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Negative-energy contributions to transition amplitudes in heliumlike ions

A. Derevianko, Igor M. Savukov, and W. R. Johnson
Department of Physics, Notre Dame University, Notre Dame, Indiana 46556

D. R. Plante
Department of Mathematics & Computer Science, Stetson University, DeLand, Florida 32720

~Received 19 May 1998!

We derive the leading term in anaZ expansion for the negative-energy~virtual electron-positron pair!
contributions to the transition amplitudes of heliumlike ions. The resulting expressions allow us to perform a
general analysis of the negative-energy contributions to electric- and magnetic-multipole transition amplitudes.
We observe a strong dependence on the choice of the zeroth-order Hamiltonian, which defines the negative-
energy spectrum. We show that for transitions between states with different values of total spin, the negative-
energy contributions calculated in a Coulomb basis vanish in the leading order while they remain finite in a
Hartree basis. The ratio of negative-energy contributions to the total transition amplitudes for some of non-
relativistically forbidden transitions is shown to be of order 1/Z. In the particular case of the magnetic-dipole
transition 33S1→2 3S1 , we demonstrate that the neglect of negative-energy contributions, in an otherwise
exact no-pair calculation, would lead one to underestimate the decay rate in helium by a factor of 1.5 in
calculations using a Hartree basis and by a factor of 2.9 using a Coulomb basis. Finally, we tabulate revised
values of the line strengthS for the magnetic-quadrupole (M2) transition 23P2→1 1S0 . These values include
negative-energy contributions from higher partial waves, which were neglected in our previous calculations.
@S1050-2947~98!03512-4#

PACS number~s!: 31.30.Jv, 31.15.Md, 32.70.Cs
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I. INTRODUCTION

The ab initio relativistic consideration of an atomic sy
tem requires a careful treatment of negative-energy st
~virtual electron-positron pairs!, which, if included improp-
erly, lead to thecontinuum dissolutionproblem discussed by
Sucher@1#. An accepted remedy for this problem is to use t
no-pair Hamiltonian, which excludes negative-energy sta
@1,2#. The no-pair approach is well justified for determinin
energies of many-body systems. The leading corrections
yond the no-pair approximation have been studied for
ground state of heliumlike ions in Ref.@3#. However, the
effect of negative-energy states on the transition amplitu
still remains an open question. If such corrections wer
negligibly small fraction of the total amplitude, the stud
would be mainly of ‘‘academic’’ interest. However, as w
demonstrate in this work, the relative contribution for som
nonrelativistically forbidden transitions is of order 1/Z and
thus the practical importance of understanding when to
clude negative-energy contributions cannot be overstated
allow general consideration we will derive the leading te
in the aZ expansion of the negative-energy contribution
the transition amplitudes in heliumlike ions.

The separation of negative- and positive-energy states
pends on the choice of the zeroth-order Hamiltonian. In pr
tical calculations one often employs the Dirac-Coulom
Hamiltonian modified by a model potential, chosen to a
proximate the interaction between electrons. The questio
negative-energy contributions to the magnetic-dipole tra
tion 2 3S1→1 1S0 was considered numerically by Lindrot
and Salomonson@4# for heliumlike argon and by Indelicato
@5# in systematic multiconfigurational Hartree-Fock~MCHF!
calculations. Employing a Dirac-Coulomb basis set,
PRA 581050-2947/98/58~6!/4453~9!/$15.00
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former work demonstrated numerically that the negati
energy contribution vanishes. By contrast, Indelicat
MCHF calculations revealed contributions from negativ
energy states that were comparable to the ‘‘regula
positive-energy values, especially for light ions. We will a
dress this difference by deriving negative-energy correcti
both for the Dirac-Coulomb basis and for a basis modified
a spherically symmetric model potential.

The transition amplitudes, although calculated by empl
ing exact eigenfunctions of the no-pair Hamiltonian, depe
on the gauge of the electromagnetic field, as noted in R
@6#. This gauge dependence is reflected in slight differen
between the length-form and velocity-form transition amp
tudes. In Ref.@7# it was demonstrated that the gauge dep
dence is a direct consequence of the omission of contr
tions from negative-energy states in the no-pair Hamiltoni
In that work the configuration-interaction~CI! method was
used to determine the contribution to transition amplitud
from positive-energy states and perturbation theory was u
to obtain the contribution from the negative-energy stat
Based on numerical analysis, the authors of Ref.@7# noted
that the negative-energy contributions were negligible
length-form transition amplitudes compared to those cal
lated in the velocity form. They recommended using t
length-form no-pair amplitudes in calculations of th
electric-dipole transition amplitudes. We extend this reco
mendation to all electric-multipole transitions.

For magnetic-multipole transition amplitudes, we find th
when calculated in a Dirac-Coulomb basis, the leading te
vanishes for transitions between states with different val
of total spin due to the cancellation between Coulomb a
Breit contributions. Since all magnetic-multipole transitio
to the ground state of heliumlike ions (11S0) involve the
4453 © 1998 The American Physical Society



n
to
co

le

at
e
is
e
c

.9

de
na
tic
in

io
te

is
ic
ic-
on
ve
rb
s

io

th
th
fo

e

s
n
ti
er
x
n
b

th
a-

rs,
tes
er,
ive-

ly
u-
de-
pe-

tes
nc-
,

e
or-
the

e

tor
h
e

ate
r
ions

4454 PRA 58DEREVIANKO, SAVUKOV, JOHNSON, AND PLANTE
upper state with total spinS51, we make a general assertio
that, for suchMJ transitions, the leading contribution due
negative-energy states vanishes. This fact allows us to
rect the numerical results of Ref.@7# for the magnetic-
quadrupole (M2) transition 23P2→1 1S0 . We tabulate re-
vised values of the line strengthS for this transition. The
negative-energy corrections are of particular importance
the case of nonrelativistically forbidden magnetic-dipo
transitions. We consider the transition 33S1→2 3S1 using
both Dirac-Coulomb and Hartree basis sets. We find the r
of negative- to positive-energy contributions to be of ord
1/Z in both calculations. Furthermore, we find that for th
transition the neglect of contributions from the negativ
energy states would underestimate the decay rate by a fa
of 1.54 for helium in the Hartree case and by a factor of 2
in the Coulomb case.

