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Quantum beats provide a useful tool in spectroscopy for the evaluation of fixed energy level differences.
However, in wave-packet dynamics the motion of wave packets about molecular energy surfaces provides
time-dependent energy differences. Thus a superposition of wave packets on two excited energy states can
yield quantum beats with a time-dependent frequency that depends on the molecular dynamics. We explore this
problem with examples and simple models of wave-packet quantum beats. The effects of separating wave
packets, and wave packet dispersion, are of especial interest. Calculations are performed using a numerical
integration of the time-dependent Schro¨dinger equation with three energy states and time-dependent couplings.
The effects of spontaneous emission are determined by using a fully quantum mechanical Monte Carlo wave-
function method.@S1050-2947~98!01807-1#

PACS number~s!: 42.50.Md, 33.80.Be, 31.70.Hq
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I. INTRODUCTION

The introduction of ultrashort pulses into molecular phy
ics has allowed the exploration of molecules with wa
packet dynamics@1,2#. The momentary coupling of two po
tential energy surfaces introduces a localized wave packe
an excited state. With the coupling gone, this wave pac
propagates on the potential surface~as a superposition o
vibrational states! and may subsequently be detected us
absorption by ultrashort pulses, or time-resolved meas
ment of fluorescence. The observed wave-packet mo
then reveals information about the molecule and its envir
ment, and thus enables, for example, steering of the mole
into a specific state.

This paper focuses on one effect specific to three-s
systems subjected to spontaneous emission: wave-pa
quantum beats. These systems are an appropriate fie
study because the ultrashort pulses used to create ex
state wave packets have a broad bandwidth, and may e
excite wave packets on more than one electronic state. If
electronic states are coherently excited then we can ex
quantum beats as the excitation decays back to the gro
electronic state~see Ref.@3# for the atomic case!. The energy
difference of the excited-state potential surfaces at the lo
tion of the wave packet specifies the beat frequency. Thu
molecules the motion of the wave packet leads to tim
dependent variations in the beat frequency and amplitu
which are not present in the atomic case.

We shall consider a model of a molecule with three el
tronic potential energy surfaces: the ground-state surfaceU0
and two excited-state surfacesU1 andU2 ~see Fig. 1! in a V
configuration. We will focus on the usualV configuration
though it is possible to obtain quantum beats with lad
systems@4#. We work within the Born-Oppenheimer ap
proximation, and make the rotating wave approximat
when we describe the couplingsVj (t) ( j 51,2) of the mo-
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lecular states to a short pulse of light. In many molecules
ground-state potential may be nearly harmonic and thus
corresponding wave function is a good approximation to
Gaussian wave packet. Then a very short pulse of li
couples the ground-state wave packet to the excited sta
For all but the shortest pulses there will be an uneven re
tribution of the packet on the excited states because of
spatially varying detuning@5#. After excitation the coupling
is removed and all the wave packets start to move beca

FIG. 1. Three potential energy surfacesU j (x) illustrated as a
function of a molecular coordinatex. The arrow indicates the ap
proximate effect of an ultrashort pulse—to lift parts of the grou
state wave packet to the excited states 1 and 2. Specific form
U j are given in Sec. IV.
440 © 1998 The American Physical Society
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PRA 58 441WAVE-PACKET DYNAMICS AND QUANTUM BEATS
they are not in equilibrium on their surfaces. These motio
are on vibrational time scales and may lead to oscillation
dissociation depending on the specific form of theU j . Dur-
ing the wave-packet motion spontaneous decay causes
excited-state wave packets to return to the ground state
cause they have been coherently excited quantum beats
be observed in the fluorescence.

