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Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation

Konrad Banaszek and Krzysztof \Wkiewicz*
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski,aH8@, PL-00-681 Warszawa, Poland
(Received 19 June 1998

We demonstrate that the Wigner function of the Einstein-Podolsky-Rosen state, though positive definite,
provides direct evidence of the nonlocal character of this state. The proof is based on an observation that the
Wigner function describes correlations in the joint measurement of the phase-space displaced parity operator.
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Einstein, Podolsky, and Rosd&PR in their argument der to emphasize this point Bell used a nonpositive Wigner
about the completeness of quantum mechanics used the fdlinction to show that the position sign correlation function
lowing wave function for a system composed of two par-will violate local realism. These examples indicated a rela-
ticles[1]: tion between the locality and the positivity of the phase-

space Wigner function.
W (Xq,Xp) = fw 2T/ (x1=X2*X0P g (1) _ The r_elation be_tween the EPR correlation_s and the Wigner
—w distribution function has been addressed in several papers
[5—9]. Although the singular character of the wave function
Despite its obvious simplicity, this wave function has not (1) and the corresponding unnormalized Wigner function has
been explicitly used in arguments relating the nonlocality ofbeen criticized, the main point of the Bell argument relating
guantum mechanics with the Bell inequalities. Followingthe positivity of the Wigner function to the lack of nonlocal-
Bohm[2] the EPR correlations have been analyzed with théty of such a state has not been questioned. It has been ar-
help of a singlet state of two spin-1/2 particles. For this stateyued that the problem of normalization can be simply solved
the nonlocality of quantum correlations has been demonby a “smoothing” procedure of the original wave function
strated[3]. (2).

Quantum correlations for position-momentum variables An example of such a “smoothing” procedure, with a
can be analyzed in phase space using the Wigner distributiotlear application to quantum optics, has been the use of a
function. Using this phase-space approach to the EPR corréwo-mode squeezed vacuum state produced in a process of
lations Bell argued4] that the original EPR wave function nondegenerate optical parametric amplificatiNOPA)

(2) will not exhibit nonlocal effects because its joint Wigner [10]. The NOPA state has been generated experimen@lly
distribution function W(x,p41;X,,p,) is positive every- and applied to discuss the implications of the positivity of
where and as such will allow for a local hidden variablethe phase-space Wigner function on the Bell inequélity
description of position sign correlations. These discussions have led to rather ambiguous results.

In local hidden variable theories these and analogous coi®n one hand, it has been argued that the quantum description
relations can be written in a form of a statistical ensemble ofor the system of the NOPA as well as for the system origi-
two local realitieso(a,N ;)= =1 ando(b,\,)=*1, fortwo  nally discussed by EPR is consistent with deterministic real-
spatially separated detectors with certain settings labeled bigm [6]. From this remark one can conclude that the EPR
a andb: wave function(1) cannot be used to test direct violations of

the Bell inequality. This rather vexing conclusion indicates
that tests of quantum nonlocality have to rely not on the
E(a b):J d)‘lf dhz o(a,hy) o(b,hz) W(k1iAz). original EPR wave function but on Bohm’s spin-1/2 system
(2)  or on exotic states described by negative Wigner functions.
On the other hand, attempts have been made to design an
In this relationW(X 1 ;X ;) is a local, positive, and normalized experiment that would reveal the nonlocality of the EPR
distribution of hidden variabled; and\,. In the Wigner  state[5,9].
representation, these variables can be associated, respec-The purpose of this paper is to demonstrate that the posi-
tively, with the phase-space realities;(p;) and &,,p,). tive definite Wigner function of the EPR state provides direct
Bell's argument against the nonlocality of the EPR waveevidence of the nonlocality exhibited by this state. We shall
function (1) goes as follows. If the Wigner function of the show that the positivity or the negativity of the Wigner func-
system is positive everywhere it can be used to construct ion has a rather weak relation to the locality or the nonlo-
local hidden variable correlation in a form given by Eg) cality of quantum correlations. In fact, we shall show that the
and accordingly the Bell inequality is never violated. In or- NOPA wave function violates the Bell inequality and that the
original EPR wave functiorfl) exhibits strong nonlocality,
but one should be careful with the singular limit of strong
* Also at the Center of Advanced Studies and Department of Physsqueezingin this limit the NOPA state reduces to the EPR
ics, University of New Mexico, Albuquerque, NM 87131. statg. The NOPA phase space will be parametrized by
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two complex coherent states amplitudeand 8 correspond-
ing, respectively, toX;,p1) and X,,p,).