We also demonstrate that modification of the zeroth-or
Hamiltonian by a model potential introduces an additio
correction that gives rise to the leading order for magne
multipole transitions between states with different total sp
Thus, even for the well-studied magnetic-dipole transit
2 3S1→1 1S0 , the ratio of negative- to positive-energy sta
contributions is shown to scale as 1/Z.

We derive the analytical expressions in Sec. II. The d
cussion of negative-energy contributions to electr
multipole transitions is given in Sec. III and to magnet
multipole transitions in Sec. IV. Predictions based
analytical results are illustrated by direct summation o
negative-energy states in second-order many-body pertu
tion theory. The numerical methods employed are discus
in Sec. V. Conclusions are given in Sec. VI.

II. THEORY

We perform a perturbation theoretic analysis of transit
amplitudes similar to that given in Ref.@7#. The summation
over negative-energy states appears for the first time in
second-order expression. Here we briefly recapitulate
derivation of the second-order perturbation expression
transition amplitudes. The many-electron HamiltonianH is
represented as a sum of a zeroth-order HamiltonianH0 and a
perturbationV,

H05(
i

h0~ i !5(
i

@hD~ i !1U~ i !#, ~2.1!

V5(
i , j

V~ i , j !2(
i

U~ i !, ~2.2!

where hD is the Dirac Hamiltonian of an electron in th
Coulomb potential of a nucleus,U is a model potential, and
the two-electron interactionV( i , j ) is a sum of Coulomb and
Breit interactions. The eigenfunctions ofh0 serve as a basi
for perturbation theory. They include both negative- a
positive-energy states. The inclusion of the model poten
U in the zeroth-order Hamiltonian can improve the conv
gence of perturbation theory if the model potential appro
mates the Coulomb interaction between atomic electro
For heliumlike systems, we will consider both the Coulom
case, where the model potentialU is set to zero, and the
Hartree case, with the self-consistent Hartree potential of
ground statev0(1s,r ). In the no-pair approach the perturb
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tion V is surrounded by positive-energy projection operato
thus eliminating contributions from negative-energy sta
completely to all orders of perturbation theory. Howev
even the process of separation of positive- and negat
energy states depends on the choice of model potentialU and
would be acceptable if the final result were modified on
slightly. In contrast, we will demonstrate that the contrib
tion of negative-energy states to transition amplitudes
pends sensitively on the choice of the model potential, es
cially for nonrelativistically forbidden transitions.

In the zeroth-order approximation, the uncoupled sta
are antisymmetrized combinations of products of eigenfu
tions of the Hamiltonianh0 . In the second-quantized form
the initial state is represented asCva

(0)5av
†aa

†u0& and the final
state asCwb

(0)5aw
† ab

†u0&. Orbital labelsa andb refer to the 1s
state andw andv to excited states. The possibility ofv being
a 1s electron is also allowed in the following. We treat th
interactionV as a perturbation and obtain the first-order c
rection to wave functions. For example, the correction to
initial state is

Cva
~1!52 (

i j Þva

v i j va

« i1« j2«v2«a
ai

†aj
†u0&1(

iÞv

Uiv

« i2«v
ai

†aa
†u0&

1(
iÞa

Uia

« i2«a
av

†ai
†u0&. ~2.3!

Here the summation is performed over eigenstates ofh0 with
energies« i andv i jkl are matrix elements of the two-particl
interactionV( i , j ) in that basis.

We consider a matrix element of a one-body opera
HI5( ih

I( i ) between two states of a heliumlike ion. Wit
the aid of the first-order correction to wave functions, w
form the expression for the second-order matrix element

T~2!5^Cwb
~1!uHI uCva

~0!&1^Cwb
~0!uHI uCva

~1!& ~2.4!

and obtain

T~2!5 (
iaÞwb

vwbia~hI ! iv2vwbai~hI ! iv

«w2« i

2 (
ivÞwb

vwbv i~hI ! ia2vwbiv~hI ! ia

« i1«v2«w2«b

1 (
ibÞva

~hI !wiv ibva2~hI !wivbiva

«v2« i

2(
i

~hI !bivwiva2~hI !biv iwva

« i1«w2«v2«a

1 (
iÞw

Uwi~hI ! ivdab2Uwi~hI ! iadbv

« i2«w

1(
iÞv

~hI !wiUivdab

« i2«v
2(

iÞa

~hI !wiUiadbv

« i2«a
. ~2.5!

The summation over intermediate statesi includes both
negative- and positive-energy states. It is our aim to estim
the leading term in theaZ expansion due to summation ove
the negative-energy states. In the second-order express
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above we have omitted the derivative term given in Ref.@7#
since it does not affect the negative-energy state contr
tion. When considering transition between states represe
in the lowest order by a combination of product wave fun
tions, e.g., the 23P1 state, the above expressions should
generalized. Such gauge-independent multiconfiguratio
generalization for Be-like systems can be found in Ref.@8#.