We will present in this paper some model calculations
the quantum beat signal and how it is influenced by the p
ence of wave-packet dynamics. This will be done in th
different ways, including a brute force numerical approa
We will consider only some model three-level systems,
noring all the complications of additional nearby levels
order to present some of the basic ideas and phenomena
in order to test some of our algorithms and approxim
methods.~Nevertheless, the methods presented can be
plied to realistic systems.! In order that the effects of the
wave-packet dynamics can be demonstrated, it is esse
that the time scale for the decay of the system should
longer than a time scale characterizing the dynamics of
wave packets~e.g., a vibrational time scale!. In molecular
systems this allows us to use decay, or fluorescence,
means to monitor the postexcitation wave-packet dynam
and this has already been achieved experimentally@6#. If the
time scale for decay is very long compared to the wa
packet dynamics we will not observe population decay,
example, in a quantum beat signal, if we monitor the sys
over time scales that are comparable to the wave-packe
namics. However, we will still observe beating effects if t
beat frequency is sufficiently fast. For the model systems
this paper we have chosen decay rates that are not v
greater than the time scales of the wave-packet dynam
This allows us to show the population decay, and makes
problem more amenable to the brute force approach.~Nev-
ertheless, for low decay rates, the various methods we
scribe can still be applied.! The regime where the decay tim
scale more nearly matches the dynamical time scale aris
an interesting physical situation where spontaneous emis
and molecular dynamics couple in cold collisions betwe
laser cooled atoms@7#. The slowly moving atoms form a
quasimolecule, which can be excited resonantly during
collision due to the presence of laser light. This can be m
eled as a wave-packet process, which is then treated num
cally or using semiclassical approximations@8#. So far the
time-dependent studies of cold collisions have mainly c
sidered the case of a single excited-state potential surf
but in realistic systems we have a manifold of molecular fi
and hyperfine states that do not differ much in energy, es
cially at large internuclear distances, where the resonant
citation takes place. Thus the discussion of multistate e
tation and decay given in this paper is also relevant to
treatment of multistate models of cold collisions, especia
when it comes to the methods used to solve the dynam
problem@9#.

In the following section we describe the quantum m
chanical treatment of the processes leading to quantum b
in molecules. We also describe how to solve the time evo
tion of wave packets numerically in the presence of spon
neous emission by using a quantum Monte Carlo appro
This method is necessary if information is needed on
ground-state wave-packet dynamics, or if the time scale
s
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the excitation process is sufficiently long that there can
some decay during the preparation of the wave pack
However, if the excitation process is very short, and if we
not need the ground-state information, we can use other,
pler approaches, such as the method using optical poten
discussed in Sec. III~which is based on the textbook@10#
approach to quantum beats!. We can also make useful ap
proximations by using Gaussian wave packets, and this w
is presented in Sec. IV. In Sec. IV we also make a comp
son of the methods with some simple examples. The pap
concluded in Sec. V.

II. DENSITY MATRIX FORMULATION

A. Atomic quantum beats

Quantum beats have been used as a tool to study the
ergy levels in atoms for quite some time@3,11,12# and to
exploit the basic phenomenon of quantum interference w
there are two possible paths for a quantum system to take
the atomic system the two paths are simply the routes fr
the two excited states to the ground state. The quantum b
need to be distinguished from their classical counterp
which can be seen when two classical waves simply inter
on a photodetector@13#.

Using a standard perturbative approach it is possible
write down the master equation for the density matrix of t
three-level system undergoing decay@14–16# ~and see also
@17#!:

d

dt
r52 i @Ha ,r#2 1

2 ~J†Jr1rJ†J22JrJ†!, ~1!

where the transition operator is

J5Ag1s1
21Ag2s2

2 . ~2!

This operator ensures that the emission comes from b
transitions. HereAg j , j 51,2 represent the dipole matrix e
ements leading to decay at the ratesg j , and s i

6 are the
raising (1) and lowering (2) operators that move the sys
tem between the excited statej and ground state. For th
atomic system the Hamiltonian is simply

Ha5F v1 V1~ t ! 0

V1~ t ! v0 V2~ t !

0 V2~ t ! v2

G , ~3!

wherev0 , v1 , andv2 are the frequencies of the transition
between the three levels andV1 and V2 are the time-
dependent couplings given in angular momentum units~Rabi
frequencies!. Here we use a basis such that the total wa
function is

Ca5S C1

C0

C2

D , ~4!

where theCj are the time-dependent probability amplitud
of the three states. All the effects of level shifts have be
included in the master equation~1! with the appropriate
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choice of frequenciesv j and the decay rates@16#. The mas-
ter equation~1! also includes the effects ofoff-diagonal
damping. The off-diagonal damping terms in the mast
equation are responsible for a coupling between cohere
and populations~i.e., between diagonal and off-diagonal e
ements of the density matrix!. The effects are usually smal
unless the energy difference of the two excited states
comes comparable to the spread of energy from the de
rate. Then the effects of off-diagonal damping may be s
nificant. There can also be some level-shifts associated
off-diagonal damping@16#, but we will neglect these here.

The beat frequency can be determined from the eigen
ues of the master equation and is found to be@18,17#

vb5ReA@~v12v2!2 i ~g12g2!/2#22g1g2. ~5!

If the two decay rates are equal,g5g15g2 , this is simply
vb5ReA(v12v2)22g2.

