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Extended Coulomb approximation for multichannel-quantum-defect-theory computations
of dipole moments: Method of calculation and application to b
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A method for calculating dipole transition moments in effective one-electron systems when some channels
are closed is investigated within the framework of multichannel quantum-defect thdQT). A treatment
of the energy dependence is also given. This method is useful when electronic channel interactions occur and
MQDT is combined with frame transformations. Our calculations are made in the Coulomb approximation and
include provisions for core transitions. They are tested by comparing transitions between bound states of
molecular hydrogen witlab initio computations[S1050-294{08)03912-2

PACS numbes): 32.70.Cs, 31.56-w, 32.80.Fb, 34.60:z

I. INTRODUCTION recourse to state-to-state calculations.
In Sec. Il we give a formulation for the radial part of

Dipole transition moments are among the main physicatlipole transitions in a diatomic molecule within the MQDT
guantities associated with the theoretical calculations oframework. Various ways of dealing with the energy depen-
photoionization spectra. As is known, in a diatomic moleculedence will be examined. In Sec. Il we apply our formulation
the transition from a low-energy state for which the waveto the computation of dipole moments in molecular hydrogen
function is near the core to a higher Rydberg or continuunin the Coulomb approximation. In Sec. IV electronic dipole
wave function can be understood in terms of a frame transtransition moments are obtained and compared with state-to-
formation: Before excitation the electron is adequately destateab initio calculations[6,7]. We also give examples of
scribed in a short-range formulatipdund’s casda) or (c)],  the energy dependence of the dipole moments for transitions
while once excited, it should be described in the laboratoryto high Rydberg or continuum states. Finally, in Sec. V the
frame [Hund’s case(d) or (e)]. The frame transformation validity of the Coulomb approximation is discussed and a
elements were extensively studied in a recent article by Jurspecific treatment for large internuclear distances is consid-
gen and Rasee{R) [1], wherein readily usable expressions ered.
are given for the angular factors involved in the dipole tran-

sition moments. In the present paper we complete the work Il. DIPOLE MOMENT FORMULATIONS
of JR by describing a method for calculating the radial part .
of dipole moments and their energy dependence. A. Molecular wave functions

The difficulty here is that unless the wave function of the A hjghly excited molecule can autoionize and eject an
outer electron in effective one-electron systems is knowrgjectron. It is represented by a standing wisee Eq(17) of
from quantum chemical d&-matrix calculations, close-range jR]
dipole moments smooth in energy cannot be defined in a

straightforward manner: Within the framework of collision NN
theories containing closed channels, such as multichannel lﬁ,z:E > ®[f,(r)Cy —gi(r)Sy 1B}, 1)
guantum-defect theoryMQDT), divergent expressions ap- =172

pear in the transition integrals between clogbdund elec-

tron) channels. These exponentially divergent expressionwhose combinations account for the outgoing electdn.
are of mathematical nature, unlike the case of free-free trardenotes the wave function of the core in the rovibronic state
sitions where the numerical divergences are eliminated by ", as well as the electron’s angular momentyrand spin:
using the accelerator form of the dipole operatgl. Our  1={1",1;,j;}; fi(r) andg,(r) are the regular and irregular
method is particularly appropriate in cases where the outetadial functions of the outer electraimere Coulomb func-
electron takes part in an electronic channel interaction antlons, as we will suppose a pure Coulomb field outside the
has a comparable energy before and after the transition. Treere. MQDT does not give the wave function inside the core
MQDT analysis of H carried on by Ross and Junggh4]is  and so Eq(1) is valid only forr larger than the core radius
an example of such a situation. Our approach can be viewelh. K=SC ! is the reaction matrix explicitly containing the
as an extension of the Coulomb approximation to the elecelosed channelgthus of dimensionNXN, with N=N,
tronic multichannel case where transitions can affect the core- N being the sum of open and closed channdlse physi-
state as well as the Rydberg electron. The dipole momental reaction matrixK (E) of dimensiondN,X N, is related to
between two states is calculated by considering the transitiothe scattering matrixS(E) by K(E)=—i[S(E)—I][S(E)
elements between initial and final chann@} thus avoiding +1]~ 1. The eigenvalues oK (E) and the channel coeffi-
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cientsB{, are determined in the typical MQDT diagonaliza-
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Thus, for each closet) channeli, we must have in the

tion procedurd8]. The labelp denotes the eigenstates of the limit r—o

open-channel interaction.

