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Teleportation of N-dimensional states

Stig Stenholm and Patrick J. Bardroff
Department of Physics, Royal Institute of Technology, Lindstegiésva4, S-10044 Stockholm, Sweden
(Received 7 April 1998

We present a general solution to the construction of such an entanglement-diar@nsional Hilbert space
that effects state teleportation. Ade>2 the construction is nonunique and can be chosen to transfer the state
to a preselected basis. We discuss possible applications to state preparation in various physical systems.
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PACS numbds): 03.67—a, 03.65.Bz, 42.50.Dv

[. INTRODUCTION obtain a unitary transformation in the other two. In fact, this
condition can be slightly relaxed, but we will return to this
The teleportation process suggested by Beetedl. [1] is  iSSue in another context.

an ingenious application of the nonlocal properties of en- We now define the probe states in the combined systems 1
tangled states. Such states play an important role in many @nd 2 by writing
the recent discussions of quantum correlated systgghs
Now we also have experimental methods to prepare the nec- x 1
essary entangled states in some simple situafidj#. Cor- |‘/’aﬂ>12:§|: U2|||>l§j: T2 ()
related photons preserve quantum coherence best and hence
early experimental realizations have utilized thgsé]. Itis A simple check shows that this basis is complete and ortho-
now realistic to assume that even more involved experimennormal in the combined systems 1 and 2. Inverting this and

tal realizations of teleportation ideas may become possiblgnserting into the initial state of the combined systems, we
Hence we undertake to explore the technique to transfer gow obtain

given state to another one, which may be of different physi-
cal character or located in a more propitious place.

|¢0>123§|¢0>1|¢0>23:a2ﬂ |'ﬂa,3>122k clel™)s, (@)

II. TELEPORTATION OF N-DIMENSIONAL STATES

. . where the new basis vectors are
We discuss three quantum systems described by their

state vectors, which we assume to have the same dimensions

N. We construct explicit schemes to apply the mechanism lel*P)) 5= \/Nuakz T giili)s- 5
proposed by Bennett al.to systems of arbitrary dimension- I
ality.

\>//Ve consider the initial state of system 1 to be If we now can make an observation that projects the s$thte

on the stat¢,z)1,, We have prepared system 3 in the origi-
nal quantum statél), but in the basi$|e(k“5)>3}. This is the
[o)1=2, k)1, (1)  original teleportation idea; we only need to tell the keeper of
K system 3 the outcome of our measuremgmB} and one
knows the basis in which the state is received. Alternatively,
where{|k),} is an arbitrary orthonormal and complete basisone can perform a known unitary transformation from this
in the state space of system 1. We assume that we can priasis to the one originally chosen in system 3; cf. 8dp)
pare two other systems, 2 and 3, in the fully entangled statbelow. In either case one has received a quantum copy of the
state (1) without either the keeper or the sender having to

1 know what it is.
|¢0>23:_2 [1)2]i)s- 2) For this scenario to work, however, we need to verify
YN some properties of the transformations introduced above.

The basis vector$5) have to be orthonormal and a simple

If each basis statf ), in system 2 is entangled to a unique calculation shows that

basis state in 3, we can always write the foi@h by relabel-

ing the basis states in system 3. The full quantum state of the 3<e(k“ﬁ)|efffﬁ)>3= NU okl ? Sk = Sk - (6)
combined systems 1-3 now contains products of the type

[k)1|j)2. We want to reexpress these in terms of entangledhis is possible only if the unitary transformatiofy is of
probe states, which can be subjected to single measurementise type we called a Zeilinger matrix in our earlier woiK,

In order to achieve this we introduce two transformations: a.e., all the elements of the unitary matrix have to be of the
unitary transformatior{Z4;} and a doubly unitary transfor- same absolute magnitude. With this condition imposed, the
mation {I" ¢ such that, fixing any one of its indices, we completeness follows
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() () ) . I',pc- This is not the most general representation of our re-
Ek: el (el =2 1i)aofjl=1. (1) quirements, but considering the fact that the fixing of the
. original basis{|u;)3} is arbitrary and that there are several

There are no further conditions on the arrdyg,.. In  Wa&ys to arrange the permutations, the method offers many

