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Coulomb deexcitation and isotope exchange of excited mesic hydrogen

A. V. Kravtsov and A. I. Mikhailov
St. Petersburg Nuclear Physics Institute, 188350 Gatchina, St. Petersburg District, Russia

~Received 26 May 1998!

The processes of Coulomb deexcitation and quasiresonant charge exchange have been considered in the
framework of the asymptotic theory of the nonadiabatic transitions. The approach used is scrutinized and
improved in the light of recent critical statements. The unambiguous agreement between different calculations
for energiese.0.5 eV proves the approximation used to be valid.@S1050-2947~98!08511-4#

PACS number~s!: 36.10.Dr, 36.10.Gv
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The cascade of the excited mesic hydrogen atom in
mixture of hydrogen isotopes is an interesting problem b
in itself and for the muon catalyzed fusion. The most imp
tant reactions that determine the main characteristics
mesic atoms after the cascade are Coulomb deexcitation

~Hm!n* 1H→~Hm!n21* 1H ~1!

and isotope exchange

~Hm!n* 1H8→~H8m!n* 1H. ~2!

The acceleration of the excited mesic atoms during casc
transitions has attracted a lot of attention in the last few ye
@1,2#, especially after the experimental observation of ‘‘ho
pionic atoms@3#. Theoretical analysis of the matter numbe
few papers, which are either unable to predict a reaction
large enough to explain the experiment@4#, or are rather out
of date@5#, i.e., using an approach that is inadequate for
problem. For this reason it can be said that until now
outlook on the problem has been ambiguous. In Ref.@6# it
was declared that our results on the Coulomb deexcita
rate @4# as well as on the isotope exchange@7# were ‘‘unre-
liable and must be carefully analyzed.’’ Despite such a
strong statement, no clear physical motivations for such c
cism are presented except for the comment that the num
of partial waves involved in the process is too smalll
;Mvr<10), for which reason the impact parameter a
proximation we used is not valid. Reference@6# stimulated
us to reanalyze the approach we used in@4# and to scrutinize
the assumptions we made. Here we present calculation
the Coulomb deexcitation rates for pionic hydrogen ato
with n54, in order to compare them with the results of@6#.

The effective potential of interaction of the excited me
hydrogen atom with a hydrogen nucleus is asymptotica
determined by

u~R!. 3
2 n~n12n2!/R2,

whereR is the internuclear distance and (n,n1 ,n2) are para-
bolic quantum numbers. The validity condition for the WK
approximationdl/2pdR!1 is fulfilled here, since forn1
Þn2 andn>2

1

2p

dl

dR
;~3Mnun12n2u!21/2!1.
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M is the reduced mass of the colliding atoms.
As before@4#, we use the asymptotic theory of the non

diabatic transitions1 developed in@8#. Coulomb deexcitation
is considered as a nonadiabatic transition via the comp
branch point of theT type@8#, which connects the terms with
parabolic quantum numbers (n,n1 ,n2 ,m) and (n11,n1 ,n2
11,m) and is determined by the promotion of the form
term to the top of the barrier in the quasiangular equation
the problem of the two Coulomb centers. The position of
T point determines the region where the asymptotic exp
sion for the lower term is valid. This means that for the upp
term the asymptotic expansion is not valid forR;ReRT .
The branch point connects either two symmetricg states or,
alternatively, two antisymmetricu states, and the real part
of these branch points are equal. However, only transiti
between theg states are considered, because for theu states
the imaginary parts of the branch points are twice as larg
for g states, so the probability for such a transition is mu
smaller.

When solving the problem of mesic atom collisions wi
semiclassical methods one should choose the reduced
of the systemM and the unit of the massm in order to use
thereafter mesic atom units with\5m5e51. Such a choice
is simple and unambiguous in the physics of atomic co
sions due to the smallness of the electron mass with res
to the nuclear ones. For mesic atom collisions several v
ants of the mass choice are possible; for example,

1/M51/~M11m!11/M2 , 1/m51/m11/M1 , ~3!

1/M51/M111/M2 , 1/m51/m11/M1 , ~4!

1/M51/M111/M2 , 1/m51/m11/~M11M2! , ~5!

1/M51/M111/M2 , m5m, ~6!

whereM1 and M2 are the masses of the hydrogen isoto
nuclei in the initial and final mesic atoms, respectively, a
m is the mass of the light particle~muon or pion!. The
masses~3! correspond to the correct reduced mass of
system Hm1H8 and correct asymptotic values of the m
mentum and energy in the input channel. Such a choice

1This approach was called ‘‘improved adiabatic approach’’~IAA !
in @6# and ‘‘adiabatic complex plane method’’~ACPM! in @9#.
4426 © 1998 The American Physical Society
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used in the improved two-level approximation@10# for a
quantum-mechanical description of the system of three b
ies, one of which is muon. The masses~4! and~5! are often
used in the mesic atom physics. We used masses~4! in @4#
when considering the Coulomb deexcitation, and masses~5!
were used in@9# in the adiabatic hyperspherical approach
the study of low-energy scattering of a mesic atom in
ground state. The authors of@6# did not indicate what masse
they used, so we have recalculated the reaction rates fo
possible choices~3!–~6! of the masses@11# in order to com-
pare them with the results of@6#.

