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Extended Coulomb approximation for multichannel-quantum-defect-theory computations
of dipole moments: Method of calculation and application to H2

A. Matzkin and Ch. Jungen
Laboratoire Aime´-Cotton, Centre National de la Recherche Scientifique, Universite´ de Paris–Sud, 91405 Orsay, France

S. C. Ross
Department of Physics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
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A method for calculating dipole transition moments in effective one-electron systems when some channels
are closed is investigated within the framework of multichannel quantum-defect theory~MQDT!. A treatment
of the energy dependence is also given. This method is useful when electronic channel interactions occur and
MQDT is combined with frame transformations. Our calculations are made in the Coulomb approximation and
include provisions for core transitions. They are tested by comparing transitions between bound states of
molecular hydrogen withab initio computations.@S1050-2947~98!03912-2#

PACS number~s!: 32.70.Cs, 31.50.1w, 32.80.Fb, 34.60.1z
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I. INTRODUCTION

Dipole transition moments are among the main phys
quantities associated with the theoretical calculations
photoionization spectra. As is known, in a diatomic molec
the transition from a low-energy state for which the wa
function is near the core to a higher Rydberg or continu
wave function can be understood in terms of a frame tra
formation: Before excitation the electron is adequately
scribed in a short-range formulation@Hund’s case~a! or ~c!#,
while once excited, it should be described in the laborat
frame @Hund’s case~d! or ~e!#. The frame transformation
elements were extensively studied in a recent article by J
gen and Raseev~JR! @1#, wherein readily usable expression
are given for the angular factors involved in the dipole tra
sition moments. In the present paper we complete the w
of JR by describing a method for calculating the radial p
of dipole moments and their energy dependence.

The difficulty here is that unless the wave function of t
outer electron in effective one-electron systems is kno
from quantum chemical orR-matrix calculations, close-rang
dipole moments smooth in energy cannot be defined i
straightforward manner: Within the framework of collisio
theories containing closed channels, such as multicha
quantum-defect theory~MQDT!, divergent expressions ap
pear in the transition integrals between closed~bound elec-
tron! channels. These exponentially divergent expressi
are of mathematical nature, unlike the case of free-free t
sitions where the numerical divergences are eliminated
using the accelerator form of the dipole operator@2#. Our
method is particularly appropriate in cases where the o
electron takes part in an electronic channel interaction
has a comparable energy before and after the transition.
MQDT analysis of H2 carried on by Ross and Jungen@3,4# is
an example of such a situation. Our approach can be vie
as an extension of the Coulomb approximation to the e
tronic multichannel case where transitions can affect the c
state as well as the Rydberg electron. The dipole mom
between two states is calculated by considering the trans
elements between initial and final channels@5#, thus avoiding
PRA 581050-2947/98/58~6!/4462~8!/$15.00
l
f

e

s-
-

y

n-

-
rk
t

n

a

el

s
n-
y

er
d
he

ed
c-
re
nt
n

recourse to state-to-state calculations.
In Sec. II we give a formulation for the radial part o

dipole transitions in a diatomic molecule within the MQD
framework. Various ways of dealing with the energy depe
dence will be examined. In Sec. III we apply our formulatio
to the computation of dipole moments in molecular hydrog
in the Coulomb approximation. In Sec. IV electronic dipo
transition moments are obtained and compared with state
stateab initio calculations@6,7#. We also give examples o
the energy dependence of the dipole moments for transit
to high Rydberg or continuum states. Finally, in Sec. V t
validity of the Coulomb approximation is discussed and
specific treatment for large internuclear distances is con
ered.

II. DIPOLE MOMENT FORMULATIONS

A. Molecular wave functions

A highly excited molecule can autoionize and eject
electron. It is represented by a standing wave@see Eq.~17! of
JR#

cr5(
I 51

N

(
I 851

N

F I@ f I~r !CII 82gI~r !SII 8#BI 8
r , ~1!

whose combinations account for the outgoing electron.F I
denotes the wave function of the core in the rovibronic st
I 1, as well as the electron’s angular momentuml i and spin:
I 5$I 1,l i , j i%; f I(r ) and gI(r ) are the regular and irregula
radial functions of the outer electron~here Coulomb func-
tions, as we will suppose a pure Coulomb field outside
core!. MQDT does not give the wave function inside the co
and so Eq.~1! is valid only for r larger than the core radiu
r 0 . K5SC21 is the reaction matrix explicitly containing th
closed channels~thus of dimensionN3N, with N5No
1Nc being the sum of open and closed channels!. The physi-
cal reaction matrixK (E) of dimensionsNo3No is related to
the scattering matrixS(E) by K (E)52 i @S(E)2I #@S(E)
1I #21. The eigenvalues ofK (E) and the channel coeffi
4462 © 1998 The American Physical Society
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cientsBI 8
r are determined in the typical MQDT diagonaliz

tion procedure@8#. The labelr denotes the eigenstates of th
open-channel interaction.

