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Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays
near a resonance

Chun-Woo Lee
Department of Chemistry, Ajou University, 5 Wonchun Dong, Suwon 442-749, Korea

~Received 25 June 1998!

Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua
are shown to be functionals of the Beutler-Fano formula using appropriate dimensionless energy units and line
profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are
identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With
the help of new parameters, an analogy with the spin model is pursued for theSmatrix and time delay matrix

Q. The S matrix is found to be put into exp@i(a1bsW•n̂)#. The time delay matrixQ is shown to be given as

Q5
1
2 t r(11PW a•sW 1PW f•sW ), where the first term is the time delay due to resonance, the second term is the one

due to avoided crossing interaction, and the last term is the one due to a frame change. It is found thatPa
2

1Pf
251. @S1050-2947~98!06812-7#

PACS number~s!: 03.80.1r, 03.65.Ge, 33.80.Gj, 34.10.1x
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I. INTRODUCTION

Resonances observed in the energy dependence of at
and molecular processes often correspond to the autoion
tion or predissociation observed in photoabsorption, i.e.
the excitation of a quasibound state in a continuum reg
@1,2#. Their spectra are characterized by rich profiles prov
ing a wealth of information on the atomic and molecu
dissociation or ionization processes. Beutler’s early obse
tion of rare-gas levels autoionizing into a single continuu
with angular-momentum conservation was reproduced
Fano through the formula@3#

s~e!5s0

~e2q!2

11e2
, ~1!

wheree is the reduced energy defined by 2(E2E0)/G, E0
and \/G represent the resonance energy and the mean
time of the quasibound state, respectively,s0 represents the
photofragmentation cross section to the continuum state,
q is an index that characterizes the line profile~here2q is
employed instead of the usualq). An extension of the
Beutler-Fano formula to the dissociation into multichann
was obtained by Combet-Farnoux@4#. The energy depen
dence of theS matrix near an isolated resonance for su
predissociation or autoionization into multichannels was
tained long ago and is well known@5#. By diagonalizing the
S matrix, eigenphase shiftsd i ( i 51,2, . . . ,n) are obtained
from its eigenvalues as

S5Ue2idŨ ~2!

and are utilized frequently as a tool for analyzing the re
nances@6,7#. Eigenphase shifts and the corresponding eig
channels are also extensively used in various forms in m
tichannel quantum-defect theory, which is regarded as on
the most general and powerful theories of resonance@1#.

In contrast to photofragmentation cross sections and thS
matrix, the analytical formulas for eigenphase shifts in m
PRA 581050-2947/98/58~6!/4581~12!/$15.00
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tichannel processes are not known. According to the num
cal studies, eigenphase shifts in the multichannel system
known as showing complicated behaviors near a resona
due to the avoided crossing between curves of eigenph
shifts along the energy@6,8#. Such a phenomenon of th
avoided crossing along the energy is not conspicuous in
case of the formulas for photodissociation cross sections
S matrices. We report here detailed studies on the behav
of eigenphase shifts and also times delayed by collis
@9,10# for the system of one discrete state and two contin
which turn out to be described by functionals of the Beutl
Fano formula. Their behaviors in the system of one discr
state and one continuum have already been studied@3#. If
one more continuum is added to that system, new phen
ena of the avoided crossing between curves of eigenph
shifts and eigentimes delayed and of times delayed due to
frame change along the energy besides the resonance b
ior enter. The avoided crossing interactions between eig
phase shifts along the energy always take place near a r
nance if they are not excluded for symmetry reasons, as
will see later. The addition of more continua may simp
introduce more avoided crossings among the newly ad
eigenphase shifts. In this sense, the current system of
discrete state and two continua may serve as a prototyp
system for the study of the effects of avoid crossings
tween eigenphase shifts and times delayed due to the fr
change on the resonance phenomena.

The import of the current work may be in the findings
the new parameters for the avoided crossing interact
where theSmatrix can be put into a form ofeiH , with H the
Hermitian, and the time delay matrix~or lifetime matrix, as
called by Smith@10#! can be put into a form of 11PW •sW ,
wherePW is a polarization vector andsW is the Pauli matrix.
The analogy with the spin system under a magnetic field
exploited to find further properties of theS matrix and time
delay matrix.

Section II describes the known properties of eigenph
shifts. Section III describes the form of theS matrix near a
resonance and the equation for eigenphase shifts. It also
4581 © 1998 The American Physical Society
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cusses some special cases and general characteristi
eigenphase shifts and eigentime delays. Section IV obt
the formulas of eigenphase shifts as functionals of
Beutler-Fano formula for the system of one discrete state
two continua. Section V obtains the formulas of eigentim
delays as functionals of the Beutler-Fano formula. Sect
VI summarizes the results.