The starting point of our proof is an observation that the
two-mode Wigner functioW(«; 8) can be expressed as

4
W(a;B)=§H(a;ﬁ), )

wherell(«,B) is a quantum expectation value of a product
of displaced parity operators:

fl(a;8)=D1(a)(~1)1D](a)®D,(B)(—1)"2D}(B) @
4

The connection of the parity operator—o.)ﬁ with the
Wigner function provides an equivalent definition of the lat-
ter[11], as well as a feasible quantum optical measurement

schemd12]. In the above formulad;(«) andD,(3) denote o _ _

the unitary phase-space displacement operators for the sub- FIG- 1. Plot of the combinatio5 defined in Eq.(7). Only

systems 1 and 2. values exceeding the bound imposed by local theories are shown.
As the measurement of the parity operator yields only one

of two values:+1 or —1, there exists an apparent analogy for a direct measurement of the parity operator with no dis-

between the measurement of the parity operator and of thelacements applied. This is a manifestation of the fact that in

spin-1/2 projectors. The solid angle defining the direction ofthe parametric process photons are always generated in pairs.

the spin measurement is now replaced by the coherent dis- As depicted in Fig. 1, the resul) violates the upper

placement describing the shift in phase space. Consequentlypund imposed by local theories. With increasethe vio-

all types of Bell’s inequalities derived for a correlated pair of lation of Bell's inequality is observed for smallgk We will

spin-1/2 particles can be immediately used to test the nonldherefore perform an asymptotic analysis for langend

cality of the NOPA wave function. The two NOPA field J<1. In this regime we may approximate cosl#ppearing

modes are equivalent to an entangled state of two harmonie the argument of the first exponent in E@) just by e®'/2.

oscillators. As Eq(4) clearly demonstrates, the correlation Then a straightforward calculation shows that the maximum

functions measured in such experiments are given, up to walue of B (for this particular selection of coherent displace-

multiplicative constant, by the joint Wigner function of the ments is obtained for

system. As a consequence we have the fundamental relation

©)

The original EPR stat€l) is an unnormalizableS func-
tion. In order to avoid problems arising from this singularity,
we will consider a normalizable state that can be generated i

[',;‘\

E(ab)=II(a;pB) . je2r=zln2,

2 ®)

nd equals B=1+3%x2"%3~2.19. Thus, in the limit
— oo, when the original EPR state is recovered, a significant

a NOPA. Such a state is characterized by the dimensionle
effective interaction time (the squeezing parameteiThe
Wigner function of this NOPA state is well know#,7] and

is given by

II(a;8)=exd —2 cosh 2 (|a|*+|B|?)

+2sinh 2 (aB+a*B*)]. (6)

The Wigner function of the original EPR stdtB is obtained
in the limit r — .

The correlation function is measured for any of four com-
binations ofa=0,\/7 and 8=0,— \/7, where 7 is a positive

vslolation of Bell's inequality takes place. This result has

been obtained without any serious attempt to find the maxi-
mum violation (for this purpose one should consider a gen-
eral quadruplet of displacemepttet us note that in order to
observe the nonlocality of the EPR state, very small dis-
placements have to be applied, decreasing@e™2". This
shows the subtleties related to the original EPR sthtend

the need for considering its regularized version.

This discussion shows that despite conflicting claims, the
original EPR wave functioril) exhibits strong nonlocality.
The violation of the Bell inequality is achieved for a state
that is described by a positive Wigner function. This ex-

constant characterizing the magnitude of the displacemengnie puts to rest various conjectures, relating the positivity

From these quantities we construct the combinafiis]

B=11(0;0)+11(/7:0)+ I1(0; - V7))~ TI(T: = V)

=1+2 exg —2Jcosh2 ) —exp( —4.7e*"), (7

which for local theories satisfies the inequaliy2<B<2.
Let us note that one of the components of the above comb
nation describes perfect correlationd(0,0)=1, obtained

or the negativity of the Wigner function to the violation of
local realism. We have shown that in quantum mechanics,
the correlation(2) can be a Wigner function itself. This is
due to the fact that the Wigner function can be directly as-
sociated with the parity operator. This operator can be mea-
sured in a photon-photon coincidence experiment.

