using Pauli matrices, it can Pauli matrices, the first derivative of ti&matrix with re-

be transformed into an invariant form spect to energy is calculated as
S=e '%{cos8,—i sin 8, 0,c080.+ 7ySin b, 52 ds  dé : _ . + A
{cosd al 70080, T o,sin 0,1} (52) = | —>Ste %(—sind,—i cosd,oNy)
_ o dE dE a
=e '%3(c0s,—i Sind,0- Ng), (53
dga Lis dn01
where the unit vecton,, is defined as T —i sindyo- dE /- (6D
ﬁafi c030;+§< sing),. (54) Now the time delay matriX@Q is obtained as
_ ds  dés - . dé
Since y —= o ——
A IhSdE ﬁdE+a ngﬁdE
c0S8,—i sind,0- ﬁ%:e—iéaw”e;, (55

A N de)
+SiN 8,0 [y X Ny COSS,— Y Sin 5a]( hd—é") .

(62

it is simplified into the form ofe'™ (H Hermitian:

S=e~ 52+5a0' n(, ) (56)
. . Sincen, Xy andy are perpendicular tm,, their linear
Since (cr-ngé)2=l, o-n, has two eigenvalues ° 2
+1. u, andu_ in Eq. (48) are their corresponding eigen-
vectors. In this case, it is well knowi4] that the vectors

+ ﬁ,,r equal the expectation values of the Pauli spin operator nt y>< ngrcosﬁ y sing (63)
a 9/_ ar

combination is also perpendicular g:. Let us introduce a
a
vector

(u.|o]u.) and are called the polarization vectors that cor-
respond to the eigenstatas , respectively. We can obtain
the change in the direction of the polarization axis as a func-
tion of energy by differentiating Eq54) with respect toe, :

perpendicular tmgr and making an anglé, with n(,r><y
and also define the quantities

dn de, 21 2% 21 3% L ohsing, 0%
0’ = — = - -
=gy 57) =g Tt Sinda g -
de, ade, (64)
Since tanf,= —1/e,, The last three quantities correspond to the time delay due to
the resonance, the avoided crossing interaction, and the
de, dé, 1

_Ta_ (58) change of the direction of the eigenvectfxr@?g1 of the Sma-

de. - 2" . .
dea de, 1+e, trix, usually termed the frame change, as a function of en-

) i , ergy, respectively. Then the time delay matfxmay be
Equationg57) and(58) also appear in the spin model for the | ritten as

adiabatic analysis of collisiond.5].

1 - - - -
V. TIMES DELAYED BY A COLLISION NEAR Q=3(ntonyrato: ngéTf)- (65
A RESONANCE
Since the observable properties of a particle with gpizan
be represented as a function of its spin polarizaBoend the

"Ltates of all the two- leveétwo-continua hergsystems can be
mapped onto the states of orientation of a particle with spin

A. Time delay matrix and eigentime delays

For a single-channel system, times delayed by a collisio
T are obtained by the first derivatives of phase shifts

dé(E) 1, Q may be rewritten in terms of the polarization vectors
7(E)= d—E (59 as
For a multichannel system, we may consider the time delay Q= ETr(1+ |3a. o+ ﬁf.(;), (66)
matrix Q defined by[9,10] 2
ds where polarization vectors are defined as
Q=ih|S'— (60)
dE T T
= Ta~ SO LN
. i X . Pa: _na’, Pf:_nﬁl . (67)
The unitarity of theS matrix ensures that the time delay Tr A Tr "a

matrix Q is Hermitian. Let us now consider the time delay
matrix for the system of one discrete state and two continualhe degrees of polarlzatlokP | and |P | will be denoted
Using Eq.(53) for the S matrix expressed in terms of the simply asP, and P;. They are positive by definitiofthe



4588

CHUN-WOO LEE

PRA 58

term polarization may not be adequate for the time delayNotice thatr, and 7; are added up incoherently to eigentime

matrix; we will return to this point later Let us introduce a
new unit vector

~ ~ Ta + T (68)
Ni{=nNgy n 0’
! % \/Tg-i- Tt \/Ta+ sz
Then Egs(65) and(67) become
1 . A 1 -
Q=E(Tr-l-o-nt\/Taz-l-Tzf):ETr(l—i-Pt-O'), (69)
where
P.=\P2+P?n,. (70)

Now eigenvalues of the time delay matrx or eigentime
delays, which will be denoted as. , are easily obtained as

1 1
Ti=§(rri \/7'52\+ T$)= ETr(li P,).