II. KNOWN PROPERTIES OF EIGENPHASE SHIFTS

It is well known that for an isolated resonance in sing
channel scattering, the energy dependence of a phase
d(E) is described by the formula@1#

tan@d~E!2d0#5
G

2~E02E!
52

1

e
, ~3!

whered0, E0 , andG denote the background phase shift, t
energy, and the width of the resonance, respectively.
second equality in Eq.~3! defines the dimensionless energ
It can be deduced from Eq.~3! that d(E) increases slowly
except for the narrow energy range aroundE0 where its
value undergoes a rapid change and is eventually incre
by p as energy varies from2` to `. Due to the property of
tangent function,d(E) can be determined only up tonp (n
an integer!. It is usually taken to bed0 at E→2`. Then it
becomesd01p at E→`. In the absence of resonance,d is
equal tod0. The background phase shiftd0 is a slowly vary-
ing function of energy and is usually taken to be constan
a good approximation. Thus the increase ofd(E) aroundE0
comes solely from the resonance. Let us denote the dif
ence betweend(E) andd0 by d r(E). With this notation, Eq.
~3! becomes tand r(E)5tan d̄ r(e)521/e and with the
above-mentioned phase convention of settingd(E) to d0 at
E52`, it can be transformed as

ei d̄r ~e!5
2e1 i

Ae211
. ~4!

Macek @8# generalized Eq.~3! to multichannel processe
as

2~E2E0!5 (
k51

n

Gkcot@dk
02dm~E!#, m51, . . . ,n,

~5!

wheredm(E) is the eigenphase shift defined in Eq.~2!, dk
0 is

the background phase shifts in channelk, andGk is the par-
tial decay width to channelk. Hazi @11# also showed that the
eigenphase sum, which will be denoted asdS(E), satisfies
the ‘‘single-channel’’ formula

dS~E![(
k51

n

dk~E!5dS
0 1tan21

G

2~E02E!
5dS

0 2tan21
1

e
,

~6!

where G is the total width of the resonance, i.e.,G
5(m51

n Gm , and dS
0 is the sum of the background eige

phase, i.e.,dS
0 5(m51

n dm
0 . The reduced energye is the one

defined in Eq.~3!, except thatG now denotes the total width
of
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III. EQUATIONS FOR EIGENPHASE SHIFTS IN THE
NEIGHBORHOOD OF RESONANCE

The form of theS matrix in the neighborhood of an iso
lated resonance in multichannel processes is well known
has been repeatedly derived in the past using various r
nance theories@2,5#. Though its form is basically the sam
for all resonance theories, its detailed expressions may l
different from theory to theory. Here Fano’s configuratio
interaction theory is adopted for the treatment of the re
nance@3#. In the configuration interaction theory, an isolat
resonance in the multichannel system is treated as regar
the system as composed of one discrete statef and many
continuum wave functionscE

2( j ) . The latter are taken to pre
diagonalizeH. In other words, it is assumed that continuu
wave functions are unable to interact directly with ea
other. They can, however, interact with each other indirec
via their interactions with the discrete statef if the integrals

VjE5~cE
2~ j !uHuf! ~7!

are not zero. This means thatH is no longer diagonalized in
the combined space spanned by the basis set$f,cE

2( j )%.
Eigenfunctions CE

2( j ) of H in the space spanned b
$f,cE

2( j )% can be obtained analytically as shown by Fa
@3,4#. By applying the incoming wave boundary condition
to those eigenfunctions as

CE
2~ j !→(

j 8
f j 8~v!A m

2pkj 8

~eik j 8Rd j 8 j2e2 ik j 8RSj 8 j !,

~8!

The S matrix may be obtained@4# as

Sj 8 j5(
j 9

Sj 8 j 9
0 S d j 9 j12p i

Vj 9EVjE
!

E2E02 ip(
k

uVkEu2D , ~9!

where Sj 8 j 9
0 is the S matrix of the background scattering

Equation~9! is different from that of the outgoing wave i
that i is replaced by2 i . The incoming wave, instead of th
outgoing one, is employed here as our interests are in
photodissociation processes.

As stated in Ref.@3#, 2p(kuVkEu2 is the spectral width of
the resonance peak and is denoted asG. According to Refs.
@5,8#, Eq. ~9! may be rewritten as

Sj 8 j5 (
j 9 j-

U j 8 j 9
0

~e22id
j 9
0

d j 9 j-1 ic j 9cj-!Ũ j- j
0 . ~10!

In matrix notation, Eq.~10! becomes

S5U0~e22id0
1 icc̃!Ũ0[U0AŨ0, ~11!

wherec is the column vector and itskth element is defined
by

ck[e2 idk
0A Gk

E2E02 iG/2
. ~12!
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Gk is the partial resonance decay width to the backgro
eigenchannelk.

Let us consider obtaining eigenphase shiftsd by the di-
agonalization of theS matrix

S5Ue22idŨ. ~13!

If A5e22id0
1 icc̃ is diagonalized as
e
r

d A5Ve22idṼ, ~14!

S5U0Ve22idṼŨ0. ~15!

From Eqs.~13! and ~15!, U5U0V.
Let x denote the eigenvaluee22id of A. Then the eigen-

value of A5e22id0
1 icc̃ can be obtained by solving th

secular equation
U e22id1
0
1 ic1

22x ic1c2 ic1c3 •••

ic2c1 e22id2
0
1 ic2

22x ic2c3 •••

ic3c1 ic3c2 e22id3
0
1 ic3

22x •••

A A A •••

A A A •••

U50. ~16!
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If we divide the first row of the above determinant byic1 ,
the second row byic2 , and thekth row by ick , in general,
and if we introducexk defined by

xk[
e22idk

0
1 ick

22x

ick
S or xk2ck5

e22idk
0
2x

ick
D , ~17!

the secular equation becomes

U x1 c2 c3 . . .

c1 x2 c3 . . .

c1 c2 x3 . . .

A A A •••

A A A •••

U50. ~18!

