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Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation

Konrad Banaszek and Krzysztof Wo´dkiewicz*
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoz˙a 69, PL-00-681 Warszawa, Poland

~Received 19 June 1998!

We demonstrate that the Wigner function of the Einstein-Podolsky-Rosen state, though positive definite,
provides direct evidence of the nonlocal character of this state. The proof is based on an observation that the
Wigner function describes correlations in the joint measurement of the phase-space displaced parity operator.
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Einstein, Podolsky, and Rosen~EPR! in their argument
about the completeness of quantum mechanics used the
lowing wave function for a system composed of two p
ticles @1#:

C~x1 ,x2!5E
2`

`

e~2p i /h!~x12x21x0!p dp. ~1!

Despite its obvious simplicity, this wave function has n
been explicitly used in arguments relating the nonlocality
quantum mechanics with the Bell inequalities. Followi
Bohm @2# the EPR correlations have been analyzed with
help of a singlet state of two spin-1/2 particles. For this st
the nonlocality of quantum correlations has been dem
strated@3#.

Quantum correlations for position-momentum variab
can be analyzed in phase space using the Wigner distribu
function. Using this phase-space approach to the EPR co
lations Bell argued@4# that the original EPR wave functio
~1! will not exhibit nonlocal effects because its joint Wign
distribution function W(x1 ,p1 ;x2 ,p2) is positive every-
where and as such will allow for a local hidden variab
description of position sign correlations.

In local hidden variable theories these and analogous
relations can be written in a form of a statistical ensemble
two local realitiess(a,l1)561 ands(b,l2)561, for two
spatially separated detectors with certain settings labele
a andb:

E~a;b!5E dl1E dl2 s~a,l1! s~b,l2! W~l1 ;l2!.

~2!

In this relationW(l1 ;l2) is a local, positive, and normalize
distribution of hidden variablesl1 and l2 . In the Wigner
representation, these variables can be associated, re
tively, with the phase-space realities (x1 ,p1) and (x2 ,p2).
Bell’s argument against the nonlocality of the EPR wa
function ~1! goes as follows. If the Wigner function of th
system is positive everywhere it can be used to constru
local hidden variable correlation in a form given by Eq.~2!
and accordingly the Bell inequality is never violated. In o
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der to emphasize this point Bell used a nonpositive Wig
function to show that the position sign correlation functi
will violate local realism. These examples indicated a re
tion between the locality and the positivity of the phas
space Wigner function.

The relation between the EPR correlations and the Wig
distribution function has been addressed in several pa
@5–9#. Although the singular character of the wave functi
~1! and the corresponding unnormalized Wigner function h
been criticized, the main point of the Bell argument relati
the positivity of the Wigner function to the lack of nonloca
ity of such a state has not been questioned. It has been
gued that the problem of normalization can be simply solv
by a ‘‘smoothing’’ procedure of the original wave functio
~1!.

An example of such a ‘‘smoothing’’ procedure, with
clear application to quantum optics, has been the use
two-mode squeezed vacuum state produced in a proces
nondegenerate optical parametric amplification~NOPA!
@10#. The NOPA state has been generated experimentally@6#
and applied to discuss the implications of the positivity
the phase-space Wigner function on the Bell inequality@7#.

These discussions have led to rather ambiguous res
On one hand, it has been argued that the quantum descrip
for the system of the NOPA as well as for the system ori
nally discussed by EPR is consistent with deterministic re
ism @6#. From this remark one can conclude that the E
wave function~1! cannot be used to test direct violations
the Bell inequality. This rather vexing conclusion indicat
that tests of quantum nonlocality have to rely not on t
original EPR wave function but on Bohm’s spin-1/2 syste
or on exotic states described by negative Wigner functio
On the other hand, attempts have been made to desig
experiment that would reveal the nonlocality of the EP
state@5,9#.

The purpose of this paper is to demonstrate that the p
tive definite Wigner function of the EPR state provides dire
evidence of the nonlocality exhibited by this state. We sh
show that the positivity or the negativity of the Wigner fun
tion has a rather weak relation to the locality or the non
cality of quantum correlations. In fact, we shall show that t
NOPA wave function violates the Bell inequality and that t
original EPR wave function~1! exhibits strong nonlocality,
but one should be careful with the singular limit of stron
squeezing~in this limit the NOPA state reduces to the EP
state!. The NOPA phase space will be parametrized

s-
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two complex coherent states amplitudesa andb correspond-
ing, respectively, to (x1 ,p1) and (x2 ,p2).

The starting point of our proof is an observation that t
two-mode Wigner functionW(a;b) can be expressed as

W~a;b!5
4

p2
P~a;b! , ~3!

whereP(a,b) is a quantum expectation value of a produ
of displaced parity operators:

P̂~a;b!5D̂1~a!~21! n̂1D̂1
†~a! ^ D̂2~b!~21! n̂2D̂2

†~b! .
~4!

The connection of the parity operator (21)n̂ with the
Wigner function provides an equivalent definition of the la
ter @11#, as well as a feasible quantum optical measurem
scheme@12#. In the above formula,D̂1(a) andD̂2(b) denote
the unitary phase-space displacement operators for the
systems 1 and 2.