(71)

1 o [TV,
—2h EAF(E—EO)smAlz— > CosA;,

delays. Also, because tr()=0 (i=x,y,2),

trQ=r,+7_=17,, (72

that is, the eigentime delay sum has the same form as that of
the eigentime delay in the single-channel scattefir).

B. Explicit formulas of time delays
The time delay due to the resonance, the first term of Eq.

(71), is obtained by differentiating taErZ—l/er with re-
spect toe, as
_,d5(e) 2k
7.(€)=2h de, 132 (73

r

It takes the Lorentzian form and is thus always positive or
delayed as it is kept temporarily by the quasibound state.

The form of the time delay due to avoidance, the second
term of Eq.(71), is rather complex:

(74)

ds,
ra(E)=2h 5= =

[(E—E0)2+

By changing the independent variable fr@ho ¢, , consid-

ering the reduced time delay_g[ZZh(dﬁa/der)], and in-
troducing the new parameteré andq, defined by

) [2—AI? 75
s ————,
AT?
q,= AFCOtAlza (76)
Eq. (74) is simplified as
— — r—ds
Ta(er):_Tr(Er)\/(E s )2+l’2(1+€2). (77
r T r

The factor multlplymgrr(er) in Eq. (77) can be transformed
to the functional of the Beutler-Fano formykhe Lorentzian

ajj e

2] 172+

1 0
2 AT cosA7,

(E—Eg)sinA%,—

7'r(er)
/ when €,<q,
— -q, )2
Ta(er)_<
7'r(er)
/ +e>  when &>q;
)2
BF(Gr,q ) when e,<q.
fer(erq-
=1
f
() \] ——— B¢ 9 hen €>0,
BF(Er !qr)+r
ETr(fr)ga(‘fr)- (78)

Interestingly,?a takes the Beutler-Fano formula in the en-
ergy scale ofe, instead ofe, in contrast to the case df,,
though the former is obtained as the derivative of the latter.
Notice that the absolute value gf, is the polarizationP,

shape ofr,(e,) may be regarded as a Beutler-Fano shape considered in Sec. VA:
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FIG. 2. ga(€;) and?a(er) vs €, are plotted for three different profile indicgs=0.6, 1, and 5 witm22= /3.

for(e, q.) nance as colliding particles are kept bound temporarily
P,= _eRTAd (79 around a resonancg@ttractive forces make positive phase
far(er,q,)+r? shifts).

The above inequality restricts the magnitudeRyf to 0

ga changes its sign a& = q.; so does the polarization <p,<1. The magnitude o, causes the difference be-
vector P, at the same energy. The study®f as a function tween two eigentime delays. Equati¢ro) tells us that the
of € shows that P, has a maximum of degree of difference in the two eigentime delays is governed
\/(1+q2)/(1+q2+ r?) ate,= —1/q, and a minimum of 0 at by r?. Let us consider? as a function of=T'; /T (Osx

=q, (which Corresponds te,= —]_/qa Where§ has an <l) Then, since? is symmetric with respect tE_ and
extremun) _Figure 2 shows the variations in the behaviors ofits values are zero at=0 and 1 and |nf|n|ty ak=3, the
ga(€,) and,(e,) as functions of, at three different profile Magnitudes ofP, are 1 atx=0 and 0 atx=;. Since the

indices q, with A9, fixed (the value ofq, is restricted by avoidgd crossjng iljteraction Is strongeskaiz, the differ- .
|q,/cotA2,=1) ence in two eigentimes delayed due to an avoided crossing
. .

Recalling thatf ae(e, ,q.)=0, Eq. (79) tells us that the interaction completely disappears when the avoided crossing

magnitude ofP,(¢,) is smaller than or equal to unity and has Interaction IS strongest.