The above equation for the system ofn continua can be
transformed into Sardi’s form@12#

)
k51

n

~xk2ck!1 (
k51

n Fck

]

]xk
)
m51

n

~xm2cm!G50. ~19!

By dividing Eq. ~19! by its first term, one obtains

(
k51

n
ck

ck2xk
51. ~20!

By substitution of Eqs.~12! and ~17!, Eq. ~20! becomes

i (
k51

n
Gk

e22i ~d2dk
0
!21

5E2E02 i
G

2
. ~21!

Equating the real and imaginary parts, Eq.~21! yields two
relations: One is Macek’s formula and the other is(kGk
5G. This derivation of Macek’s formula is simpler than th
original one. Sardi’s form is given as a polynomial of orden
and is more convenient than Macek’s formula in obtaini
the solution. In particular it shows explicitly that the numb
of roots of Macek’s formula is the same as the number
continuan. We will use it in Sec. IV to obtain the solution
for the system of one discrete state and two continua. Be
doing that, let us comment on the general properties
eigenphase shifts obtainable from Macek’s formula.

From Macek’s formula we could draw two properties
eigenphase shifts. First, their differentiation with respect
energy yields

ddm

dE
52F (

k51

n
Gk

sin2~dk
02dm!

G21

.0, m51, . . . ,n.

~22!

This equation tells us that the first derivatives of eigenph
shifts with respect to energy near a resonance are posi
Second, the asymptotic values of the eigenphase shifts@at
u2(E2E0)/Gu→`# are given asd1

0 ,d2
0 ,d3

0 , . . . ,dn
0 up to

multiples ofp.
Let us assume thatd1

0,d2
0,•••,dn

0 and that they are al
in the range@0,p#, for simplicity, which can be always don
without losing generality by Hazi’s formula~6!. Then the
above two properties of eigenphase shifts tell us that eig
phase shifts vary between two asymptotic values of th
abscissas given by@d1

0 ,d2
0#,@d2

0 ,d3
0#, . . . ,@dn21

0 ,dn
0#. If dn

0

becomes larger thanp, it is shifted by2p and increases
again towardd1

0 . Since the sum of the eigenphase shi
shows the resonance behavior and increases byp around
resonance, each eigenphase shift should similarly show
resonance behavior between two consecutive asymptote
the abscissas@d i

0 ,d i 11
0 #( i 51, . . . ,n). When the consecutive

eigenphase shifts are the same, let us sayd i
05d i 11

0 , then one
of the two corresponding eigenphase shifts remains cons
while the other one shows the resonance behavior betw
two asymptotes@d i

0 ,d i 12
0 #.
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IV. EIGENPHASE SHIFTS FOR THE SYSTEM OF ONE
DISCRETE STATE AND TWO CONTINUA

Let us now consider the system of one discrete state
two continua. For this system Eq.~19! becomes

@~x12c1!~x22c2!1c1~x22c2!1c2~x12c1!#50.
~23!

Substituting Eq.~17! into Eq. ~23!, we obtain

x22~e22id1
0
1 ic1

21e22id2
0
1 ic2

2!x

1~e22id1
0
1 ic1

2!~e22id2
0
1 ic2

2!1c1
2c2

250. ~24!

The roots of the quadratic equation~24! are obtained as

x5e22id6~E!5
e2 i ~d1

0
1d2

0
!

E2E02 i
G

2

S ~E2E0!cosD12
0 1

DG

2
sinD12

0

6 i H G1G21F ~E2E0!sinD12
0 2

DG

2
cosD12

0 G2J 1/2D , ~25!

whereG5G11G2 , DG5G12G2 , andD12
0 5d1

02d2
0 . If we

introduce a dimensionless energye r ~taken differently from
the usual notatione in order to avoid the confusion with
another dimensionless energyea , which will be defined
later! as

e r[
E2E0

G/2
, ~26!

Equation~25! becomes

e22i d̄6~er !5
e2 i ~d1

0
1d2

0
!

e r2 i H e r cosD12
0 1

DG

G
sinD12

0

6 i F4G1G2

G2
1S e r sinD12

0 2
DG

G
cosD12

0 D 2G 1/2J ,

~27!

whered̄ is used instead ofd in order to emphasize that th
eigenphase shifts are now functions ofe r instead ofE. An
analysis of the eigenphase shifts in Eq.~27! is done in the
next subsection by introducing phase shifts due to the re
nance and avoided crossing interaction.

A. Phase shifts due to resonance and avoided crossing
interaction

Equation~27! can be decomposed into the product of tw
terms of unit modulus@13#

e2 i d̄r ~er !5
2Ae r

211

e r2 i
, ~28!
nd

o-

e6 i d̄a~er !5
21

Ae r
211

H e rcosD12
0 1

DG

G
sinD12

0

7 i F4G1G2

G2
1S e rsinD12

0 2
DG

G
cosD12

0 D 2G 1/2J
~29!

~the notationsd r andda without the bar are also used els
where if it is desired to express them in terms ofE instead of
e r). The phase shiftd̄ r in the first term is the one due to th
resonance as in Eq.~4!. In single-channel scattering, it is th
only term besides the background phase shift contributing
the eigenphase shifts near a resonance. In two-channel
tering, there enters another phase shiftd̄a defined by the
second term due to the indirect coupling of two continua
a quasibound state near a resonance.