For r values near the core, the wave function is form
lated in a manner appropriate at short range@Hund’s case~a!,
the molecular frame#,

cr'(
i 51

N

(
i 851

N

Xi@ f l i
~r !Cii 82gl i

~r !Sii 8#Ai 8
r , ~2!

equivalent to Eq.~23! of JR. Herei 5$Si ,L i ,V i ,i 1,l i ,l i%,
which is similar to the labelb used by JR, although in th
present work the set of indicesi andI will essentially be used
to distinguish electronic~i! from rovibronic ~I! quantities.
The dependence on rotation and vibration is now include
the factorsXi , as will be specified in Sec. III below. TheXi
are related to theF I by transforming Eq.~1! to the molecular
frame. CII 8 and SII 8 are deduced fromCii 8 and Sii 8 via a
rovibronic frame transformation matrixU,

CII 85(
i ,i 8

UIi Cii 8Ui 8I 8
tr . ~3!

The same is true for the coefficients

BI 8
r

5(
i 8

UI 8 i 8Ai 8
r . ~4!

Cii 8 and Sii 8 are assumed to be diagonal inS, L, and V,
which are good quantum numbers in Hund’s case~a!.

B. Radial behavior and transition moments

The dipole transition moment betweencr and a low-
energy statec0 is given by

D0
r5^c0uDucr&. ~5!

For the sake of simplicity, we will take the low-energy m
lecular wave function, accordingly stated in Hund’s case~a!,
as a product of a single core function and an electron cha

c05Xi 9@ f i 9~r !cos~pm i 9!2gi 9~r !sin~pm i 9!#. ~6!

Here theC and S matrices are expressed in terms of t
single-channel quantum defectm i 9 and we haveD0

r5Di 9
r .

Of coursec0 could as well include a sum of several chann
and core states; this generalization is straightforward.

Since the double sum in Eq.~2! includes closed channels
the expressions have to be used with particular attention
is known, for negative~Rydberg electron! energies the func-
tions f and g both diverge atr→`. This strong, usually
exponential, divergence appears forr values beyond the clas
sical turning pointr t , while f andg are well behaved forr
<r t . Obviously, the turning point depends on the outer el
tron’s energye i , given by

e i5E2Ei
1 , ~7!

with Ei
1 being the energy of the ion in thei state andE the

total energy of the molecule.
-

in

el

s

s

-

Thus, for each closed~Q! channeli, we must have in the
limit r→`

(
i 8

@ f l i
~r !Cii 82gl i

~r !Sii 8#Ai 8
r→0, i PQ. ~8!

Although this expression is well behaved, each term
square brackets taken individually will diverge. As a cons
quence, if Eq.~2! is expressed as

cr5 (
i 851

N

Ai 8
r c i 8 , ~9!

with c i 8 given by

c i 85(
i 51

N

Xi@ f l i
~r !Cii 82gl i

~r !Sii 8#, ~10!

then each term diverges at larger, as soon asr>r t(e i).
This affects the corresponding expressions of the dipo

moments. If we partition the dipole transition moment as

D i 9
r

5(
i 8

Di 9
i 8Ai 8

r , ~11!

with

Di 9
i 85^c0uDuc i 8&, ~12!

this last expression formally diverges. However,Di 9
i 8 can

nevertheless be defined if~a! the lower state radial function
f i 9(r )cos(pmi9)2gi9(r)sin(pmi9) goes to 0 forr greater than
the classical turning pointr t(e i 8) of c i 8 , thereby annihilat-
ing the divergence ofc i 8 , or ~b! Cii 8 andSii 8 are diagonal
and thus Eq.~8! reduces to a single convergent term.

Fortunately in previous calculations@9–11#, these condi-
tions were fulfilled. In all other situations, Eqs.~11! and~12!
and the expression~21b! of JR are, strictly speaking, diver
gent. However, we will see below how these formally in
nite quantities can be parametrized.