A. Summation over negative-energy states

We approximate the differences between positive a
negative energies in the denominators of Eq.~2.5! by 2mc2.
In this paper we will use atomic units (me5\5e/A4pe0
51,c51/a). The Pauli approximation for a positron wav
function becomes

f25S 2
1

2

s•p̂

c

1
D w2. ~2.6!

Nonrelativistic positron wave functionsw2 form a complete
basis set and thus satisfy the closure relation

(
i

w i
2~r ,s!@w i

2~r 8,s8!#†5d~r 2r 8!ds,s8 , ~2.7!

wheres is a spin variable. This relation allows us to expre
a summation over negative-energy states of electrons in
Pauli approximation as

(
e i,0

f i~r ,s!@f i~r 8,s8!#†5L~r ,s!d~r 2r 8!ds,s8 .

~2.8!

Here the matrix operatorL is defined as

L~r ,s!5S 1

4

p̂2

c2 2
1

2

s•p̂

c

2
1

2

s•p̂

c
1

D . ~2.9!

The operatorL, when acted upon a wave function, decrea
the size of the large component by an order of (aZ)2, mak-
ing the large and small components of the result compara
Employing the modified closure relation~2.8!, we find that
the entire contribution from negative-energy states to
second-order matrix element~2.5! is

T2
~2!5

1

2c2
~Wwbva1Wbwav2Wwbav2Wbwva!, ~2.10!

where the operatorW is

W5V~1,2!L~1!hI~1!1hI~1!L~1!V~1,2!

2U~1!L~1!hI~1!2hI~1!L~1!U~1!. ~2.11!

Here and below the arguments 1 and 2 stand for coordi
and spin variables of electrons 1 and 2, respectively.
operatorW can be represented in a form symmetric w
respect to interchange of electrons 1 and 2; however, we
u-
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the representations~2.10! and ~2.11! more convenient. At
this point, we have performed a summation over negati
energy states for an arbitrary one-body operatorHI . Now we
turn to the calculation of the correction from negative-ene
states to transition amplitudes.

B. Negative-energy corrections to transition amplitudes

For a single electron, the interaction Hamiltonian with
electromagnetic field described by the vector potentialA and
scalar potentialF is given by

hI52F1ca•A. ~2.12!

The two-electron interactionV is a sum of CoulombC and
Breit B interactions

C125
1

r 12
, ~2.13!

B1252a1•a2

1

r 12
2

1

2
~a1•¹1!~a2•¹2!r 12. ~2.14!

We employ the Pauli approximation in calculations
matrix elements of the operatorW, where this approximation
for the electron wave function is given by

f5S 1

s•p

2c
D w, ~2.15!

w being the nonrelativistic wave function of the electro
Below we give a breakdown of contributions to the opera
W arising from various combinations of interactions

W5WCF1WBF1WUF1WCA1WBA1WUA. ~2.16!

The derivation of these contributions is based on commut
identities for Pauli matricess. WCF is a contribution arising
from Coulomb interaction and scalar potential

WCF52
a2

2
¹1F~1!•¹1

1

r 12
. ~2.17!

There is a similar contribution from the model potent
WUF,

WUF5
a2

2
¹1F~1!•¹1U~1!. ~2.18!

These terms contribute toT2
(2) corrections of order

a(aZ)3^F&, where^F& designates scaling of the scalar p
tential F. The contribution from the Breit interaction an
scalar potentialWBF is (aZ)2 smaller thanWCF and does
not contribute to the leading order. The situation is differe
for the vector potential part of the interaction Hamiltonia
The contribution from the vector potential and Coulomb
teractionWCA is of the same order as the contribution fro
the vector potential and Breit interactionWBA. We have

WCA52s1•FA~1!3¹1

1

r 12
G , ~2.19!
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WBA52s2•FA~1!3¹1

1

r 12
G2

1

r 12
A~1!•p̂2

2
1

r 12
n12•A~1!n12•p̂2, ~2.20!

wheren12 is the unit vector alongr125r12r2 . Finally, the
model potential combined with the vector potential term
sults in an effective operator

WUA5s1•@A~1!3¹1U~1!#. ~2.21!

The contribution toT2
(2) due to the vector potential scales

a(aZ)^ca•A&, where we explicitly separated scaling
ca•A.

For further discussion, it is important to note that in t
absence of a model potential the entire negative-energy
tribution vanishes for transitions between states with diff
ent values of total spinS. Indeed, combining Coulomb an
Breit contributions for the vector potential and express
the sum in terms of the total spinS, we obtainW(C1B)A

5WCA1WBA,

W~C1B!A522S•FA~1!3¹1

1

r 12
G2

1

r 12
A~1!•p̂2

2
1

r 12
n12•A~1!n12•p̂2 . ~2.22!

The last two terms in the above expression do not depen
spin and vanish for transitions between states withDSÞ0.
The first term is proportional to the total spinS and also
vanishes for such transitions since the reduced matrix
ment ^S1uuSuuS2&}dS1S2

. Thus the leading negative-energ
contribution vanishes for transitions between states with
ferent values of the total spin when calculations are p
formed in a Coulomb basis. The model potential termWUA,
however, does not possess this property and results in
nificantly different contributions to amplitudes for transitio
with DSÞ0, as discussed in the following sections. T
analysis of the above expressions allows us to make gen
qualitative predictions about the role of negative-ene
states in calculations of transition amplitudes. We perform
angular reductions of the negative-energy contributions
the resulting expressions can be found in the Appendix.
ternatively, the direct numerical summation in second-or
expressions~2.5! over the negative-energy part of basis set
h0 can be done to obtain the results for model potential c
and to evaluate the higher-order corrections.