i- Apparently, the Wigner representation cannot serve as a
model local hidden variable theory describing the joint parity
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measurement. A straightforward explanation of this fact isphase space. One well known difficulty with this approach is

given by expressing the correlation functibi{ «; 8) in the
form analogous to Eq2):

H(a;ﬁ)zf dlef d2x2§5<2>(a—x1)

ar
xE(s(Z)(ﬁ—xz)W(Al;xz), 9)

the negativity of the Wigner functiofil4]. The example dis-
cussed in this paper shows that quantum mechanics mani-
fests its nature also in another, equally important way: the
Wigner representations of quantum observables cannot be in
general interpreted as phase-space distributions of possible
experimental outcomes. In particular, the Wigner representa-
tion of the parity operator is not a bounded reality corre-
sponding to the dichotomic result of the measurement. This
enables violation of Bell's inequalities even for quantum

where\; and\, are now complex phase-space look-alikesstates described by positive-definite Wigner functions.

of hidden variables. Though the outcome of the parity mea- The measurement described in this paper gains particular
surement may be only-1 or —1, the analog of local realities nterest in the context of recent advances in quantum state
appearing in the Wigner representation is described by Uryeconstruction. Over the past several years it has become

boundeds functions

o(ar) =752 (a=1y),
(10

a(b\2)=7 8P (B—Ny),

NE

which makes the Bell inequality void.

possible to obtain experimentally a complete picture of the
guantum state of light in the Wigner representatitb,16.
This, along with the feasibility of generating the quantum
optical NOPA statg 6], provides an exciting possibility to
test experimentally the nonlocal nature of the EPR state dem-
onstrated in this work.

This research was partially supported by Polish KBN

A tempting aspect of the Wigner representation is the in-Grant No. 2P03B 002 14 and by Stypendium Krajowe dla
terpretation of quantum mechanics in classical-like terms ifMtodych Naukowcev Fundacji na rzecz Nauki Polskiej.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rév, 777
(1935.

[2] D. Bohm, Quantum TheoryDover, New York, 1989 Chap.

21.
[3] J. S. Bell, PhysicgLong Island City, NY 1, 195 (1964).

[4] J. S. Bell,Speakable and Unspeakable in Quantum Mechanicglz]
Cambridge University Press, Cambridge, England, 1987

Chap. 21.
[5] A. M. Cetto, L. De La Pena, and E. Santos, Phys. LEIBA,
304 (1985.

[6] Z. Y. Qu, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys.

[10] M. D. Reid and P. D. Drummond, Phys. Rev. Le@0,
2731(1988.

[11] A. Royer, Phys. Rev. A5, 449(1977); B.-G. Englert, J. Phys.

A 22,625(1989; H. Moya-Cessa and P. L. Knight, Phys. Rev.

A 48, 2479(1993.

K. Banaszek and K. Wakiewicz, Phys. Rev. Lett76, 4344

(1996; S. Wallentowitz and W. Vogel, Phys. Rev.58, 4528

(1996.

[13] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.
Rev. Lett.23, 880(1969); J. S. Bell, inFoundations of Quan-
tum Mechanics edited by B. d’EspagnatAcademic, New
York, 1971).

Rev. Lett.68, 3663(1992; Z. Y. Ou, S. F. Pereira, and H. J. [14] M. 0. Scully, Phys. Rev. [28, 2477(1983; K. Wodkiewicz,

Kimble, Appl. Phys. B: Photophys. Laser Chef®b, 265

(1992.

[7] U. Leonhardt, Phys. Lett. A82 195(1993; U. Leonhardt and

J. A. Vaccaro, J. Mod. Op#2, 939 (1995.
[8] L. M. Johansen, Phys. Lett. 236, 173(1997.
[9] O. Cohen, Phys. Rev. A6, 3484(1997.

Contemp. Phys36, 139 (1995.

[15] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys.
Rev. Lett.70, 1244(1993.

[16] See, for example, J. Mod. Opt4, Nos. 11/12(1998, special
issue on quantum state preparation and measurement, edited
by M. G. Raymer and W. P. Schleich.