In general, Eq.~5! has to be expressed by making th
physical quantization condition that has to be made for e
electron in statei appear explicitly regardless of what th
nonperturbed channel before the collision was. Equation~2!
can be rearranged as

cr'(
i 51

N

XiF f l i
~r ! (

i 851

N

Ai 8
r Cii 82gl i

~r ! (
i 851

N

Āi 8
r Sii 8G

[(
i 51

N

Xi@ f l i
~r !cospm̄ i

r2gl i
~r !sin pm̄ i

r#Āi
r , ~13!

with Āi
r and m̄ i

r given by

(
i 851

N

Ai 8
r Cii 8[Āi

rcospm̄ i
r ,
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(
i 851

N

Ai 8
r Sii 8[Āi

rsin pm̄ i
r . ~14!

The m̄ i
r are known aseffectivequantum defects and theĀi

r

are the effective channel coefficients. By matching bound
conditions for closed~Q! and open~P! channels, it can be
established that

m̄ i
r5n2n i , i PQ

~15!
m̄ i

r5tr , i PP,

wheren is an integer,n i5(2e i)
21/2 ~Rydberg units will be

used throughout!, and tanptr are the eigenvalues of th
physical reaction matrixK (E). Accordingly, the dipole tran-
sition momentDi 9

r may be expanded as

Di 9
r

5(
i 8

D̄ i 9
i 8Āi 8

r , ~16!

with

D̄ i 9
i 85^c0uDu@ f l i 8

~r !cospm̄ i 8
r

2gl i 8
~r !sin pm̄ i 8

r
#uXi 8&.

~17!

This expression is well defined in all circumstances. No
however, that it is expected to vary substantially with t
energy since the boundedness of the closed channels

been included in theD̄ i 9
i 8 . On the other hand, when define

the Di 9
i 8 involve only short-range interactions~i.e., without

taking account of the large-r behavior! and are expected to
be smoother in energy.

C. Energy dependence

The main problem arising in practical computations
transitions to high-energy Rydberg states comes from

strong energy dependence of theD̄ i 9
i 8 of Eq. ~17!. Since the

dipole operator in our effective one-electron system is a s
of the outer-electron dipole and the core transition dip
operators~see Sec. III B below!, the energy dependence,
well as the divergences, is confined to the radial integ
between the initial state and the manifold of final states. T
strong energy dependence of the radial integrals can be
cumvented in either of two ways:~i! directly, by factoring

the energy dependence of the radial integral inD̄ i 9
i 8 into a

smooth part related to short-range effects and a stron
varying part coming from imposing boundary conditions
larger, or ~ii ! by parametrizing the formally divergent radi

parts ofDi 9
i 8 of Eq. ~12! in such a way that the total standing

wave transition moment~5! is recovered when calculate
with the formally divergent equation~11!. Each of these ap
proaches is discussed in turn below.

1. Factoring the energy dependence of the Dī 9
i 8

For e i,0 we write the effective channel radial functio
in large square brackets in Eq.~13!, as
ry

,

as

f
e

m
e

ls
e
ir-

ly
t

f i~e i ,r !5 f i~r !cospm̄ i
r2gi~r !sin pm̄ i

r ~18!

and letf0(e i 9 ,r ) be the lower state radial function. Simp
trigonometry and Eq.~15! yield

^f0ur quf i~e i !&5cospn$cosp~n i2¸!d1~e i !

2sin p~n i2¸!d2~e i !%. ~19!

This is the type of radial integral that appears in the expr

sion of D̄ i 9
i 8 @Eq. ~17!#, with q50 or 1. d1(e i) and d2(e i)

are defined by

d1~e i !5^f0ur qu f i~e i !cosp¸1gi~e i !sin p¸& ~20!

and

d2~e i !5^f0ur qu f i~e i !cosp~¸2 1
2 !1gi~e i !sin p~¸2 1

2 !&.
~21!

Heren is an integer according to Eq.~15! and¸ is an arbi-
trary parameter allowing for this radial basis change. Fo
given value of¸, d1(e i) is strictly defined only forn i5¸
1n8, while d2(e i) is defined ifn i5¸1n81 1

2 , wheren8 is
an integer. For those values,d1(e i) andd2(e i) are smoothly
dependent on energy.

