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Quantum beats provide a useful tool in spectroscopy for the evaluation of fixed energy level differences.
However, in wave-packet dynamics the motion of wave packets about molecular energy surfaces provides
time-dependent energy differences. Thus a superposition of wave packets on two excited energy states can
yield quantum beats with a time-dependent frequency that depends on the molecular dynamics. We explore this
problem with examples and simple models of wave-packet quantum beats. The effects of separating wave
packets, and wave packet dispersion, are of especial interest. Calculations are performed using a numerical
integration of the time-dependent Sctimmger equation with three energy states and time-dependent couplings.
The effects of spontaneous emission are determined by using a fully quantum mechanical Monte Carlo wave-
function method[S1050-2947©@8)01807-1]

PACS numbseps): 42.50.Md, 33.80.Be, 31.70.Hq

I. INTRODUCTION lecular states to a short pulse of light. In many molecules the
ground-state potential may be nearly harmonic and thus the
The introduction of ultrashort pulses into molecular phys-corresponding wave function is a good approximation to a
ics has allowed the exploration of molecules with waveGaussian wave packet. Then a very short pulse of light
packet dynamic$1,2]. The momentary coupling of two po- couples the ground-state wave packet to the excited states.
tential energy surfaces introduces a localized wave packet dnor all but the shortest pulses there will be an uneven redis-
an excited state. With the Coup”ng gone, this wave packe&”buuon of the paCket on the excited states because of the
propagates on the potential surfa@es a superposition of Spatially varying detuning5]. After excitation the coupling
vibrational statesand may subsequently be detected usingS removed and all the wave packets start to move because
absorption by ultrashort pulses, or time-resolved measure-
ment of fluorescence. The observed wave-packet motion UZ(X)
then reveals information about the molecule and its environ-
ment, and thus enables, for example, steering of the molecule
into a specific state. U I(X)
This paper focuses on one effect specific to three-state
systems subjected to spontaneous emission: wave-packet
guantum beats. These systems are an appropriate field of
study because the ultrashort pulses used to create excited
state wave packets have a broad bandwidth, and may easily
excite wave packets on more than one electronic state. If two
electronic states are coherently excited then we can expect
guantum beats as the excitation decays back to the ground
electronic statésee Ref[3] for the atomic cage The energy
difference of the excited-state potential surfaces at the loca-
tion of the wave packet specifies the beat frequency. Thus in
molecules the motion of the wave packet leads to time-
dependent variations in the beat frequency and amplitude,
which are not present in the atomic case.
We shall consider a model of a molecule with three elec-
tronic potential energy surfaces: the ground-state sutfhce
and two excited-state surfactg andU, (see Fig. 1in aV
configuration. We will focus on the usual configuration FIG. 1. Three potential energy surfaces(x) illustrated as a
though it is possible to obtain quantum beats with laddefunction of a molecular coordinate The arrow indicates the ap-
systems[4]. We work within the Born-Oppenheimer ap- proximate effect of an ultrashort pulse—to lift parts of the ground
proximation, and make the rotating wave approximationstate wave packet to the excited states 1 and 2. Specific forms for
when we describe the coupling4(t) (j=1,2) of the mo-  U; are given in Sec. IV.
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they are not in equilibrium on their surfaces. These motionghe excitation process is sufficiently long that there can be
are on vibrational time scales and may lead to oscillations osome decay during the preparation of the wave packets.
dissociation depending on the specific form of the. Dur-  However, if the excitation process is very short, and if we do
ing the wave-packet motion spontaneous decay causes th@t need the ground-state information, we can use other, sim-
excited-state wave packets to return to the ground state; b&ler approaches, such as the method using optical potentials
cause they have been coherently excited quantum beats méipcussed in Sec. liiwhich is based on the textbod0]
be observed in the fluorescence. approach to quantum beatdVe can also make useful ap-
We will present in this paper some model calculations 01=_proximations by using Gaussian wave packets, and this work

the quantum beat signal and how it is influenced by the predS Presented in Sec. IV. In Sec. IV we also make a compari-
ence of wave-packet dynamics. This will be done in thre on of the methods with some simple examples. The paper is
different ways, including a brute force numerical approach.Concmdecj in Sec. V.

