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Coulomb deexcitation and isotope exchange of excited mesic hydrogen
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The processes of Coulomb deexcitation and quasiresonant charge exchange have been considered in the
framework of the asymptotic theory of the nonadiabatic transitions. The approach used is scrutinized and
improved in the light of recent critical statements. The unambiguous agreement between different calculations
for energiese>0.5 eV proves the approximation used to be vdl§i1050-29478)08511-4

PACS numbd(s): 36.10.Dr, 36.10.Gv

The cascade of the excited mesic hydrogen atom in the s the reduced mass of the colliding atoms.
mixture of hydrogen isotopes is an interesting problem both  As before[4], we use the asymptotic theory of the nona-
in itself and for the muon catalyzed fusion. The most impor-diabatic transition'sdeveloped in8]. Coulomb deexcitation
tant reactions that determine the main characteristics gk considered as a nonadiabatic transition via the complex
mesic atoms after the cascade are Coulomb deexcitation pranch point of th& type[8], which connects the terms with
parabolic quantum numbers,f,,n,,m) and (+21,n;,n,

(Hp)s +H—(Hp)j_1+H (1) +1m) and is determined by the promotion of the former
) term to the top of the barrier in the quasiangular equation of
and isotope exchange the problem of the two Coulomb centers. The position of the
. . - T point determines the region where the asymptotic expan-
(Hu)y +H' —(H ) +H. (2 sion for the lower term is valid. This means that for the upper

term the asymptotic expansion is not valid fer~ReR;.

The acceleration of the excited mesic atoms during cascadfhe pranch point connects either two symmetyistates or
transitions has attracted a lot of attention in the last few Year§jernatively, two antisymmetria states, and the real pa}ts
[1,2], especially after the experimental observation of *hot” ot these branch points are equal. However, only transitions
pionic atomg 3]. Theoretical analysis of the matter numberspveen they states are considered, because forutstates

few papers, which are'either unab!e to predict a reaction ratg,, imaginary parts of the branch points are twice as large as
large enough to explain the experimea, or are rather out o o sates, ‘so the probability for such a transition is much
of date[5], i.e., using an approach that is inadequate for thgj,Jjjer.

problem. For this reason it can be sal_d that until now the When solving the problem of mesic atom collisions with
outlook on the problem has been ambiguous. In R&fit  somiciassical methods one should choose the reduced mass
was declared that our results on the Coulomb deexcnatloBf the systemM and the unit of the mass in order to use
rate[4] as well as on the isotope excharlge were “unre- o oeer macic atom units with=m=e=1. Such a choice

liable and must be carefully analyz€dDespite such a s gimple and unambiguous in the physics of atomic colli-

strong statement, no clear physical motivations for such C“t"sions due to the smallness of the electron mass with respect

cism are presented except for the comment that the numbeg 1ha 1 clear ones. For mesic atom collisions several vari-

of partial waves involved in the process is too smdll ( ants of the mass choice are possible; for example,
~Muvp=<10), for which reason the impact parameter ap-

proximation we used is not valid. Referenld@ stimulated IM=1(M+pn)+1M,, Lm=1lu+1M;, (3)

us to reanalyze the approach we usefihand to scrutinize

the assumptions we made. Here we present calculations of IM=1M;+1M,, 1m=1u+1M,, (4)

the Coulomb deexcitation rates for pionic hydrogen atoms

with n=4, in order to compare them with the results[6f. IM=1IM1+1M,, LUm=LUu+L(M+M,), (5
The effective potential of interaction of the excited mesic

hydrogen atom with a hydrogen nucleus is asymptotically IM=1M;+1M,, m=pu, (6)

determined by
whereM,; and M, are the masses of the hydrogen isotope

u(R)=2n(n;—n,)/R?, nuclei in the initial and final mesic atoms, respectively, and
u is the mass of the light particlémuon or pion. The
whereR is the internuclear distance and,(;,n,) are para- masses3) correspond to the correct reduced mass of the
bolic quantum numbers. The validity condition for the WKB system Hi+H' and correct asymptotic values of the mo-
approximationd\/2wdR<1 is fulfilled here, since fom; mentum and energy in the input channel. Such a choice was
#n, andn=2

. _)‘ ~(3Mn|n;—n |)71/2<1 This approach was called “improved adiabatic approad#A )
27 dR e ' in [6] and “adiabatic complex plane method ACPM) in [9].
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used in the improved two-level approximati¢hO] for a ~ 10 :
guantum-mechanical description of the system of three bod- 2 B : : e e ————— ]
ies, one of which is muon. The masgd$ and(5) are often - feo ]
used in the mesic atom physics. We used maétem [4] - \ i "\\ i a
when considering the Coulomb deexcitation, and mages <10 i
were used ir{9] in the adiabatic hyperspherical approach in
the study of low-energy scattering of a mesic atom in the
ground state. The authors [@] did not indicate what masses
they used, so we have recalculated the reaction rates for a B : : :
possible choice$3)—(6) of the massefl1] in order to com- e
pare them with the results ¢6]. y i - - e 1
First of all we have realized that the approximate expres- 10 ‘gt ol - S
sion for the Massey parameter

wAU(ReR,)
———FIm
4ve(p) ¢

8(p)= ()