For r values near the core, the wave function is formu-

lated in a manner appropriate at short rafigend’s casda),
the molecular framp

N N
t/fﬁEl > Xi[f|i(r)cii/_g|i(r)5ii/]Aip/, (2
=11

equivalent to Eq(23) of JR. Herei ={S; ,A;,Q;,i*,I; N},
which is similar to the labeB used by JR, although in the
present work the set of indicégandl will essentially be used
to distinguish electronidi) from rovibronic (I) quantities.
The dependence on rotation and vibration is now included i
the factorsX;, as will be specified in Sec. Il below. Th¢
are related to thé, by transforming Eq(1) to the molecular
frame.C,;; and S, are deduced fronC;;, and S;;; via a
rovibronic frame transformation matriy,

Ci=2 UG Uf,, . 3)
ii’
The same is true for the coefficients
(4)

Bl,=2> U /Al
i!

Cii» and S;;, are assumed to be diagonal $ A, and (),
which are good quantum numbers in Hund's cé®e

B. Radial behavior and transition moments

The dipole transition moment betweef, and a low-
energy state) is given by

D§=(o[Dl¥,)- (5)

For the sake of simplicity, we will take the low-energy mo-
lecular wave function, accordingly stated in Hund's cése

as a product of a single core function and an electron chann

o= Xin[ fin(r)cog muin) = gin(r)sin(muin)].  (6)

n

2 [f(NCi—g,(NSi/JA =0, ieQ. (8

Although this expression is well behaved, each term in
square brackets taken individually will diverge. As a conse-
guence, if Eq(2) is expressed as

N
Y= 2 Al (9)

i'=1

with #;, given by

N
lpi,:zl Xi[f|i(r)Ciif_gli(r)sii’]v (10

then each term diverges at largeas soon as=r(¢;).
This affects the corresponding expressions of the dipolar
moments. If we partition the dipole transition moment as

D4=> DLA, (11)
i

with

D}, =(4olDl 1), (12)

this last expression formally diverges. Howeva;,,/, can
nevertheless be defined(#) the lower state radial function
fir(r)cos@muir) —gin(r)sin(ui») goes to 0 forr greater than
the classical turning point;(e;:) of ¢;,, thereby annihilat-
ing the divergence o#;,, or (b) C;;» andS;;, are diagonal
and thus Eq(8) reduces to a single convergent term.
Fortunately in previous calculatioi9—-11], these condi-
tions were fulfilled. In all other situations, Eq4.1) and(12)
alnd the expressiof21b) of JR are, strictly speaking, diver-

%ent. However, we will see below how these formally infi-

nite quantities can be parametrized.
In general, Eq.(5) has to be expressed by making the

Here theC and S matrices are expressed in terms of thePhysical quantization condition that has to be made for each

single-channel quantum defegt» and we haveDgzDi”,,.

Of coursey, could as well include a sum of several channels

and core states; this generalization is straightforward.
Since the double sum in E@) includes closed channels,

the expressions have to be used with particular attention. As

is known, for negativéRydberg electronenergies the func-
tions f and g both diverge atr—oo. This strong, usually
exponential, divergence appears faralues beyond the clas-
sical turning pointr,, while f andg are well behaved for

=<r,. Obviously, the turning point depends on the outer elec-

tron’s energye;, given by
e=E—E;, (7)

with E;" being the energy of the ion in thiestate ancE the
total energy of the molecule.

electron in statd appear explicitly regardless of what the
nonperturbed channel before the collision was. Equa@n
can be rearranged as