We will consider only some model three-level systems, ig-

noring all the complications of additional nearby levels in Il. DENSITY MATRIX FORMULATION

order to present some of the basic ideas and phenomena, and
in order to test some of our algorithms and approximate
methods.(Nevertheless, the methods presented can be ap- Quantum beats have been used as a tool to study the en-
plied to realistic systempsin order that the effects of the €rgy levels in atoms for quite some tinj8,11,13 and to
wave-packet dynamics can be demonstrated, it is essenti§kploit the basic phenomenon of quantum interference when
that the time scale for the decay of the system should béhere are two possible paths for a quantum system to take. In
longer than a time scale characterizing the dynamics of théhe atomic system the two paths are simply the routes from
wave packetde.g., a vibrational time scaleln molecular the two excited states to the ground state. The quantum beats
systems this allows us to use decay, or fluorescence, asnged to be distinguished from their classical counterpart,
means to monitor the postexcitation wave-packet dynamicg¥hich can be seen when two classical waves simply interfere
and this has already been achieved experimenfiéliyif the ~ ©On @ photodetectdrl3]. _ o _

time scale for decay is very long compared to the wave- Using a standard perturbative approach it is possible to
packet dynamics we will not observe population decay, foMrite down the master equation for the density matrix of the
example, in a quantum beat signal, if we monitor the systenthree-level system undergoing deddy-16 (and see also
over time scales that are comparable to the wave-packet d{117]):
namics. However, we will still observe beating effects if the

beat frequency is sufficiently fast. For the model systems in —p=
this paper we have chosen decay rates that are not vastly dt
greater than the time scales of the wave-packet dynamics. » )
This allows us to show the population decay, and makes th@here the transition operator is
problem more amenable to the brute force approddbyv- _ _
ertheless, for low decay rates, the various methods we de- J= ‘/7—1‘71 + \/7_2‘72 :

scribe can still be appliedThe regime where the decay time __ . hat th o f both
scale more nearly matches the dynamical time scale arises iH'lS OPerator ensures that the emission comes from bot

an interesting physical situation where spontaneous emissidf@nsitions. H,e“-Wj: j=1,2 represent the dipole matrix el-
and molecular dynamics couple in cold collisions betweerfMents leading to decay at the ratgs and o are the
laser cooled atom§7]. The slowly moving atoms form a raising (+) and lowering ¢-) operators that move the sys-
quasimolecule, which can be excited resonantly during théem between the excited stateand ground state. For the
collision due to the presence of laser light. This can be modatomic system the Hamiltonian is simply

eled as a wave-packet process, which is then treated numeri-

cally or using semiclassical approximatiof8. So far the w1 Qy(t) 0

time-dependent studies of cold collisions have mainly con- Ho=| Qu(t) oy  Qu(1) ], 3
sidered the case of a single excited-state potential surface, 0 Q,(t)
but in realistic systems we have a manifold of molecular fine 2

a.nd hyperfine states that do_ not differ much in energy, eSP&iherew,, w;, andw, are the frequencies of the transitions
cially at large internuclear distances, where the resonant etween the three levels ard. and Q. are the time-
citation takes place. Thus the discussion of multistate eXCiaependent couplings given in anlgular mozmentum WD

tation and decay_given in this paper is also_ relevant tq th‘?requencie}s Here we use a basis such that the total wave
treatment of multistate models of cold collisions, eSpeC'a"yf\Jnction is

when it comes to the methods used to solve the dynamica

A. Atomic quantum beats

—i[Ha.p]=2(3p+pd13-23p3", (O

@

w2

problem[9]. Cy

In the following section we describe the quantum me-
chanical treatment of the processes leading to quantum beats V=| Co |, 4
in molecules. We also describe how to solve the time evolu- C,

tion of wave packets numerically in the presence of sponta-

neous emission by using a quantum Monte Carlo approachvhere theC; are the time-dependent probability amplitudes
This method is necessary if information is needed on thef the three states. All the effects of level shifts have been
ground-state wave-packet dynamics, or if the time scale oincluded in the master equatiofl) with the appropriate
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choice of frequencies; and the decay ratgd6]. The mas- B. Molecular quantum beats

ter equation(1) also includes the effects obff-diagonal The molecular case is more complex because the system
damping The off-diagonal damping terms in the master .qnains an extra degree of freedom: the molecular coordi-
equation are responsible for a coupling between coherences;igs) Here we confine our attention to a single molecular

and populationsi.e., between diagonal and off-diagonal el- ¢, ginate that will be denoted by Then the Hamiltonian
ements of the density matjixThe effects are usually small, for the molecular system is given by

unless the energy difference of the two excited states be-

comes comparable to the spread of energy from the decay y Ui(x)  Vq(b) 0
rate. Then the effects of off-diagonal damping may be sig- _h
nificant. There can also be some level-shifts associated with 07 2m gy T | Vi) Uo(x) Va(t) |, (1D
off-diagonal damping16], but we will neglect these here. 0 Va(t) Ux(x)
The beat frequency can be determined from the eigenval- ]
ues of the master equation and is found td b&,17 where nowU(x), U;(x), andU,(x) are the spatially de-