Since the left-hand side of Eq.~19! is defined for alle i ,
so is the right-hand side. For a fixed value of¸ we evaluate
d1(e i) and d2(e i) at the appropriate values ofn i and then
interpolate between them. Henceforthd1(e i) andd2(e i) are
defined at every energy. We have thus parametrized the

ergy dependence of the radial integral and thus of theD̄ i 9
i 8

into smooth parts and strong oscillating parts~cosine and
sine factors! that take into account the boundary condition
This will be illustrated in Sec. IV C.

For e i.0 the same technique can be used by replacingm̄ i
r

by tr according to Eq.~15! and setting the proper signs. W
remark that we have implicitly used phase-shifted rad
pairs; this has been repeatedly employed in MQDT in re
tion to closed-channel connected effects, such as reso
structures~see, e.g.,@12,13#!.

2. Parametrization of the Di 9
i 8

By combining Eqs.~12! and ~9! @or, equivalently, by ex-
amining the expressions in curly brackets in Eq.~32! below#

we see that each term of the sum making upDi 9
i 8 has a radial

~divergent! part given by

di 9
i

~e i !5^f0ur qu f iCii 82giSii 8&. ~22!

From Eqs.~20! and ~21! we extract

df i
~e i ![^f0ur qu f i~e i !&5cos~p¸!d1~e i !1sin~p¸!d2~e i !,

~23!

dgi
~e i ![^f0ur qugi~e i !&5sin~p¸!d1~e i !2cos~p¸!d2~e i !,

~24!

whered1(e i) and d2(e i) represent the smooth interpolate
functions. Despite the fact that̂f0ur qu f i(e i)& converges
only for given values of negativee i @namely, when the ef-
fective quantum numbern i5(2e i)

21/2 is a whole number#,
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Eq. ~23! now gives a parametrization of this expression. T
meaning of this parametrization is clear: By leaving aside
actual long-range boundary condition, we get smoothly va
ing df i

anddgi
and thus transition integrals

di 9
i

~e i !5df i
~e i !Cii 82dgi

~e i !Sii 8 , ~25!

which vary smoothly with the energy. These quantities

the parametrized radial factors of theDi 9
i 8 defined by Eq.~12!

and have been constructed so that for the physical ene
the correct transition integral, defined by the left-hand side
Eq. ~19!, is recovered. In other words, with this parametriz
tion of the radial factors Eq.~11! gives the same result as th
formally correct formulation~17!. Its main advantage lies in

that smoothDi 9
i 8 reflecting short-range interaction phenome

are obtained. TheseDi 9
i 8 are then of easier use in practic

computations, for example, in the context of frame transf
mations with electronic interactions~see Sec. IV C!.

III. ROVIBRONIC WAVE FUNCTIONS
AND DIPOLE MOMENTS IN H 2

A. Frame transformation

H2 has been the prototype for applications of MQDT
molecular problems. Since 1994, electronic quantum def
have been available for different gerade and ungerade s
metries of the molecule@3#.

At large r the electron is uncoupled@i.e., Hund’s case~d!,
given that spin-orbit coupling is negligible#. By setting I
5 i 1v i

1Ni
1 andF I5u i 1v i

1Ni
1&, Eq. ~1! can be written as in

Ref. @3#:

cr5 (
i ,v i

1 ,Ni
1

(
j ,v j

1 ,Nj
1

u iv i
1Ni

1&Bj v j
1N

j
1

r

3@ f l iv i
1N

i
1~r !Civ i

1N
i
1 , j v j

1N
j
1

2gl iv i
1N

i
1~r !Siv i

1N
i
1 , j v j

1N
j
1#, ~26!

where i refers to the electronic core state and the orb
angular momentum of the outer electron quantized in
laboratory frame@in Eq. ~26!# or in the molecular frame@in
Eq. ~27!# andv i

1Ni
1 are the vibrational and rotational num

bers of the H2
1 core.f andg are Coulomb functions taken a

the energye iv i
1N

i
15E2Eiv i

1N
i
1

1
of the Rydberg electron,E

being the energy of the molecule andE1 the core energy.
However, near the core the wave function is written a

Born-Oppenheimer~BO! product@3#

cr' (
i , j ,v,L

Aj vL
r u i ~R!&@ f i~r !Ci j

L~R!2gi~r !Si j
L~R!#uvL&,

~27!

with

Aj vL
r 5 (

j ,v j
1 ,Nj

1
Bj v j

1N
j
1

r
^LuNj

1&^vuv j
1& ~28!

and
e
e
-

e

ies
f

-

-

ts
m-

l
e

a

Civ i
1N

i
1 j v j

1N
j
15(

L
(
v,v8

^ iv i
1Ni

1u iLv&

3^ iLvuCi j
Lu j Lv8&^ j Lv8u j v j

1Nj
1&

5(
L

E dR^ iv i
1Ni

1u iRL&Ci j
L~R!