The functional dependence ofd̄a(e r) on energy may be
best seen by considering its cotangent like cotdr52er as in
single-channel scattering:

cot d̄a~e r !5

2S e rcosD12
0 1

DG

G
sinD12

0 D
F S e rsinD12

0 2
DG

G
cosD12

0 D 2

1
4G1G2

G2 G 1/2.

~30!

Let us first rewrite Eq.~30! as

cot d̄a~e r !

52cot D12
0

G sinD12
0

2AG1G2
S e r1

DG

G
tan D12

0 D
H FG sinD12

0

2AG1G2
S e r2

DG

G
cot D12

0 D G 2

11J 1/2.

~31!

The term inside the square brackets in the denominato
Eq. ~31! can be transformed as

G sinD12
0

2AG1G2
S e r2

DG

G
cot D12

0 D5
sinD12

0

AG1G2
S E2E0

2
DG

2
cot D12

0 D . ~32!

This suggests that we can introduce a new energy unitGa ,

Ga[
2AG1G2

sinD12
0

5
AG22DG2

sinD12
0

. ~33!

For simplicity, let us also introduce a new parameterEa ,

Ea[E01
DG

2
cot D12

0 ~34!
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~later it will be shown thatEa is the avoided crossing poin
energy andGa is the strength of the avoided crossing inte
action!.

With these parameters, Eq.~32! becomes 2(E2Ea)/Ga ,
which may be considered as a new dimensionless energy
will be denoted asea :

ea[
2~E2Ea!

Ga
. ~35!

By substituting Eqs.~32! and ~35! into Eq. ~31! we obtain

cot d̃a~ea!52cot D12
0 ea2qa

Aea
211

, ~36!

whered̃a(ea) is used instead ofd̄a(e r) in order to emphasize
that it is now a function ofea and qa is a new paramete
defined by

qa[
2DG

AG22DG2cosD12
0

. ~37!

Equation ~36! is a functional of the Beutler-Fano functio
defined by

f BF~e,q![
~e2q!2

11e2
~38!

and can be rewritten as

cot d̃a~ea!5H cot D12
0 Af BF~ea ,qa! when ea,qa

2cot D12
0 Af BF~ea ,qa! when ea>qa .

~39!

Equation~36! or ~39! tells us that the phase shiftda due to
the avoided crossing interaction takes its simplest form w
it is parametrized in terms ofea andqa . Since we wantGa to
be positive, it will be assumed that sinD12

0 >0, which can
always be achieved by the appropriate choice of 1 and 2
d1

0 andd2
0 . With this convention in mind,Ga will be written

as 2AG1G2/usinD12u hereinafter.
With the above phase shifts, eigenphase shifts are

tained as

2d6~E!5d1
01d2

01d r~E!6da~E! ~40!

~for the choice of the sign see@13#!. It is interesting to note
that phase shifts of different origins are added up linearly
eigenphase shifts.

Using Eq.~6!, Eq. ~40! may be expressed in terms of th
eigenphase sumdS(E)

2d6~E!5dS~E!6da~E!. ~41!

The eigenphase sumdS(E) consists of the backgroun
eigenphase sumdS

0 and the phase shiftd r(E) due to the
resonance. The phase shifts due to the resonance contr
positively from zero top as energy varies around a res
nance. The phase shift is positive since particles are attra
and bound temporarily near a resonance. The6 sign in front
of da(E) in Eq. ~40! tells us that the phase shift due to th
nd

n

or

b-

o

ute

ed

avoided crossing interaction in one eigenchannel increase
the expense of the phase shift of the other eigenchannel
vice versa. If it increases in one eigenchannel due to att
tion, it decreases in the other one due to repulsion. They
exactly canceled out and do not contribute to the eigenph
sum. The study ofda as a function ofea shows thatda has an
extremum of cot21(Aqa

211cotD12
0 ) at ea521/qa ~a mini-

mum whenqa.0, a maximum whenqa,0). From its defi-
nition, the limiting behavior ofd̃a at off resonance is ob
tained as

d̃a~ea!→H D12
0 when ea→2`

p2D12
0 when ea→`

~42!

@note that 0<D12
0 <p/2 according to the convention men

tioned below Eq.~39!#. d̃a increases around resonance
p22D12

0 . Thus the phase shift due to the avoided cross
interaction varies most around resonance whenD12

0 50 and
least whenD12

0 5p/2. It passes the middlep/2 of two asymp-
totes of the abscissas in Eq.~42! when ea5qa . Since the
avoided crossing point energyEa corresponds to the zero o
ea @see the discussion below Eq.~45!#, qa indicates that the
avoided crossing point energy is away from the middle
two asymptotes of the abscissas. Such a separation is a
sure of the asymmetry of the curves ofd̃a(ea). Figure 1
shows the variations in the behaviors ofda and d6 as qa
varies.

So far, we have obtained eigenvalues ofS matrix for two
open channels near a resonance and decomposed them
contributions from the background, resonance, and avoi
crossing interactions. Let us now consider obtaining
eigenvectors of theSmatrix, which are usually called eigen
channels. TheSmatrix is diagonalized in two steps. It is firs
transformed toA by U0, which diagonalizes theS0 matrix,

i.e., S5U0AŨ0 (S05U0e22id0
Ũ0). A is then diagonal-

ized as in Eq.~14! by the V matrix, which is composed o
two eigenvectorsv1 andv2 corresponding tod1 andd2 as

V5~v1 v2!. ~43!

