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Negative-energy contributions to transition amplitudes in heliumlike ions
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We derive the leading term in anZ expansion for the negative-energyirtual electron-positron pair
contributions to the transition amplitudes of heliumlike ions. The resulting expressions allow us to perform a
general analysis of the negative-energy contributions to electric- and magnetic-multipole transition amplitudes.
We observe a strong dependence on the choice of the zeroth-order Hamiltonian, which defines the negative-
energy spectrum. We show that for transitions between states with different values of total spin, the negative-
energy contributions calculated in a Coulomb basis vanish in the leading order while they remain finite in a
Hartree basis. The ratio of negative-energy contributions to the total transition amplitudes for some of non-
relativistically forbidden transitions is shown to be of ordez.1Inh the particular case of the magnetic-dipole
transition 33S;,—23S;, we demonstrate that the neglect of negative-energy contributions, in an otherwise
exact no-pair calculation, would lead one to underestimate the decay rate in helium by a factor of 1.5 in
calculations using a Hartree basis and by a factor of 2.9 using a Coulomb basis. Finally, we tabulate revised
values of the line strengtfi for the magnetic-quadrupolé\,) transition 2°P,—1S,. These values include
negative-energy contributions from higher partial waves, which were neglected in our previous calculations.
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I. INTRODUCTION former work demonstrated numerically that the negative-
energy contribution vanishes. By contrast, Indelicato’s

The ab initio relativistic consideration of an atomic sys- . o .
) : MCHF calculations revealed contributions from negative-
tem requires a careful treatment of negative-energy states

(virtual electron-positron paiyswhich, if included improp- energy states that were comparable to the “regular

. . . : positive-energy values, especially for light ions. We will ad-
erly, lead to thecontinuum dissolutioproblem discussed by dress this difference by deriving negative-energy corrections

Suchgr[l]. A.n acpepted remedy for this proplem IS to use theboth for the Dirac-Coulomb basis and for a basis modified by
no-pair Hamiltonian, which excludes negative-energy statesa spherically symmetric model potential

[1,2]. The no-pair approach is well justified for determining The transition amplitudes, although calculated by employ-

energies of many-body systems. The leading corrections besg exact eigenfunctions of the no-pair Hamiltonian, depend
yond the no-pair approximation have been studied for thgy, the gauge of the electromagnetic field, as noted in Ref.
ground state of heliumlike ions in Ref3]. However, the 6] This gauge dependence is reflected in slight differences
effect of negative-energy states on the transition amplitudegetween the length-form and velocity-form transition ampli-
still remains an open question. If such corrections were audes. In Ref[7] it was demonstrated that the gauge depen-
negligibly small fraction of the total amplitude, the study dence is a direct consequence of the omission of contribu-
would be mainly of “academic” interest. However, as we tions from negative-energy states in the no-pair Hamiltonian.
demonstrate in this work, the relative contribution for someln that work the configuration-interactiof€l) method was
nonrelativistically forbidden transitions is of orderZland used to determine the contribution to transition amplitudes
thus the practical importance of understanding when to infrom positive-energy states and perturbation theory was used
clude negative-energy contributions cannot be overstated. T obtain the contribution from the negative-energy states.
allow general consideration we will derive the leading termBased on numerical analysis, the authors of Réf.noted
in the aZ expansion of the negative-energy contribution tothat the negative-energy contributions were negligible for
the transition amplitudes in heliumlike ions. length-form transition amplitudes compared to those calcu-
The separation of negative- and positive-energy states ddated in the velocity form. They recommended using the
pends on the choice of the zeroth-order Hamiltonian. In praclength-form no-pair amplitudes in calculations of the
tical calculations one often employs the Dirac-Coulombelectric-dipole transition amplitudes. We extend this recom-
Hamiltonian modified by a model potential, chosen to ap-mendation to all electric-multipole transitions.
proximate the interaction between electrons. The question of For magnetic-multipole transition amplitudes, we find that
negative-energy contributions to the magnetic-dipole transiwhen calculated in a Dirac-Coulomb basis, the leading term
tion 23S,—1'S, was considered numerically by Lindroth vanishes for transitions between states with different values
and Salomonsof4] for heliumlike argon and by Indelicato of total spin due to the cancellation between Coulomb and
[5] in systematic multiconfigurational Hartree-FO®RCHF) Breit contributions. Since all magnetic-multipole transitions
calculations. Employing a Dirac-Coulomb basis set, theto the ground state of heliumlike ions {$,) involve the
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upper state with total spif= 1, we make a general assertion tion V is surrounded by positive-energy projection operators,
that, for suchM transitions, the leading contribution due to thus eliminating contributions from negative-energy states
negative-energy states vanishes. This fact allows us to cotompletely to all orders of perturbation theory. However,
rect the numerical results of Ref7] for the magnetic- even the process of separation of positive- and negative-
quadrupole ¥,) transition 2°P,—1'S;. We tabulate re- energy states depends on the choice of model potdtiaid
vised values of the line strength for this transition. The would be acceptable if the final result were modified only
negative-energy corrections are of particular importance islightly. In contrast, we will demonstrate that the contribu-
the case of nonrelativistically forbidden magnetic-dipoletion of negative-energy states to transition amplitudes de-
transitions. We consider the transitior®8,—23S; using  pends sensitively on the choice of the model potential, espe-
both Dirac-Coulomb and Hartree basis sets. We find the ratigially for nonrelativistically forbidden transitions.