Let us now consider obtaining the explicit formula of the
the effect of making the absolute magnitude of the time detlmes delayed due to a frame change. By substituting Eq.

lay 7, due to an avoidance smaller than or equal to that of5g) and
the time delayrr due to a resonance:

_ _ , Ta. o [eat+1
(€)=, (80) sinS,=—sinAY, )
r

r +1 (82

which ensures that,(e,)+ 7, are positive. The inequality

(80) may be obtained without knowing the explicit func- into Eq. (64), the time delayr; due to the frame change is

tional dependences of and r, as functions of energy. No- obtained as
tice that 5
0 e+ 1_
d(8,+6,) ds. 7= 7,SiNA7, R 7,.0f - (83
T E7,=2h =2 ——. (81 a

dE dE
The absolute value df; is the same aPx,
Because of the inequalif22), Eq.(81) should be larger than
or equal to zero, which proves E®O0). This inequality is the 2.1
manifestation of the physical fact that eigenphase shifts are Pi= |sinA22|

(84)
increasing functions of energy in the neighborhood of a reso- '~‘§+ 1



4590 CHUN-WOO LEE PRA 58

1.2

17

09
gf 08

07

06

05

04

03

02 1 1

-10 -5 0 5 10
81‘
]

09 [ i
! ]
£ o6 | ]

woal i
le'oa [ -

05 [ -

01| —

0
-10 5 0 5 10

FIG. 3. e) and r(e,) Vs €, are plotted for three different profile indic =0.6, 1, and 5 withA%,= 71/6.
gs(€r fA€r r p p es 12

[actually gs=P; in the convention mentioned below Eq. Using Eq.(86) to calculatee§+1 and comparing the latter

(33)]. Figure 3 shows the variations in the behaviors ofwith the right-hand side of Eq87), we obtain

P¢(e,) and 7¢(e,) as functions of energy at three different 50

profile indicesq, with A2, fixed. 2. 1:sm2A12
As in the case ofr,, P; is smaller than or equal to a r2

unity. This can be proved by examining the behavior of the

graph of P; as a function ofe,. P; can be easily trans- wherer2=(q7/cotA22)2—1 is used. Substituting Eq88)

formed as a function o€, by substituting into Eqg.(84), P; can be put into a functional of the Beutler-

Fano formula

(85 ‘

Pi=———. (89

. . . . . VfBF(Er!qT)+r2

for €, into Eq.(83). It is then differentiated with respect to
energy to yield the roots of the first derivative of(¢,) at ~ From Eqgs.(89) and(79) we obtain the surprising result
e,=—1/q, and g,. From this, it is found thaP; has the 2, a2
minimum of sinA%\1— (AT/T)? at — 1/, and the maxi- Pa+Pi=1. (90
mum of unity atq, . Its values become/1—(AT/T)? at ¢,

[(€—d)2+r%(ef+1)], (89)

r AT "
€= | &~ ?Cot A7,
a

) This means that eigentime delays for the system of one dis-

— . This proves 6<Py<1. _crete state and two continua are zero ank,). Though

~ Now let us consider the magnitude of the total polariza-yjime delays due to the avoided crossing interaction and frame

tion vectorP;= P+ Pf. In order to obtain this, let us fur- change are asymmetric with respect to the resonance energy
ther transform Eq(85) using the definition33) of I'y and  and therefore the energy of the longest lifetime is not

AT /T'=cot A(l’Z/qT as matched with the resonance energy, the energy of the longest
overall eigentime delays is exactly matched with the reso-
|sinA?,| coPA? nance energy.
€= 12 { _ 12 (86)

VI. RESULTS AND DISCUSSION

€
(cotAg’z) 2\ a,
1_

4 Let us summarize the results. In this paper we considered
eigenphase shifts and eigentime delays near a resonance for a
system of one discrete state and two continua using Fano’s
configuration interaction theory. The eigenphase shifts are
obtained as

Also after some manipulation, we obtain the relation

q’T )2 ( COtZA22>2
€ —

cotA9, d,

cot A9\ 2
_( q ) whereé, (E) is the phase shift due to the modification of the
: :) (87)  scattering wave by the quasibound state and is given by
SiPAY, —arctan(1¢,) and 6,(E) is the one due to the modification

(6,—0,)2+r1¥ ?+1>=(
“ ) 28.(E)=2, 80+ 5,(E)* 5,(E),
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of the scattering wave by the other wave through the indirect (
interaction via the quasibound state and given as a functional

of the Beutler-Fano formula

€a—0a
cot 5,(E)=—cot A%, —— "2,
") H(1+e)1?