After a lengthy derivation, eigenvectors are obtained as

v15F cosS ua

2 D
sinS ua

2 D G , v25F 2sinS ua

2 D
cosS ua

2 D G , ~44!

with ua defined by

cosua[2
ea

A11ea
2

, sinua[
1

A11ea
2

. ~45!

It is interesting to note that eigenvectors are independen
qa . They depend only onea . As ea varies from2` through
zero to`, ua varies from zero throughp/2 to p and v1

varies from (0
1) through (1/A2)(1

1) to (1
0). Thus, atea50 or

at E5E01(DG/2)cotD12
0 , two background channels ar

mixed equally, indicating that two eigenphase shifts a
avoided most. For this reasonea50 is considered as the
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FIG. 1. d̃a(E) vs ea and d̄6(e r) vs e r are plotted forqa50, 61, and63. The values ford1
0 andd2

0 arep/3 andp/6, respectively.
ov
,

in

m
fo
lt

-
bling
avoided crossing point energy.~Another way to see thatea
50 is the avoided crossing point energy might be to rem
the cause of the avoidance of two eigenphase shift curves
them cross each other, and see whether the crossing po
ea50. This was done andea50 was confirmed to be the
crossing point.!

Let us parametrize theU0 matrix as

U05S cosu0 2sinu0

sinu0 cosu0 D , ~46!

whereu0 may be considered the angle by which the fra
for background eigenchannels is rotated from the frame
background asymptotic channels. By calculating the mu
plication of U5U0V and by noting that theU matrix is
composed of eigenvectorsu1 andu2 of the S matrix as

U5~u1 u2!, ~47!
e
let
t is

e
r

i-

the eigenvectors of theS matrix are obtained as

u15F cosS ua8

2 D
sinS ua8

2 D G , u25F2sinS ua8

2 D
cosS ua8

2 D G , ~48!

whereua8 is defined by

ua8[ua12u0. ~49!

B. S matrix in terms of new parameters

Let us now express theS matrix in terms of the param
eters introduced in the preceding subsection. Reassem
by using its eigenvaluese22id1 and e22id2 (d65dS6da)
and eigenvectors~44!, A becomes
A5~ v1 v2! S e22id1 0

0 e22id2
D S ṽ1

ṽ2

D 5e2 idSS cosda2 i sindacosua 2 i sindasinua

2 i sindasinua cosda1 i sindacosua
D . ~50!

From the relationS5U0AŨ0 with U0 matrix defined in Eq.~46!, theS matrix is obtained as

S5e2 idSS cosda2 i sindacosua8 2 i sindasinua8

2 i sindasinua8 cosda1 i sindacosua8
D , ~51!
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whereua8 is defined in Eq.~49!. Using Pauli matrices, it can
be transformed into an invariant form

S5e2 idS$cosda2 i sinda@szcosua81sxsinua8#% ~52!

5e2 idS~cosda2 i sindasW •n̂u
a8
!, ~53!

where the unit vectorn̂u
a8

is defined as

n̂u
a8
[ ẑ cosua81 x̂ sinua8 . ~54!

Since

cosda2 i sindasW •n̂u
a8
5e2 idasW •n̂ua8, ~55!

it is simplified into the form ofeiH (H Hermitian!:

S5e2 i ~dS1dasW •n̂ua8
!. ~56!

Since (sW •n̂u
a8
)251, sW •n̂u

a8
has two eigenvalues

61. u1 andu2 in Eq. ~48! are their corresponding eigen
vectors. In this case, it is well known@14# that the vectors
6n̂u

a8
equal the expectation values of the Pauli spin opera

(u6usW uu6) and are called the polarization vectors that c
respond to the eigenstatesu6 , respectively. We can obtai
the change in the direction of the polarization axis as a fu
tion of energy by differentiating Eq.~54! with respect toea :

dn̂u
a8

dea
5 ŷ3n̂u

a8

dua8

dea
. ~57!

Since tanua521/ea ,

dua8

dea
5

dua

dea
5

1

11ea
2

. ~58!

Equations~57! and~58! also appear in the spin model for th
adiabatic analysis of collisions@15#.

V. TIMES DELAYED BY A COLLISION NEAR
A RESONANCE

A. Time delay matrix and eigentime delays

For a single-channel system, times delayed by a collis
t are obtained by the first derivatives of phase shifts

t~E!52\
dd~E!

dE
. ~59!

For a multichannel system, we may consider the time de
matrix Q defined by@9,10#

Q5 i\S S†
dS

dED . ~60!

The unitarity of theS matrix ensures that the time dela
matrix Q is Hermitian. Let us now consider the time dela
matrix for the system of one discrete state and two contin
Using Eq. ~53! for the S matrix expressed in terms of th
r

-

c-

n

y

a.

Pauli matrices, the first derivative of theS matrix with re-
spect to energy is calculated as

dS

dE
52 i

ddS

dE
S1e2 idS~2sinda2 i cosdasW •n̂u

a8
!

3
dda

dE
1e2 idSS 2 i sindasW •

dn̂u
a8

dE
D . ~61!

Now the time delay matrixQ is obtained as

i\S†
dS

dE
5\

ddS

dE
1sW •n̂u

a8
\

dda

dE

1sindasW •@ ŷ3n̂u
a8
cosda2 ŷ sinda#S \

dua8

dE D .

