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Space-time properties of free-motion time-of-arrival eigenfunctions
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The properties of the time-of-arrival operator for free motion introduced by Aharonov and Bohm@Phys. Rev.
122, 1649 ~1961!# and of its self-adjoint variants are studied. The domains of applicability of the different
approaches are clarified. It is shown that the arrival time of the eigenfunctions is not sharply defined. However,
strongly peaked real-space~normalized! wave packets constructed with narrow Gaussian envelopes centered
on one of the eigenfunctions provide an arbitrarily sharp arrival time.@S1050-2947~98!05612-1#

PACS number~s!: 03.65.2w
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I. INTRODUCTION

The extension of the classicalarrival-time concept to
quantum mechanics is problematic because of the absen
trajectories in the standard interpretation of the quantum
malism. The question is important since the detection of p
ticles in time-of-flight and coincidence experiments is qu
common and quantum mechanics should be able to pre
and interpret the statistics of the arrivals. A recent revi
discusses the main theoretical approaches and open que
@1#.

The customary way to specify a dynamical variable
quantum mechanics is to define the corresponding oper
but Pauli showed that a self-adjoint time operator conjug
to the HamiltonianĤ cannot be constructed if the spectru
of Ĥ is bounded from below@2#; see also@3–5#. There are,
however, several ways to circumvent this objection a
quantize the classical arrival time, at least in simple ca
such as free motion. Aharonov and Bohm introduced
operator@6#

T̂52mS q̂
1

p̂
2

\

2i

1

p̂2D 52
m

2 S q̂
1

p̂
1

1

p̂
q̂D ~1!

by symmetrizing the classical expression for the time of
rival at X50 for a particle with positionq and momentump
at time t50. The same result is obtained by using the qu
tization rules of Weyl, Rivier, or Born-Jordan@7#, but this
coincidence does not justify Eq.~1! since,a priori, no rule is
more fundamental than any other rule. They simply prov
a number of quantum generalizations of a classical quan
one ~or some! of these can be selected by requiring eith
agreement with a particular experimental procedure or
certain desirable conditions be satisfied, such as prope
obeyed by the classical counterpart. It is thus essentia
carefully examine the behavior of a given operator and of
eigenfunctions to ascertain their ultimate physical conte
Paul and others have examined the mathematical prope
of T̂ as a linear operator in Hilbert space@8–10,4#. In Sec. II
we shall first review these properties. Then the relations
tween T̂ and positive operator value measures, or its s
adjoint variants, are examined and the important questio
the domains of applicability of the theories associated w
PRA 581050-2947/98/58~6!/4336~9!/$15.00
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the different operators is clarified. In Sec. III less abstr
aspects are studied, such as the functional form of the eig
functions in the coordinate representation and their time
pendence. Finally, the behavior of normalized wave pack
‘‘peaked’’ around one of the eigenfunctions is discussed
Sec. IV.

II. TIME OPERATORS

T̂ is not a self-adjoint operator, but it is in a sense the n
best thing, namely, a maximal symmetric operator@10–12#.
This means that it is Hermitian~or ‘‘symmetric’’ in the
mathematical literature!, but it does not admit a self-adjoin
extension. Indeed, one way to circumvent Pauli’s argum
is to relax the standard requirement and admit Hermitian
non-self-adjoint operators as representations of phys
properties. By imposing Hermiticity and square integrabil
of the states in its range, its domainD(T̂) is given by the set
of states with momentum representation obeying@8#

lim
p→0

f~p!

p3/2
→0. ~2!

The eigenvalue equation in momentum representa

^puT̂uc&5T^puc&,

2mi\S 1

p

d

dp
2

1

2p2D ^puc&5T^puc&, ~3!

is solved~for pÞ0) by

^puT,a&5~ upu/mh!1/2eip2T/~2m\!Q~ap!, ~4!

wherea56 andQ is the Heaviside step distribution. Thes
are ‘‘weak eigenfunctions’’ @4# that satisfy ^T,au(T̂
2T)uf&50, for all fPD(T̂). These~improper! eigenfunc-
tions have the appropriate transformation behavior for a s
arriving at timeT,

e2 iĤ t/\uT,a&5uT2t,a&, ~5!

namely, if the original state had already evolved for a timt
then it would arrive atT2t instead; however, they are no
4336 © 1998 The American Physical Society
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square integrable functions so they do not define physic
realizable state vectors in the Hilbert spaceH5L2. The con-
stant factor in Eq.~4! is chosen to satisfy the resolution o
the identity

1op5(
a

E
2`

`

dTuT,a&^T,au. ~6!