of negative- to positive-energy contributions to be of order In the zeroth-order approximation, the uncoupled states
1/Z in both calculations. Furthermore, we find that for this are antisymmetrized combinations of products of eigenfunc-
transition the neglect of contributions from the negative-tions of the Hamiltoniarh,. In the second-quantized form,
energy states would underestimate the decay rate by a factgie initial state is represented #%=a'a!|0) and the final

of 1.54 for helium in the Hartree case and by a factor of 2.9154te asv(®=alal|0). Orbital labelsa andb refer to the &

in the Coulomb case. L state andv andv to excited states. The possibility ofbeing
We also demonstrate that modification of the zeroth—orde(r51 1s electron is also allowed in the following. We treat the

Hamiltonian by a model potential introduces an additionaliyieraction) as a perturbation and obtain the first-order cor-

correction that gives rise to the leading order for magneticygtion to wave functions. For example, the correction to the
multipole transitions between states with different total spin;.;ial state is

Thus, even for the well-studied magnetic-dipole transition

235,-11s,, the ratio of negative- to positive-energy state v U

contributions is shown to scale az1/ ‘I'(ug): _A.Z %afaﬂoHE %aa*allw
We derive the analytical expressions in Sec. IIl. The dis- #va BT EITE T Fa Fv £ 8

cussion of negative-energy contributions to electric- Uia 4 4

multipole transitions is given in Sec. Il and to magnetic- +i¢2a e |0). 2.3

multipole transitions in Sec. IV. Predictions based on

analytical results are illustrated by direct summation OVelare the summation is performed over eigenstatds, ofith
r]egat|ve-energy states_ln second-order many-body Pe”“rb@' ergiess; andvjj are matrix elements of the two-particle
tion theory. The numerical methods employed are dlscusseI teractionV/(i,}) in that basis

in Sec. V. Conclusions are given in Sec. V. We consider a matrix element of a one-body operator
H'==,h'(i) between two states of a heliumlike ion. With
the aid of the first-order correction to wave functions, we
We perform a perturbation theoretic analysis of transitionform the expression for the second-order matrix element
amplitudes similar to that given in R€f7]. The summation
ovepr negative-energy statgs appears for the first time in the T = (W H W) + (W[ H' W) (2.9
second-order expression. Here we briefly recapitulate the
derivation of the second-order perturbation expression foft
transition amplitudes. The many-electron Hamiltontris

Il. THEORY

nd obtain

3 Vwbia(his = Vwbai(h')iy

represented as a sum of a zeroth-order Hamiltokigmand a T@ =

perturbation), iaZzwb Ew€j
Vwboi(hDia=vwbin(h)ia

_ - D/; H —
Ho=2 ho()=2 [P +UD] (2 D
(wivibya= (Wwivbiva
V:i; V(i,j)—zi u(i), (2.2 ﬂ;va P
where h® is the Dirac Hamiltonian of an electron in the S (M)pivwiva— (WD piviwsa
i

Coulomb potential of a nucleus) is a model potential, and
the two-electron interactio¥(i,j) is a sum of Coulomb and

gitey—e,— €,

Breit interactions. The eigenfunctions bf serve as a basis +> Uwi(hDiy Sab— Uwi(hi)ia oy

for perturbation theory. They include both negative- and iFw Ei— &y

positive-energy states. The inclusion of the model potential

U in the zeroth-order Hamiltonian can improve the conver- > (hI)WiUiu5ab_2 (h)wiYiabby 25
gence of perturbation theory if the model potential approxi- izv €&, iZa &—&5 '

mates the Coulomb interaction between atomic electrons.

For heliumlike systems, we will consider both the CoulombThe summation over intermediate statesncludes both
case, where the model potentidl is set to zero, and the negative- and positive-energy states. It is our aim to estimate
Hartree case, with the self-consistent Hartree potential of théhe leading term in theZ expansion due to summation over
ground statery(1s,r). In the no-pair approach the perturba- the negative-energy states. In the second-order expressions
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above we have omitted the derivative term given in Réf.  the representation€.10 and (2.11) more convenient. At
since it does not affect the negative-energy state contributhis point, we have performed a summation over negative-
tion. When considering transition between states representeghergy states for an arbitrary one-body operétbrNow we

in the lowest order by a combination of product wave func-turn to the calculation of the correction from negative-energy
tions, e.g., the 3P, state, the above expressions should bestates to transition amplitudes.

generalized. Such gauge-independent multiconfigurational

generalization for Be-like systems can be found in R&f. B. Negative-energy corrections to transition amplitudes

For a single electron, the interaction Hamiltonian with an
electromagnetic field described by the vector potertiahd
We approximate the differences between positive andcalar potentiafb is given by
negative energies in the denominators of E45) by 2mc. |
In this paper we will use atomic unitang=7%=e/\4meg h'=—-®+ca-A (212
=1,c=1/a). The Pauli approximation for a positron wave
function becomes

A. Summation over negative-energy states

The two-electron interactiol is a sum of CoulomkC and
Breit B interactions

op

1 1
o=l 2 ¢ |¢. (2.6 Co=r (2.13
1
Nonrelativistic positron wave functions™ form a complete Bio=—ay- a’zr—lz—z(al- Vi) (ay-Vo)rp.  (2.14

basis set and thus satisfy the closure relation
We employ the Pauli approximation in calculations of
> o (r9)e (r',s)]T=8(r—r")8ss, (270  Mmatrix elements of the operatd, where this approximation
i ’ for the electron wave function is given by

wheres is a spin variable. This relation allows us to express 1
a summation over negative-energy states of electrons in the _
Pauli approximation as ¢=| oP|e¢ (2.19
2c
52<o Bi(r,9)[i(r',s")]"=A(r,5)8(r—1") 55 . ¢ being the nonrelativistic wave function of the electron.
i