As the transition operator corresponds to the creation
photon, which is then subsequently observed, we can
mally write the detected intensity of the fluorescence rad
tion as

I ~ t !}Tr @~Ag1s1
11Ag2s2

1!~Ag1s1
21Ag2s2

2!r~ t !#
~6!

and here we defineI (t) such that,

I ~ t !5^J†J&5g1r111g2r2212Ag1g2 Re r12, ~7!

where the brackets mark a quantum statistical average,
thus the signal is given in terms of the system density ma
r i j , where the diagonal elements describe the state pop
tions, and the off-diagonal elements describe the cohere
between the states.

In the simplest Weisskopf-Wigner theory of decay o
simply postulates an exponential decay for the upper s
amplitudesCj @19#. In the case of a quantum beat three-lev
system we must only take into account the different frequ
cies of those amplitudes so that@10#

Cj~ t !5Cj~0!exp~2g j t/22 iv j t !. ~8!

As a result, the populations and the off-diagonal element
the density matrix all decay exponentially. Although we c
include the effects of off-diagonal damping~the coupling of
coherences to populations!, we neglect these in Eq.~8!. Thus
Eq. ~8! represents a model ofindependent exponential deca
for the two states. This model then yields a quantum b
signal ~in the dipole approximation! of

I ~ t !}uAg1C1~ t !1Ag2C2~ t !u2. ~9!

Then if the decay rates are equal we obtain

I ~ t !}e2gt$11cos@~v22v1!t#%, ~10!

and the beat frequency is clearlyvb5v22v1 . This result
differs from the one given in Eq.~5! because of the presenc
of off-diagonal damping terms in the master equation~1!.
We note, however, thatvb in Eq. ~5! will approach v1
2v2 when (v1 ,v2)@(g1 ,g2). This limit is discussed fur-
ther in Sec. III.
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B. Molecular quantum beats

The molecular case is more complex because the sys
contains an extra degree of freedom: the molecular coo
nate~s!. Here we confine our attention to a single molecu
coordinate that will be denoted byx. Then the Hamiltonian
for the molecular system is given by

H052
\2

2m

]2

]x2
I1FU1~x! V1~ t ! 0

V1~ t ! U0~x! V2~ t !

0 V2~ t ! U2~x!
G , ~11!

where nowU0(x), U1(x), and U2(x) are the spatially de-
pendent electronic potentials for the molecule, andI is the
corresponding identity matrix. The couplings with the las
pulse are given byV1(t) andV2(t), and are assumed not t
be spatially dependent. The main change, compared to
atomic Hamiltonian, Eq.~3!, is the inclusion of the kinetic
term with the massm. However, with this modified Hamil-
tonian the master equation~1! still governs the evolution of
the density matrix. We have now taken into account the
citation of the system, the dynamical evolution, and spon
neous decay. The density matrix depends on the spatia
ordinatex as well as the energy statej . That is, the elements
of r(t) arer j j 8(x,x8,t).

We will see in Sec. III and in Sec. IV that it is not alway
necessary to solve the full master equation~1! for the mo-
lecular problem. The technique of optical potentials, and
utilization of Gaussian wave packets, provide approac
that we will examine in the next sections. However, if we a
interested in the ground-state wave-packet dynamics, o
the time taken for the excitation of the pulse is no
negligible, we must solve Eq.~1!. This is a nontrivial task if
we try to solve the system numerically by discretization
the density matrix in space and time. The problem is
large memory occupied by the representation of the den
matrix @2,20#. This can be drastically reduced by utilizing th
Monte Carlo wave-function technique@21#. We have imple-
mented it in the standard way@2,8,20#. Using the transition
operatorJ, Eq. ~2!, we first determine the probability o
photon emission from both upper states during a short t
stepDt, that is,

DP5Dt^CuJ†JuC&. ~12!

Then we obtain a random numberr between 0 and 1 and d
one oftwo things. If r ,DP we perform a transition from the
upper states to the ground state~a quantum jump! so that

uC&→
JuC&

A^CuJ†JuC&
. ~13!

However, if r .DP, there will not be any transition, an
instead the system evolves with the non-Hermitian opera

Heff5H02
i\

2
J†J

5H02
i\

2
@Ag1s1

11Ag2s2
1#@Ag1s1

21Ag2s2
2#.

~14!
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The non-Hermitian operatorHeff can also be written in a
matrix form as

Heff5H02
i\

2 F g1 0 Ag1g2

0 0 0

Ag1g2 0 g2

G . ~15!