pendent electronic potentials for the molecule, &nig the
waRe\/[(wl—wz)—i(n— Y2)12]2— v175. (5) corresponding identity matrix. The couplings with the laser
pulse are given by/,(t) andV,(t), and are assumed not to
If the two decay rates are equal=y,=1,, this is simply  be spatially dependent. The main change, compared to the
wp=Re(w;— w,)%— 2. atomic Hamiltonian, Eq(3), is the inclusion of the kinetic
As the transition operator corresponds to the creation of &&rm with the massn. However, with this modified Hamil-
photon, which is then subsequently observed, we can fortonian the master equatidd) still governs the evolution of
mally write the detected intensity of the fluorescence radiathe density matrix. We have now taken into account the ex-

tion as citation of the system, the dynamical evolution, and sponta-
. . - - neous decay. The density matrix depends on the spatial co-
(1) Tr [(Vy107 + V7205 (V101 +V7205)p(1)] ordinatex as well as the energy stajte That is, the elements

6)  of p(t) arep;; (x,x',1).

dh def hth We will see in Sec. lll and in Sec. IV that it is not always

and here we defing(t) such that, necessary to solve the full master equati@i for the mo-
ity — —— lecular problem. The technique of optical potentials, and the

=30 = y1put vop2zt 2V1v2 Repra, (1) utilization of Gaussian wave packets, provide approaches

where the brackets mark a quantum statistical average, ajjat We will examine in the next sections. However, if we are
thus the signal is given in terms of the system density matrit"terested in the ground-state wave-packet dynamics, or if
pij » Where the diagonal elements describe the state populd2€ time taken for the excitation of the pulse is non-
tions, and the off-diagonal elements describe the coherenc@§dligible, we must solve Eq1). This is a nontrivial task if
between the states. we try to solve the system numerically by discretization of
In the simplest Weisskopf-Wigner theory of decay onethe density matrix in space and time. The problem is the

simply postulates an exponential decay for the upper stat@f9e memory occupied by the representation of the density
am5i¥u3e§:j [19]. In the F():ase ofa quan%lum beat th?ge—levelmatr'x[z'zq' This can be. drastlcal_ly reduced by ut|I!Z|ng the
system we must only take into account the different frequenMonte Carlo wave-function techniquél]. We have imple-
cies of those amplitudes so tHA(] mented it in the standarcj wa[Q,S,Z(]._ Using the transition
operatorJ, Eqg. (2), we first determine the probability of
Ci(1)=C;(0)exp — y;tl2—iw;jt). (8)  photon emission from both upper states during a short time
stepAt, that is,
As a result, the populations and the off-diagonal elements of "
the density matrix all decay exponentially. Although we can AP=AY(WV[IN| V). (12)
include the effects of off-diagonal dampirfthe coupling of
coherences to populationsve neglect these in E¢8). Thus
Eq. (8) represents a model aidependent exponential decay
for the two states. This model then yields a quantum beatP
signal(in the dipole approximatignof

Then we obtain a random numbebetween 0 and 1 and do
one oftwothings. Ifr<AP we perform a transition from the
per states to the ground stagequantum jumpso that

)
1(1) 2| y1C1() + y2Ca(1)|2. 9) |W)— T (13)
Then if the decay rates are equal we obtain However, if r=AP, there will not be any transition, and
I(t)oce™ {1+ cog (wy— wpt]}, (10) instead the system evolves with the non-Hermitian operator
and the beat frequency is cleany,= w,— w,. This result He=Ho— ﬁJTJ

differs from the one given in Eq5) because of the presence 2

of off-diagonal damping terms in the master equati@n T3

We note, however, thab, in Eq. (5) will approach =Ho—7[\/zal*+@crz+][\mal’+\/%ag].
—w, When (wq,w5)>(7y1,7v,). This limit is discussed fur-

ther in Sec. lll. (14



PRA 58 WAVE-PACKET DYNAMICS AND QUANTUM BEATS 443

The non-Hermitian operatdfio+ can also be written in a Finally, we can see that the beat signal follows very natu-
matrix form as rally from the probability of spontaneous emission in unit
time. From Eq.(12) we obtain the same result found in Eq.
" V1 0 JVyivs (7), but this time the coherengg is evaluated as
Ha=Ho—%| 0 0 0 | @y
fr 0 lol)= [ avixowaxn). a9