2.9 Below we give a breakdown of contributions to the operator
' W arising from various combinations of interactions

Here the matrix operatak is defined as
P W= WP+ WBP + WUP + WAL WBALWUA, (2,16

"y .
} L _ 1 ap The derivation of these contributions is based on commutator
| 4 2 ¢C identities for Pauli matricesr. W is a contribution arising
A(r,s)= 10D (29 from Coulomb interaction and scalar potential
- - 1
2 ¢ 2

o 1
WC‘I’:—?Vl(D(l)-Vlr—. (2.1
The operatoA, when acted upon a wave function, decreases 12
the size of the large component by an order @Z)*, mak-  There is a similar contribution from the model potential
ing the large and small components of the result comparableyu®
Employing the modified closure relatidq2.8), we find that
the entire contribution from negative-energy states to the U o?
second-order matrix elemef®.5) is WP ==V18(1)- VU (D). (2.18

These terms contribute toT‘® corrections of order
a(az)¥(®), where(d) designates scaling of the scalar po-
tential ®. The contribution from the Breit interaction and

1
T@):E(Wvaa‘*'waau - Wwbau _WbWUa)’ (2'1@

where the operatow is scalar potentiaWE® is (aZ)? smaller thanw®® and does
| | not contribute to the leading order. The situation is different
W=V(1,2)A(1)h'(1)+h'(1)A(1)V(1,2) for the vector potential part of the interaction Hamiltonian:

The contribution from the vector potential and Coulomb in-
teractionWC is of the same order as the contribution from
Here and below the arguments 1 and 2 stand for coordinaf€ vector potential and Breit interactioh®”. We have

and spin variables of electrons 1 and 2, respectively. The

operatorW can be represented in a form symmetric with WCA= — g -
respect to interchange of electrons 1 and 2; however, we find

—UMDA(DR'(1)—h'(1)A(1U(L). (2.1)

1
A(l)ler—lj, (2.19
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1 ~ TABLE I. Scaling of the ratio of negative- to positive-energy
WBA= — g, | A(1) XV, —| — —A(1) - p, states contributions for electric-multipotg; transition amplitudes
M12] T2 in heliumlike ions.

1 A
- r—n12~A(1)n12~ P>, (2.20 Gauge Basis AS=0 AS#0
12
length Coulomb A a?z73
wheren,, is the unit vector along,,=r,—r,. Finally, the velocity Coulomb a’Z a’Z
model potential combined with the vector potential term re- length model potential  «*Z® a*73
sults in an effective operator velocity model potential ~ a?Z 1z
WYA= g, - [A(1) X V,U(1)]. (2.20)
The contribution toT® due to the vector potential scales as (@) =i / 4 23+t 1
a(aZ){ca-A), where we explicitly separated scaling of ! (2J+1)3+1) ! ¢
Ca-A. . . o . X (DO\) _ A()\) 3.1
For further discussion, it is important to note that in the {Piu(ro)—ca-Apy(r,o)};. (.1

absence of a model potential the entire negative-energy con-
tribution vanishes for transitions between states with differ- ) ) ) ) )
ent values of total spiis. Indeed, combining Coulomb and Heére J is the multipolarity, withx =1 for electric andx
Breit contributions for the vector potential and expressing= "0 for magnetic transitions. The particular form of electro-
the sum in terms of the total spi§, we obtainW(C*BA magnetic multipole potentials depends on _th_e choice of
— WCA L \WBA gauge and we refer the reader to Ré&. for explicit expres-
' sions. We will consider two forms of electromagnetic poten-
1 1 tials: length and velocitytransversgforms. In the velocity
WI(C+BIA_ —28~[A(1)><V1—}— —A(1)~f)2 form the electric scalar potential is identically zero. In the
Fi2] T2 length form the above expressions reproduce the elegtric

1 . pole moment operatorA(=1) in the long-wavelength ap-
— —N- A(1)Ngo Ps. (2.22 proximation kr<1). The transition amplitude must remain
F12 invariant under gauge transformation. However, the calcula-

tions performed in the no-pair approach lack this important
0&operty because of omission of negative-energy states, as
has been demonstrated in REf]. In this section we deter-
mine the effect of negative-energy states on calculations of

The last two terms in the above expression do not depend
spin and vanish for transitions between states Wity 0.
The first term is proportional to the total sp# and also

vanishes for such transitions since the reduced matrix el& . oq,ced matrix elements @fY for electric-multipoleE
ment (S,||S|[S;)* &5 s,- Thus the leading negative-energy transitions J J

ferent values of the total spin when calculations are pergontributions for electric-multipole transitions in both length
formed in a Coulomb basis. The model potential t&hf\,  and velocity gauges is summarized in Table I. In this table
however, does not possess this property and results in Sighe scaling of the positive-energy states contribution for the
nificantly different contributions to amplitudes for transitions nonrelativistically forbidden intercombinatioA 6+ 0) tran-
with AS#0, as discussed in the following sections. Thegijtions is assumed to bexZ)? times smaller than that of
analysis of the above expressions allows us to make generghin-allowed transitions. Also, the order of the next term in

qualitative predictions about the role of negative-energyne negative-energy contributions is assumed to be a factor
states in calculations of transition amplitudes. We performegy (,z)2 smaller than the order of the leading term.