This clearly shows diagonal damping termsg1 ,g2 and off-
diagonal damping termsAg1g2. The evolution withHeff is
performed in a numerical implementation where we d
cretize the spatial wave functions. Since the system Ha
tonian is now non-Hermitian, we need to renormalize o
wave function after each time step. The operatorHeff implies
that for the wave-function components given by

C5S C1~x,t !

C0~x,t !

C2~x,t !
D ~16!

we obtain the partial differential equations

i\
]

]t
C0~x,t !5H 2

\2

2m

]2

]x2
1U0~x!J C0~x,t !

1V1~ t !C1~x,t !1V2~ t !C2~x,t !,

i\
]

]t
C1~x,t !5H 2

\2

2m

]2

]x2
1U1~x!2

i\

2
g1J C1~x,t !

1V1~ t !C0~x,t !2
i\

2
Ag1g2C2~x,t !,

~17!

i\
]

]t
C2~x,t !5H 2

\2

2m

]2

]x2
1U2~x!2

i\

2
g2J C2~x,t !

1V2~ t !C0~x,t !2
i\

2
Ag1g2C1~x,t !.

Despite the complications introduced by the decay fact
these coupled partial differential equations can be solved
using the Crank-Nicholson numerical method~used here! or
other methods@2#. We note that even in the absence of jum
we have effects from off-diagonal damping. The above st
Eqs. ~12!–~14! are repeated for many short time steps
form the stochastic trajectory for the wave function. Ho
ever, to obtain meaningful results we must obtain many
jectories to form an ensemble. Then the ensemble aver
for the observables will approach the values that would
obtained by direct integration of the density matrix mas
equation~1! with the HamiltonianH0 , Eq. ~11!.

We note here that the time step,Dt, used in the Monte
Carlo method, e.g., in Eq.~12!, need not be the same as th
time steps used to integrate Eq.~17!. This may be desirable i
the decay rates and potentials~or couplings! have rather dif-
ferent time scales, because it enables us to carry out fe
tests, and allows us to rely less on very small numbers fr
the random number generator.
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Finally, we can see that the beat signal follows very na
rally from the probability of spontaneous emission in u
time. From Eq.~12! we obtain the same result found in E
~7!, but this time the coherencer12 is evaluated as

^1uru2&[ K E dxC1* ~x,t !C2~x,t !L . ~18!

Here we have used the brackets to mark the ensemble a
age. Likewise the populationsr11 andr22 are simplŷ 1uru1&
and ^2uru2&, respectively.

III. STANDARD QUANTUM BEAT REGIME

We have already pointed out that the result from indep
dent exponential decay, Eq.~8!, is not actually a solution of
the master equation~1! although the beat signal from th
exponential decay treatment approaches the master equ
result ~5! in the limit (v1 ,v2)@(g1 ,g2). This arises be-
cause in this limit we can perform a type of secular appro
mation which involves neglecting the off-diagonal dampin
In this limit the master equation~1! will become

d

dt
r52

i

\
@H0 ,r#2

g1

2
~J1

†J1r1rJ1
†J122J1rJ1

†!

2
g2

2
~J2

†J2r1rJ2
†J222J2rJ2

†!, ~19!

where the decay is now into two separate channels. E
decay channel has a ‘‘jump operator’’:

J15Ag1s1
2 ,

J25Ag2s2
2 . ~20!

We could construct a wave-function simulation for th
master equation but, in fact,if we are only interested in the
upper states of the system this is not necessary.~Note that to
evaluate the beat signal Eq.~7! we only need information
about coherence and populations on the upper states 1
2.! We can use the technique of complex potentials@8,22#
where the time evolution of the system is governed by
operator similar toHeff in Eq. ~14!, but without the off-
diagonal damping. Thus we will obtain the coupled differe
tial equations@see Eq.~17!#

i\
]

]t
C1~x,t !5H 2

\2

2m

]2

]x2
1U1~x!2

i\

2
g1J C1~x,t !,

i\
]

]t
C2~x,t !5H 2

\2

2m

]2

]x2
1U2~x!2

i\

2
g2J C2~x,t !,

~21!

which apply after the duration of the excitation pulse. Ho
ever, unlike the implementation the Monte Carlo wave fun
tion simulation described in Eqs.~12!–~14!, here wedo not
renormalize the wave functions so that they will decay.

This approach neglects any possibility of reexcitation
the population that has decayed back to the ground state
provided the excitation pulse is short enough this is a reas
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able approximation. This means that for the duration of
excitation pulseonly we may implement the equations:

i\
]

]t
C0~x,t !5H 2

\2

2m

]2

]x2
1U0~x!J C0~x,t !