In the physical interpretation of this expression, one assu
that all particles arrive sooner or later. Notice the inclus
of negative times. In an experimental context, all measu
arrival times are positive if the single-particle statec(t) of
interest is prepared at the instantt50. However, as discusse
in considerable detail by Grotet al. @13#, the theoretical
analysis is much simpler if one considers a different probl
in which it is imagined that the state is prepared att52` in
the state that~in the absence of an interaction! evolves to the
actually prepared statec(t50) and the arrival time distribu
tion includes both negative and positive arrival times. This
very useful from the mathematical point of view@e.g., see
Eq. ~6! or Eqs.~15! and ~22! below.#

The eigenfunctionsuT,a& are complete, but they are no
orthogonal,

^T8,a8uT,a&5
da,a8

2 Fd~T2T8!1
i

p
PS 1

T2T8
D G . ~7!

The nonorthogonality of the eigenstates has been assoc
with the intrinsically ‘‘unsharp’’ character of this ‘‘observ
able’’ by the proponents of the ‘‘operational approach
quantum mechanics’’@11#. Giannitrappani in particular@4#,
points out that the statesuT,a& provide a ‘‘positive operator
value measure’’~POVM! for the arrival time. This means
that for an interval of time@T1 ,T2# the positive, bounded
operator

B̂~T2 ,T1!5(
a

E
T1

T2
uT,a&dT^T,au ~8!

can be constructed. This is not a projector, but one does
necessarily require projectors in order to introduce probab
ties in quantum mechanics@11,14#. By taking the trace with
the normalized physical density operatorr̂, the function

P~T2 ,T1!5tr@B̂~T2 ,T1!r̂# ~9!

fulfills in principle the conditions of a probability for arriva
betweenT1 andT2 : It is positive, additive for disjoint sets
and, using Eq.~6!, tends to 1 asT1→2` and T2→`. In
particular, an arrival time distribution~for a pure statec at
time t) is defined by

P„T;c~ t !…5(
a

z^T,auc~ t !& z2. ~10!

According to Eq.~5!, the POVM satisfies the ‘‘covarianc
condition’’

e2 iĤ t/\B̂~T2 ,T1!eiĤ t/\5B̂~T22t,T12t !. ~11!

and this means in particular that
ly

es
n
d

s

ted

ot
i-

P„T;c~0!…5P„T2t;c~ t !…. ~12!

In words, the probability for arriving atT is equal to the
probability for arriving atT2t when the original state ha
evolved a timet. This is a basic physical requirement th
any candidate for an arrival time distribution should obe
This is of course also true in classical mechanics.

The time-of-arrival operatorT̂ is the ‘‘first moment’’ of
the POVM. For anyf andcPD(T̂),

^fuB̂~1!uc&[E T^fuB̂~dT!uc&5^fuT̂uc&

5(
a

E
2`

`

dT^fuT,a&T^T,auc&. ~13!

There are in principle other POVMs compatible with Eq
~11! and ~13!, but Eq.~8! has the following unique feature
Its second moment operator obeys, for states inD(T̂),

D~c![E T2^cuB̂~dT!uc&2^T̂cuT̂c&50, ~14!

which is by no means an obvious relation since the eig
vectors ofT̂ are not orthogonal.@An equation like Eq.~14!
would be satisfied trivially by a self-adjoint operator since
that case the moments of the distribution of the observa
are obtained as the expectation values of the powers of
operator.# D(c) is called the variance form@10#. In classical
mechanics the true arrival time distribution makes the ana
gous quantity minimal, so this property has also been
voked to select a proper quantum distribution@15,10#.

Another condition satisfied byP(T) is that, for the state
c1 defined by^puc1&5^puc&* ,

P„T,c~0!…5P„2T,c1~0!…, ~15!

which follows immediately from the symmetry property

^puT,a&* 5^pu2T,a&. ~16!

Equation ~15! is also a classically motivated relation th
must hold when the arrival point isX50 @15,10#. ~If only
covariance and minimum variance were imposed the arr
point would not be specified.!

The distribution of arrival times~10! was obtained by
Kijowski @15# and was later rederived, studied, or gener
ized by several authors@10,16,13,5,17,18#. Werner in par-
ticular @10#, for states with positive momenta justified th
uniqueness of Eq.~10! subject to the conditions~12!, ~14!,
and ~15!. Grot, Rovelli, and Tate@13# introduced a regular-
ized self-adjoint operator and considered the full express
~10! for possible application to more general states hav
both positive and negative momenta but vanishing in
proximity of p50. Delgado and Muga@5#, for states with
purely positive or negative momenta, arrive at the distrib
tion using a different self-adjoint operator. We shall ne
discuss these two proposals for self-adjoint arrival time
erators.
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Self-adjoint variants of T̂

Grot, Rovelli, and Tate@13# trace the nonorthogonality o
the eigenfunctions to the singularity atp50, and produce a
‘‘regularized’’ self-adjoint time operatorT̂« with eigenfunc-
tions that differ from Eq.~4! only in a small momentum
region aroundp50,

^puT6&«5Q~6p!@hm f«~p!#21/2expS iT

m\E6«

p dp8

f «~p8!
D ,

~17!

where« is a small positive number,

f «5H 1/p, upu.«

«22p, upu,«.
~18!