III. ELECTRIC-MULTIPOLE TRANSITIONS

For practical purposes we consider the multipole exp
sion of the electromagnetic field, discussed, for example
Ref. @9#, and find the matrix elements of the operator

QJM
~l!5(

i , j
~qJM

~l!! i j ai
†aj ,

with
-
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-
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d
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~qJM
~l!! i j 5 iA 4pJ

~2J11!~J11!

~2J11!!!

kJ

1

c

3$FJM
~l!~r,v!2ca•AJM

~l!~r,v!% i j . ~3.1!

Here J is the multipolarity, withl51 for electric andl
50 for magnetic transitions. The particular form of electr
magnetic multipole potentials depends on the choice
gauge and we refer the reader to Ref.@7# for explicit expres-
sions. We will consider two forms of electromagnetic pote
tials: length and velocity~transverse! forms. In the velocity
form the electric scalar potential is identically zero. In t
length form the above expressions reproduce the electriJ-
pole moment operator (l51) in the long-wavelength ap
proximation (kr!1). The transition amplitude must rema
invariant under gauge transformation. However, the calcu
tions performed in the no-pair approach lack this import
property because of omission of negative-energy states
has been demonstrated in Ref.@7#. In this section we deter-
mine the effect of negative-energy states on calculations
the reduced matrix elements ofQJ

(1) for electric-multipoleEJ

transitions.
The scaling of the ratio of negative- to positive-ener

contributions for electric-multipole transitions in both leng
and velocity gauges is summarized in Table I. In this ta
the scaling of the positive-energy states contribution for
nonrelativistically forbidden intercombination (DSÞ0) tran-
sitions is assumed to be (aZ)2 times smaller than that o
spin-allowed transitions. Also, the order of the next term
the negative-energy contributions is assumed to be a fa
of (aZ)2 smaller than the order of the leading term.

It has been shown numerically in Ref.@7# that for electric-
dipole transitions 23P0→2 3S1 and 23P2→2 3S1 , negative-
energy corrections to transition amplitudes calculated in
length gauge are much smaller than those obtained in
velocity gauge. With the help of our analytical result, th
observation can be extended for all electric-multipoleEJ
transitions. Indeed, the ratio of negative-energy contributi
in the length form to those obtained in the velocity form
(aZ)2 or less. Qualitatively, such a substantial differen
between negative-energy state contribution in length and
locity forms can be understood from the fact that the elect
dipole operator in velocity form mixes large and small co
ponents of wave functions, while the length-form opera
does not. On the other hand, the ‘‘large’’ and ‘‘small’’ com
ponents of positron wave function have the opposite me
ing. This leads to the fact that the matrix element of dipo
operator between negative- and positive-energy states in

TABLE I. Scaling of the ratio of negative- to positive-energ
states contributions for electric-multipoleEJ transition amplitudes
in heliumlike ions.

Gauge Basis DS50 DSÞ0

length Coulomb a4Z3 a4Z3

velocity Coulomb a2Z a2Z
length model potential a4Z3 a4Z3

velocity model potential a2Z 1/Z
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TABLE II. Contributions from negative-energy states to the reduced matrix element of the electric-d
moment for the 23P1→1 1S0 transition in heliumlike ions calculated with the Hartree basis set. (Q1)1

np is the
no-pair contribution from the second-order perturbation theory calculations. (Q1)2

C , (Q1)2
B , and (Q1)2

U are
the negative-energy contributions due to Coulomb and Breit interactions and the model potential,
tively. The breakdown for both length and velocity forms is presented. The notationa@2b# designatesa
3102b.

Gauge Z (Q1)1
np (Q1)2

C (Q1)2
B (Q1)2

U (Q1)tot

Length 2 1.362@24# 24.602@211# 29.325@210# 5.371@211# 1.362@24#

Velocity 2 1.432@24# 1.413@25# 21.413@25# 27.064@26# 1.362@24#

Length 10 4.107@23# 22.824@29# 25.773@28# 3.602@29# 4.107@23#

Velocity 10 4.118@23# 2.088@25# 22.167@25# 21.049@25# 4.107@23#

Length 50 1.872@22# 21.013@27# 21.198@26# 1.943@27# 1.872@22#

Velocity 50 1.875@22# 21.737@25# 23.508@25# 29.529@26# 1.872@22#

Length 100 8.633@23# 26.477@27# 23.264@26# 9.107@27# 8.630@23#

Velocity 100 8.656@23# 1.539@25# 23.145@25# 21.005@25# 8.630@23#
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second-order expressions is (aZ)2 times smaller in the
length form than in the velocity form.

There is a very surprising effect for intercombination tra
sition amplitudes calculated in the velocity form in a mod
potential basis: The relative contribution of negative-ene
states scales as 1/Z. This fact implies a significant correctio
for light ions. The reason is that even though the contri
tions from Breit and Coulomb interactions cancel each ot
owing to DSÞ0, the correction from the model-potenti
term still remains and contributes in leading order. A simi
behavior is found for nonrelativistically forbidden magnet
dipole transitions discussed in Sec. IV.

As an example, we consider the 23P1→1 1S0 electric-
dipole intercombination transition. The calculation require
generalization of the second-order expressions to a m
configurational case since the 23P1 state is represented i
the lowest order as a combination of (2p1/21s1/2)1 and
(2p3/21s1/2)1 j -j coupled states. We employed the approa
of Ref. @8# with an obvious reduction to the case of helium
The results of the direct numerical summation over a ba
set in the second-order expressions are presented in Tab
First we note that the negative-energy contributions bring
results of calculations in length and velocity form into agre
ment. In contrast to relatively tiny corrections found in R
@7# for allowed transitions, these contributions are at
level of 5% in velocity form forZ52, due to a specific
choice of transition. We also note that for lowZ, the
negative-energy contributions in velocity form from the Co
lomb interaction cancels that from the Breit interaction,
that the total negative-energy correction arises from
model potential term, as discussed earlier. The negat
energy contribution would vanish if a Dirac-Coulomb ba
set were used. The relative contribution of negative-ene
states is amplified in the velocity form and is substantia
smaller in the length form, as discussed earlier.