N

N N
Xi| fi.(r) 2 ALCi—gi.(N) 2 ALSy

i'=1 i'=1

=
N

E_Zl Xi[fi.(r)cosmuP—gi (r)sin muPAl, (13
=

with A? and P given by

AiP,C” /EKipCOS WEP ,
1

M\
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N .
_ di(€ ,r)=f;(rycosmul—g;(r)sin wul (18)
> ALS; =Alsin 7l (14) n ' P '
i'=1 and letgg(€ir,r) be the lower state radial function. Simple

_ trigonometry and Eq(15) yield
The u?P are known asffectivequantum defects and th&f

are the effective channel coefficients. By matching boundary (bolr9 ¢i(e))=cosmn{cos m(v;— x)d(€)
conditions for close and open(P) channels, it can be .
established that 1Q pen®) —sin m(vi—x)dz(€)}. (19

This is the type of radial integral that appears in the expres-

uP=n— v i =i’
ul=n—v;, 1€Q 15 sion of_D:// [Eqg. (17)], with q=0 or 1. di(€) andd,(e;)
=1, ieP, are defined by

_ _ 1 o di(e)=(o|r9fi(e))cosmx+gi(e)sin mx) (20
wheren is an integery;=(—€;) (Rydberg units will be
used throughoit and tanwr, are the eigenvalues of the and
physical reaction matrik (E). Accordingly, the dipole tran-

sition momentDﬁ, may be expanded as da(&)=(gbolr|fi(€)cosm(x—3)+gi(€&)sin m(%—3)).

(21)

Heren is an integer according to Eql5) and x is an arbi-
trary parameter allowing for this radial basis change. For a
given value ofx, dq(€;) is strictly defined only forv;= x
with +n’, while d,(€;) is defined ifv;=x+n’+ 3, wheren’ is
an integer. For those values,(€;) andd,(¢;) are smoothly
X;) dependent on energy.
v Since the left-hand side of E¢19) is defined for allg; ,
17 sois the right-hand side. For a fixed valuesxofve evaluate
This expression is well defined in all circumstances. NOte%lt(eErgo?antg %2va(t\6/:/)eeart1 Euirr?.pafﬁglaaffd;(iseznzﬁd?{]:) tgfg

however,. that it is expected to vary substantially with thedefined at every energy. We have thus parametrized the en-
energy since the boundedness of the closed channels has

been included in thd-s: On the other hand, when defined, eray dependence of the radial mtggra_ll and thus_ OfDPiIe

0 . o _ into smooth parts and strong oscillating paftesine and
the D;, involve only short-range interaction&e., without  sine factors that take into account the boundary conditions.
taking account of the largebehavioj and are expected to This will be illustrated in Sec. IV C.

Df,=>, DLA",, (16)
i!

D}, =(WolDI[T,, (r)cos mia?, — g, (r)sin wa.]

be smoother in energy. For ;>0 the same technique can be used by replagihg
by 7, according to Eq(15) and setting the proper signs. We
C. Energy dependence remark that we have implicitly used phase-shifted radial

pairs; this has been repeatedly employed in MQDT in rela-

Th_e_ main pr_oblem arising in practical computations Oftion to closed-channel connected effects, such as resonant
transitions to high-energy Rydberg states comes from thgtructures(see e.9.12,13)

strong energy dependence of tﬁ{a', of Eqg. (17). Since the
dipole operator in our effective one-electron system is a sum 2. Parametrization of the [{)

of the outer-electron dipole and the core transition dipole By combining Eqs(12) and (9) [or, equivalently, by ex-
operatorgsee Sec. Il B beloy the energy dependence, as amining the expressions in curly brackets in E8) beiow]

well as the divergences, is confined to the radial integrals "

between the initial state and the manifold of final states. Theve see that each term of the sum makingD]p has a radial

strong energy dependence of the radial integrals can be ciftdivergenj part given by

cumvented in either of two waysi) directly, by factoring i

the ener - =i din(e)=(o|rfiCii» —0;Sii"). (22
gy dependence of the radial integraDin into a

smooth part related to short-range effects and a stronglgrom Eqs.(20) and (21) we extract

varying part coming from imposing boundary conditions at

larger, or (ii) by parametrizing the formally divergent radial dfi(ei)5(¢o|rq|fi(ei)>=cos{ ax)di(€)+sin(mx)dy(e),

parts ofD:,/, of Eq.(12) in such a way that the total standing- (23

wave transition momen(5) is recovered when calculated .