Ref.[1] these properties were satisfied: The unitary transforP0Ssibilities. o

mation was the discrete Fourier transform discussed in Ref. YWhen we insert the transformati¢h?) into the result(5)
[7] and the mixing of the basis vectors in H§) was justa W€ find

cyclic permutation that gives the transformation

» el 5= \/Nuak; 1103 3(i U(P))a= VNUulu(Pl))s.
Tape= 2 d(clatb+nN), 8) (13)

, B _ Thus the basis to which we have transferred the original state
where the Kronecker delta is denoted 8a|b)=da5. ItiS s just one of those chosen in the definition of the transfor-
stralghtfo_r_vvard_ to check that the transformati@ satisfies 1 atonT. With U, a Zeilinger matrix, it adds only an irrel-
the conditions imposed oy evant phase to the basis set. In particular, if we have dimen-

The solutions chosen in Ref7], however, do suggest gjgnality 2", we can select the projection on to the probe

alternative ways to achieve the conditions explained abov%tate{a BY={1,1}, in which case from Eq(11) it follows
There are other possibilities to choose the Zeilinger matricesj 5 Y

as we have shown, we can make a very simple and attractive
construction in spaces of dimensioNs=2". Then we start (an
from the realization f=1) e )s=up)s, (14

that is, we have transferred the state to the basis introduced
11 1 in order to construct the transformatidn This gives us the
E 1 -1 ©) unigue procedure to select the basis where the reconstruction
is to take place: Choose the ba$js;)s}, construct the de-
and define recursively vice to measure the stat€3), and select the cases when the
state| 1)1, is obtained. Then the original state has been
reconstructed in the selected basis. Of course, in one single
} (10) measurement we cannot be certain to observe this outcome

U=

UMD =y Wy =— : .
NPIRZARE 7 and hence we must be able to accept any result possible if we
cannot repeat the experiment. However, any outcome offers
This can be shown to be unitary for anyand it is of the the classical information telling in which basis the state has
Zeilinger type by construction. These matrices have, in adreemerged.
dition, the good property that The unitary transform that maps the transferred state to
the initial one in system 1 is equal to

1 [Z/l(“) um

U =ulp=—=— (11)
e Uy P = zk: k)3 o€ (15

for all k andl.

The cyclic permutation chosen in Rdfl] suggests an
interesting construction of the transformatiby,.. Choose
any complete, orthonormal basis set in systen{|8;)s}.
Now define arN XN matrix, where the first row consists of
these basis vectors and each following one a permutssltiolr"f‘te
{lu(P{"))3}, where the column position is indicated by the
indexi and the row by the permutatiam;, for «=1, the unit wp)t _ o T
permutation is intended. These permutations have to be cho- U(1 d |‘/’a5>12—2k |ekﬁ>lu*k; Fﬁkj|]>2
sen in such a way that each row or column selected gives a
complete orthonormal basis in the space 3; a simple consid 22 \/N|Uak|22, F,Bkj’rzkj“ Nalida

i

for an observed paifa,8}. If the recording of{a,B} is
performed without destroying the stdt&a,;)lz we can find a
further use for Eq(15). We form the same unitary operator,
but acting on the Hilbert space of system 1. Then we calcu-

eration shows that this can always be achieved in a non-
unique way. The sefju(P;"))s} is consequently a complete

orthonormal basis whether we fixand varyi or vice versa. 1 .
We now set the transformatidh to be = \/_Nz 1Dal)2- (16)
Ipe= 3<C|u(pg)>3, (12 We thus have regained a state of ty@g which can be used

as the starting point for a second teleportation: We send sys-
where {|c)3} is the original basis set. It is easy to check tem 2 to the intended target of the operation and take a state
explicitly that this choice satisfies the conditions imposed orof the form (1) in a new system 4. The correlated probe
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measurement is now carried out on systems 1 and 4 and the One possible application is the transfer of a quantum state
state appears in system 2. Thus we only need one initiallfrom one cavity to anothgi22—24. The state is prepared in
correlated state to teleport any number of states to desireghvity 1, and the state in cavity 3 is entangled with an atomic
locations. Because of the need for repeated transfer of eadystem. The atom is transferred to cavity 1 and the appropri-
member of the entangled pairs, the procedure consumesade joint measurement is carried out there. As a consequence,
certain time for each step. the state in cavity 3 becomes an image of the disappearing
When we perform the operatiofl6), we are in some state in cavity 1. Notice that this occurs without any action
sense just recreating the original situation. We have onlyaking place at the position of the emerging state. We may
swapped the entanglement between systems 2 and 3 to sysell expect the coherent transportation of the atomic state
tems 1 and 2. The original state of system 1 reappears ifrom one cavity to the other to be simpler than the direct
system 3. Thus our discussion exemplifies some of the arguransfer of a cavity quantum state into the second cavity. It
ments given by Nielsen and Cavis. remains to be decided how the appropriate observations af-
fecting the projections should be realized.
In discussions concerning the nonlocal properties of quan-
tum mechanics, one often assumes that the entangled states
lll. TELEPORTATION AS A STATE are to be positioned at well separated spatial localizations.
PREPARATION METHOD This emphasizes the apparent paradoxes of quantum theory