First of all we have realized that the approximate expr
sion for the Massey parameter

d~r!5
pDu~Re Rc!

4vc~r!
Im Rc ~7!

that we used in@4# might be too rough. Herer is the impact
parameter,Du(R) is the difference between the upper a
lower terms,Rc is the complex branch point,vc is the aver-
age radial velocity at the transition pointvc(r)5(p1

1p2)/2M , pi5A2M @e2ui(ReRc)2er2/(ReRc)
2#, and e

5Mv2/2 is a relative energy of the colliding particles atR
→`. For all terms that we considered we recalculated
Massey parameter directly as a contour integral2

d~r!5UIm E
C

p~R,r!dRU, ~8!

which depends on both the collision energy and the imp
parameter, or, for fixed angular momentuml ,

d~ l !5UIm E
C

p~R,l !dRU. ~9!

Here p(R,r)5A2M @e2u(R)2er2/R2# and p(R,l )

5A2M @e2u(R)2 l ( l 11)/2MR2# are radial momenta,C is
the contour that begins and ends on the real axis go
around the complex branch pointRc . It turned out that the
value of thed~r! changed by only 10%, but it changed th
cross section considerably because of the exponential de
dence of the reaction probability on the Massey paramet

w~r!52 exp~22d!@12exp~22d!#. ~10!

The cross section is obtained then for each term as

sn1n2
5pE

0

rmax
2

w~r!dr2 ~11!

or, for angular momentuml ,

2It should be noted that we could do it only for terms withn
<5, because for higher states the code that calculates the term
the complexR plane does not work effectively for sufficiently hig
ReR. At the same time, for the fixed relative error ind the relative
error in the transition probabilityw;exp(22d) is proportional tod;
i.e., it decreases with increasingn.
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sn1n2
5

p

k2 (
l 50

l max

~2l 11!w~ l !, ~12!

wherel max is the maximum angular momentum for which th
radial momentum is real on the trajectory, i.e., forR
>ReRc . Since the transition region is determined by t
position of the branch pointRc , we consider only trajecto-
ries with turning pointsRt<ReRc . The reaction rate reduce
to the liquid-hydrogen densityN054.2531022 cm23 is

ln1n2
5N0sn1n2

v. ~13!

The total rate for the givenn is then obtained as@12#

l5
1

2 (
~n12n2!,0

22d0m

n2 ln1n2
, ~14!

where the summation is performed over all attracting ter
and one-half means that onlyg terms are considered in th
initial state.

The calculated rates for the Coulomb deexcitation re
tion

~pp!n*→~pp!n21* , n54 ~15!

are shown in Figs. 1~a! and 1~b! for masses~5!. One can see
that our partial rates reproduce quite well the results of R

in

FIG. 1. Partial Coulomb deexcitation rates forn54 @reaction
~15!# calculated by summation over partial waves with masses~5!.
~a! Initial terms 4030 and 4120;~b! initial terms 4021 and 4012
Solid curves, the results of the present paper. Dashed curves
results of paper@6#. Black circles, with the account of the screenin
correction; open circles, without screening correction.
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@6# for transitions 4012→3002 and 4120→3110, only if we
neglect the screening correction. For transitions 40
→3020 and 4021→3011 the agreement is quite good f
energiese.0.5 eV, where the screening correction is sma

In the absence of screening the effective potential
asymptotically the formu(R)52b/R2, b.0 for attracting
terms. Equating the radial momentum to zero, one can ob
the maximum impact parameter for the turning pointRt

5ReRc as rmax
2 5b/e1(ReRc)

2, which gives for the cross
section

s;b/e1~Re Rc!
2.

If (Re Rc)
2!b/e, one obtains for the reaction rate ener

dependence for this case

l5N0sv;1/Ae.

Such a dependence is clearly seen in Fig. 1 for the r
calculated without the screening correction.

The effective potential with the screening correction@12#
reads as

ueff~R!52b~R2212R2112!e22R1er2/R2.

A specific feature of such a potential is a barrier at largeR.
In order to find the maximum impact parameter, one has
find the maximum of the barrier and equate it to the ener
i.e., to solve the system

]ueff~R!

]R
50 ,

ueff~R!5e. ~16!

The turning point can be found then from the equation

2Rtexp~22Rt!5e/b. ~17!

Obviously the left part of Eq.~17! cannot be higher than 1
so the system~16! has no solution fore.b. This means that
for large energye.b the turning point is not determined b
the top of the barrier. The maximum impact parameter
then determined by the value of the potential atR5ReRc
according to the requirementp(ReRc ,rmax)50.