This clearly shows diagonal damping terms, y, and off-  Here we have used the brackets to mark the ensemble aver-
diagonal damping termg'y,y,. The evolution withH. is  age. Likewise the populations ; andp,, are simply(1|p|1)
performed in a numerical implementation where we dis-and(2|p|2), respectively.

cretize the spatial wave functions. Since the system Hamil-

tonian is now non-Hermitian, we need to renormalize our ll. STANDARD QUANTUM BEAT REGIME
wave function after each time step. The operatgg implies ) )
that for the wave-function components given by We have already pointed out that the result from indepen-
dent exponential decay, E(B), is not actually a solution of
P(x,t) the master equatiofl) although the beat signal from the
w=| wyx.t) exponential decay treatment approaches the master equation
=| ¥olx, (18)  result (5) in the limit (wy,w,)>(v1,7,). This arises be-
Wao(x,t) cause in this limit we can perform a type of secular approxi-
_ o _ _ mation which involves neglecting the off-diagonal damping.
we obtain the partial differential equations In this limit the master equatiofl) will become
. Jd 2 (92 d [ Y1 t + +
|hallfo(x,t)={ 2m; +U0(x)] o(Xx,t) &pZ—%[Ho.p]_7(J1J1p+leJl—2J1le)
+ V(D)W 1(X,1) + V(D) Wo(X,1), —%(Jszp'f'pJ;]z—ZszJ;), (19)
d 2 g2
i —W(x,t)=4 — ——+U1(x) 71 W (x,t) where the decay is now into two separate channels. Each
at 2m 2 decay channel has a “jump operator”:
ih - -
VRO 5717V a(x), 3= nor,
17 32= 720 . (20)
P 52 g2 i We could construct a wave-function simulation for this
i —Wo(X,t)=1{ — =— —+Uy(X)— '_72 W,(x,t) master equation but, in fadf, we are only interested in the
ot 2m gx? 2 upper states of the system this is not necesgahyte that to

5 evaluate the beat signal E¢7) we only need information
e about coherence and populations on the upper states 1 and
FV2AOW (XD = FVr172¥a(xD) 2.) We can use the technique of complex potent[822]
where the time evolution of the system is governed by an
Despite the complications introduced by the decay factorspperator similar toH.; in Eq. (14), but without the off-
these coupled partial differential equations can be solved bgiagonal damping. Thus we will obtain the coupled differen-
using the Crank-Nicholson numerical meth@bed hergor  tial equationdsee Eq(17)]
other method§2]. We note that even in the absence of jumps
we have effects from off-diagonal damping. The above steps ¢ h2 (92
Egs. (12—(14) are repeated for many short time steps to Iﬁﬁ‘lfl(xﬁf):
form the stochastic trajectory for the wave function. How-
ever, to obtain meaningful results we must obtain many tra-
jectories to form an ensemble. Then the ensemble averageslﬁ \If (X,1)= (X)— ﬁ W,(x.)
for the observables will approach the values that would be 2% T 2m g2 Uz 2V
obtained by direct integration of the density matrix master (21)
equation(1) with the HamiltonianH,, Eq. (11).

We note here that the time stept, used in the Monte which apply after the duration of the excitation pulse. How-
Carlo method, e.g., in Eq12), need not be the same as the ever, unlike the implementation the Monte Carlo wave func-
time steps used to integrate Ef7). This may be desirable if tion simulation described in Eq§12)—(14), here wedo not
the decay rates and potenti&s coupling$ have rather dif- renormalize the wave functions so that they will decay.
ferent time scales, because it enables us to carry out fewer This approach neglects any possibility of reexcitation of
tests, and allows us to rely less on very small numbers fronthe population that has decayed back to the ground state, but
the random number generator. provided the excitation pulse is short enough this is a reason-

©2m x2

(X) 2 7’1} 1(X,t),

%2 az
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able approximation. This means that for the duration of the
excitation pulseonly we may implement the equations:
2 g2

d
ihE‘PO(X,t)Z{ “om ﬁ-i- UO(X)] Wo(x,t)

+ V(D)W 1(X, 1)+ V(D) W,(X,1),

d 2 52
ihﬁ‘l’l(xyt)Z[—ﬁﬁ+U1(x)]\Ifl(x,t)
+Vi(H)Wo(x,1), (22)
h? g2

_+U2(X)] Wo(x,1)

0
|hﬁllfz(x,t)—[ - ﬁ PN

+Vo(H)Wo(x,1).