Therefore, in order to reduce the effect of negative-ene
states on high-precision no-pair calculations, the length fo
of multipole-electric transition operator should be employ
Also, in relativistic multiconfigurational Hartree-Fock calc
lations similar to Ref.@5# one should take additional care fo
negative-energy contributions to intercombination transit
amplitudes calculated in the velocity form.
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IV. MAGNETIC-MULTIPOLE TRANSITIONS

In this section we consider the negative-energy correc
to the magnetic-multipole operatorMJ52cQJ

(0) . For
magnetic-multipole transitions, the velocity and length form
of the multipole potentials are identical, the scalar poten
being zero. The scaling of ratios of negative-energy
positive-energy contributions for magnetic-multipole tran
tions is summarized in Table III. In this table we explicit
separate the magnetic-dipole (M1) transition since it is non-
relativistically forbidden. There are several surprising
fects, which we will further explore in this section.

It is worth noting that all magnetic-multipole transition
to the ground state of He-like ions haveDSÞ0. Therefore,
the leading order of the negative-energy correction cal
lated in the Coulomb basis vanishes. In other words,
transitions with DSÞ0 the contribution arising from the
Coulomb interaction given by Eq.~2.19! exactly cancels the
contribution from the Breit interaction~2.20!. As mentioned
before, such detailed cancellation for the magnetic-dip
transition 23S1→1 1S0 has been observed in the numeric
calculations of Ref.@4# for heliumlike Ar (Z518). To illus-
trate this point further, we perform a direct numerical su
mation over a set of negative-energy states in Eq.~2.5!. We
present the absolute values of the ratios of negative-en
contributions to the total value of the reduced matrix elem
in Fig. 1. The total value of the reduced matrix element h
been taken from Ref.@7#. From Fig. 1 it is clear that the
cancellation between the Coulomb and Breit negative-ene
contributions is nearly complete for low values ofZ, with the
total negative-energy contribution being less than o

TABLE III. Scaling of the ratio of negative- to positive-energ
state contributions for magnetic-multipoleMJ transition amplitudes
in heliumlike ions obtained in the transverse gauge.

Basis DS50 DSÞ0

M1, Coulomb 1/Z a2Z
M1, model potental 1/Z 1/Z
JÞ1, Coulomb a2Z a4Z3

JÞ1, model potential a2Z a2Z
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thousandth the individual Coulomb and Breit contributio
for Z<5. For larger values ofZ, there is only a partial can
cellation because terms of the higher powers ofaZ contrib-
ute to the negative-energy correction. It is worth noting t
if there were no such cancellation, the relative contribut
of negative-energy states would scale as 1/Z.

However, when the calculations of magnetic-multipo
transition amplitudes forDSÞ0 are performed with the
model potential basis set, the termWUA gives a leading
negative-energy contribution and must be taken into acco
Indeed, for nonrelativistically forbidden magnetic-dipo
transitions, e.g., 23S1→1 1S0 , one expects the ratio o
negative- to positive-energy contributions to be of order
1/Z. In Table IV we give a numerical breakdown for th
2 3S1→1 1S0 transition for selected values ofZ. Again, we
find a strong cancellation between the Coulomb and B
contributions at lowZ, with less cancellation as we increa
the value ofZ. Unlike the case of starting from a Coulom
basis, however, starting from the Hartree basis provides
with an additional component that is not negligible. In t
particular case of helium, the negative-energy states in a H
tree basis contribute 1% to the total transition amplitude

FIG. 1. Comparison of the relative contributions of the negati
energy states due to the Coulomb and Breit interactions to the
value of the reduced matrix elementM1 for the magnetic-dipole
transition 23S1→1 1S0 along the helium isoelectronic sequenc
All contributions are scaled to the total value ofM1 from Ref. @7#.
The dotted line represents the Coulomb contribution, the das
line, the Breit contribution, and the solid line, the total relati
contribution from the negative-energy states.
t
n

t.

f

it

us

r-
d

2% to the total transition rate. By contrast, the negati
energy contributions are entirely negligible~at least in the
second order! in a Coulomb basis. It is worth emphasizin
that the no-pair CI values are calculated with a high deg
of accuracy. For highZ the final total in the Table IV is
independent of the choice of basis. The 0.3% difference
total values forZ52 represents a limitation of the prese
second-order treatment of the negative-energy contributio

Recently, the effect of negative-energy contributions
the 23S1→1 1S0 M1 transition in the case of multiconfigu
rational Hartree-Fock calculations has been considered
Indelicato @5#. His results also exhibit a 1/Z-like ratio of
negative- to positive-energy contributions that can be att
uted to a breakdown of detailed cancellation between C
lomb and Breit terms by the MCHF effective model pote
tial.

The leading term of the negative-energy contribution in
Coulomb basis should also vanish for the magne
quadrupole transition (M2) transition 23P2→1 1S0 . Such a
cancellation is demonstrated numerically in Table V.
Table V we also make a comparison with the data given
Ref. @7#. The contributions are different by several orders
magnitude for low-Z ions. The error was traced to an insu
ficient number of partial waves employed in calculating t
negative-energy contributions in Ref.@7#. We revise the nu-
merical calculations and find agreement with the analyti
predictions. Incorrect values of negative-energy contrib
tions were used in@7# to determine the transition rate (A
coefficient! and the line strengthS. Being small, the
negative-energy state contribution did not change the va
of A at the level of significant figures quoted; however, t
line strengthSwas quoted to a higher degree of accuracy a
we find some difference due to negative-energy correctio
Revised values of line strength are presented in Table
The difference between the current results and those of
@7# is in the last one or two significant figures and amounts
0.02% forZ5100 and less for other ions.