3^ jRLu j v j
1Nj

1&, ~29!

and similarly forSiv i
1N

i
1 j v j

1N
j
1. Equation~28! is analogous to

Eq. ~4! ~actually to its inverse!, while Eq.~29! is just Eq.~3!;
we get the second line of Eq.~29! by using the closure rela
tion for the molecular vibrational functions. Notice th
the frame transformation represented by Eq.~29! involves,
in addition to the rotational part, the internuclear coor
nate R. The total reaction matrix in Hund’s case~d!,
K5SC21, is thus related to the electronicR-depend-
ent reaction matrices for each BO symmetry,KL(R)
5SL(R)@CL(R)#21, that is, to the electronic quantum de
fects m i j

L(R)[p21 arctanKij
L(R) ~for more details, refer to

@4#!.
Once the frame transformation matrices are known,

problem of calculating the dipole transition moment betwe
cr and a lower state is reduced to the calculation of
purely electronicR-dependent dipole moments

Di 9
L

~R!5(
i , j

Aj vL
r ^ i 9u^ f i 9cospm

i 9

L0~R!

2gi 9sin pm
i 9

L0~R!uDu f iCi j
L~R!2giSi j

L~R!&u i &

~30!

where we have taken the lower-state wave function of
~6! as a simple BO product

c05u i 9&@ f i 9~r !cospm
i 9

L0~R!

2gi 9~r !sin pm
i 9

L0~R!#uL0&uv0&. ~31!

We have already pointed out that within MQDT, the wa
function inside the core is not known@mathematically the
irregular functiong(r ) diverges whenr→0]. Therefore, in
the calculations of the dipole moments, we set a cutoff rad
in the radial integrals asr→0. The validity of this procedure
known as the Coulomb approximation, will be discussed
Sec. V A.

B. Core- and outer-electron transitions

The dipole operator can be taken asD5r1r c , wherer
andr c are the outer and core electron position operators
pressed in the molecular frame. Writingui& explicitly in terms
of the core state and the outer electron’s angular momen
numbersu i &5u i 1&u l il i&. Eq. ~30! is accordingly set as an
independent sum of the outer and inner electrons’ transiti
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Di 9
L

~m!5(
i , j

Aj vL
r $^ f i 9cospm

i 9

L0~R!

2gi 9sin pm
i 9

L0~R!ur u f iCi j
L~R!2giSi j

L~R!&

3^ l i 9l i 9uY1mu l il i&^ i 9
1u i 1&%

1(
i , j

Aj vL
r $^ f i 9cospm

i 9

L0~R!

2gi 9sin pm
i 9

L0~R!u f iCi j
L~R!2giSi j

L~R!&

3^ l i 9l i 9u l il i&^ i 9
1ur cY1mu i 1&%. ~32!

The term in the first set of curly brackets is equivalent to E
~29a! of JR, while that in the second is their Eq.~29b!. How-
ever, we have observed that unless condition~a! or ~b! of
Sec. II B is fulfilled, the expressions in curly brackets in E
~32! are not well defined because the radial part diverges
bound states. Since the electronic states in H2 are generally
represented by several interacting electronic channels
ground and excited core states, the transition computat
require the use of the effective channel formulation of E
~16!.

IV. RESULTS

A. Details of calculations

The dipole moments of Eq.~32! are formulated following
Eq. ~16!, with energy-normalized radial functions; the qua
tum defects were taken from Ref.@3#. The whole wave func-
tion may be renormalized to unity for comparisons withab
initio calculations.