angular reductions of the negative-energy contributions and |t has been shown numerically in RET] that for electric-

the resulting expressions can be found in the Appendix. Alyipole transitions 2P,— 2 3S; and 23P,— 23S, negative-
ternatively, the direct numerical summation in second-ordegnergy corrections to transition amplitudes calculated in the
expression$2.5) over the negative-energy part of basis set ofiength gauge are much smaller than those obtained in the
hy can be done to obtain the results for model potential cas@elocity gauge. With the help of our analytical result, this

and to evaluate the higher-order corrections. observation can be extended for all electric-multip&8g
transitions. Indeed, the ratio of negative-energy contributions
lll. ELECTRIC-MULTIPOLE TRANSITIONS in the length form to those obtained in the velocity form is

F ical ider th itinol («Z)? or less. Qualitatively, such a substantial difference
or practical purposes we consider the multipole EXpanpetween negative-energy state contribution in length and ve-

‘;,'OP ng the ;I;_acérognagnetl_c f||eld, dISCU?Sﬁd, for example, ifly ity forms can be understood from the fact that the electric-
ef.[9], and find the matrix elements of the operator dipole operator in velocity form mixes large and small com-
ponents of wave functions, while the length-form operator
mzz ( <x))_,afra, does not. On the other hand, the “large” and “small” com-
M= & (diwijai aj, . . .
] ponents of positron wave function have the opposite mean-
ing. This leads to the fact that the matrix element of dipole
with operator between negative- and positive-energy states in the
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TABLE II. Contributions from negative-energy states to the reduced matrix element of the electric-dipole
moment for the 2P;— 1 1S, transition in heliumlike ions calculated with the Hartree basis €@f) T is the
no-pair contribution from the second-order perturbation theory calculatiend<(, (Q;)®, and @Q,)" are
the negative-energy contributions due to Coulomb and Breit interactions and the model potential, respec-
tively. The breakdown for both length and velocity forms is presented. The notaftioi] designates

X107

Gauge z Q7P Q)¢ (QuE (QnY Q)™

Length 2 1.36p-4] —4.607-11] —9.325-10] 5371-11] 1.362-4]
Velocity 2 1.437-4] 1.413-5] -1.413-5] —7.064-6] 1.362 —4]
Length 10 4.107-3] -—2.824-9] ~5.773 -8] 3.601-9]  4.107-3]
Velocity 10 4.118-3] 2.08§ —5] —2.167-5] -1.049-5]  4.107-3]
Length 50 1.87p-2] —1.013-7] —-1.19 -6] 1.943-7] 1.872-2]
Velocity 50 1.875-2] —1.737-5] —3.508 - 5] —9.529-6] 1.872-2]
Length 100 8.633-3] —6.471-7] —3.264—6] 9.107-7]  8.63Q0—3]
Velocity 100  8.656—3] 1.539 5] —3.149-5] —1.00§ - 5] 8.630 —3]

second-order expressions isZ)? times smaller in the IV. MAGNETIC-MULTIPOLE TRANSITIONS

length form than in the velocity form.
There is a very surprising effect for intercombination tran-
sition amplitudes calculated in the velocity form in a model

In this section we consider the negative-energy correction
to the magnetic-multipole operatoM;=2cQ{?. For

otential basis: The relative contribution of negative-ener magnetic-multipole transitions, the velocity and length forms
P ’ 9 Wof the multipole potentials are identical, the scalar potential

states scales asZl/This fact implies a significant correction being zero. The scaling of ratios of negative-energy to

for light ions. The reason is that even though the contribus,jfive_energy contributions for magnetic-multipole transi-

tions from Breit and Coulomb interactions cancel each othef,q < is summarized in Table IlI. In this table we explicitly
owing to AS#0, the correction from the model-potential separate the magnetic-dipol#() transition since it is non-
term still remains and contributes in leading order. A similaryg|ativistically forbidden. There are several surprising ef-
behavior is found for nonrelativistically forbidden magnetic- fects, which we will further explore in this section.
dipole transitions discussed in Sec. IV. It is worth noting that all magnetic-multipole transitions
As an example, we consider the’®;—1'S; electric- g the ground state of He-like ions haweS+0. Therefore,
dipOle intercombination transition. The calculation requires ahe |eading order of the negative_energy correction calcu-
generalization of the second-order expressions to a multiated in the Coulomb basis vanishes. In other words, for
configurational case since the’P; state is represented in transitions with AS#0 the contribution arising from the
the lowest order as a combination of p@1s12); and  Coulomb interaction given by Eq2.19 exactly cancels the
(2p3i2lsy2)1 j-j coupled states. We employed the approacttontribution from the Breit interactiof2.20). As mentioned
of Ref. [8] with an obvious reduction to the case of helium. pefore, such detailed cancellation for the magnetic-dipole
The results of the direct numerical summation over a basigansition 2°S,— 1 1S, has been observed in the numerical
set in the second-order expressions are presented in Table Ha|culations of Ref[4] for heliumlike Ar (z=18). Toillus-
First we note that the negative-energy contributions bring therate this point further, we perform a direct numerical sum-
results of calculations in length and velocity form into agree-mation over a set of negative-energy states in @d). We
ment. In contrast to relatively t|ny corrections found in Ref. present the absolute values of the ratios of nega’[ive_energy
[7] for allowed transitions, these contributions are at thegontributions to the total value of the reduced matrix element
level of 5% in velocity form forZ=2, due to a specific in Fig. 1. The total value of the reduced matrix element has
choice of transition. We also note that for lo% the peen taken from Ref7]. From Fig. 1 it is clear that the
negative-energy contributions in velocity form from the Cou- cancellation between the Coulomb and Breit negative-energy
lomb interaction cancels that from the Breit interaction, socontributions is nearly complete for low valuesfwith the