As the measurement of the parity operator yields only o
of two values:11 or 21, there exists an apparent analo
between the measurement of the parity operator and of
spin-1/2 projectors. The solid angle defining the direction
the spin measurement is now replaced by the coherent
placement describing the shift in phase space. Conseque
all types of Bell’s inequalities derived for a correlated pair
spin-1/2 particles can be immediately used to test the no
cality of the NOPA wave function. The two NOPA fiel
modes are equivalent to an entangled state of two harm
oscillators. As Eq.~4! clearly demonstrates, the correlatio
functions measured in such experiments are given, up
multiplicative constant, by the joint Wigner function of th
system. As a consequence we have the fundamental rel

E~a;b![P~a;b! . ~5!

The original EPR state~1! is an unnormalizabled func-
tion. In order to avoid problems arising from this singulari
we will consider a normalizable state that can be generate
a NOPA. Such a state is characterized by the dimension
effective interaction timer ~the squeezing parameter!. The
Wigner function of this NOPA state is well known@6,7# and
is given by

P~a;b!5exp@22 cosh 2r ~ uau21ubu2!

12 sinh 2r ~ab1a* b* !#. ~6!

The Wigner function of the original EPR state~1! is obtained
in the limit r→`.

The correlation function is measured for any of four co
binations ofa50,AJ andb50,2AJ, whereJ is a positive
constant characterizing the magnitude of the displacem
From these quantities we construct the combination@13#

B5P~0;0!1P~AJ;0!1P~0;2AJ!2P~AJ;2AJ!

5112 exp~22Jcosh2r !2exp~24Je2r ! , ~7!

which for local theories satisfies the inequality22<B<2.
Let us note that one of the components of the above com
nation describes perfect correlations:P(0,0)51, obtained
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for a direct measurement of the parity operator with no d
placements applied. This is a manifestation of the fact tha
the parametric process photons are always generated in p

As depicted in Fig. 1, the result~7! violates the upper
bound imposed by local theories. With increasedr, the vio-
lation of Bell’s inequality is observed for smallerJ. We will
therefore perform an asymptotic analysis for larger and
J!1. In this regime we may approximate cosh2r appearing
in the argument of the first exponent in Eq.~7! just bye2r /2.
Then a straightforward calculation shows that the maxim
value ofB ~for this particular selection of coherent displac
ments! is obtained for

Je2r5
1

3
ln 2 , ~8!

and equalsB51133224/3'2.19. Thus, in the limit
r→`, when the original EPR state is recovered, a signific
violation of Bell’s inequality takes place. This result ha
been obtained without any serious attempt to find the ma
mum violation~for this purpose one should consider a ge
eral quadruplet of displacements!. Let us note that in order to
observe the nonlocality of the EPR state, very small d
placements have to be applied, decreasing asJ}e22r . This
shows the subtleties related to the original EPR state~1! and
the need for considering its regularized version.

This discussion shows that despite conflicting claims,
original EPR wave function~1! exhibits strong nonlocality.
The violation of the Bell inequality is achieved for a sta
that is described by a positive Wigner function. This e
ample puts to rest various conjectures, relating the positi
or the negativity of the Wigner function to the violation o
local realism. We have shown that in quantum mechan
the correlation~2! can be a Wigner function itself. This i
due to the fact that the Wigner function can be directly
sociated with the parity operator. This operator can be m
sured in a photon-photon coincidence experiment.

Apparently, the Wigner representation cannot serve a
model local hidden variable theory describing the joint par

FIG. 1. Plot of the combinationB defined in Eq.~7!. Only
values exceeding the bound imposed by local theories are sho
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measurement. A straightforward explanation of this fac
given by expressing the correlation functionP(a;b) in the
form analogous to Eq.~2!:

P~a;b!5E d2l1E d2l2

p

2
d~2!~a2l1!

3
p

2
d~2!~b2l2!W~l1 ;l2!, ~9!

wherel1 and l2 are now complex phase-space look-alik
of hidden variables. Though the outcome of the parity m
surement may be only11 or 21, the analog of local realities
appearing in the Wigner representation is described by
boundedd functions

s~a,l1![
p

2
d~2!~a2l1!,

~10!

s~b,l2![
p

2
d~2!~b2l2!,

which makes the Bell inequality void.
A tempting aspect of the Wigner representation is the

terpretation of quantum mechanics in classical-like terms
ic
7

ys
.

s

-

n-

-
n

phase space. One well known difficulty with this approach
the negativity of the Wigner function@14#. The example dis-
cussed in this paper shows that quantum mechanics m
fests its nature also in another, equally important way:
Wigner representations of quantum observables cannot b
general interpreted as phase-space distributions of pos
experimental outcomes. In particular, the Wigner represe
tion of the parity operator is not a bounded reality cor
sponding to the dichotomic result of the measurement. T
enables violation of Bell’s inequalities even for quantu
states described by positive-definite Wigner functions.

The measurement described in this paper gains partic
interest in the context of recent advances in quantum s
reconstruction. Over the past several years it has bec
possible to obtain experimentally a complete picture of
quantum state of light in the Wigner representation@15,16#.
This, along with the feasibility of generating the quantu
optical NOPA state@6#, provides an exciting possibility to
test experimentally the nonlocal nature of the EPR state d
onstrated in this work.
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