There is an interesting case in which calculations start
from either a Coulomb basis or a model potential ba
would lead to negative-energy contributions that are com
rable to those of the positive-energy states. This is the cas
the magnetic-dipole transitions between states of thesame
value of total spin.

-
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mb
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TABLE IV. Contributions from negative-energy states to the reduced matrix element of the mag
dipole moment for the 23S1→1 1S0 transition in heliumlike ions calculated with Hartree and Dirac-Coulo
basis sets. (M1)2

CA and (M1)2
BA are the negative-energy contributions due to the Coulomb and Breit inte

tions, respectively. (M1)2
UA is a contribution from the Hartree model potential. (M1)2

tot is the sum of
negative-energy contributions. (M1)1

np is the no-pair contribution from CI calculations. The notationa
@2b# designatesa3102b.

Z52 Z550 Z5100
Contributions Hartree Coulomb Hartree Coulomb Hartree Coulom

(M1)2
CA 24.264@26# 21.730@25# 21.981@24# 22.061@24# 25.136@24# 25.243@24#

(M1)2
BA 4.263@26# 1.730@25# 1.777@24# 1.846@24# 2.447@24# 2.476@24#

(M1)2
UA 25.736@27# 0 3.870@25# 0 2.745@24# 0

(M1)2
tot 25.741@27# 22.732@29# 1.824@25# 22.159@25# 5.646@26# 22.767@24#

(M1)1
np 5.928@25# 5.890@25# 4.655@22# 4.658@22# 2.055@21# 2.058@21#

(M1)tot 5.871@25# 5.889@25# 4.656@22# 4.656@22# 2.056@21# 2.055@21#
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For nonrelativistically forbidden magnetic-dipole trans
tions between states of the same value of total spin, the l
ing term in theaZ expansion of thepositive-energycontri-
bution to the transition amplitude vanishes, reducing
transition amplitude by a factor of (aZ)2. Thus one could
expect the ratio of negative-energy contribution to the to
transition amplitude be of order of 1/Z in either the Coulomb
or model potential basis. We consider the particu
magnetic-dipole transition 33S1→2 3S1 . It is straightfor-
ward to check that, due to angular selection rules, the s
independent terms in Eq.~2.20! vanish. Thus the negative
energy contributions from the Breit and Coulom
interactions are equal in leading order. The calculatio
based on Eq.~2.19! show that both contribute the value o
1.7131026Z a.u. to the transition amplitude. The analytic
value for the reduced matrix element for helium, obtain
with the Eq. ~A4!, is 2.12631025 a.u. This value closely
agrees with the numerical value obtained by a direct sum

TABLE V. Contributions from negative-energy states to the
duced matrix element of the magnetic-quadrupole moment for
2 3P2→1 1S0 transition in heliumlike ions calculated with the Cou
lomb basis set. (M2)2

CA and (M2)2
BA are the negative-energy contr

butions due to Coulomb and Breit interactions, respectively,
(M2)2

tot is their sum. The last column gives the~erroneous!
negative-energy contribution of Ref.@7#. The notationa@2b# des-
ignatesa3102b.

Z (M2)2
CA (M2)2

BA (M2)2
tot (M2)2

tot a

2 26.645@25# 6.645@25# 21.702@210#

3 23.492@25# 3.492@25# 22.120@210#

4 22.699@25# 2.699@25# 23.100@210#

5 22.346@25# 2.346@25# 24.490@210# 29.372@26#

10 21.822@25# 1.821@25# 22.163@29# 27.246@26#

20 21.625@25# 1.623@25# 21.851@28# 26.368@26#

30 21.567@25# 1.560@25# 27.753@28# 26.032@26#

40 21.540@25# 1.518@25# 22.212@27# 25.846@26#

50 21.522@25# 1.472@25# 24.998@27# 25.791@26#

60 21.508@25# 1.411@25# 29.681@27# 25.900@26#

70 21.495@25# 1.327@25# 21.681@26# 26.223@26#

80 21.482@25# 1.213@25# 22.696@26# 26.812@26#

90 21.468@25# 1.062@25# 24.061@26# 27.718@26#

100 21.454@25# 8.715@26# 25.825@26# 28.989@26#

aReference@7#.

TABLE VI. Revised values of line strengthS in a.u. for the
magnetic-quadrupole (M2) transition 23P2→1 1S0 in heliumlike
ions. The notationa@2b# designatesa3102b.

10 3.4577@21# 60 7.2035@23#

15 1.5046@21# 65 5.8356@23#

20 8.3070@22# 70 4.7566@23#

25 5.2138@22# 75 3.8924@23#

30 3.5427@22# 80 3.1914@23#

35 2.5392@22# 85 2.6166@23#

40 1.8901@22# 90 2.1414@23#

45 1.4465@22# 95 1.7457@23#

50 1.1302@22# 100 1.4146@23#

55 8.9700@23#
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e
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tion over the negative spectrum 2.12531025 a.u. using a
Coulomb basis set.