Since the wave function inside the core is not known, o
calculations rely on the Coulomb approximation, introduc
a long time ago by Bates and Damgaard@14#. They had
observed that the dipole moments in systems with one ef
tive outer electron subjected to a long-range Coulomb fi
were insensitive to the wave function inside the core. It
thus possible to neglect the interval between 0 and a cu
radius r c in the transition integrals. It seems reasonable
chooser c'r 0 , r 0 being the core radius, even though in pr
vious works the cutoff radius was often set inside the core
as to minimize the variation of the length form of the dipo
matrix element. Since core transitions are also taken
account by the second sum in Eq.~32!, the same cutoff ra-
dius was used in the overlap integrals. We have gener
chosenr c'2 a.u. and checked the stability of the transiti
integrals. The validity of the Coulomb approximation will b
discussed below. The electronic transition moments of
H2

1 ion were taken from Ref.@15#.
The parameteŗ introduced in Eq.~19! is arbitrary to the

extent that the numerical~e.g., quadratic! functions d1(e i)
and d2(e i) are interpolated from sufficient values~i.e., the
energy interval in terms of the effective quantum numbe
large enough!. When this is not the case~typically when the
Rydberg electron’s energy is very low over the energy int
val considered! the value of̧ has to be chosen judiciously
so thatd1(e i) andd2(e i) in Eq. ~19! can easily be interpo
lated over the energy range with the~fixed! choseņ .
.

.
or
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-
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B. Examples of bound-bound singlet electronic transitions

1. B 1Su
1 -HH̄ 1Sg

1 transitions

The B state is represented by a single channel, with
(1ssg) ground core state and anepsu outer electron, while
Sg

1 states are represented by three interacting channels:
s channel (1ssg)(essg), thed channel (1ssg)(edsg), and
the excited corep channel (2psu)(epsu). For theB-HH̄
transition, as well as for transitions fromB to higher Sg
states, condition~a! of Sec. II is satisfied only for thes andd
channels because at intermediateR values the excited core
keeps the outerp electron’s energy very low.

In Fig. 1 we compare our results~solid line! to those
obtained in theab initio computations of Ref.@6# ~dashed
line!. For smallR values theHH̄ state is mainly represente
by thes channel, so the dipole moment mainly involves
outer electronp→s transition. For 2.5,R,4.5 nondiagonal
quantum defects represent the interaction zone and the m
nature of theHH̄ state gives rise top→s and p→d outer-
electron transitions as well as 1ssg→2psu core transitions.
The agreement with theab initio calculations is good, excep
for large internuclear distances (R.6), where it is well
known that the MQDT electronic wave function suffers fro
severe limitations~see Sec. V B!.

2. C 1Pu -I 1Pg and C 1Pu -R 1Pg transitions

The singlet C state is represented by the chann
(1ssg)(eppu), while Pg states are combinations o
(1ssg)(edpg) and (2psu)(eppu) channels@16#. In Fig. 2
we compare our values to theab initio calculations of
Wolniewicz @7#. The I andR states are both represented
the soled channel at smallR, while strong interactions pre
vail for 3.5,R,4.5, thus giving rise to bothp→d outer-
electron and 1ssg→2psu core transitions. ForR.6 the d
channel accounts for theR state~and the dipole moment is
given by ap→d transition!, while the I state is represente
by thep channel; this gives rise to an unphysical core tra
sition, which must be corrected by following the prescri
tions of Sec. V B. The result of doing so is represented
the short-dashed line in Fig. 2.

C. Illustration of the energy dependence

As stated, we are interested in transitions towards h
Rydberg or autoionizing states of H2, where the energy de

FIG. 1. B-HH̄ electronic dipole transition momentD ~in units
of a0) as a function of the internuclear distanceR: our results~solid
line! andab initio computations of Ref.@6# ~dashed line!.



F
n
low
an

ec

i
m
r

an

al

t in
ite

s
lid
-
oth

e-
ence

he

n
ure
n of

r-

for
old,

ce
ergy

ue
is

ran-
or-

mb
ec-
ten-
ac-
ve
ls
d-

ide,
tre-
ve

-
es

PRA 58 4467EXTENDED COULOMB APPROXIMATION FOR . . .
pendence of the channel transition moments is needed.
lowing the treatment of the energy dependence of the tra
tion moments discussed in Sec. II, we consider be
specific examples of transitions between a lower state
higher-energy channels in molecular hydrogen.

1. Effective electronic transition moment

Let us consider the specific example of the effective el
tronic transition moment from theC state to thed channel of
the Sg

1 symmetry for R53, denotedD̄C
d (R53). D̄C

d (R
53) calculated using energy-normalized wave functions
plotted in Fig. 3 as a function of the effective quantum nu
ber n, wheren5(2e)21/2 ande is related to the molecula
energy by

FIG. 2. Electronic dipole momentD ~in units of a0) as a func-
tion of the internuclear distanceR for ~a! C-I and ~b! C-R transi-
tions: our results~solid line! andab initio computations of Ref.@7#
~dashed line!. The short-dashed line in~a! follows from the large
internuclear distance treatment of Sec. V.