A (10" 1/s)

10

that we used if4] might be too rough. Herp is the impact
parameterAu(R) is the difference between the upper and
lower terms,R. is the complex branch point, is the aver-
age radial velocity at the transition poini.(p)=(p;
+p)/2M, pi=V2M[e—u;(ReR)—ep?(ReR)?], and e
=Mv?/2 is a relative energy of the colliding particles Rt ; ;
—oo. For all terms that we considered we recalculated the 10 lp—mmd -l —
Massey parameter directly as a contour intégral 10 10 10 1 10

Fig.1

8(p)=|Im fcp(R,p)dR‘, (8) FIG. 1. Partial Coulomb deexcitation rates for=4 [reaction
(15)] calculated by summation over partial waves with magSgs
which depends on both the collision energy and the impacf F1EE EIME 2090 e SEECES IR o A e e, the
parameter, or, for fixed angular momentum results of papef6]. Black circles, with the account of the screening
correction; open circles, without screening correction.

S(1)=|Im fcp(R,I)dR‘. 9

Imax

Onny= 2 > (@ 1w, (12)

Here p(R,p)=V2M[e—u(R)—ep?/R?] and p(R,!)
= \/2M[e— u(R)—1(I+1)/2MR?] are radial momenta; is  wherel ., is the maximum angular momentum for which the
the contour that begins and ends on the real axis goingadial momentum is real on the trajectory, i.e., fBr
around the complex branch poiRt.. It turned out that the =ReR.. Since the transition region is determined by the
value of thed(p) changed by only 10%, but it changed the position of the branch poinR., we consider only trajecto-
cross section considerably because of the exponential depeties with turning point®k;<ReR.. The reaction rate reduced
dence of the reaction probability on the Massey parameter:o the liquid-hydrogen densiti,=4.25x 10?2 cm™2 is

W(p)=2 exf—28)[1—exp —24)]. (10) Nnyn,=NoTn,n,0- (13)
The cross section is obtained then for each term as The total rate for the given is then obtained afl2]
2 1 2— 50m
= |fm 2 N=35 —— Ay, 14
Unlnz_wfo “wip)dp A3 2 (n, S0 N7 TMiM2 14

where the summation is performed over all attracting terms
and one-half means that ongyterms are considered in the
initial state.

The calculated rates for the Coulomb deexcitation reac-

2t should be noted that we could do it only for terms with  tion

<5, because for higher states the code that calculates the terms in
the complexR plane does not work effectively for sufficiently high (pm)i—(pm)r_,, n=4 (15
ReR. At the same time, for the fixed relative error drthe relative
error in the transition probabilitw~ exp(—24) is proportional to5,  are shown in Figs. (B) and Xb) for masseg5). One can see
i.e., it decreases with increasimg that our partial rates reproduce quite well the results of Ref.

or, for angular momenturh,
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[6] for transitions 4012-3002 and 4120-3110, only if we @
neglect the screening correction. For transitions 4030
—3020 and 40243011 the agreement is quite good for '©
energiese>0.5 eV, where the screening correction is small. 31 L

In the absence of screening the effective potential has
asymptotically the formu(R) = — g/R?, >0 for attracting
terms. Equating the radial momentum to zero, one can obtair
the maximum impact parameter for the turning pokRt
=ReR; as p2,=pBle+(ReRy)? which gives for the cross
section

o~ Ble+(ReR,)2. 10

If (ReR)?<ple, one obtains for the reaction rate energy
dependence for this case

A=Ngov~ 1/e.

A (10" 1/s)

Such a dependence is clearly seen in Fig. 1 for the rate:
calculated without the screening correction.

The effective potential with the screening correctjag]
reads as

Uer(R) = — B(R™2+ 2R 1+ 2)e R ¢p?/R2, 10 5
................................................................ S —————r
A specific feature of such a potential is a barrier at laRge e S E— el
In order to find the maximum impact parameter, one has to 19 10 10 1 10
find the maximum of the barrier and equate it to the energy, e (eV)

l.e., to solve the system FIG. 2. Total rates of the Coulomb deexcitatid®) obtained by

IUex(R) summation over angular momentumTriangles, calculation with
=0, massed4). Circles, calculation with massé8). The dashed line
JR shows the results d6] divided by 2.(b) Total Coulomb deexcita-
tion rates(15) obtained with massdg) by summation over angular

Ue(R)=€. (16) momentum (solid line) and by integration over the impact param-

. . . eterp (dashed ling Circles show the results ¢4].
The turning point can be found then from the equation p (das in: Circles show results ¢4]

2Rexp— 2R, = €l B. (17) Quasiresonant charge exchariggis characterized by the
small splitting between the initial and final states of the re-

Obviously the left part of Eq(17) cannot be higher than 1, action due to the small mass difference between nuclei H and
so the systen(16) has no solution foe> 3. This means that H’. Solov’ev showed13] that the difference in masses of
for large energy> g the turning point is not determined by isotopes H and His equivalent to the difference in charges
the top of the barrier. The maximum impact parameter if nuclei, the heavier nucleus having the larger charge
then determined by the value of the potentialRast ReR. 1+ AZ with
according to the requiremep{ReR;,pmna0 =0.