that the total negative-energy correction arises from theotal negative-energy contribution being less than one-
model potential term, as discussed earlier. The negative-

energy contribution would vanish if a Dirac-Coulomb basis
set vggre used. The relative contribution of negative-energy TABLE Il Scaling of the ratio of negative- to positive-energy
states is amplified in the velocity form and is substantialIyir:ar:(;icuomnltirl'(zuité?]gs(:gtramz?jniit'fﬁ?ﬁg'ﬁg‘gstreanZ'Sog amplitudes
smaller in the length form, as discussed earlier. gauge.

Therefore, in order to reduce the effect of negative-energy

. L - . Basis AS=0 AS#0
states on high-precision no-pair calculations, the length form
of multipole-electric transition operator should be employed. M, Coulomb 1z a’Z
Also, in relativistic multiconfigurational Hartree-Fock calcu- M, model potental v 1z
lations similar to Ref[5] one should take additional care for ~ J+1, Coulomb a?Z a?z®
negative-energy contributions to intercombination transition %1, model potential o’z a2z

amplitudes calculated in the velocity form.
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10° ¢ . . . . 2% to the total transition rate. By contrast, the negative-
; energy contributions are entirely negligiblat least in the
107 ;\ E second orderin a Coulomb basis. It is worth emphasizing
—~ i \\ that the no-pair Cl values are calculated with a high degree
£107 - s R of accuracy. For higlz the final total in the Table IV is
§ " It et independent of the choice of basis. The 0.3% difference of
s total values forZ=2 represents a limitation of the present

second-order treatment of the negative-energy contributions.
Recently, the effect of negative-energy contributions for
' ' ' ' the 235,—11S, M, transition in the case of multiconfigu-
0 20 40 60 80 100 rational Hartree-Fock calculations has been considered by
Nuclear Charge 2 Indelicato [5]. His results also exhibit a Z/like ratio of
FIG. 1. Comparison of the relative contributions of the negative-N€gative- to positive-energy contributions that can be attrib-
energy states due to the Coulomb and Breit interactions to the totaltéd to a breakdown of detailed cancellation between Cou-
value of the reduced matrix elemekt; for the magnetic-dipole lomb and Breit terms by the MCHF effective model poten-
transition 23S, —1 'S, along the helium isoelectronic sequence. tial.
All contributions are scaled to the total value Mf; from Ref.[7]. The leading term of the negative-energy contribution in a
The dotted line represents the Coulomb contribution, the dashe@oulomb basis should also vanish for the magnetic-
line, the Breit contribution, and the solid line, the total relative quadrupole transition\l,) transition 2°P,—11S,. Such a
contribution from the negative-energy states. cancellation is demonstrated numerically in Table V. In
Table V we also make a comparison with the data given in
thousandth the individual Coulomb and Breit contributionsRef.[7]. The contributions are different by several orders of
for Z<5. For larger values oZ, there is only a partial can- magnitude for lowZ ions. The error was traced to an insuf-
cellation because terms of the higher powers@fcontrib-  ficient number of partial waves employed in calculating the
ute to the negative-energy correction. It is worth noting thathegative-energy contributions in R¢¥]. We revise the nu-
if there were no such cancellation, the relative contributionmerical calculations and find agreement with the analytical
of negative-energy states would scale as.1/ predictions. Incorrect values of negative-energy contribu-
However, when the calculations of magnetic-multipoletions were used irf7] to determine the transition rate(
transition amplitudes forAS#0 are performed with the coefficien) and the line strengthS. Being small, the
model potential basis set, the teri’* gives a leading negative-energy state contribution did not change the values
negative-energy contribution and must be taken into accoundf A at the level of significant figures quoted; however, the
Indeed, for nonrelativistically forbidden magnetic-dipole line strengtfSwas quoted to a higher degree of accuracy and
transitions, e.g., 35,—11S,, one expects the ratio of we find some difference due to negative-energy corrections.
negative- to positive-energy contributions to be of order ofRevised values of line strength are presented in Table VI.
1/Z. In Table IV we give a numerical breakdown for the The difference between the current results and those of Ref.
23S,—11S, transition for selected values @ Again, we [7]is in the last one or two significant figures and amounts to
find a strong cancellation between the Coulomb and Brei0.02% forZ=100 and less for other ions.
contributions at lowZ, with less cancellation as we increase  There is an interesting case in which calculations starting
the value ofZ. Unlike the case of starting from a Coulomb from either a Coulomb basis or a model potential basis
basis, however, starting from the Hartree basis provides uaould lead to negative-energy contributions that are compa-
with an additional component that is not negligible. In therable to those of the positive-energy states. This is the case of
particular case of helium, the negative-energy states in a Hathe magnetic-dipole transitions between states ofsh@e
tree basis contribute 1% to the total transition amplitude andalue of total spin.

