
PHYSICAL REVIEW A DECEMBER 1998VOLUME 58, NUMBER 6
Teleportation of N-dimensional states

Stig Stenholm and Patrick J. Bardroff
Department of Physics, Royal Institute of Technology, Lindstedtsva¨gen 24, S-10044 Stockholm, Sweden

~Received 7 April 1998!

We present a general solution to the construction of such an entanglement in anN-dimensional Hilbert space
that effects state teleportation. ForN.2 the construction is nonunique and can be chosen to transfer the state
to a preselected basis. We discuss possible applications to state preparation in various physical systems.
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I. INTRODUCTION

The teleportation process suggested by Benettet al. @1# is
an ingenious application of the nonlocal properties of
tangled states. Such states play an important role in man
the recent discussions of quantum correlated systems@2#.
Now we also have experimental methods to prepare the
essary entangled states in some simple situations@3,4#. Cor-
related photons preserve quantum coherence best and h
early experimental realizations have utilized these@5,6#. It is
now realistic to assume that even more involved experim
tal realizations of teleportation ideas may become possi
Hence we undertake to explore the technique to transf
given state to another one, which may be of different phy
cal character or located in a more propitious place.

II. TELEPORTATION OF N-DIMENSIONAL STATES

We discuss three quantum systems described by t
state vectors, which we assume to have the same dimen
N. We construct explicit schemes to apply the mechan
proposed by Bennettet al. to systems of arbitrary dimension
ality.

We consider the initial state of system 1 to be

uc0&15(
k

ckuk&1 , ~1!

where$uk&1% is an arbitrary orthonormal and complete ba
in the state space of system 1. We assume that we can
pare two other systems, 2 and 3, in the fully entangled s

uc0&235
1

AN
(

j
u j &2u j &3 . ~2!

If each basis stateu j &2 in system 2 is entangled to a uniqu
basis state in 3, we can always write the form~2! by relabel-
ing the basis states in system 3. The full quantum state of
combined systems 1–3 now contains products of the t
uk&1u j &2 . We want to reexpress these in terms of entang
probe states, which can be subjected to single measurem
In order to achieve this we introduce two transformations
unitary transformation$Ui j % and a doubly unitary transfor
mation $Gabc% such that, fixing any one of its indices, w
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obtain a unitary transformation in the other two. In fact, th
condition can be slightly relaxed, but we will return to th
issue in another context.

We now define the probe states in the combined system
and 2 by writing

ucab&125(
l
Ua l* u l &1(

j
Gb l j* u j &2 . ~3!

A simple check shows that this basis is complete and ort
normal in the combined systems 1 and 2. Inverting this a
inserting into the initial state of the combined systems,
now obtain

uc0&123[uc0&1uc0&235(
a,b

ucab&12(
k

ckuek
~ab!&3 , ~4!

where the new basis vectors are

uek
~ab!&35ANUak(

j
Gbk ju j &3 . ~5!

If we now can make an observation that projects the state~4!
on the stateucab&12, we have prepared system 3 in the orig
nal quantum state~1!, but in the basis$uek

(ab)&3} . This is the
original teleportation idea; we only need to tell the keeper
system 3 the outcome of our measurement$ab% and one
knows the basis in which the state is received. Alternative
one can perform a known unitary transformation from th
basis to the one originally chosen in system 3; cf. Eq.~15!
below. In either case one has received a quantum copy o
state~1! without either the keeper or the sender having
know what it is.

For this scenario to work, however, we need to ver
some properties of the transformations introduced abo
The basis vectors~5! have to be orthonormal and a simp
calculation shows that

3^ek
~ab!uek8

~ab!&35NuU aku2dkk85dkk8 . ~6!

This is possible only if the unitary transformationUak is of
the type we called a Zeilinger matrix in our earlier work@7#,
i.e., all the elements of the unitary matrix have to be of t
same absolute magnitude. With this condition imposed,
completeness follows
4373 © 1998 The American Physical Society
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(
k

uek
~ab!&3 3^ek

~ab!u5(
j

u j &3 3^ j u51. ~7!

There are no further conditions on the arraysGabc . In
Ref. @1# these properties were satisfied: The unitary trans
mation was the discrete Fourier transform discussed in R
@7# and the mixing of the basis vectors in Eq.~3! was just a
cyclic permutation that gives the transformation

Gabc5 (
n52`

`

d~cua1b1n N!, ~8!

where the Kronecker delta is denoted byd(aub)[dab . It is
straightforward to check that the transformation~8! satisfies
the conditions imposed onGabc .