with the formally divergent equatiofl1). Each of these ap- dgi(fi)5<¢’0|rq|gi(€i)>:S'n( mx)d1(€)—cog mx)dy(€),

proaches is discussed in turn below. (29)

whered,(¢) andd,(e;) represent the smooth interpolated
functions. Despite the fact thate|rd|fi(e)) converges

For €,<0 we write the effective channel radial function, only for given values of negative; [namely, when the ef-
in large square brackets in E(.3), as fective quantum number;=(— ¢;) Y2 is a whole numbgr

1. Factoring the energy dependence of tiﬁ,’,D
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Eq. (23) now gives a parametrization of this expression. The o
meaning of this parametrization is clear: By leaving aside the Civi*Ni*jvj*NJfZ EA: 2 (ivi Ni'[iAv)

actual long-range boundary condition, we get smoothly vary- vv
ing dfi anddgi and thus transition integrals X(iAv|Cf}|jAv’)<jAv’|jv]-+Nj+)
din(€)=dy,(€)Cijr—dg (€)Sq (25

=; f dR(iv" N/ [iRA)CH(R)
which vary smoothly with the energy. These quantities are

the parametrized radial factors of t@¢ defined by Eq(12)

and have been constructed so that for the physical energies

the correct transition integral, defined by the left-hand side ofnd similarly forS;, +n+j,+n+. Equation(28) is analogous to

Eq. (19), is recovered. In other words, with this parametriza- P

e e e o WE gt the second e of E9 by Lsing he closure el
y ' 9 tion for the molecular vibrational functions. Notice that

that smootrD:,, reflecting short-range interaction phenomenathe frame transformation represented by E2f) involves,

are obtained. Thes?, are then of easier use in practica' in addition to the rotational pal’t, the internuclear coordi-
IH

computations, for example, in the context of frame transfor18t€ R The total reaction matrix in Hund's cas),

—gr-1 ;
mations with electronic interactiorisee Sec. IV G K=SC~, is thus related to the electroni&-depend-
ent reaction matrices for each BO symmetig,*(R)

=SYR)[CMR)]?, that is, to the electronic quantum de-

X(jRAljv"N;), (29

Eq. (4) (actually to its inversg while Eq.(29) is just Eq.(3);

Ill. ROVIBRONIC WAVE FUNCTIONS

AND DIPOLE MOMENTS IN H Ei]c)ts i (R)=m"" arctank}(R) (for more details, refer to
A. Frame transformation Once the frame transformation matrices are known, the

H, has been the prototype for applications of MQDT to Problem of calculating the dipole transition moment between
molecular problems. Since 1994, electronic quantum defect#, and a lower state is reduced to the calculation of the
have been available for different gerade and ungerade synfurely electronicR-dependent dipole moments
metries of the moleculg3].

At larger the electron is uncoupldde., Hund’s caséd),

giyen +theit spin—orbiF co+upIJirng is negligibleBy _settingl_ DiA,,(R)ZZ Af’vA<i”|<fi,,cos mLiA,,O(R)
=ity "N;" and®,=[i*v;"N;"), Eq.(2) can be written as in L
Ref. [3]: . A .
3] —gusin 7\ %(R)|D|£,C(R) SN (R)i)
PRSED SN SN [P Voo - X (30
i,viJr,NiJr j,vr,NjJr I
X[ N (D Ciptns o Nt where we have taken the lower-state wave function of Eq.
re P (6) as a simple BO product
~ 90N (DSN jorne s (26)
—|im AO
wherei refers to the electronic core state and the orbital Yo=|i")fin(r)cos ma;,”(R)
angular momentum of the outer electron quantized in the ) Ao
laboratory framdin Eq. (26)] or in the molecular framéin = gin(r)sin mpu,, (R)]|Ag)|vo)- (3D