FIG. 3. D̄C
d (R53) ~solid line! ~in units of a0R21, whereR is

the Rydberg constant!, plotted as a function of the effective quan
tum numbern. Dots relate to energies of physical bound stat
Triangles, connected by the dashed curve, correspond to¸5
20.2. The discontinuities at each half-integer value ofn result from
our sign convention.
ol-
si-

d

-

s
-

E~R!5e1E1sg

1 ~R!. ~33!

e is then the energy of a Rydberg electron orbiting around
ion core in its ground state@from Eq. ~7! we see thate
5ed]. The pairs of solid circles correspond to the physic
bound states of the clamped-nucleiSg

1 molecule. Although
there are three channels involved in theSg

1 states, there are
no physical bound states for the excited corep channel for
R53 in the energy range considered. Despite the fact tha
this case the two closed circles within each pair are qu
close to each other, theirC→d channel transition moment
are different. In fact, as can be seen by following the so
line, asn increases theC→d channel transition moment un
dergoes a strong oscillation. On the other hand, a smo
energy variation is obtained for any constant value of¸ ~and
relatedn values given byn5¸1n8). In Fig. 3 the triangles
correspond to̧ 520.2 and the dashed line interpolating b
tween these points illustrates the smooth energy depend
and thus that ofd1(e i) of Eq. ~20!. Note that the discontinu-
ity at each half-integer value ofn results from a global sign
change. By calculating alsoD̄C

s (R53) andD̄C
p (R53), Eq.

~16! then gives the global electronic dipole moment at t
selected energy.

2. Parametrized transition moment

From Eq. ~25! we can compute parametrized transitio
moments that have the main advantage of having a p
smooth energy dependence. For example, the calculatio
electronic transition momentsDB

Sg(R) from the B state to
high Rydberg or autoionizing1Sg

1 states requires the dete
mination of DB

s (R), DB
d(R), and DB

p(R) @see Eq.~11! or
~32!#. These three components are displayed in Fig. 4
molecular energies that cross the first ionization thresh
the energy scalee being given by Eq.~33!.

Notice that for each value of the internuclear distan
these energy-normalized components have a smooth en
variation. They are also smooth with changingR, with the
bump that lies between 2.5 and 4.5 a.u. being primarily d
to transitions induced by electronic interactions. The bump
less obvious inDB

d(R) becausep→d is the dominant transi-
tion. This overall smooth character makes parametrized t
sition moments well suited for use with the frame transf
mations described in Eqs.~26!–~29! above.

V. DISCUSSION

A. Validity of the Coulomb approximation

Since Bates and Damgaard’s original paper, the Coulo
approximation for transitions between excited states of eff
tive one-electron atoms has been compared to model po
tials and self-consistent methods rather successfully, high
curacy being achieved when the outer electron’s wa
function was simply set to zero in the transition integra
@17–19#. Some problems could be expected with low Ry
berg energy wave functions (forn i& l 11) because they are
rather compact: When they approach the core from outs
these low-energy functions diverge before reaching an ex
mum ~i.e., a substantial part of the outer electron’s wa
function lies inside the core!; the stability of the integral is

.
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then by no means evident. While some authors argued
the Coulomb approximation was not valid at low energ
~see, e.g.,@20#! others just noticed a loss of accuracy@19#. In
our H2 example, low-energy ‘‘Rydberg’’ electron states a
commonly encountered even for high molecular energies
cause of the channels built on the excited core~p electron!.
Our good agreement withab initio calculations gives us con
fidence in the use of the Coulomb approximation even w
n i& l 11. The situation can only get better when transitio
towards more excited states are calculated.

We know that the outer electron does not have any ap
ciable screening effect on core transitions@21#, but the tran-
sition probability is lowered because the outer electron ne
to readjust to the situation~which might include an energy
loss if the photon energy is smaller than the energy diff
ence between initial and final core states!. This readjustment
and consequently the core transition, is possible only if th
is some appreciable overlap between the initial and fi
outer-electron wave functions@see the term in the second s

FIG. 4. From top to bottom, parametrized transition mome
DB

s , DB
d , and DB

p ~in units of a0R21) plotted on an internuclea
distance gridR ~in units of a0) as functions of the electron energ
relative to the 1sg coree ~in units ofR!.
at
s

e-

n
s

e-

ds

-

re
l

of curly brackets in Eq.~32!#. The reservations made forn i

& l 11 still hold in principle. However, we have seen
Figs. 1 and 2 the good agreement between the current res
where the dipole moments contain large contributions fr
core transitions, and theab initio computations.