In the above formula, energy is expressed in unitsl'gf

=2T',T',/|sinA?,| and is shifted from the resonance energy

Eq by (AF/Z)cotAgz. The shape of the curve af,(E) is
characterized by the line profile indexq,=
—2AT/(2\TT',cosAY,). The strength of the avoided
crossing interaction experienced by the eigenphase shifts
governed by the magnitude bf,. No shift is expected when

I'y=T",, where the strength of the avoided crossing interac-

tion is strongest. The maximum shift obtains when eifiger
orI', is zero.

Eigenvectors .. of A of S=S°A corresponding to eigen-
valuesé.. (E) are obtained as

ol

Oa

2
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—7(E)
1+ E? When érsQ’r
1+r2—2
(e:—d,)
Ta(E)=¢

7(E)
r 1+ €? when €,>q,.
1+r?

\ (Er_qr)z

The asymmetry ofr, as a function of energy is brought
about by the nonzero value of,, which is proportional to
Fge shift of the avoided crossing point energy from the reso-
nance one. Thus the asymmetryqfis caused by the mis-
match in the positions of the avoided crossing point and

resonance energies.
The time delay due to frame change takes the form

(E)=1,(E)sinA? \/—E’ZH
T =T Sin .
f r 12 €§+1

The above form may be understood from the fact that the
changes of the frame spanned by the eigenvectors oSthe

V= y U_= )
! . ( 9a) 5( ﬂa) matrix is governed by * €2, while the time delay due to the
sin| —= cos - ) 2 )
2 2 resonance is governed byl . Therefore, the ratio of, to
7. will be a function of (1+€?)/(1+€2). =(E) is also
where 8, is defined by found to be transformed into a functional of the Beutler-Fano
formula.
€, 1 In analogy with the spir} system, the time delay matrix
COSO,=— =, SiNO=——. may be expressed in terms of the polarization vectors and
2 V1+e€; a1+ €2 Q may p p

the Pauli spin matrices as

Eigenvectors are independent @f. They depend only on
€,. Sinceq, stands for the separation of the avoided cross-
ing point energy from the middle of asymptotes of the ab-
scissas of two eigenphase shifts, the above result means thahere the polarization vectors are defined by
the characteristics of the avoided crossing interactions are
independent of the asymptotes of the abscissas of the eigen-
phase shifts. The corresponding eigenvectors ofStheatrix
are obtained by replacing, with 6,= 6,+26. ] _ o
With the new parameters, th® matrix is found to be Like the spin3 system, it is found that the absolute values of
expressible as P, and P, are restricted to &|P,|<1 and 0<|P{/<1. In
the present case a complete depolarization means that eigen-
times delays are the same regardless of eigenchannels, while
a complete polarization means that eigentime delays are 0
and 7,(E) as a function of energy. Eigenvectors for eigen-
time delays due to an avoided crossing interaction and due to
a frame change are orthogonal to each other and contribute to
the total eigentime delays agr;+ 7:=7,yP5+Pf. It is
found thatP2+ P?=1. This means that one of the two total
eigentime delays is zero while the other one is the same as
the time delayed by the resonance state. Though time delays
due to an avoided crossing interaction and a frame change
one due to the resonance, one due to the avoided crossimge asymmetric with respect to the resonance energy and
interaction, and one due to the change of frame as a functiotherefore the energy of the longest lifetime does not match
of energy. Because of the last term, the eigenfunctions of ththe resonance energy, the energy of the longest overall eigen-
Q matrix are different from those of th® matrix. time delays exactly matches the resonance energy. Though
The time delay due to the resonance takes a symmetrithis is a surprising result, it should rather be so if we recall
Lorentzian form and the time delay due to the avoided crossthat all the partial lifetimes obtained from the partial photo-
ing takes a form of a functional of the Beutler-Fano formuladissociation cross sections as a function of energy are the

1 .. .
QZETr(1+Pa’0-+Pf'O-),

- Tan~ -
P.= =Ny
a I ()av

Ti~l
Pf: —N
Ty "a

S= e—i(&ysa&-ﬁ,,;),

wheren, =z cos#,+x sind,. In terms of Pauli matrices, the
a

time delay matrixQ=i%S"(dSdE) is found to consist of
three terms

= — Q.A _).AL
Q= 2(Tr+0' ngéra-l—(r noéTf),
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same in the system of one discrete state and many continugined by Cartan and Ferrari’'s methidd]. It may be highly
However, the detailed study on their connection is beyondiesirable to do similar studies on these systems.
the scope of this paper.

The present work reveals the dynamical parameters that
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