The numerical results for the reduced matrix element
magnetic-dipole moment and the corresponding transi
rate for the 33S1→2 3S1 transition are presented in th
Table VII. The calculations were performed in a Hartr
model potential. The no-pair contributions and the energ
used for tabulation of transition rates were obtained w
relativistic configuration-interaction method@10,11#. The
Lamb shift was estimated using screened Coulomb field
ues following tabulations@12#. The inclusion of the Lamb
shift modifies the third significant figure of the rate valu
for Z.50. The negative-energy contribution to the mat
element was calculated by a direct numerical summa
over negative-energy states in the second-order express
~2.5!. The numerical details of the calculations are describ
in Sec. V. The relative negative-energy contribution to tra
sition amplitude is 20% for neutral helium and becom
smaller for largerZ, modifying the amplitude by 0.3% fo
Z5100.

We also perform a similar analysis for the Coulomb bas
For helium, the sum of the CI no-pair (0.59031025 a.u.! and
second-order contribution from negative-energy sta
(2.12531025 a.u.! amounts to 2.71531025 a.u. This value
is almost by a factor of 3 larger than the corresponding va
from calculations in the Hartree basis. For high-Z ions such a
comparison becomes much better, e.g., forZ5100; the cal-
culations in the Coulomb and Hartree bases agree to
significant figures. We emphasize again that the no-pair
values presented here are converged to a high accuracy
differences between the resulting total amplitudes are du
the limitation of the second-order perturbation theory tre
ment of the negative-energy states. In other words, bring
the total values of the reduced matrix element calcula
with different starting potentials into agreement with one a
other requires consideration of negative-energy contributi

-
e

d

TABLE VII. Breakdown of contributions to the reduced matr
element of the magnetic-dipole moment and the corresponding t
sition rate for the 33S1→2 3S1 transition in heliumlike ions calcu-
lated with Hartree basis sets. (M1)1

np is the no-pair contribution
from CI calculations, (M1)2

tot is the contribution of negative-energ
states, and (M1)tot is their sum. The notationa@2b# designatesa
3102b.

Z (M1)1
np (M1)2

tot (M1)tot A (s21)

2 8.119@26# 1.947@26# 1.007@25# 1.17@28#

3 2.926@25# 3.824@26# 3.308@25# 4.80@26#

4 6.299@25# 5.710@26# 6.870@25# 1.90@24#

5 1.093@24# 7.600@26# 1.169@24# 2.73@23#

10 5.295@24# 1.710@25# 5.466@24# 6.22
20 2.321@23# 3.650@25# 2.358@23# 9.40@3#

30 5.408@23# 5.671@25# 5.464@23# 6.35@5#

40 9.842@23# 7.790@25# 9.920@23# 1.27@7#

50 1.571@22# 1.001@24# 1.581@22# 1.33@8#

60 2.312@22# 1.233@24# 2.324@22# 9.34@8#

70 3.225@22# 1.471@24# 3.240@22# 5.06@9#

80 4.333@22# 1.714@24# 4.350@22# 2.29@10#

90 5.670@22# 1.954@24# 5.689@22# 9.15@10#

100 7.282@22# 2.184@24# 7.304@22# 3.38@11#
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in higher orders of perturbation theory.
To estimate theoretical uncertainty of the results cal

lated in the Hartree basis, we compare the second-order
pair calculations with the all-order no-pair CI result. For h
lium, the second-order result (7.77731026 a.u.! recovers
96% of the all-order value (8.11931026 a.u.!, with better
agreement for higherZ. Since the negative-energy states co
tribute at the level of 20% for He, we estimate the theoreti
uncertainty of the total value of the reduced matrix elem
to be at 1% level. Such relative theoretical error in the to
value of transition amplitude scales as 1/Z2 for higherZ.

The relative modification of the total rate by the inclusi
of negative-energy states for 33S1→2 3S1 transition is
shown in Fig. 2. Both Coulomb and Hartree cases are c
sidered. The no-pair values for both cases are taken from
calculations. The total rate is obtained from the reduced
trix element values presented in Table VII. The neglect
contributions from negative-energy states would undere
mate the decay rate in the Hartree case by a factor of 1.54
neutral helium and underestimate the rate by 0.6% foZ
5100. The rates calculated in the Coulomb basis are affe
more strongly and the omission of negative-energy sta
would underestimate the decay rate in the Hartree case
factor of 2.91 for neutral helium and underestimate the r
by 0.8% forZ5100.

V. NUMERICAL DETAILS

For our numerical calculations, theB-spline basis set ha
been employed for both the CI and many-body perturba
theory ~MBPT! calculations. TheB-spline basis functions
approximate the eigenfunctions ofh0 in a spherical cavity.
The reader is referred to Ref.@13# for details. For the transi-
tions considered previously in Ref.@7#, the same basis set
and cavity radii are used. As noted previously, an insuffici
number of partial waves were employed in the negati
energy calculations of Ref.@7# for the 23P2→1 1S0
magnetic-quadrupole transition. The addition of these pa
waves marks the only change in the present calculations
this transition from those of Ref.@7#.

To our knowledge, the magnetic-dipole 33S1→2 3S1

FIG. 2. Comparison of the relative contributions of the negati
energy states to the transition rates (A coefficients! for various tran-
sitions along the helium isoelectronic sequence. The ratio ofuAtot

2Ano pairu/Atot is plotted. d, M1 3 3S1→2 3S1 , Coulomb basis
set; *, M1 3 3S1→2 3S1 , Hartree basis set;s, E1 3 3P1

→1 1S0 , velocity form, Hartree basis set;3, M1 2 3S1→1 1S0 ,
Hartree basis set;h, M1 2 3S1→1 1S0 , Coulomb basis set.
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transition has not been discussed previously in the litera
and we present the calculations in details. For this transit
convergence with respect to basis set size, cavity radius,
number of partial waves included was not as straightforw
as for the other transitions. Our aim was to obtain an ac
racy of a part in 105. Because of the inclusion ofn53 states
into the lowest-order wave function, the cavity radius w
increased to 120/Z a.u. in size. Unlike the other transition
however, 40 splines were insufficient in converging our s
lutions for lowZ. Even when a 50 spline basis was used,
second-order MBPT values differed by as much a 1% wh
varying the cavity radius between 40 and 60 a.u. for the c
of neutral He. We therefore used an 11th-order, 70-sp
basis set to obtain both our MBPT and CI results forZ
52 – 5. While such a large basis was required however,
only needed to sum over 30 of the 70 splines to obtain
desired level of accuracy. ForZ510, only a 50-spline basis
was required, summing over the lowest 25 splines. FoZ
>20, a 40-spline basis was used, again summing only o
the lowest 25 splines.