B. Large internuclear distance behavior

It is known that the molecular-orbital method brea
down at largeR because of major configuration mixing, a
Mulliken has pointed out@22#. Instead, the wave function
are more simply described as linear combinations of ato
substates in the separated atomic-orbital approximation. T
is related to the fact that the core electron tends to go w
one of the nuclei and the outer electron adjusts accordin
to one or the other, resulting in covalent or ionic configu
tions.

Notwithstanding, it is shown elsewhere@23# that the ef-
fective quantum numbern i in each channeli still has a
simple significance in most of the molecular energy–R coor-
dinate plane: ForR.8 a.u. the core electron is adequate
represented as a 1s electron orbiting around one or the oth
nucleus. When the other electron adjusts, we usually g
symmetrized H(1s)1H(n i l ) covalent configuration;n i is
then very close to a whole number and represents a
electron principal quantum number, the departure from
whole number giving an idea of electron-interatomic intera
tions. When the ionic configuration predominates,n i repre-
sents the binding energy of H2 corrected by interatomic in-
teractions.

Thus at largeR, the MQDT wave functions that describ
a core and an outer electron suffer from three main proble

~i! The outer electron function remains formally center
on the internuclear midpoint.

~ii ! The core electron becomes an even or odd linear c
bination of a 1s electron centered on each of the now sep
rated nuclei, regardless of the outer electron’s behav
while in fact the outer electron should adjust as already m
tioned.

~iii ! Electronic channels that could be neglected at sma
R ~except maybe for very high energies! come into play;
furthermore, we know that for large internuclear distanc
our quantum-defect matrix gives an incomplete physical p
ture since the nondiagonal quantum defects have been a
cially turned off @4#.

In calculating dipole transitions, the three problems ju
mentioned can be dealt with respectively in each of the
lowing ways@23#.

~i! The dipole transition moment for theouter electron
calculated with the MQDT functions is equivalent to a pu
covalent transition between separated atoms. Since theC and
R states of Sec. IV B have pure covalent configurations@7#,
we expect our calculations for this example to be corr
even at large distance, as was indeed seen to be the ca
Fig. 2~b!. If, on the other hand, one or both states have
ionic configuration, an extra term representing a transit
between electrons on different nuclei must be added to
MQDT expression.

~ii ! The dipole transition moment for thecore electron
calculated with the MQDT functions is equivalent to a tra
sition between pure ionic configurations. Consequently

s
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none of the states has ionic components, our MQDT c
transition must be set to zero. This is illustrated by our c
culations for the transition fromC to I @Fig. 2~a!#. It is
known that none of these states has ionic components an
thus set the core dipole moment~that is the (1ssg)
3(eCppu)→(2psu)(e I ppu) transition! to zero gradually at
largeR. On the other hand, if only one of the functions h
an ionic configuration, an extra term representing an ove
between electrons on different nuclei has to be added to
MQDT expression.

~iii ! The B-HH̄ transition provides an example of the in
complete channel representation of our MQDT functio
Since our main concern is the transition betweenB and
higher Sg states, we are not really interested in the ex
channel composition of theHH̄ state, which we know in any
case not to be adequately represented by our MQDT fu
tions at largeR. However, an accurate representation of
lower ~hereB! state, say byab initio computations, is impor-
tant if we wish to computeB→s, d, or p channel transitions
In this case a quantitative analysis of theB state is available
@24#. The effects of the missing channel are then accoun
for by following the prescriptions of Ref.@23# outlined in the
two points above.
hy
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VI. CONCLUSION

In this work we have developed a formulation for calc
lating dipole moments within a collision theory framewor
with the inclusion of core transitions. The validity of th
Coulomb approximation in practical calculations was tes
by comparison withab initio results for selected transition
of H2. The treatment of the energy dependence of the ra
integrals may straightforwardly be extended in the case
generalized fields~i.e., not purely Coulomb outer field!. The
next phase of the work, namely, the computation of seve
ionization and dissociation spectra of H2 using these transi-
tion moments, is in progress. Recent experiments@25# have
shown that dipole moments at large internuclear dista
cannot be neglected, particularly when states with ou
minima are studied; this is why we have included in o
studyad hocmodifications at large internuclear distance.
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