~62!

Since n̂u
a8
3 ŷ and ŷ are perpendicular ton̂u

a8
, their linear

combination is also perpendicular ton̂u
a8
. Let us introduce a

vector

n̂u
a8

'
[ ŷ3n̂u

a8
cosda2 ŷ sinda , ~63!

perpendicular ton̂u
a8

and making an angleda with n̂u
a8
3 ŷ,

and also define the quantities

t r[2\
dd r

dE
, ta[2\

dda

dE
, t f[2\ sinda

dua8

dE
.

~64!

The last three quantities correspond to the time delay du
the resonance, the avoided crossing interaction, and
change of the direction of the eigenvectorsn̂u

a8
of the S ma-

trix, usually termed the frame change, as a function of
ergy, respectively. Then the time delay matrixQ may be
written as

Q5
1

2
~t r1sW •n̂u

a8
ta1sW •n̂u

a8
'

t f !. ~65!

Since the observable properties of a particle with spin1
2 can

be represented as a function of its spin polarizationPW and the
states of all the two-level~two-continua here! systems can be
mapped onto the states of orientation of a particle with s
1
2 , Q may be rewritten in terms of the polarization vecto
as

Q5
1

2
t r~11PW a•sW 1PW f•sW !, ~66!

where polarization vectors are defined as

PW a[
ta

t r
n̂u

a8
, PW f[

t f

t r
n̂u

a8
'

. ~67!

The degrees of polarizationuPW au and uPW f u will be denoted
simply asPa and Pf . They are positive by definition~the
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term polarization may not be adequate for the time de
matrix; we will return to this point later!. Let us introduce a
new unit vector

n̂t5n̂u
a8

ta

Ata
21t f

2
1n̂u

a8
' t f

Ata
21t f

2
. ~68!

Then Eqs.~65! and ~67! become

Q5
1

2
~t r1sW •n̂tAta

21t f
2!5

1

2
t r~11PW t•sW !, ~69!

where

PW t[APa
21Pf

2n̂t . ~70!

Now eigenvalues of the time delay matrixQ or eigentime
delays, which will be denoted ast6 , are easily obtained a

t65
1

2
~t r6Ata

21t f
2!5

1

2
t r~16Pt!. ~71!
e

yNotice thatta andt f are added up incoherently to eigentim
delays. Also, because tr(s i)50 (i 5x,y,z),

tr Q5t11t25t r , ~72!

that is, the eigentime delay sum has the same form as th
the eigentime delay in the single-channel scattering@16#.

B. Explicit formulas of time delays

The time delay due to the resonance, the first term of

~71!, is obtained by differentiating tand̄ r521/e r with re-
spect toe r as

t̄ r~e r ![2\
dd̄ r~e r !

de r
5

2\

11e r
2

. ~73!

It takes the Lorentzian form and is thus always positive
delayed as it is kept temporarily by the quasibound state

The form of the time delay due to avoidance, the seco
term of Eq.~71!, is rather complex:
ta~E!52\
dda

dE
5

22\F1

2
DG~E2E0!sinD12

0 2S G

2 D 2

cosD12
0 G

F ~E2E0!21S G

2 D 2G H G1G21F ~E2E0!sinD12
0 2

1

2
DG cosD12

0 G2J 1/2. ~74!
n-

ter.
By changing the independent variable fromE to e r , consid-
ering the reduced time delayst̄a@52\(dda /de r)#, and in-
troducing the new parametersr 2 andqt defined by

r 2[
G22DG2

DG2
, ~75!

qt[
G

DG
cot D12

0 , ~76!

Eq. ~74! is simplified as

t̄a~e r !52 t̄ r~e r !
e r2qt

A~e r2qt!
21r 2~11e r

2!
. ~77!

The factor multiplyingt̄ r(e r) in Eq. ~77! can be transformed
to the functional of the Beutler-Fano formula@the Lorentzian
shape oft̄ r(e r) may be regarded as a Beutler-Fano shap#
t̄a~e r !55
t̄ r~e r !

1

A11r 2
11e r

2

~e r2qt!
2

when e r<qt

2 t̄ r~e r !
1

A11r 2
11e r

2

~e r2qt!
2

when e r.qt

55 t̄ r~e r !A f BF~e r ,qt!

f BF~e r ,qt!1r 2
when e r<qt

2 t̄ r~e r !A f BF~e r ,qt!

f BF~e r ,qt!1r 2
when e r.qt

[t̄ r~e r !ga~e r !. ~78!

Interestingly,t̄a takes the Beutler-Fano formula in the e
ergy scale ofe r instead ofea in contrast to the case ofd̃a ,
though the former is obtained as the derivative of the lat
Notice that the absolute value ofga is the polarizationPa
considered in Sec. V A:
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FIG. 2. ga(e r) and t̄a(e r) vs e r are plotted for three different profile indicesqt50.6, 1, and 5 withD12
0 5p/3.
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Pa5A f BF~e r ,qt!

f BF~e r ,qt!1r 2
. ~79!

ga changes its sign ate r 5 qt ; so does the polarization
vectorPW a at the same energy. The study ofPa as a function
of e r shows that Pa has a maximum of
A(11qt

2)/(11qt
21r 2) at e r521/qt and a minimum of 0 at

e r5qt ~which corresponds toea521/qa whereda has an
extremum!. Figure 2 shows the variations in the behaviors
ga(e r) andt̄a(e r) as functions ofe r at three different profile
indices qt with D12

0 fixed ~the value ofqt is restricted by
uqt /cotD12

0 u>1).
Recalling thatf BF(e r ,qt)>0, Eq. ~79! tells us that the

magnitude ofPa(e r) is smaller than or equal to unity and ha
the effect of making the absolute magnitude of the time
lay t̄a due to an avoidance smaller than or equal to tha
the time delayt̄ r due to a resonance:

t̄ r~e r !>u t̄a~e r !u, ~80!

which ensures thatt̄ r(e r)6 t̄a are positive. The inequality
~80! may be obtained without knowing the explicit fun
tional dependences oft r andta as functions of energy. No
tice that

t r6ta52\
d~d r6da!

dE
52\

dd6

dE
. ~81!