s o
L
—
\

&

—_
o

TABLE IV. Contributions from negative-energy states to the reduced matrix element of the magnetic-
dipole moment for the 3S, — 1 1S, transition in heliumlike ions calculated with Hartree and Dirac-Coulomb
basis sets.NI;)* and (M,)B” are the negative-energy contributions due to the Coulomb and Breit interac-
tions, respectively. NI;)Y* is a contribution from the Hartree model potentiaM {)* is the sum of
negative-energy contributionsM()'P° is the no-pair contribution from CI calculations. The notatian
[—b] designatesx 107",

z=2 Z=50 Z=100
Contributions Hartree Coulomb Hartree Coulomb Hartree Coulomb
(M)®*  —4.264-6] —1.730—-5] —1.981—-4] —2.061—4] —5.13§—4] —5.243—4]
(M;)BA 4263-6] 1.730-5] 1.777-4] 1.84-4] 2.447-4] 2.476-4]
(M)YA  —-5736-7] O 3.870-5] O 2.745-4] O
(Mp)™ —5.741-7] —2732-9] 1.824-5] —-2159-5] 5.646—6] —2.767—4]
(M) 592§-5] 5.890-5] 4.659-2] 4.65§—2] 2.055-1] 2.05§-1]
+

(M,)® 5.87f-5] 5.889-5] 4.656—2] 4.656—2] 2.056—1] 2.055—1]
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TABLE V. Contributions from negative-energy states to the re- TABLE VII. Breakdown of contributions to the reduced matrix
duced matrix element of the magnetic-quadrupole moment for thelement of the magnetic-dipole moment and the corresponding tran-
23p,— 115, transition in heliumlike ions calculated with the Cou- sition rate for the $S,—2 3S; transition in heliumlike ions calcu-
lomb basis set.NI,)* and (M,)2” are the negative-energy contri- lated with Hartree basis setsM¢)" is the no-pair contribution
butions due to Coulomb and Breit interactions, respectively, androm Cl calculations, k1,)™ is the contribution of negative-energy
(M) is their sum. The last column gives th@rroneous  states, andNl;)' is their sum. The notatioa[ —b] designates
negative-energy contribution of Rdf7]. The notatiora[ —b] des- X 10°°.
ignatesax 107",

z  M)P M (M) A (s

CA BA tot tot a
z (M2)- (M2)~ (M2)- (M2)- 2  8119-6] 1.947-6] 1.007-5] 1.17-8]
2 —6.649-5] 6.645—5] —1.707—10] 3 2926-5] 3.824—6] 3.309-5] 4.80—6]
3 —3.497-5] 3.497-5] —2.12Q-10] 4 6.299-5] 5710-6] 6.870-5] 1.90-4]
4 —2699-5] 2.699-5] —3.10Q—10] 5 1.003-4] 7.600—6] 1.169-4] 2.73-3]

5 —2.346-5] 2.346-5] —4.49G—10] -9.377-6] 10 5295-4] 1.71Q0-5] 5.466-4] 6.22

10 -1.827-5] 1.821-5] -2.163-9] —7.24G-6] 20 2.321-3] 3.650-5] 2.35§-3] 9.4(3]
20 -1.625-5] 1.623-5] -1.85]-8] —6.36§—6] 30 5.408-3] 5671-5] 5.464-3] 6.3§5]
30 -1.567-5] 1.56Q-5] -7.753-8] —6.037—6] 40 9.842-3] 7.790-5] 9.920-3] 1.277]
40 -154Q-5] 151§-5] —2213-7] —5.846-6] 50 157{-2] 1.001-4] 158[-2] 1.338]
50 —1.527-5] 1.477-5] -4.99§-7] —5.791-6] 60 2.312-2] 1.233-4] 2324-2] 9.348]
60 —1.50§-5] 1.411-5] -9.68]—7] —5.900—6] 70 3.225-2] 1471-4] 3.240-2] 5.069]
70 —1.495-5] 1.327-5] -1.681-6] —6.223-6] 80 4.333-2] 1714-4] 4.350-2] 2.2910]
80 —1.487-5] 1.213-5] -2.696-6] —6.817—6] 90 5.670-2] 1.954-4] 5.689-2] 9.1910]

90 -1.468-5] 1.067-5] —-4.061-6] —7.71§-6] 100 7.289-2] 2.184-4] 7.304-2] 3.3911]
100 —1.454-5] 8715-6] —-5829-6] —8.989-6]

aReferencd7]. tion over the negative spectrum 2.22%0°° a.u. using a
Coulomb basis set.

For nonrelativistically forbidden magnetic-dipole transi- The numerical results for the reduced matrix element of
tions between states of the same value of total spin, the leadragnetic-dipole moment and the corresponding transition
ing term in theaZ expansion of theositiveenergycontri-  rate for the 3S,—23S; transition are presented in the
bution to the transition amplitude vanishes, reducing thelTable VII. The calculations were performed in a Hartree
transition amplitude by a factor ofaZ)2. Thus one could model potential. The no-pair contributions and the energies
expect the ratio of negative-energy contribution to the totalused for tabulation of transition rates were obtained with
transition amplitude be of order ofZin either the Coulomb relativistic configuration-interaction methofll0,11. The
or model potential basis. We consider the particularLamb shift was estimated using screened Coulomb field val-
magnetic-dipole transition 35,—2°3S,. It is straightfor- ues following tabulation§12]. The inclusion of the Lamb
ward to check that, due to angular selection rules, the spinshift modifies the third significant figure of the rate values
independent terms in Eq2.20 vanish. Thus the negative- for Z>50. The negative-energy contribution to the matrix
energy contributions from the Breit and Coulomb element was calculated by a direct humerical summation
interactions are equal in leading order. The calculation®ver negative-energy states in the second-order expressions
based on Eq(2.19 show that both contribute the value of (2.5). The numerical details of the calculations are described
1.71x 10757 a.u. to the transition amplitude. The analytical in Sec. V. The relative negative-energy contribution to tran-
value for the reduced matrix element for helium, obtainedsition amplitude is 20% for neutral helium and becomes
with the Eq.(A4), is 2.126<10 ° a.u. This value closely smaller for largerZ, modifying the amplitude by 0.3% for
agrees with the numerical value obtained by a direct summaZ=100.