Note also that as the decayed excited states population
leaves the 1-2 system in this model, instead of being re-
turned back to the ground state, we cannot get the time evo-
lution of the ground state correctly. In other words, this ap-
proach is merely the independent exponential decay FIG. 2. The components of the wave .packet (fa)!'the ground
treatment taking into account the internal dynamics of thes_tate 0,(b) the excited stgte 1. The potentials used in the mo_del are
molecular wave packets. However, a clear advantage of thif?€a" Uj(X) =4;+x;x with Ag=0, A,=5000, andA,=4000 (in
model is that no ensemble averaging is needed, begayse Scaled units The detunings arelo=0, A;=-5000, and4,

P22, andpy, can be found from the wave-function compo- =5900. Thus potentials for thg upper states are diverging as the
- . . . . excited state wave packets gain positive momentum and move ac-
nents asp;;=W;W; . Of course, situations arise where this

. o cordingly. The exciting pulse has a hyperbolic secant profile with a
_approach IS not adequate, and we Can_not use _'t if We argigih of 0.001 and peak height of 500. The decay ratessgre
interested in the ground-state dynamias is sometimes the _, _50. The ensemble averaged resuits contain 5000 samples and
case for cold collisions Then we have to use a master equa-50g spatial points were used in the numerical integration. The wave
tion approach and a Monte Carlo simulation. packet has width 0.25 and starts in the ground state O.

IV. NUMERICAL RESULTS transformed away with equivalent energy subtracted from

. the potentialdJ;,U,.
In the cases that we have studied we can see that there are

essentially two major contributions of wave-packet effects to
the quantum beat signal. The first effect arises from the sepa-
ration of wave packet trajectories on the two upper state |n this first model we have used simple linear potentials
surfaces. As the wave packets separate the overlap of the tvo that if the wave packets can be treated as approximately
packets decreases and then there is a reduction in the amptassical particles, the energy difference is increasing qua-
tude of the coherencg;,, Eq. (18). This will then modify  dratically in time. As a result the beat frequency should in-
the amplitude modulation of the quantum beats. The secongrease quadratically totas long as we do not approach a
effect arises from the fact that as the wave packets on theurve crossing The potentials used in the model are
upper state surfaces evolve in different potentials, there is a
time varying energy difference between them. As a result the Uj(x)=A;+ XX, (23
beat frequency varies in time. We have selected two highly
simplified potential surface models in order to study thesavhere the slopes of the potentials die scaled units \,
effects. In addition we have also looked into a situation=0, A\;=5000, \,=4000. The detunings ar&,=0, A;=
where the off-diagonal damping should be non-negligible,—5000, andA,=5000. Thus the potentials for the upper
and indeed we find that it has a small effect in the particulastates are diverging as the excited-state wave packets gain
model situation that we have investigated. positive momentum and move accordingly. The exciting
In order to solve Eq(17) numerically we have used the pulse has a hyperbolic secant profile with a width of 0.001
standard scaling presented in R€f5,23], i.e., x—Xx/Xs, t  and peak height of 500. The decay rates gye y,=50 and
—tlts, Uj—Ujlvg, V;—V;lug, whereﬁts=2mx§ andvg  the ensemble-averaged results contain 5000 samples.
=hlts. This scaling corresponds to settifg=1 and m The excitation of both the excited states is initially about
=1/2, and transforms all parameters and variables into di40% because a very short excitation pulse with a suitable
mensionless quantities. Finally, to avoid numerical integraarea is used. Figure 2 shows the probability densities
tion of quantities evolving at optical frequencies, we changeP;(x,t) = |‘Ifj(x,t)|2 for j=0 (&) and j=1 (b); the casej
to a basis where the rapidptical) frequencies inV’,, ¥, are =2 is omitted as it is very similar to the cage-1. Both

A. Linearly separating energy states
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90
Voo [x=x()]?
20 - @ lIfj(X,'[)ZTeX T T~ 12
| (2m) Yo (1) [20(1)]
704 i
. oy 2.3 .
ip;(t) INTS O OEt
60 + ——IX—X: R
_ 50
= 401 where the wave packet starts at positignwith no momen-
tum and the classical trajectory of the wave packet is
30
204 X;(t)=Xo—\;t?/(2m), (25)
3 T 0005 0.01 0.015 002 The classical energy &;=A;+\;Xo. Then on both states 1
t

and 2 the initial width of the wave packet ig, and the

% parameter?r(t) is defined as

80 ® a(t)= ol +ith/(2m). (27)

70

We note that from the wave packétd) we can determine

60 1 the time-dependent width of the packet as
= 7 a(t)=ooV1+(t/7g)?, (28)
40_

where we have defined a time scajgfor the spreading of

] the wave packet:

20

ZmO'S
T4= 7

(29

o 0005 K 0 . .
o o018 002 Then by combining two of the wave packet4), one

with amplitudea, on state 1, and the other with amplituale

FIG. 3. Quantum beat signal for the parameters of Fig. 2. TheOn state 2, we may compute the time-dependent overlap as

solid curve in both(a) and (b) shows the numerically calculated
beat signal, the dotted line i@ shows the signal from a system

N .\2,.2
with fixed energy difference. The dashed linglm shows the semi- Op,(t)= a»{ azex;{ i(Eq—Ep)t/fhi— (A1—X2) 0 t2

classical exponential decay result given by E@6) and (31). 2%2

. (N2=N3) . (A1—\y)?
excited-state wave packets accelerate, spread, and decay _jot T2l ML T2 a4l (30)
back down to the ground state. The ground-state wave packet 12m#: 32m?o}

becomes very spread out because it contains contributions
from both upper state trajectories and the ground-state popdHe exponential contains three terms of which the two
lation that was not removed by the pulse. imaginary terms will contribute to the beatshen we con-

The beat signal in Fig. (@) (solid curve shows a slight sider decayand the two real terms will affect the envelope
frequency chirp because of the time-dependent increase iof the beats. In fact the last term in E@O) arises simply
energy-state separation. However, the modulation decreasttesm the overlap of two packets, of fixed widéy separating
quite rapidly in time. This is because of the increasing sepaen the trajectorie$26). This last term dominates E(O) at
ration of the wave packets, which reduces their overlap anthrge times, but note that the two packets spread as well,
the possibility for beats. For comparison we have also plotaccording to Eq(28)—this partly explains the second term
ted the result of a density matrix calculatipafotted curve in  in Eq.(30). The third term arises from the energy chirping of
Fig. 3@], with no wave packets, and for an energy differ- the wave packets and takes place on a time scalaster
ence that is fixed in time at the initial value. In this case thethan the overlap decay in the last term. The rate of change of
signal does not wash out so rapidly, and the requirement dhis term, i.e., the instantaneous beat frequency, increases
spatial overlap does not apply here. The dephasing of thguadratically in time as mentioned at the start of this section.
wave packet beat signal can be clearly seen. On short time scales the second term in E3f) dominates

In order to provide a more quantitative analysis we con-the envelope decay until we approach the spreading time
sider a simple model where the excitation process is prescalery. This is because it is found from the last term in Eg.
sumed to place two perfectly Gaussian wave packets on th@0) by multiplication with the factor £4/2t)2. Finally, the
excited states 1 and 2. Then if wimitially) neglect the de- first term in Eq.(30) arises simply from the initial energy
cay process, the time-dependent evolution of the wavelifference and contributes to the oscillations in the beat sig-
packet on statg¢ (j=1,2) is given by[24] nal. All these terms will affect the beat signal, so conversely,
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if we can measure some, or all of these parameters from the
beat signal we can obtain considerable informatieug., the Oy (t)=a] azexp{ (A —A)t/h+
two slopes in the region over which two potential energy (2
surfaces are linear.

To take some account of the decay process, we may sim- au? o Y N
ply adopt the exponential decay approach, neglecting the off- X[ = 2x38iM(Qt/2) — 2ix 1 Xo— X)sin Q] 1,
diagonal damping, so that, for equal decay rates

2
ag)

(33

p1At) =Oga(t)exp(— 1),
where the separation of the oscillatorsxg=x;—x, and

t)=|ay|?exp(— 1), 31 ) L — :
pu(V)=[ay|“exp(= 1) S their mean position ix=(x;+X,)/2. Then the approximate
beat signal in the presence of decay is given b sand

palt)=agl2exp— ), 30 2 P Y is given by &1

and then the beat signal is given by E@). For the example

of Fig. 3 we have plotted the resulting signal as the dashed 2 ir2

curve in Fig. 3b) and we see that there is an extremely good 1(t)= 71 |ag|?+|ag|?+ 2|aa,]ex — 2XgSIM(t/2)

fit except near the region of excitation. Obviously this simple ! 2 192 (20¢)?

model cannot take into account the details of the excitation

process, and this is the main reason for the discrepancies. 2x12(x0—;)sin Ot

(200)?