The total rates@Fig. 2~a!# calculated with masses~5! for
e.0.5 eV coincide very well with those given in@6# if one
corrects an obvious mistake made in@6#. It is easy to see tha
the total rates calculated by Eq.~9! of Ref. @6# should be two
times smaller than those given in@6#.

In contrast with paper@6# we did not consider the trans
tion 4111→3101, but, as can be seen from@6#, its contribu-
tion is very small. It should be expected because of the
sence of the ‘‘focusing’’ for weakly attractive terms.

Figure 2~b! demonstrates the difference between the ra
calculated by integration over the impact parameter~11! and
by summation over partial waves~12!. The old results of
Ref. @4# are shown as well. One can see that the differenc
the total rates is quite small even for the lowest energy,
spite the very small value ofl max. The difference between
the present results and those of Ref.@4# is explained mainly
by the difference in the Massey parameters, roughly e
mated in@4# by Eq. ~7!.
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Quasiresonant charge exchange~2! is characterized by the
small splitting between the initial and final states of the
action due to the small mass difference between nuclei H
H8. Solov’ev showed@13# that the difference in masses o
isotopes H and H8 is equivalent to the difference in charge
of nuclei, the heavier nucleus having the larger cha
11DZ with

DZ5AM2 /~M21mm!2AM1 /~M11mm!,

where M1 and M2 are the masses of the light and hea
nuclei, respectively, andmm is the muon mass. The qua
siresonant charge exchange reaction was considered in d
in the Rosen-Zener-Demkov model@14#.

According to@8#, transitions of this type are related wit
the branch points of theP series that connect the initial term
(n,n1 ,n2 ,m) with the final one, which has the same qua
tum numbers but different muon localization. The transiti
is caused by the exchange interaction, which asymptotic
reads as

uex~R!5~2 !m
2~2R/n!n2n11n2 exp@2n2~R/n!#

n3n2! ~n21m!!
,

~18!

FIG. 2. Total rates of the Coulomb deexcitation~15! obtained by
summation over angular momentuml . Triangles, calculation with
masses~4!. Circles, calculation with masses~5!. The dashed line
shows the results of@6# divided by 2.~b! Total Coulomb deexcita-
tion rates~15! obtained with masses~4! by summation over angula
momentuml ~solid line! and by integration over the impact param
eterr ~dashed line!. Circles show the results of@4#.
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where m is the magnetic quantum number. The splitti
value near the branch point can be expressed as

Du~R!5Ad21uex
2 ~R! , ~19!

whered is the resonance defect. The branch point locatio
derived from the equation

d21uex
2 ~R!50,

which determines the infinite sequence of equidistant poi
which have approximately equal ReRP . Unlike theT-branch
points, the branch points of theP series depend on th
masses of the nuclei. Forpd, pt, anddt, combinations the
real parts of theP-type branch points are larger than those
the T points, so one may use the asymptotic expansion
the terms involved. The transition is characterized by
small value of the Massey parameter due to the small re
nance defectd;(0.00820.03)/n2.

The reaction probability for the Rosen-Zener-Demk
case@14# was derived to be

w~r!51/2 cosh2~d!, ~20!

whered is determined by Eq.~8! for the branch point closes
to the real axis. The difference between Eqs.~10! and~20! is
caused by the presence of the infinite series of the bra
points in the latter case. The total reaction rate should
calculated here as

l5 (
~n12n2!,0

22d0m

n2 ln1n2
. ~21!

We chose the reduced masses according to Eq.~4!,
though the mass choice is less important here because o
small value of the Massey parameter. The cross section
calculated via integration over the impact parameter~11!,
which gives results very close to those obtained by sum
tion over partial waves@15#. The results forn52, 3, 4, and 5
are shown in Fig. 3. As seen from Fig. 3, our results do
differ much from those of Ref.@9# and the difference could
beexplained by the asymptotic expansion we used for
terms instead of the accurate terms used in@9#.
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Coulomb deexcitation and isotope exchange are con
ered here from the viewpoint of the asymptotic theory
nonadiabatic transitions. The rates, calculated by summa
over partial waves and by integration over impact para
eters, are close to each other, except for the lowest ener
where l max<1. The results obtained for Coulomb deexcit
tion are close to those given in@6# for e.0.5 eV. The rates
of the isotope exchange agree with the corresponding da
Ref. @9#. It is difficult to consider this coincidence to b
accidental, which means that the approach we use is
equate for the problem in question, like that used in Refs.@6#
and @9#. It is clear that the main difference between our r
sults and those of@6# at low energy (e,0.5 eV) arises from
the absence of the screening correction in the latter pape
transitions 4012→3002 and 4120→3110. This circumstance
was not noted in@6#. It seems reasonable that one shou
explain why the screening correction does not change
Coulomb deexcitation rates in Ref.@6# for the transitions
4012→3002 and 4120→3110.

FIG. 3. Rates for the isotope exchange reaction~2! for H5d and
H85t. Solid lines—the results of the present paper obtained
integration over the impact parameter, dashed lines—the resul
Ref. @9#. Principal quantum numbers are shown at the curves.
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