We also perform a similar analysis for the Coulomb basis.

TABLE VI. Revised values of line strengtB in a.u. for the  For helium, the sum of the CI no-pair (0.5200° a.u) and
magnetic-quadrupoleM,) transition 2°P,—1'S; in heliumlike  second-order contribution from negative-energy states

ions. The notatiora[ —b] designatesx 10"". (2.125< 10 ° a.u) amounts to 2.71810 ° a.u. This value
is almost by a factor of 3 larger than the corresponding value

10 3.4577—1] 60 7.203%—3] from calculations in the Hartree basis. For higliens such a
15 1.5046-1] 65 5.8356—3] comparison becomes much better, e.g.,Zer100; the cal-
20 8.3070—2] 70 4.7566-3] culations in the Coulomb and Hartree bases agree to four
25 5.2138-2] 75 3.8924-3] significant figures. We emphasize again that the no-pair ClI
30 3.5427-2] 80 3.1914-3] values presented here are converged to a high accuracy. The
35 2.5392-2] 85 2.6166—3] differences between the resulting total amplitudes are due to
40 1.8901—-2] 90 2.1414-3] the limitation of the second-order perturbation theory treat-
45 1.4465—-2] 95 1.7457-3] ment of the negative-energy states. In other words, bringing
50 1.1302-2] 100 1.4146-3] the total values of the reduced matrix element calculated
55 8.9700— 3] with different starting potentials into agreement with one an-

other requires consideration of negative-energy contributions
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10 transition has not been discussed previously in the literature
and we present the calculations in details. For this transition,
107 ¢ 3 convergence with respect to basis set size, cavity radius, and
B ] number of partial waves included was not as straightforward
<\t_§10 3 3 as for the other transitions. Our aim was to obtain an accu-
<;‘310_3 i ] racy of a part in 18. Because of the inclusion of=3 states
I E into the lowest-order wave function, the cavity radius was
<_§104 i increased to 12@/ a.u. in size. Unlike the other transitions,
: however, 40 splines were insufficient in converging our so-
10° L . . . . . lutions for lowZ. Even when a 50 spline basis was used, the
0 20 40 60 80 100 second-order MBPT values differed by as much a 1% when
Nuclear Charge Z varying the cavity radius between 40 and 60 a.u. for the case

of neutral He. We therefore used an 11th-order, 70-spline

energy states to the transition ratésdoefficients for various tran- l:iazs 'SSSe\;v:]c.)l Obta'r? bloth OL:; MBPT and .Cl drehsults Ior
sitions along the helium isoelectronic sequence. The ratiAgf N | I d ée such a arge?) asflshwas reqﬁlre OWSV?“ vr;/e
—Anopal/Aw: is plotted. ®, M, 33S,-23S;, Coulomb basis only needed to sum over 30 of the 70 splines to obtain the

set: *, M, 335,-23S,, Hartree basis setO, E, 3P, desired level of accuracy. F@= 10, only a 50-spline basis
—11s,, velocity form, Hartree basis sek, M, 23S,—-11s,, ~ Was required, summing over the lowest 25 splines. Eor

FIG. 2. Comparison of the relative contributions of the negative-

Hartree basis sef], M; 23S,11S,, Coulomb basis set. =20, a 40-spline basis was used, again summing only over
the lowest 25 splines.
in higher orders of perturbation theory. The relativistic configuration-interaction method, em-

To estimate theoretical uncertainty of the results calcu®loyed for calculations in this paper, has been described in
lated in the Hartree basis, we compare the second-order n&efs.[10,11]. The expression for matrix elements in the CI
pair calculations with the all-order no-pair Cl result. For he-framework is given in Ref.7]. For the Cl calculations of the
lium, the second-order result (7.7%20°° a.u) recovers 3 °S1—2°S; transitions, the basis orbitals were limited to
96% of the all-order value (8.13910 ° a.u), with better those having orbital angular momenturss4 for neutral He.
agreement for highe£. Since the negative-energy states con-For all otherZ<50, including only orbitals with <3 was
tribute at the level of 20% for He, we estimate the theoreticapufficient. ForZ>50, only orbitals withl <2 were required.
uncertainty of the total value of the reduced matrix element
to be at 1% Ie_v_el. Such_ relative theoretical error in the total VI. CONCLUSIONS
value of transition amplitude scales ag4for higherZ.