The solutions chosen in Ref.@7#, however, do sugges
alternative ways to achieve the conditions explained abo
There are other possibilities to choose the Zeilinger matric
as we have shown, we can make a very simple and attrac
construction in spaces of dimensionsN52n. Then we start
from the realization (n51)

U ~1!5
1

A2
F1 1

1 21G ~9!

and define recursively

U ~n11!5U ~n!
^U ~1!5

1

A2
FU ~n! U ~n!

U ~n! 2U ~n!G . ~10!

This can be shown to be unitary for anyn and it is of the
Zeilinger type by construction. These matrices have, in
dition, the good property that

U 1k
~n!5U l1

~n!5
1

2n/2
5

1

AN
~11!

for all k and l .
The cyclic permutation chosen in Ref.@1# suggests an

interesting construction of the transformationGabc . Choose
any complete, orthonormal basis set in system 3:$uui&3%.
Now define anN3N matrix, where the first row consists o
these basis vectors and each following one a permuta
$uu(Pi

a)&3%, where the column position is indicated by th
index i and the row by the permutationa; for a51, the unit
permutation is intended. These permutations have to be
sen in such a way that each row or column selected giv
complete orthonormal basis in the space 3; a simple con
eration shows that this can always be achieved in a n
unique way. The set$uu(Pi

a)&3% is consequently a complet
orthonormal basis whether we fixa and varyi or vice versa.

We now set the transformationG to be

Gabc5 3^cuu~Pa
b!&3 , ~12!

where $uc&3% is the original basis set. It is easy to che
explicitly that this choice satisfies the conditions imposed
r-
f.

e.
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n

Gabc . This is not the most general representation of our
quirements, but considering the fact that the fixing of t
original basis$uui&3% is arbitrary and that there are sever
ways to arrange the permutations, the method offers m
possibilities.

When we insert the transformation~12! into the result~5!
we find

uek
~ab!&35ANUak(

j
u j &3 3^ j uu~Pb

k !&35ANUakuu~Pb
k !&3 .

~13!

Thus the basis to which we have transferred the original s
is just one of those chosen in the definition of the transf
mationG. With Uak a Zeilinger matrix, it adds only an irrel
evant phase to the basis set. In particular, if we have dim
sionality 2n, we can select the projection on to the pro
state$a,b%⇒$1,1%, in which case from Eq.~11! it follows
that

uek
~11!&35uuk&3 , ~14!

that is, we have transferred the state to the basis introdu
in order to construct the transformationG. This gives us the
unique procedure to select the basis where the reconstru
is to take place: Choose the basis$uui&3%, construct the de-
vice to measure the states~3!, and select the cases when th
state uc11&12 is obtained. Then the original state has be
reconstructed in the selected basis. Of course, in one si
measurement we cannot be certain to observe this outc
and hence we must be able to accept any result possible i
cannot repeat the experiment. However, any outcome of
the classical information telling in which basis the state h
reemerged.

The unitary transform that maps the transferred state
the initial one in system 1 is equal to

U3
~ab!5(

k
uk&3 3^ek

~ab!u ~15!

for an observed pair$a,b%. If the recording of$a,b% is
performed without destroying the stateucab&12 we can find a
further use for Eq.~15!. We form the same unitary operato
but acting on the Hilbert space of system 1. Then we cal
late

U1
~ab!†ucab&125(

k
uek

ab&1Uak* (
j

Gbk j* u j &2

5(
k

ANuU aku2(
j , j 8

Gbk j8Gbk j* u j 8&1u j &2

5
1

AN
(

j
u j &1u j &2 . ~16!

We thus have regained a state of type~2!, which can be used
as the starting point for a second teleportation: We send
tem 2 to the intended target of the operation and take a s
of the form ~1! in a new system 4. The correlated prob
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measurement is now carried out on systems 1 and 4 and
state appears in system 2. Thus we only need one initi
correlated state to teleport any number of states to des
locations. Because of the need for repeated transfer of e
member of the entangled pairs, the procedure consum
certain time for each step.

When we perform the operation~16!, we are in some
sense just recreating the original situation. We have o
swapped the entanglement between systems 2 and 3 to
tems 1 and 2. The original state of system 1 reappear
system 3. Thus our discussion exemplifies some of the a
ments given by Nielsen and Caves@8#.