Because of the inequality~22!, Eq.~81! should be larger than
or equal to zero, which proves Eq.~80!. This inequality is the
manifestation of the physical fact that eigenphase shifts
increasing functions of energy in the neighborhood of a re
f

-
f

re
o-

nance as colliding particles are kept bound tempora
around a resonance~attractive forces make positive phas
shifts!.

The above inequality restricts the magnitude ofPa to 0
<Pa<1. The magnitude ofPa causes the difference be
tween two eigentime delays. Equation~79! tells us that the
degree of difference in the two eigentime delays is gover
by r 2. Let us considerr 2 as a function ofx5G1 /G (0<x
<1). Then, sincer 2 is symmetric with respect tox5 1

2 and
its values are zero atx50 and 1 and infinity atx5 1

2 , the
magnitudes ofPa are 1 atx50 and 0 atx5 1

2 . Since the
avoided crossing interaction is strongest atx5 1

2 , the differ-
ence in two eigentimes delayed due to an avoided cros
interaction completely disappears when the avoided cros
interaction is strongest.

Let us now consider obtaining the explicit formula of th
times delayed due to a frame change. By substituting
~58! and

sinda5
Ga

G
sinD12

0 Aea
211

e r
211

~82!

into Eq. ~64!, the time delayt f due to the frame change i
obtained as

t f5t rsinD12
0 Ae r

211

ea
211

[t rgf . ~83!

The absolute value ofgf is the same asPf ,

Pf5usinD12
0 uAe r

211

ea
211

~84!
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FIG. 3. gf(e r) and t̄ f(e r) vs e r are plotted for three different profile indicesqt50.6, 1, and 5 withD12
0 5p/6.
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@actually gf5Pf in the convention mentioned below Eq
~33!#. Figure 3 shows the variations in the behaviors
Pf(e r) and t̄ f(e r) as functions of energy at three differe
profile indicesqt with D12

0 fixed.
As in the case ofta , Pf is smaller than or equal to

unity. This can be proved by examining the behavior of
graph of Pf as a function ofe r . Pf can be easily trans
formed as a function ofe r by substituting

ea5
G

Ga
S e r2

DG

G
cot D12

0 D ~85!

for ea into Eq. ~83!. It is then differentiated with respect t
energy to yield the roots of the first derivative oft̄ f(e r) at
e r521/qt and qt . From this, it is found thatPf has the
minimum of sinD12

0 A12(DG/G)2 at 21/qt and the maxi-
mum of unity atqt . Its values becomeA12(DG/G)2 at e r
→6`. This proves 0<Pf<1.

Now let us consider the magnitude of the total polariz
tion vectorPt5APa

21Pf
2. In order to obtain this, let us fur

ther transform Eq.~85! using the definition~33! of Ga and
DG/G5cotD12

0 /qt as

ea5
usinD12

0 u

A12S cot D12
0

qt
D 2

S e r2
cot2D12

0

qt
D . ~86!

Also after some manipulation, we obtain the relation

~e r2qt!
21r 2~e r

211!5S qt

cot D12
0 D 2F S e r2

cot2D12
0

qt
D 2

1

12S cot D12
0

qt
D 2

sin2D12
0

G . ~87!
f

e

-

Using Eq.~86! to calculateea
211 and comparing the latte

with the right-hand side of Eq.~87!, we obtain

ea
2115

sin2D12
0

r 2
@~e r2qt!

21r 2~e r
211!#, ~88!

where r 25(qt /cotD12
0 )221 is used. Substituting Eq.~88!

into Eq. ~84!, Pf can be put into a functional of the Beutle
Fano formula

Pf5
r

Af BF~e r ,qt!1r 2
. ~89!

From Eqs.~89! and ~79! we obtain the surprising result

Pa
21Pf

251. ~90!

This means that eigentime delays for the system of one
crete state and two continua are zero andt r(e r). Though
time delays due to the avoided crossing interaction and fra
change are asymmetric with respect to the resonance en
and therefore the energy of the longest lifetime is n
matched with the resonance energy, the energy of the lon
overall eigentime delays is exactly matched with the re
nance energy.

VI. RESULTS AND DISCUSSION

Let us summarize the results. In this paper we conside
eigenphase shifts and eigentime delays near a resonance
system of one discrete state and two continua using Fa
configuration interaction theory. The eigenphase shifts
obtained as

2d6~E!5(
i

d i
01d r~E!6da~E!,

whered r(E) is the phase shift due to the modification of th
scattering wave by the quasibound state and is given
2arctan(1/e r) andda(E) is the one due to the modificatio
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of the scattering wave by the other wave through the indir
interaction via the quasibound state and given as a functi
of the Beutler-Fano formula

cot da~E!52cot D12
0 ea2qa

~11ea
2!1/2

.