1V1~ t !C1~x,t !1V2~ t !C2~x,t !,

i\
]

]t
C1~x,t !5H 2

\2

2m

]2

]x2
1U1~x!J C1~x,t !

1V1~ t !C0~x,t !, ~22!

i\
]

]t
C2~x,t !5H 2

\2

2m

]2

]x2
1U2~x!J C2~x,t !

1V2~ t !C0~x,t !.

Note also that as the decayed excited states popula
leaves the 1–2 system in this model, instead of being
turned back to the ground state, we cannot get the time e
lution of the ground state correctly. In other words, this a
proach is merely the independent exponential de
treatment taking into account the internal dynamics of
molecular wave packets. However, a clear advantage of
model is that no ensemble averaging is needed, becauser11,
r22, andr12 can be found from the wave-function comp
nents asr i j 5C iC j* . Of course, situations arise where th
approach is not adequate, and we cannot use it if we
interested in the ground-state dynamics~as is sometimes the
case for cold collisions!. Then we have to use a master equ
tion approach and a Monte Carlo simulation.

IV. NUMERICAL RESULTS

In the cases that we have studied we can see that ther
essentially two major contributions of wave-packet effects
the quantum beat signal. The first effect arises from the se
ration of wave packet trajectories on the two upper st
surfaces. As the wave packets separate the overlap of the
packets decreases and then there is a reduction in the a
tude of the coherencer12, Eq. ~18!. This will then modify
the amplitude modulation of the quantum beats. The sec
effect arises from the fact that as the wave packets on
upper state surfaces evolve in different potentials, there
time varying energy difference between them. As a result
beat frequency varies in time. We have selected two hig
simplified potential surface models in order to study the
effects. In addition we have also looked into a situati
where the off-diagonal damping should be non-negligib
and indeed we find that it has a small effect in the particu
model situation that we have investigated.

In order to solve Eq.~17! numerically we have used th
standard scaling presented in Refs.@5,23#, i.e., x→x/xs , t
→t/ts , U j→U j /vs , Vj→Vj /vs , where\ts52mxs

2 andvs

5\/ts . This scaling corresponds to setting\51 and m
51/2, and transforms all parameters and variables into
mensionless quantities. Finally, to avoid numerical integ
tion of quantities evolving at optical frequencies, we chan
to a basis where the rapid~optical! frequencies inC1 ,C2 are
e
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transformed away with equivalent energy subtracted fr
the potentialsU1 ,U2 .

A. Linearly separating energy states

In this first model we have used simple linear potenti
so that if the wave packets can be treated as approxima
classical particles, the energy difference is increasing q
dratically in time. As a result the beat frequency should
crease quadratically too~as long as we do not approach
curve crossing!. The potentials used in the model are

U j~x!5D j1l j x, ~23!

where the slopes of the potentials are~in scaled units!: l0
50, l155000, l254000. The detunings areD050, D15
25000, andD255000. Thus the potentials for the upp
states are diverging as the excited-state wave packets
positive momentum and move accordingly. The exciti
pulse has a hyperbolic secant profile with a width of 0.0
and peak height of 500. The decay rates areg15g2550 and
the ensemble-averaged results contain 5000 samples.

The excitation of both the excited states is initially abo
40% because a very short excitation pulse with a suita
area is used. Figure 2 shows the probability densi
Pj (x,t)5uC j (x,t)u2 for j 50 ~a! and j 51 ~b!; the casej
52 is omitted as it is very similar to the casej 51. Both

FIG. 2. The components of the wave packet for~a! the ground
state 0,~b! the excited state 1. The potentials used in the model
linear U j (x)5D j1l j x with l050, l155000, andl254000 ~in
scaled units!. The detunings areD050, D1525000, and D2

55000. Thus potentials for the upper states are diverging as
excited state wave packets gain positive momentum and move
cordingly. The exciting pulse has a hyperbolic secant profile wit
width of 0.001 and peak height of 500. The decay rates areg1

5g2550. The ensemble averaged results contain 5000 samples
500 spatial points were used in the numerical integration. The w
packet has width 0.25 and starts in the ground state 0.
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excited-state wave packets accelerate, spread, and d
back down to the ground state. The ground-state wave pa
becomes very spread out because it contains contribut
from both upper state trajectories and the ground-state p
lation that was not removed by the pulse.