The relativistic configuration-interaction method, em
ployed for calculations in this paper, has been describe
Refs. @10,11#. The expression for matrix elements in the C
framework is given in Ref.@7#. For the CI calculations of the
3 3S1→2 3S1 transitions, the basis orbitals were limited
those having orbital angular momentuml<4 for neutral He.
For all otherZ<50, including only orbitals withl<3 was
sufficient. ForZ.50, only orbitals withl<2 were required.

VI. CONCLUSIONS

We have discussed the role of negative-energy state
calculations of transition amplitudes for heliumlike ions b
deriving the leading term of their contribution. The scalin
of ratios of negative- to positive-energy state contributions
transition amplitudes is presented in Table I for electr
multipole transitions and in Table III for magnetic-multipo
transitions. We determined several situations where the c
tributions of negative-energy states are comparable to
total value of transition amplitude and must be taken in
account. In contrast to the usual understanding of relativi
effects, the negative-energy states contributions for the
lowing cases are most important for low-Z calculations:~i!
electric-multipole (EJ) intercombination transition ampli
tudes calculated in velocity form in a model potential bas
~ii ! magnetic-dipole (M1) transition amplitudes calculated i
a model potential basis between states with different val
of total spin, and~iii ! magnetic-dipole (M1) transition am-
plitudes calculated in any basis between states with the s
value of total spin.

Figure 2 demonstrates how the inclusion of negati
energy states in the calculations modifies the transition
for the enumerated cases. It is clear that the negative-en
states play a significant role in the determination of the to
rate, contributing for lowZ at the level of a few percent fo
the magnetic-dipole 23S1→1 1S0 transition~Hartree basis!,
10% for the velocity form of the electric-dipole intercomb
nation 23P1→1 1S0 transition~Hartree basis!, and 100% for
the magnetic-dipole 33S1→2 3S1 transition~both Coulomb
and Hartree sets!. The ‘‘nonsmooth’’ behavior of the curve
for the magnetic-dipole 23S1→1 1S0 transition~Hartree ba-

-
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sis! is explained by the change of sign of the negative-ene
contribution atZ523.

The negative-energy contribution to transition amplitud
calculated in a Coulomb basis is smaller than or compara
to that calculated in a model potential basis. In order to
crease the effect of negative-energy states in elec
multipole transitions, one should employ the length form
electric-multipole potentials, as noted in Ref.@7#.

Finally, we have tabulated revised values for li
strengths of magnetic-quadrupole 23P2→1 1S0 transitions
in heliumlike ions. These values were obtained from the re
tivistic no-pair configuration-interaction calculations wi
negative-energy contributions added from the second-o
perturbation theory.
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APPENDIX: ANGULAR REDUCTION
OF THE NEGATIVE-ENERGY CONTRIBUTION
TO MAGNETIC-DIPOLE MATRIX ELEMENT

In this section we present the results of angular reduc
for the leading order in anaZ expansion for matrix elemen
of magnetic dipole. The starting expressions are given
Eqs.~2.17!–~2.19! for the operatorW. The results below are
expressed in terms of radial integrals

R~ i jkl !5E
0

`

Pi~r 1!Pk~r 1!r 1

d

dr1

3F E
0

`

Pj~r 2!
1

r .
Pl~r 2!dr2Gdr1 . ~A1!

HereP(r ) is the radial part of the nonrelativistic wave fun
tion of the zeroth-order Hamiltonian andr .5max(r1,r2).
Also v0 is the zeroth-order transition energy anddv1 is the
first-order correction to the transition energy. The analyti
expressions forv0 and dv1 can be found, for example, in
Ref. @7#.
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For the 23S1→1 1S0 magnetic-dipole transition the
negative-energy contribution due to the Coulom
^FuuM1uuI &2

CA and Breit ^FuuM1uuI &2
BA interactions cance

each other, as discussed in Sec. IV. The contribution du
the Coulomb interaction is given by

^FuuM1uuI &2
CA5

2

A6

a2

11
dv1

v0

@R~2s,1s,1s,1s!

2R~1s,2s,1s,1s!#. ~A2!

If the zeroth-order Hamiltonian includes a spherically sy
metric model potentialU, there is also a contribution
^FuuM1uuI &2

UA . The total negative-energy contribution is re
resented by this term. In the particular case of the s
consistent Hartree potential

U~r ![v0~1s,r !5E
0

`

P1s
2 ~r 8!

1

r .
dr8

we obtain

^FuuM uuI &2
tot5^FuuM uuI &2

UA5
2

A6

a2

11
dv1

v0

R~2s,1s,1s,1s!.

~A3!

In the case of the magnetic-dipole transition 33S1→2 3S1 ,
the contributions from Coulomb and Breit interactions a
equal and

^FuuM uuI &2
CA52A2

3

a2

11
dv1

v0

@R~3s,1s,2s,1s!

2R~1s,3s,2s,1s!2R~3s,1s,1s,2s!

1R~1s,3s,1s,2s!#. ~A4!
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