III. TELEPORTATION AS A STATE
PREPARATION METHOD

Many experiments on fundamental quantum properties
quire the preparation of a chosen initial state or a state s
ably entangled between two systems of our choice. T
problem to prepare an initial state of an experiment has t
been addressed in a variety of ways@9–20#; Ref. @21# covers
the current state of the art in a comprehensive way. Th
methods, however, assume that we know the state we w
to prepare and that we may apply an interaction to the sys
where we want to direct the state. In an experiment,
desired initial state may be the outcome of some earlier m
surement and we cannot determine it fully or clone it fro
the one single copy we have. Yet we may want to copy
quantum information onto another quantum system to
used in the continuation of the experiment. Furthermore
may not be desirable to couple an interaction to the sys
where we want the prepared state to reside; even the
gested adiabatic manipulations may add too much con
with an unfriendly environment for the sensitive quantu
systems we may wish to address. We want to draw atten
to the fact that teleportation provides the ideal tool to ov
come both of these problems. As the method is based
nonlocal quantum correlations, the resulting state may
situated well away from all other parts of the experiment

In the experiments using the theory as a method to t
port an unknown state from a sender to a receiver, the ph
cal character of systems 1–3 has usually been assumed
the same. The experiment@6# offers an exception. When w
use the method as a state preparation tool, we may choo
have totally different physical realizations play the roles
the various systems. A desired quantum state may be e
to achieve in one system than in the one on which the
periment is to be carried out. A suitable transfer may th
create the desired state where we want it. It may also
easier to transport quantum coherence between some sys
than others. Because the main coherence in the teleport
scheme is carried by the standard entangled state of sys
2 and 3, we may be able to construct a standard solution
this part of the experiment and then apply the prepara
mechanism to the totally different system 1. Whenever
are able to devise a suitable measurement scheme, the
jection based preparation of the desired state in system
essentially interaction free. This may help in isolating it fro
unwanted influences from the environment during the pre
ration stage.
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One possible application is the transfer of a quantum s
from one cavity to another@22–24#. The state is prepared in
cavity 1, and the state in cavity 3 is entangled with an atom
system. The atom is transferred to cavity 1 and the appro
ate joint measurement is carried out there. As a conseque
the state in cavity 3 becomes an image of the disappea
state in cavity 1. Notice that this occurs without any acti
taking place at the position of the emerging state. We m
well expect the coherent transportation of the atomic s
from one cavity to the other to be simpler than the dire
transfer of a cavity quantum state into the second cavity
remains to be decided how the appropriate observations
fecting the projections should be realized.

In discussions concerning the nonlocal properties of qu
tum mechanics, one often assumes that the entangled s
are to be positioned at well separated spatial localizatio
This emphasizes the apparent paradoxes of quantum th
and brings out the nonclassical features. However, there
many examples where the same physical object carries
ferent quantum degrees of freedom. One example is the
tanglement between internal spin states and the translati
motion in an experiment of the Stern-Gerlach type. In co
nection with the state preparation arguments, we may th
of a simple generalization of the standard entangled state~2!
to describe correlations between the internal quantum le
and the spatial wave function

^xuc0&235
1

AN
(

j
u j &2F j

~3!~x!. ~17!

In another quantum system 1, we prepare the desired s
which may or may not be known exactly. After carrying o
the correlated measurement procedure described in this
per, we have prepared system 3 in the translational state

C~3!~x!5(
k

ckFk
~3!~x!. ~18!

With a suitable choice of states$F j
(3)(x)% and a large enough

numberN, we can use this to prepare system 3 in an init
state ~18! of almost arbitrary shape. Which effects can
achieved depend on the possibilities to prepare the stan
entangled state~17!. If plane waves can be achieved, w
have devised a Fourier synthesizer of spatial wave packe
is of course obvious that the method can be used with m
mentum wave functions, if this is easier, or in any oth
representation found suitable from an experimental poin
view.

Another possibility is to synthesize a desired motion
state in an ion trap, assuming that the necessary entan
ment can be prepared. The teleportation method then offe
tool to transfer a physical state prepared outside the tra
the ion motion, even if the state mentioned first is only tra
siently available. This is closely related to the synthesiz
of ionic states suggested in Refs.@11,12#.

The possibility to replace the interaction by state prepa
tion utilizing teleportation could also be applied to realiz
tions of quantum computation schemes@25#. One may also
consider the generalization to infinite ranges of continuo
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labels instead of the discrete sums overN states@26#, but
there are mathematical complications to grapple with.
even the experimental realization of the discrete case foN
.2 may offer difficulties, we have chosen not to wo
through the continuous case in any detail.
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