Eq. (27)] andv;"N;" are the vibrational and rotational num-

. )
bers of the H™ core.f and+g are Coulomb functions taken at We have already pointed out that within MQDT, the wave
the energye;, -+ =E—E;, ++ of the Rydberg electror:  fynction inside the core is not knowimathematically the
being the energy of the molecule aid the core energy.  irregular functiong(r) diverges whem —0]. Therefore, in
However, near the core the wave function is written as ahe calculations of the dipole moments, we set a cutoff radius
Born-Oppenheime(BO) product[3] in the radial integrals as— 0. The validity of this procedure,
known as the Coulomb approximation, will be discussed in

0=, 3 A lRIKOCHRI~aSHRA). Sec. VA

@7 B. Core- and outer-electron transitions
with The dipole operator can be taken@s-r+r., wherer
andr are the outer and core electron position operators ex-
Al A= B” +N+<A| Nf}(v |Uj+> (28 pressed in the molecular frame. Writifigexplicitly in terms
Bwf N, S of the core state and the outer electron’s angular momentum

! numbers|i)=|i ")|I;\;). Eqg. (30) is accordingly set as an
and independent sum of the outer and inner electrons’ transitions
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DM =3 Afa{(Ticos m, (R f
—ginsin e, “(R)|r|f,CH(R)— g;S}(R)) 0
XN Y NG [) P -1
2 Al a{(ficos mu, (R) -2
—gisin mu, (R)|f,CH(R) -GS} (R)) 0 2 4 6 8

/RS Hes
XN AP Y amli ) (32 FIG. 1. B-HH electronic dipole transition mome#t (in units
of ay) as a function of the internuclear distariReour resultgsolid
The term in the first set of curly brackets is equivalent to Eqline) andab initio computations of Ref(6] (dashed ling
(299 of JR, while that in the second is their E§9b). How-
ever, we have observed that unless conditi@nor (b) of
Sec. Il B is fulfilled, the expressions in curly brackets in Eq. 1.Bx} -HH 3% transitions
32) are not well defined because the radial part diverges for . ’ . .
( The B state is represented by a single channel, with a

bound states. Since the electronic states jraké generally 1s0,) ground core state and apo, outer electron, while
¢} u ,

represented by several interacting electronic channels WiI'EE+ d by th . . h s Th
ground and excited core states, the transition computatiors States are represented by three interacting channels: The

require the use of the effective channel formulation of Eq.S channel (Bag)(esoy), thed channel (bog)(eday), and
(16). the excited core channel (do,)(epo,). For theB-HH
transition, as well as for transitions frol to higher>
states, conditiorfia) of Sec. Il is satisfied only for theandd
IV. RESULTS channels because at intermedi&e/alues the excited core
keeps the outep electron’s energy very low.

In Fig. 1 we compare our resultsolid line) to those
The dipole moments of E432) are formulated following obtained in theab initio computations of Ref[6] (dashed
Eq. (16), with energy-normalized radial functions; the quan-jine) For smallR values theHH state is mainly represented
tum defects were taken from R¢8]. The whole wave func- 1y the s channel, so the dipole moment mainly involves an
tion may be renormalized to unity for comparisons v e electromp— s transition. For 2.5 R< 4.5 nondiagonal

initio calculations. L _ quantum defects represent the interaction zone and the mixed
Since the wave function inside the core is not known, our — . .
ature of theHH state gives rise tp—s and p—d outer-