xcos{ d+(A—Ay)tIh—

B. Beats from a model with oscillator potentials (34
Many molecular systems have low-lying states that ap-

proximate anharmonic oscillators. Because these oscillator

potentials are displaced with respect to each other the WaVhere ¢ is the phase angle af*a,. Figure §b) shows the

pac_kets in the. excited states have different _amplitudes Peat signal34) as the dashed line that provides a good fit to
oscillation, which strongly affects the resulting quantumy, o -t numerical resulsolid line)

beats. For our numerical calculations we have used the har-
monic potentials
Uj(x)ZAJ- + %mQ(x—xj)z, (32) C. Strong effects of off-diagonal damping
As we have seen in E@5) the effects of the off-diagonal

where in this run the period ig/8 (in scaled unitsandx, terms in the master equation do not have a significant effect
=0.0, x;,=0.5, x,=1. The exciting pulse has a hyperbolic unless the energy difference between the two upper states is
profile with a width of 0.001 and peak height of 500. Theless than, or comparable to, the decay rate from the upper
decay rates are, = y,=3.0 and the ensemble averaged re-states. This situation will certainly arise if the two excited
sults contain 1000 samples. The excitation of both the exstates cross at some value of the molecular coordirate
cited states is about 50% because again a very short excitdhen if a wave packet travels through that “crossing” we
tion pulse with a suitable area is used. Figure 4 shows thwill find that we have a momentary coupling of the two
probability densitied;(x,t) for j=0,1,2. Both excited state excited-state energy states. This takes place even though
wave packets oscillate and decay, thus slowly repopulatinghere is nodirect coupling between the two excited states,
the electronic ground state of the system; note that the eledhat is, there is no coupling, excitation, or pumping between
tronic ground state becomes vibrationally excited as populathe excited states in the Hamiltonighl). However, there is
tion returns. an indirect coupling that may be regarded as due to the re-

The beat signal presented in Fig.(§olid curve shows absorption by one transition of the radiation by another,
revivals when the two excited-state wave packets return taearly resonant, transition in the system. The effect is clearly
near their original positions, i.e., when their spatial overlap isseen if the wave packet starts entirely on one of the excited
at maximum(note that potentials are harmonic and have thestates and then traverses the crossing. Because of the off-
same oscillator frequengyThe signal is frequency modu- diagonal damping, part of the wave packet is transferred to
lated because of the time-dependent energy shift. This can like other excited state nonadiabatically. In order to perform
clearly seen by comparing the signal to the dotted curve imumerical calculations, we could use the quantum Monte
Fig. 5@, which shows the beat signal from a system withCarlo procedure outlined in Eq&l2)—(17). However, if we
static energy difference fixed at the initial value of the wave-are not interested in the ground-state dynamics, this approach
packet system. is time consuming and not necessary. The optical potential

As in the linear case, Sec. IV A, we can pursue a simpleapproach as presented in E§1) would not be appropriate
model with exponential decayneglecting off-diagonal here because it neglects the effects of off-diagonal damping.
damping, and impulsive excitationneglecting the finite However, we can include the effects of off-diagonal damping
time of excitation. With the harmonic potential§32) the in an approach based on optical potentials by utilizing Egs.
time-dependent overlap of the excited-state wave packets, i{17) for the excited states in the absence of an excitation
the absence of dissipation, [ias defined in Eq(30)] pulse. That is, we integrate the equations:
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FIG. 5. Quantum beat signal for the parameters of Fig. 4. The
solid curve in both(a) and (b) shows the numerically calculated

FIG. 4. Here we show the components of the wave packet foP€at signal. The dotted line i@ shows the signal from a system
(a) the ground state Q(b) the excited state 1, an) the excited with flxgd energy dlfferen.ce, and the dashed lingbinp shows the
state 2. The corresponding potentials asg(x)=A;+3zmQ(x  CUrve given by Eqs(34) with ¢=0.
—x;)%, whereQ=7/8 (in scaled units and x,=0.0, x;=0.5, X,
=1. The energy separation of the potentials is giverAbg, which
have the valuea,=0.0, A;=—500, andA,=500. The exciting
pulse has a hyperbolic profile with a width of 0.001 and peak heigh
of 500. The decay rates ang = y,=3.0. The ensemble averaged
results contain 1000 samples and there are 2000 spatial points.