Many experiments on fundamental quantum properties re@nd brings out the nonclassical features. However, there are
quire the preparation of a chosen initial state or a state suit: any examples where the same physical object carries dif-
ably entangled between two systems of our choice. Th erent quantum degrges of freedom. One example is thg en-
problem to prepare an initial state of an experiment has thu nglement between internal spin states and the translational

been addressed in a variety of wdgs-20]; Ref.[21] covers motion in an experiment of the Stern-Gerlach type. In con-

the current state of the art in a comprehensive way. Thes@ection with the state preparation arguments, we may think

methods, however, assume that we know the state we Waﬂ{ a simple generalization of the standard entangled &2ate

to prepare and that we may apply an interaction to the systeﬁ? describe qorrelations bgtween the internal quantum level
where we want to direct the state. In an experiment, thé"lnd the spatial wave function

desired initial state may be the outcome of some earlier mea-

surement and we cannot determine it fully or clone it from 1

the one single copy we have. Yet we may want to copy its <x|¢0>23:—2 |j>2c1>}3)(x). (17)
guantum information onto another quantum system to be YN

used in the continuation of the experiment. Furthermore, it

may not be desirable to couple an interaction to the systerth another quantum system 1, we prepare the desired state,
where we want the prepared state to reside; even the sughich may or may not be known exactly. After carrying out
gested adiabatic manipulations may add too much conta¢he correlated measurement procedure described in this pa-
with an unfriendly environment for the sensitive quantumper, we have prepared system 3 in the translational state
systems we may wish to address. We want to draw attention

to the fact that teleportation provides the ideal tool to over-

come both of these problems. As the method is based on v (x)=> c @3 (x). (18
nonlocal quantum correlations, the resulting state may be k

situated well away from all other parts of the experiment.

In the experiments using the theory as a method to teleWith a suitable choice of stat¢®{*)(x)} and a large enough
port an unknown state from a sender to a receiver, the physihumberN, we can use this to prepare system 3 in an initial
cal character of systems 1-3 has usually been assumed to siate (18) of almost arbitrary shape. Which effects can be
the same. The experimef8] offers an exception. When we achieved depend on the possibilities to prepare the standard
use the method as a state preparation tool, we may choose¢atangled stat€17). If plane waves can be achieved, we
have totally different physical realizations play the roles ofhave devised a Fourier synthesizer of spatial wave packets. It
the various systems. A desired quantum state may be easiisr of course obvious that the method can be used with mo-
to achieve in one system than in the one on which the exmentum wave functions, if this is easier, or in any other
periment is to be carried out. A suitable transfer may themepresentation found suitable from an experimental point of
create the desired state where we want it. It may also beiew.
easier to transport quantum coherence between some systemsAnother possibility is to synthesize a desired motional
than others. Because the main coherence in the teleportatictate in an ion trap, assuming that the necessary entangle-
scheme is carried by the standard entangled state of systemrent can be prepared. The teleportation method then offers a
2 and 3, we may be able to construct a standard solution fdiool to transfer a physical state prepared outside the trap to
this part of the experiment and then apply the preparatiothe ion motion, even if the state mentioned first is only tran-
mechanism to the totally different system 1. Whenever wesiently available. This is closely related to the synthesizing
are able to devise a suitable measurement scheme, the pi@-ionic states suggested in Ref41,12,.
jection based preparation of the desired state in system 3 is The possibility to replace the interaction by state prepara-
essentially interaction free. This may help in isolating it fromtion utilizing teleportation could also be applied to realiza-
unwanted influences from the environment during the prepations of quantum computation schen{@s]. One may also
ration stage. consider the generalization to infinite ranges of continuous
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labels instead of the discrete sums oMerstates[26], but ACKNOWLEDGMENT
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