The relative modification of the total rate by the inclusion ~We have discussed the role of negative-energy states in
of negative-energy states for 33,—23S; transition is calculations of transition amplitudes for heliumlike ions by
shown in Fig. 2. Both Coulomb and Hartree cases are corderiving the leading term of their contribution. The scaling
sidered. The no-pair values for both cases are taken from Gif ratios of negative- to positive-energy state contributions to
calculations. The total rate is obtained from the reduced matransition amplitudes is presented in Table | for electric-
trix element values presented in Table VII. The neglect ofmultipole transitions and in Table 1l for magnetic-multipole
contributions from negative-energy states would underestitransitions. We determined several situations where the con-
mate the decay rate in the Hartree case by a factor of 1.54 fdributions of negative-energy states are comparable to the
neutral helium and underestimate the rate by 0.6%Zor total value of transition amplitude and must be taken into
=100. The rates calculated in the Coulomb basis are affectegccount. In contrast to the usual understanding of relativistic
more strongly and the omission of negative-energy stategffects, the negative-energy states contributions for the fol-
would underestimate the decay rate in the Hartree case bylawing cases are most important for Idvealculations:(i)
factor of 2.91 for neutral helium and underestimate the rate€lectric-multipole E;) intercombination transition ampli-

by 0.8% forZ=100. tudes calculated in velocity form in a model potential basis,
(i) magnetic-dipole ;) transition amplitudes calculated in
V. NUMERICAL DETAILS a model potential basis between states with different values

of total spin, and(iii) magnetic-dipole ;) transition am-

For our numerical calculations, thgspline basis set has plitudes calculated in any basis between states with the same
been employed for both the Cl and many-body perturbatiorvalue of total spin.
theory (MBPT) calculations. TheB-spline basis functions Figure 2 demonstrates how the inclusion of negative-
approximate the eigenfunctions bf in a spherical cavity. energy states in the calculations modifies the transition rate
The reader is referred to R¢fl3] for details. For the transi- for the enumerated cases. It is clear that the negative-energy
tions considered previously in R€f7], the same basis sets states play a significant role in the determination of the total
and cavity radii are used. As noted previously, an insufficientate, contributing for lowZ at the level of a few percent for
number of partial waves were employed in the negativethe magnetic-dipole 2S,— 1S, transition (Hartree basis
energy calculations of Ref[7] for the 23P,—1'S, 10% for the velocity form of the electric-dipole intercombi-
magnetic-quadrupole transition. The addition of these partiahation 2°P,— 1 1S, transition(Hartree basjs and 100% for
waves marks the only change in the present calculations fahe magnetic-dipole 3S,— 23S, transition (both Coulomb
this transition from those of Ref7]. and Hartree setsThe “nonsmooth” behavior of the curve

To our knowledge, the magnetic-dipole®8,—23S,  for the magnetic-dipole 3S,—1 1S, transition(Hartree ba-
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sis) is explained by the change of sign of the negative-energy For the 23S,—11S, magnetic-dipole transition the

contribution atz=23. negative-energy contribution due to the Coulomb
The negative-energy contribution to transition amplitudes(F||M,|[1)°* and Breit (F||M,||1)®* interactions cancel

calculated in a Coulomb basis is smaller than or comparableach other, as discussed in Sec. V. The contribution due to

to that calculated in a model potential basis. In order to dethe Coulomb interaction is given by

crease the effect of negative-energy states in electric-

multipole transitions, one should employ the length form for 5 o2
electric-multipole potentials, as noted in RE]. . (FIIMq[[1)A=— ———[R(2s,15,1s,15)
Finally, we have tabulated revised values for line J6 dw,
strengths of magnetic-quadrupole’®,—1 'S, transitions 1+ wo
in heliumlike ions. These values were obtained from the rela-
tivistic no-pair configuration-interaction calculations with —R(1s,2s,1s,1s)]. (A2)
negative-energy contributions added from the second-order
perturbation theory. If the zeroth-order Hamiltonian includes a spherically sym-
metric model potentialU, there is also a contribution
ACKNOWLEDGMENTS (F||M4||1YYA. The total negative-energy contribution is rep-
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No. PHY 95-13179. The authors owe thanks to H.G. Berry
for useful discussions and comments on the manuscript. . 1
U(r)Evo(ls,r)=f Pi(r")—dr’
APPENDIX: ANGULAR REDUCTION 0 r-
OF THE NEGATIVE-ENERGY CONTRIBUTION
TO MAGNETIC-DIPOLE MATRIX ELEMENT we obtain

In this section we present the results of angular reduction
for the leading order in awZ expansion for matrix element ot a2 a?
of magnetic dipole. The starting expressions are given by (FI[M[|1)Z'=(F|[M[[1)= :% 5o (2s15,1s,15).
Egs.(2.17—(2.19 for the operatoiV. The results below are 14—+

. . . a)o
expressed in terms of radial integrals (A3)
. * d
R(ijkl)= fo Pi(rl)Pk(rl)rld_rl In the case of the magnetic-dipole transitioR$3— 23S, ,
the contributions from Coulomb and Breit interactions are
o 1 equal and
X f Pi(r)—P(rp)dr,|dr;. (A1)
0 r~
2 a’
HereP(r) is the radial part of the nonrelativistic wave func-  (F|[M|[1)*=— \/;W[R(%,ls,k,ls)
tion of the zeroth-order Hamiltonian and. =max(,r>). 14+ —2
Also wy is the zeroth-order transition energy afid, is the o
first-ordc_ar correction to the transition energy. The analyt'ical —R(1s,3s,2s,1s) — R(3s,1s,1s,25)
expressions fow, and dw, can be found, for example, in
Ref.[7]. +7R(1s,3s,1s,2s)]. (A4)
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