potential 2. We see that the population on state 2 abruptly
rises as the wave packet approaches the crossing, thereafter
there are oscillations, because of nonadiabatic transitions and
the temporary creation of coherence between the two excited
states. The oscillations, and the population on statar
state }, then all die out because of the straightforward, di-
5 2 2 " agor;ak\‘I parrt] of thﬁ damdpinglyl. - ] |
. _ Although, in the end, all of the excited-state population
Ihﬁqfl(x’t)_{ - 2m §+Ul(x)— 771]\1}1()(’0 ends up on the ground state, the off-diagonal damping, and
the transfer of population to statgi Fig. 6), does delay the
ih —— arrival of population on the ground state. Thus the rise in the
) v172¥a(x0), ground-state population is interrupted by a hole during, and
after, the transit of the wave packet through the crossing. The
P 52 g2 in momentum distributiqn on the grou_nd state can be strongly
ih—=Ty(X,t)={ — == —+Ux(X)— = v5{ T,(X,1) affected by the off-diagonal damping effect. For example,
at 2m gx? 2 with the configuration of states in Fig. 6 the wave packet on
i excited state 1 is not accelerated and its momentum distribu-
_ f\/—q, (x,1) (35) tion is transferred to the ground state. However, because of
ARERCRE NS off-diagonal damping, some of the wave packet is transferred
to state 2, where it can decelerate before eventually decaying
Figure 6 gives an example of this type of process and showsack to the ground state. In this case the average momentum
the population of the excited state 2 when a wave packedf the ground state can be affected by the off-diagonal damp-
initially on a flat state 1 passes through a crossing of théng in the manner demonstrated in REZ0].
upper excited states, i.e., at the intersection with the sloping We know that in simple dynamical curve crossings in-
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implies, the transfer probability due to the off-diagonal decay
is very small. Thus in general we expect that dynamical
population transfer due to the off-diagonal coupling in quan-
tum beat systems does not have any major role in fem-
tochemistry. It may, however, have some impact on cold
collision studies, where we encounter large sets of laser-
coupled, close-lying partial wave states.

V. CONCLUSION

In this paper we have investigated how to study quantum
beats in wave-packet systems using the Monte Carlo wave-
function technique. We have explicitly shown that the master
equation and thus the equations used in the Monte Carlo
approach for a quantum beat system are conceptually differ-
ent from the equations describing systems where the sponta-

FIG. 6. The population of the excited state 2 when a waveneously emitted photons allow transition routes to be identi-
packet on state 1 traverses a crossing of the two excited states. Thgd. \When the linewidths of the excited states are smaller

potentials used in the model are of the linear fo@3): U;(x)

than their energy differences, then the structubes not the

=A;+\jx. However, the ground state 0 and the initial state 1 arqnterpretationb‘of the equations become equal—this has led

flat, \o=X\,=0, there are no detuningd,=A,=A,=0, and only
state 2 has a slop&,=1000. The decay rates ayg= y,=100 and

the ensemble-averaged results contain 1000 samples. The number
of spatial points is 3000. There is no excitation pulse here; the
initial Gaussian wave packet, with width 0.25, has been simply

placed on state 1 with the center positins —1.75 with initial
momentump = 200.

volving linear potentials the population transtey is given
by the Landau-Zener result

VZ
Ptr: 1 - eXF{ -

ZWW , (36)

wherev ¢ is the mean momentum of the wave packet at th

crossing,V is the coupling between statesand j, and;

to slightly incorrect description of quantum beats in the lit-
erature in the past.

In addition to the exact description of the framework for
studying the quantum beat effects in wave-packet dynamics
we have used examples to look into the possible wave-packet
phenomena that may arise in quantum beat systems. The
simplicity of our examples has allowed us to compare our
results with simple models based on combining uncoupled
wave-packet evolution on potential surfaces with the
Weisskopf-Wigner model for the spontaneous emission, i.e.,
with a model of independent exponential decay from the two
excited states. The proper quantum beat equations have off-
diagonal damping, and we have also studied its role in wave-

dacket dynamics involving excited-state potential surface

crossings. Although it seems that off-diagonal damping is

are the slope parameters for the two coupled linear potentiafit @n important phenomenon in molecular femtochemistry
[2,25,26. We can try to apply the Landau-Zener result to ourPTOCeSSes, it may need to be taken into account in cold col-
situation as well, with/= /v, y,. Then it is easy to see why lision systems.
the phenomenon described above is difficult to see in prac-

tice. The time scale for the wave-packet motion must be fast

compared to the time scale of decay, so that there is a non- This work was supported by the United Kingdom Engi-
negligible amount of excited population around when theneering and Physical Sciences Research Council, and the
wave packet reaches the crossing. However, there must ecademy of Finland. The authors thank Bryan Dalton, Peter
enough time for the dynamics on the different excited-stat&Knight, and Stig Stenholm for enlightening remarks. B.M.G.
trajectories to affect the properties of the wave-packet comacknowledges the hospitality of the Research Institute for
ponent before the decay back to the ground state. Thus fa$theoretical Physics and the Helsinki Institute of Physics at
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