The beat signal in Fig. 3~a! ~solid curve! shows a slight
frequency chirp because of the time-dependent increas
energy-state separation. However, the modulation decre
quite rapidly in time. This is because of the increasing se
ration of the wave packets, which reduces their overlap
the possibility for beats. For comparison we have also p
ted the result of a density matrix calculation@dotted curve in
Fig. 3~a!#, with no wave packets, and for an energy diffe
ence that is fixed in time at the initial value. In this case
signal does not wash out so rapidly, and the requiremen
spatial overlap does not apply here. The dephasing of
wave packet beat signal can be clearly seen.

In order to provide a more quantitative analysis we co
sider a simple model where the excitation process is p
sumed to place two perfectly Gaussian wave packets on
excited states 1 and 2. Then if we~initially ! neglect the de-
cay process, the time-dependent evolution of the w
packet on statej ( j 51,2) is given by@24#

FIG. 3. Quantum beat signal for the parameters of Fig. 2. T
solid curve in both~a! and ~b! shows the numerically calculate
beat signal, the dotted line in~a! shows the signal from a system
with fixed energy difference. The dashed line in~b! shows the semi-
classical exponential decay result given by Eqs.~30! and ~31!.
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e

C j~x,t !5
As0

~2p!1/4s̃~ t !
expF2

@x2xj~ t !#2

@2s̃~ t !#2

1
ip j~ t !

\
@x2xj~ t !#1

il j
2t3

3m\
2

iE j t

\ G , ~24!

where the wave packet starts at positionx0 with no momen-
tum and the classical trajectory of the wave packet is

xj~ t !5x02l j t
2/~2m!, ~25!

pj~ t !52l j t. ~26!

The classical energy isEj5D j1l j x0 . Then on both states 1
and 2 the initial width of the wave packet iss0 and the
parameters̃(t) is defined as

s̃~ t !5As0
21 i t\/~2m!. ~27!

We note that from the wave packet~24! we can determine
the time-dependent width of the packet as

s~ t !5s0A11~ t/td!2, ~28!

where we have defined a time scaletd for the spreading of
the wave packet:

td5
2ms0

2

\
. ~29!

Then by combining two of the wave packets~24!, one
with amplitudea1 on state 1, and the other with amplitudea2
on state 2, we may compute the time-dependent overlap

O12~ t !5a1* a2expF i ~E12E2!t/\2
~l12l2!2s0

2

2\2
t2

2 i
~l1

22l2
2!

12m\
t32

~l12l2!2

32m2s0
2

t4G . ~30!

The exponential contains three terms of which the t
imaginary terms will contribute to the beats~when we con-
sider decay! and the two real terms will affect the envelop
of the beats. In fact the last term in Eq.~30! arises simply
from the overlap of two packets, of fixed widths0 separating
on the trajectories~26!. This last term dominates Eq.~30! at
large times, but note that the two packets spread as w
according to Eq.~28!—this partly explains the second term
in Eq. ~30!. The third term arises from the energy chirping
the wave packets and takes place on a time scaletd faster
than the overlap decay in the last term. The rate of chang
this term, i.e., the instantaneous beat frequency, incre
quadratically in time as mentioned at the start of this secti
On short time scales the second term in Eq.~30! dominates
the envelope decay until we approach the spreading t
scaletd . This is because it is found from the last term in E
~30! by multiplication with the factor (td/2t)2. Finally, the
first term in Eq.~30! arises simply from the initial energy
difference and contributes to the oscillations in the beat s
nal. All these terms will affect the beat signal, so converse
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if we can measure some, or all of these parameters from
beat signal we can obtain considerable information~e.g., the
two slopes! in the region over which two potential energ
surfaces are linear.

To take some account of the decay process, we may
ply adopt the exponential decay approach, neglecting the
diagonal damping, so that, for equal decay ratesg,

r12~ t !5O12~ t !exp~2gt !,

r11~ t !5ua1u2exp~2gt !, ~31!

r22~ t !5ua2u2exp~2gt !,

and then the beat signal is given by Eq.~7!. For the example
of Fig. 3 we have plotted the resulting signal as the das
curve in Fig. 3~b! and we see that there is an extremely go
fit except near the region of excitation. Obviously this simp
model cannot take into account the details of the excita
process, and this is the main reason for the discrepancie

B. Beats from a model with oscillator potentials

Many molecular systems have low-lying states that
proximate anharmonic oscillators. Because these oscill
potentials are displaced with respect to each other the w
packets in the excited states have different amplitudes
oscillation, which strongly affects the resulting quantu
beats. For our numerical calculations we have used the
monic potentials

U j~x!5D j1
1
2 mV~x2xj !