In the above formula, energy is expressed in units ofGa

52AG1G2/usinD12
0 u and is shifted from the resonance ener

E0 by (DG/2)cotD12
0 . The shape of the curve ofda(E) is

characterized by the line profile index qa5
22DG/(2AG1G2cosD12

0 ). The strength of the avoide
crossing interaction experienced by the eigenphase shif
governed by the magnitude ofGa . No shift is expected when
G15G2 , where the strength of the avoided crossing inter
tion is strongest. The maximum shift obtains when eitherG1
or G2 is zero.

Eigenvectorsv6 of A of S5S0A corresponding to eigen
valuesd6(E) are obtained as

v15F cosS ua

2 D
sinS ua

2 D G , v25F 2sinS ua

2 D
cosS ua

2 D G ,

whereua is defined by

cosua52
ea

A11ea
2

, sinua5
1

A11ea
2

.

Eigenvectors are independent ofqa . They depend only on
ea . Sinceqa stands for the separation of the avoided cro
ing point energy from the middle of asymptotes of the a
scissas of two eigenphase shifts, the above result means
the characteristics of the avoided crossing interactions
independent of the asymptotes of the abscissas of the e
phase shifts. The corresponding eigenvectors of theSmatrix
are obtained by replacingua with ua85ua12u0 .

With the new parameters, theS matrix is found to be
expressible as

S5e2 i ~dS1dasW •n̂ua8
!,

wheren̂u
a8
5 ẑ cosua81x̂ sinua8 . In terms of Pauli matrices, th

time delay matrixQ5 i\S†(dS/dE) is found to consist of
three terms

Q5
1

2
~t r1sW •n̂u

a8
ta1sW •n̂u

a8
'

t f !,

one due to the resonance, one due to the avoided cros
interaction, and one due to the change of frame as a func
of energy. Because of the last term, the eigenfunctions of
Q matrix are different from those of theS matrix.

The time delay due to the resonance takes a symm
Lorentzian form and the time delay due to the avoided cro
ing takes a form of a functional of the Beutler-Fano formu
ct
al

is

-

-
-
hat
re
n-

ing
on
e

ric
s-

ta~E!55
2t r~E!

1

A11r 2
11e r

2

~e r2qt!
2

when e r<qt

t r~E!
1

A11r 2
11e r

2

~e r2qt!
2

when e r.qt .

The asymmetry ofta as a function of energy is brough
about by the nonzero value ofqt, which is proportional to
the shift of the avoided crossing point energy from the re
nance one. Thus the asymmetry ofta is caused by the mis
match in the positions of the avoided crossing point a
resonance energies.

The time delay due to frame change takes the form

t f~E!5t r~E!sinD12
0 Ae r

211

ea
211

.

The above form may be understood from the fact that
changes of the frame spanned by the eigenvectors of thS
matrix is governed by 11ea

2 , while the time delay due to the
resonance is governed by 11e r

2 . Therefore, the ratio ofta to
t r will be a function of (11e r

2)/(11ea
2). t f(E) is also

found to be transformed into a functional of the Beutler-Fa
formula.

In analogy with the spin1
2 system, the time delay matrix

Q may be expressed in terms of the polarization vectors
the Pauli spin matrices as

Q5
1

2
t r~11PW a•sW 1PW f•sW !,

where the polarization vectors are defined by

PW a5
ta

t r
n̂u

a8
, PW f5

t f

t r
n̂u

a8
'

.

Like the spin1
2 system, it is found that the absolute values

PW a and PW f are restricted to 0<uPW au<1 and 0<uPW f u<1. In
the present case a complete depolarization means that e
times delays are the same regardless of eigenchannels, w
a complete polarization means that eigentime delays a
and t r(E) as a function of energy. Eigenvectors for eige
time delays due to an avoided crossing interaction and du
a frame change are orthogonal to each other and contribu
the total eigentime delays asAta

21t f
25t rAPa

21Pf
2. It is

found thatPa
21Pf

251. This means that one of the two tot
eigentime delays is zero while the other one is the same
the time delayed by the resonance state. Though time de
due to an avoided crossing interaction and a frame cha
are asymmetric with respect to the resonance energy
therefore the energy of the longest lifetime does not ma
the resonance energy, the energy of the longest overall ei
time delays exactly matches the resonance energy. Tho
this is a surprising result, it should rather be so if we rec
that all the partial lifetimes obtained from the partial phot
dissociation cross sections as a function of energy are
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same in the system of one discrete state and many cont
However, the detailed study on their connection is beyo
the scope of this paper.

The present work reveals the dynamical parameters
govern the behaviors of eigenphase shifts and eigentime
lays for the system of one discrete state and two continu
may be applied to the systems of more than two continua
approximating that such systems are a cascade of inde
dent two interacting continua. In that sense, the current st
may be considered as a prototypical model for the ‘‘is
lated’’ avoided crossing interaction. For the system of o
discrete state and three or four continua, Eq.~19! becomes a
third- or fourth-order equation and its solution can be o
-

-

.

, J
ua.
d

at
e-
It
y
n-
y

-
e

-

tained by Cartan and Ferrari’s method@17#. It may be highly
desirable to do similar studies on these systems.
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