calculations rely on the Coulomb approximation, introduced’ . o
a long time ago by Bates and Damgadddt]. They had electron transmon_s as we_II.qss&g—quu core transitions.
observed that the dipole moments in systems with one effe The agree.ment with th. initio calculations is go.od., except
tive outer electron subjected to a long-range Coulomb fieIELor large internuclear dlstanc_eﬁ?(>6), Whe_re it is well
were insensitive to the wave function inside the core. It is<""OW" tha’; th? MQDT electronic wave function suffers from
thus possible to neglect the interval between 0 and a cutoff€Ver® limitationgsee Sec. V B
radiusr in the transition integrals. It seems reasonable to 2. C ', -1 M and C M, -R ', transitions
chooser.~r, rq being the core radius, even though in pre- i ,
vious works the cutoff radius was often set inside the core so '€ singlet C state is represented by the channel
as to minimize the variation of the length form of the dipole (150g)(epm,), while Il, states are combinations of
matrix element. Since core transitions are also taken inté150g)(edmg) and (Po)(epm,) channeld16]. In Fig. 2
account by the second sum in E82), the same cutoff ra- W€ compare our values to thab initio calculations of
dius was used in the overlap integrals. We have generall olniewicz[7]. Thel andR states are both represented by
chosenr,~2 a.u. and checked the stability of the transitionth€ soled channel at smalR, while strong interactions pre-
integrals. The validity of the Coulomb approximation will be Vail for 3.5<R<4.5, thus giving rise to botip—d outer-
discussed below. The electronic transition moments of th&léctron and &o4—2po, core transitions. FOR>6 thed
H," ion were taken from Ref15]. ghannel accounts for'tlhla statg(and the d|p9le moment is
The parametex introduced in Eq(19) is arbitrary to the ~ 9!Ven by ap—d trar_lsmpr), Whlle thel state is _represented
extent that the numericdk.g., quadraticfunctions d, (e;) b_y_ thep channel; this gives rise to an unp_hysmal core trgn-
andd,(e;) are interpolated from sufficient valudie., the smon, which must be corrected by foIIow!ng the prescrip-
energy interval in terms of the effective quantum number iions of Sec. V B. The result of doing so is represented by
large enough When this is not the caggypically when the  the short-dashed line in Fig. 2.
Rydberg electron’s energy is very low over the energy inter-
val considereflthe value ofx has to be chosen judiciously,
so thatd, () andd,(e;) in Eqg. (19) can easily be interpo- As stated, we are interested in transitions towards high
lated over the energy range with tffixed) chosens. Rydberg or autoionizing states of,Hwhere the energy de-

B. Examples of bound-bound singlet electronic transitions

A. Details of calculations

C. lllustration of the energy dependence
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E(R)=€+ ELg(R). (33

e is then the energy of a Rydberg electron orbiting around an
ion core in its ground statéfrom Eq. (7) we see thate
=¢4]. The pairs of solid circles correspond to the physical
bound states of the clamped-nucﬁag molecule. Although
there are three channels involved in thg states, there are

no physical bound states for the excited cprehannel for
R=23 in the energy range considered. Despite the fact that in
R this case the two closed circles within each pair are quite
close to each other, the@—d channel transition moments
(b) are different. In fact, as can be seen by following the solid
line, asv increases th€—d channel transition moment un-
dergoes a strong oscillation. On the other hand, a smooth
energy variation is obtained for any constant value: ¢and
relatedv values given byv=x+n"). In Fig. 3 the triangles
correspond toc= — 0.2 and the dashed line interpolating be-
-1 tween these points illustrates the smooth energy dependence
and thus that ofl;(¢;) of Eq. (20). Note that the discontinu-
ity at each half-integer value of results from a global sign
R change. By calculating alsbg(R=3) andD2(R=3), Eq.
(16) then gives the global electronic dipole moment at the
selected energy.

FIG. 2. Electronic dipole momer (in units ofag) as a func-
tion of the internuclear distande for (a) C-1 and(b) C-R transi-
tions: our resultgsolid line) andab initio computations of Ref.7]
(dashed ling The short-dashed line ita) follows from the large
internuclear distance treatment of Sec. V.