2, ~32!

where in this run the period isp/8 ~in scaled units! and x0
50.0, x150.5, x251. The exciting pulse has a hyperbol
profile with a width of 0.001 and peak height of 500. T
decay rates areg15g253.0 and the ensemble averaged
sults contain 1000 samples. The excitation of both the
cited states is about 50% because again a very short ex
tion pulse with a suitable area is used. Figure 4 shows
probability densitiesPj (x,t) for j 50,1,2. Both excited state
wave packets oscillate and decay, thus slowly repopula
the electronic ground state of the system; note that the e
tronic ground state becomes vibrationally excited as pop
tion returns.

The beat signal presented in Fig. 5~solid curve! shows
revivals when the two excited-state wave packets return
near their original positions, i.e., when their spatial overlap
at maximum~note that potentials are harmonic and have
same oscillator frequency!. The signal is frequency modu
lated because of the time-dependent energy shift. This ca
clearly seen by comparing the signal to the dotted curve
Fig. 5~a!, which shows the beat signal from a system w
static energy difference fixed at the initial value of the wav
packet system.

As in the linear case, Sec. IV A, we can pursue a sim
model with exponential decay~neglecting off-diagonal
damping!, and impulsive excitation~neglecting the finite
time of excitation!. With the harmonic potentials~32! the
time-dependent overlap of the excited-state wave packet
the absence of dissipation, is@as defined in Eq.~30!#
he
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O12~ t !5a1* a2expH i ~D12D2!t/\1
1

~2s0!2

3@22x12
2 sin2~Vt/2!22ix12~x02 x̄!sin Vt#J ,

~33!

where the separation of the oscillators isx125x12x2 and

their mean position isx̄5(x11x2)/2. Then the approximate
beat signal in the presence of decay is given by Eqs.~7! and
~31! as

I ~ t !5gH ua1u21ua2u212ua1a2uexpS 22x12
2 sin2~Vt/2!

~2s0!2 D
3cosFf1~D12D2!t/\2

2x12~x02 x̄!sin Vt

~2s0!2 G J ,

~34!

wheref is the phase angle ofa1* a2 . Figure 5~b! shows the
beat signal~34! as the dashed line that provides a good fit
the exact numerical result~solid line!.

C. Strong effects of off-diagonal damping

As we have seen in Eq.~5! the effects of the off-diagona
terms in the master equation do not have a significant ef
unless the energy difference between the two upper stat
less than, or comparable to, the decay rate from the up
states. This situation will certainly arise if the two excite
states cross at some value of the molecular coordinatex.
Then if a wave packet travels through that ‘‘crossing’’ w
will find that we have a momentary coupling of the tw
excited-state energy states. This takes place even tho
there is nodirect coupling between the two excited state
that is, there is no coupling, excitation, or pumping betwe
the excited states in the Hamiltonian~11!. However, there is
an indirect coupling that may be regarded as due to the
absorption by one transition of the radiation by anoth
nearly resonant, transition in the system. The effect is cle
seen if the wave packet starts entirely on one of the exc
states and then traverses the crossing. Because of the
diagonal damping, part of the wave packet is transferred
the other excited state nonadiabatically. In order to perfo
numerical calculations, we could use the quantum Mo
Carlo procedure outlined in Eqs.~12!–~17!. However, if we
are not interested in the ground-state dynamics, this appro
is time consuming and not necessary. The optical poten
approach as presented in Eq.~21! would not be appropriate
here because it neglects the effects of off-diagonal damp
However, we can include the effects of off-diagonal damp
in an approach based on optical potentials by utilizing E
~17! for the excited states in the absence of an excitat
pulse. That is, we integrate the equations:
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i\
]

]t
C1~x,t !5H 2

\2

2m

]2

]x2
1U1~x!2

i\

2
g1J C1~x,t !

2
i\

2
Ag1g2C2~x,t !,

i\
]

]t
C2~x,t !5H 2

\2

2m

]2

]x2
1U2~x!2

i\

2
g2J C2~x,t !

2
i\

2
Ag1g2C1~x,t !. ~35!

Figure 6 gives an example of this type of process and sh
the population of the excited state 2 when a wave pac
initially on a flat state 1 passes through a crossing of
upper excited states, i.e., at the intersection with the slop

FIG. 4. Here we show the components of the wave packet
~a! the ground state 0,~b! the excited state 1, and~c! the excited
state 2. The corresponding potentials areU j (x)5D j1

1
2 mV(x

2xj )
2, whereV5p/8 ~in scaled units! and x050.0, x150.5, x2

51. The energy separation of the potentials is given byD j ’s, which
have the valuesD050.0, D152500, andD25500. The exciting
pulse has a hyperbolic profile with a width of 0.001 and peak he
of 500. The decay rates areg15g253.0. The ensemble average
results contain 1000 samples and there are 2000 spatial points
s
et
e
g

potential 2. We see that the population on state 2 abru
rises as the wave packet approaches the crossing, there
there are oscillations, because of nonadiabatic transitions
the temporary creation of coherence between the two exc
states. The oscillations, and the population on state 2~and
state 1!, then all die out because of the straightforward,
agonal part of the damping.