The total rate§Fig. 2(a)] calculated with masse$) for
€>0.5 eV coincide very well with those given [®] if one
corrects an obvious mistake madd @j. It is easy to see that
the total rates calculated by E@) of Ref.[6] should be two where M; and M, are the masses of the light and heavy
times smaller than those given [ifi]. nuclei, respectively, andn, is the muon mass. The qua-

In contrast with papef6] we did not consider the transi- siresonant charge exchange reaction was considered in detail
tion 4111-3101, but, as can be seen frd6l, its contribu-  in the Rosen-Zener-Demkov modéi4].
tion is very small. It should be expected because of the ab- According to[8], transitions of this type are related with
sence of the “focusing” for weakly attractive terms. the branch points of the series that connect the initial term

Figure Zb) demonstrates the difference between the rateg,n,n;,n,,m) with the final one, which has the same quan-
calculated by integration over the impact paramétdy and  tum numbers but different muon localization. The transition
by summation over partial waved?2). The old results of is caused by the exchange interaction, which asymptotically
Ref.[4] are shown as well. One can see that the difference imeads as
the total rates is quite small even for the lowest energy, de-
spite the very small value df,,.. The difference between nenatn
the present results and those of Rdf| is explained mainly oyl R):(_)mZ(ZR/n) v exg —n—(R/n)]
by the difference in the Massey parameters, roughly esti- n3n,!(ny,+m)!
mated in[4] by Eq. (7). (18

AZ=My/(Ma+m,) =M /(M;+m,),
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where m is the magnetic quantum number. The spllttmg 0
value near the branch point can be expressed as - - - e 1

AU(R) = Vd?+ UZ(R), (19 =
10 s

whered is the resonance defect. The branch point location is . . ) ........... 1

derived from the equation e N :

[=]
s
<

d?+uZ(R)=0,

which determines the infinite sequence of equidistant points
which have approximately equal R . Unlike theT-branch
points, the branch points of thE series depend on the ; dt .
masses of the nuclei. Fard, pt, anddt, combinations the 1 S
real parts of thé>-type branch points are larger than those of - - - e .
the T points, so one may use the asymptotic expansion for . . . S ]
the terms involved. The transition is characterized by the . . . e .
small value of the Massey parameter due to the small reso - — cenl
nance defecti~ (0.008-0.03)/n?. 10 10 10 1 10
The reaction probability for the Rosen-Zener-Demkov e (eV)
case[14] was derived to be

FIG. 3. Rates for the isotope exchange react®rfor H=d and
H'=t. Solid lines—the results of the present paper obtained by
w(p)=1/2 Cosﬁ(é), (20 integration over the impact parameter, dashed lines—the results of
Ref.[9]. Principal guantum numbers are shown at the curves.

whered§is determined by E(8) for the branch point closest
to the real axis. The difference between EJ€) and(20) is

caused by the presence of the infinite series of the brancgr
points in the latter case. The total reaction rate should bg
calculated here as

Coulomb deexcitation and isotope exchange are consid-
ed here from the viewpoint of the asymptotic theory of
onadiabatic transitions. The rates, calculated by summation
over partial waves and by integration over impact param-
eters, are close to each other, except for the lowest energies,
2— Som wherel ,»=1. The results obtained for Coulomb deexcita-
A= Tz Mgy (21)  tion are close to those given [6] for e>0.5 eV. The rates
(n17n2)<0 of the isotope exchange agree with the corresponding data of
Ref. [9]. It is difficult to consider this coincidence to be
We chose the reduced masses according to @y. accidental, which means that the approach we use is ad-
though the mass choice is less important here because of tieguate for the problem in question, like that used in Réfks.
small value of the Massey parameter. The cross section wand[9]. It is clear that the main difference between our re-
calculated via integration over the impact paramétel),  sults and those di] at low energy €<0.5 eV) arises from
which gives results very close to those obtained by summathe absence of the screening correction in the latter paper for
tion over partial wavefl5]. The results fon=2, 3, 4, and 5 transitions 4012-3002 and 4128-3110. This circumstance
are shown in Fig. 3. As seen from Fig. 3, our results do notvas not noted ir{6]. It seems reasonable that one should
differ much from those of Ref.9] and the difference could explain why the screening correction does not change the
beexplained by the asymptotic expansion we used for th€oulomb deexcitation rates in Ref6] for the transitions
terms instead of the accurate terms usefBin 4012-3002 and 4126-3110.
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