2. Parametrized transition moment

From Eq.(25 we can compute parametrized transition

moments that have the main advantage of having a pure

pendence of the channel transition moments is needed. Foémooth energy dependence. For example, the calculation of

lowing the treatment of the energy dependence of the transi- ) . s

tion moments discussed in Sec. Il, we consider belov\p!ectromc transition momgnt@Bg(R) from th? B state to

specific examples of transitions between a lower state anfigh Rydberg or autoionizindZ. ¢ states requires the deter-

higher-energy channels in molecular hydrogen. mination of D§(R), D§(R), and DE(R) [see Eq.(11) or

(32)]. These three components are displayed in Fig. 4 for

molecular energies that cross the first ionization threshold,

the energy scale being given by Eq(33).

tronic transition moment from th€ state to thel channel of Notice that for eﬁ!Ch value of the internuclear distance
4 — — these energy-normalized components have a smooth energy

the >, symmetry forR=3, denotedDc(R=3). Dc(R  \ariation. They are also smooth with changiRgwith the

=3) calculated using energy-normalized wave functions ig, ;mp that lies between 2.5 and 4.5 a.u. being primarily due

plotted in Fig. 3 as a function of the effective quantum num-, ransitions induced by electronic interactions. The bump is

ber v, wherev=(—¢) " and ¢ is related to the molecular |esq opyious i d(R) because—d is the dominant transi-

energy by tion. This overall smooth character makes parametrized tran-

sition moments well suited for use with the frame transfor-

mations described in Eq§26)—(29) above.

1. Effective electronic transition moment

Let us consider the specific example of the effective elec

V. DISCUSSION

A. Validity of the Coulomb approximation

Since Bates and Damgaard’s original paper, the Coulomb
approximation for transitions between excited states of effec-
tive one-electron atoms has been compared to model poten-
tials and self-consistent methods rather successfully, high ac-
curacy being achieved when the outer electron’s wave
function was simply set to zero in the transition integrals

FIG. 3. D&(R=23) (solid ling) (in units of a,R %, whereR is [17-19. Some problems could be expected with low Ryd-
the Rydberg constantplotted as a function of the effective quan- berg energy wave functions (for;<I+1) because they are
tum numbery. Dots relate to energies of physical bound states.rather compact: When they approach the core from outside,
Triangles, connected by the dashed curve, correspond#o  these low-energy functions diverge before reaching an extre-
—0.2. The discontinuities at each half-integer value eésult from  mum (i.e., a substantial part of the outer electron’s wave
our sign convention. function lies inside the cojethe stability of the integral is
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of curly brackets in Eq(32)]. The reservations made fof
=<I+1 still hold in principle. However, we have seen in
Figs. 1 and 2 the good agreement between the current results,
where the dipole moments contain large contributions from
core transitions, and thab initio computations.

B. Large internuclear distance behavior

It is known that the molecular-orbital method breaks
down at largeR because of major configuration mixing, as
Mulliken has pointed ouf22]. Instead, the wave functions
are more simply described as linear combinations of atomic
substates in the separated atomic-orbital approximation. This
is related to the fact that the core electron tends to go with
one of the nuclei and the outer electron adjusts accordingly
to one or the other, resulting in covalent or ionic configura-
tions.

Notwithstanding, it is shown elsewhef23] that the ef-
fective quantum numbep; in each channel still has a
simple significance in most of the molecular enerByceor-
dinate plane: FoR>8 a.u. the core electron is adequately
represented as asklectron orbiting around one or the other
nucleus. When the other electron adjusts, we usually get a
symmetrized H($)+H(»;l) covalent configurationy; is
then very close to a whole number and represents a H-
electron principal quantum number, the departure from a
whole number giving an idea of electron-interatomic interac-
tions. When the ionic configuration predominatesrepre-
sents the binding energy of Hcorrected by interatomic in-
teractions.

Thus at largeR, the MQDT wave functions that describe
a core and an outer electron suffer from three main problems.

(i) The outer electron function remains formally centered
on the internuclear midpoint.