Although, in the end, all of the excited-state populati
ends up on the ground state, the off-diagonal damping,
the transfer of population to state 2~in Fig. 6!, does delay the
arrival of population on the ground state. Thus the rise in
ground-state population is interrupted by a hole during, a
after, the transit of the wave packet through the crossing.
momentum distribution on the ground state can be stron
affected by the off-diagonal damping effect. For examp
with the configuration of states in Fig. 6 the wave packet
excited state 1 is not accelerated and its momentum distr
tion is transferred to the ground state. However, becaus
off-diagonal damping, some of the wave packet is transfer
to state 2, where it can decelerate before eventually deca
back to the ground state. In this case the average momen
of the ground state can be affected by the off-diagonal da
ing in the manner demonstrated in Ref.@20#.

We know that in simple dynamical curve crossings

r

t

FIG. 5. Quantum beat signal for the parameters of Fig. 4. T
solid curve in both~a! and ~b! shows the numerically calculate
beat signal. The dotted line in~a! shows the signal from a system
with fixed energy difference, and the dashed line in~b! shows the
curve given by Eqs.~34! with f50.
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volving linear potentials the population transferPtr is given
by the Landau-Zener result

Ptr512expS 22p
V2

\vC~l i2l j !
D , ~36!

wherevC is the mean momentum of the wave packet at
crossing,V is the coupling between statesi and j , andl i , j
are the slope parameters for the two coupled linear poten
@2,25,26#. We can try to apply the Landau-Zener result to o
situation as well, withV5Ag1g2. Then it is easy to see wh
the phenomenon described above is difficult to see in p
tice. The time scale for the wave-packet motion must be
compared to the time scale of decay, so that there is a n
negligible amount of excited population around when
wave packet reaches the crossing. However, there mus
enough time for the dynamics on the different excited-st
trajectories to affect the properties of the wave-packet co
ponent before the decay back to the ground state. Thus
wave packets would be appropriate, but then, as Eq.~36!

FIG. 6. The population of the excited state 2 when a wa
packet on state 1 traverses a crossing of the two excited states
potentials used in the model are of the linear form~23!: U j (x)
5D j1l j x. However, the ground state 0 and the initial state 1
flat, l05l150, there are no detunings,D05D15D250, and only
state 2 has a slope,l251000. The decay rates areg15g25100 and
the ensemble-averaged results contain 1000 samples. The nu
of spatial points is 3000. There is no excitation pulse here;
initial Gaussian wave packet, with width 0.25, has been sim
placed on state 1 with the center positionx521.75 with initial
momentump5200.
e
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r

c-
st
n-
e
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e
-
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implies, the transfer probability due to the off-diagonal dec
is very small. Thus in general we expect that dynami
population transfer due to the off-diagonal coupling in qua
tum beat systems does not have any major role in fe
tochemistry. It may, however, have some impact on c
collision studies, where we encounter large sets of las
coupled, close-lying partial wave states.

V. CONCLUSION

In this paper we have investigated how to study quant
beats in wave-packet systems using the Monte Carlo wa
function technique. We have explicitly shown that the mas
equation and thus the equations used in the Monte C
approach for a quantum beat system are conceptually di
ent from the equations describing systems where the spo
neously emitted photons allow transition routes to be ide
fied. When the linewidths of the excited states are sma
than their energy differences, then the structures~but not the
interpretations! of the equations become equal—this has
to slightly incorrect description of quantum beats in the
erature in the past.

In addition to the exact description of the framework f
studying the quantum beat effects in wave-packet dynam
we have used examples to look into the possible wave-pa
phenomena that may arise in quantum beat systems.
simplicity of our examples has allowed us to compare o
results with simple models based on combining uncoup
wave-packet evolution on potential surfaces with t
Weisskopf-Wigner model for the spontaneous emission,
with a model of independent exponential decay from the t
excited states. The proper quantum beat equations have
diagonal damping, and we have also studied its role in wa
packet dynamics involving excited-state potential surfa
crossings. Although it seems that off-diagonal damping
not an important phenomenon in molecular femtochemis
processes, it may need to be taken into account in cold
lision systems.
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