(ii) The core electron becomes an even or odd linear com-
bination of a 5 electron centered on each of the now sepa-
rated nuclei, regardless of the outer electron’s behavior,

FIG. 4. From top to bottom, parametrized transition momentswh|Ie in fact the outer electron should adjust as already men-

) . _ . tioned.
D, DY, andD} (in units of ayR~*) plotted on an internuclear .
distance gridR (in units ofay) as functions of the electron energy (iii) Electronic channels that could be neglected at smaller

relative to the Iry coree (in units of R). R (except maybe for very high energ)eeome into play;
furthermore, we know that for large internuclear distances

then by no means evident. While some authors argued thatur quantum-defect matrix gives an incomplete physical pic-
the Coulomb approximation was not valid at low energiesture since the nondiagonal quantum defects have been artifi-
(see, e.g.[20)) others just noticed a loss of accurdd®]. In  cially turned off[4].
our H, example, low-energy “Rydberg” electron states are In calculating dipole transitions, the three problems just
commonly encountered even for high molecular energies benentioned can be dealt with respectively in each of the fol-
cause of the channels built on the excited cgrelectron.  lowing ways[23].
Our good agreement withb initio calculations gives us con- (i) The dipole transition moment for theuter electron
fidence in the use of the Coulomb approximation even wheralculated with the MQDT functions is equivalent to a pure
vi=<I|+1. The situation can only get better when transitionscovalent transition between separated atoms. Sinc€ trel
towards more excited states are calculated. R states of Sec. IV B have pure covalent configuratipfis

We know that the outer electron does not have any apprexve expect our calculations for this example to be correct
ciable screening effect on core transitig@4], but the tran- even at large distance, as was indeed seen to be the case in
sition probability is lowered because the outer electron needBig. 2b). If, on the other hand, one or both states have a
to readjust to the situatiofwhich might include an energy ionic configuration, an extra term representing a transition
loss if the photon energy is smaller than the energy differbetween electrons on different nuclei must be added to the
ence between initial and final core statekhis readjustment, MQDT expression.
and consequently the core transition, is possible only if there (ii) The dipole transition moment for theore electron
is some appreciable overlap between the initial and finatalculated with the MQDT functions is equivalent to a tran-
outer-electron wave functiorisee the term in the second set sition between pure ionic configurations. Consequently, if
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none of the states has ionic components, our MQDT core VI. CONCLUSION
transition must be set to zero. This is illustrated by our cal-
culations for the transition fronC to | [Fig. 2a)]. It is In this work we have developed a formulation for calcu-

known that none of these states has ionic components and Vigting dipole moments within a collision theory framework,
thus set the core dipole momerithat is the (kog)  with the inclusion of core transitions. The validity of the
X(ecpm,)—(2pa,) (€ pm,) transition to zero gradually at  Coulomb approximation in practical calculations was tested
large R. On the other hand, if only one of the functions hasby comparison withab initio results for selected transitions
an ionic configuration, an extra term representing an overlapf H,. The treatment of the energy dependence of the radial
between electrons on different nuclei has to be added to thigtegrals may straightforwardly be extended in the case of
MQDT expression. generalized field$i.e., not purely Coulomb outer fieldThe

(i) The B-HH transition provides an example of the in- next phase of the work, namely, the computation of several
complete channel representation of our MQDT functionsionization and dissociation spectra of Hsing these transi-
Since our main concern is the transition betwdgrand tion moments, is in progress. Recent experimédf have
higher 3, states, we are not really interested in the exacshown that dipole moments at large internuclear distance
channel composition of thelH state, which we know in any ¢&nnot be neglected, particularly when states with outer
case not to be adequately represented by our MQDT fundlinima are studied; this is why we have included in our
tions at largeR. However, an accurate representation of theStudyad hocmodifications at large internuclear distance.
lower (hereB) state, say byb initio computations, is impor-
tant if we wish to comput®—s, d, or p channel transitions.

In this case a quantitative analysis of festate is available ACKNOWLEDGMENT
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