The integral in Eq.~17!, which plays the role of the energ
when divided bym, becomes

E
6«

p dp8

f «~p8!
5H ~p22«2!/2, upu.«

«2ln~ upu/«!, upu,«,
~19!

so that the regularization amounts to changing the ene
spectrum in the region aroundp50 by introducing negative
energies. In this manner Pauli’s objection is avoided. Wh
Grot, Rovelli, and Tate modify the eigenfunctions~and
therefore the time operator! in the proximity of p50, Paul
discussed a similar idea@8#, namely, to modify the physica
state vector wave functions infinitesimally around this po
so thatT̂ can be applied to them. He concluded, howev
that such modifications were not physically meaningful sin
these infinitesimal changes may lead, for example, to a
trary values of the expectation value of the square ofT̂,

^T̂2&. Note that the smallp region is responsible for the lon
time asymptotic behavior of the arrival time distribution~see
Appendix A! and therefore any infinitesimal change the
affects drastically quantities such as^T̂n&, even though it
will affect only infinitesimally other expectation values, fo
example,̂ q̂n&, or ^ p̂n&, with n51,2,3, . . . @8#. Paul’s obser-
vation is correct, but we shall argue in Sec. V that the c
sequences are not necessarily as negative as he though

A second proposal that was already pointed out by
jowski ~Sec. 8 of@15#! and has been developed further
Delgado and Muga@5# is to take the two pieces ofT̂,

T̂5T̂Q~ p̂!1T̂Q~2 p̂!, ~20!

the first acting on the positive momentum subspace and
second acting on the negative momentum subspace,
combine them with a negative sign instead,

T̂25T̂Q~ p̂!2T̂Q~2 p̂!. ~21!

This operator is self-adjoint and has eigenvectorsuT& formed
by the combination

uT&[uT1&1u2T2&. ~22!

This time operator avoids Pauli’s argument in a differe
manner. It is not conjugate toĤ but to an operatorĤ
gy

e

t
r,
e
i-

-

-

he
nd

t

5sgn(p̂)Ĥ related toĤ by the change of the sign for nega

tive momenta. Technically, becauseT̂ is a maximal symmet-

ric operator,T̂2 cannot be its self-adjoint extension and on

gives the same result asT̂ when acting on the subspace
positive momenta~there is a change of sign for the negati
momentum subspace!.

So one can in principle construct self-adjoint variants

T̂. However, what do they mean and what information c
we extract from them? Unfortunately, neither the sta
uT6&« nor the statesuT& transform according to Eq.~5!.
Equivalently, none of the self-adjoint operators discuss
satisfies the covariance condition and the arrival-time dis
butions computed with them do not in general satisfy
basic physical requirement~12!. To avoid this problem, in
both approaches the domains ofphysical applicabilityof the
self-adjoint operators have to be restricted with respect to
mathematical domains. For the approach by Grot, Rove
and Tate the domain should be restricted to states with
mentum support outside the regularization region arounp
50 (2«,«), so that in fact the arrival time distribution i
again given by Eq.~10!. Similarly, the approach associate

with T̂2 is only physically meaningful for states with pure
positive/negative momenta and the corresponding distr
tions are therefore contained in Eq.~10!. In summary, the
apparent advantage of these two proposals is mislea
since in practice they are only applicable when their res
are equivalent to the ones provided by the POVM related
the Aharonov-Bohm operator. In fact, the limitations on t
domains of applicability of these two approaches are qu
severe. The arrivals at a screen or detector will occur for
states inH and not just for a special set of states. A comple
theory should provide the arrival-time distribution in a
cases. The important point is that the distribution associa
with the POVM applies for all states inH ~irrespectively of
their behavior atp50), so it is in this sense a more comple
approach. This is perfectly compatible withD(T̂)ÞH since
the time operator is only one of its moments. Let us rec
that a probability distribution exists independently of the e
istence of its moments. In fact, in classical mechanics
sembles with nonzero probability atp50 have no finite av-
erage arrival time, but the distribution is nevertheless w
defined. In this respect only the POVM approach provide
correct classical limit.

In summary, the distributionP(T) is satisfactory in many
ways. There is, however, an important point that has
been considered yet. How do the eigenfunctions ofT̂ be-
have? Do they really represent states that arrive at a g
time for a given position? The meaning of these eigenfu
tions, although central, has not been sufficiently discussed
particular, they have always been studied in the momen
representation without paying attention to its coordinate r
resentation and time dependence. These aspects are e
ined in Sec. III. Before doing so, it is noted that, because
the symmetry~16!, the coordinate representations of the tim
evolved statesuTt6&[exp(2iĤt/\)uT6& are related by

^xuTt2&5^2xuTt1&, ~23!
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so that it is enough to study one of the cases. Further s
plification comes from the fact that, as a consequence of
~5!, studying the time dependence of one of the states,
uTt81&, from t50 to the nominal arrival timet5T8, is
equivalent to considering the sequence of eigenstatesuT1&
from T5T8 to T50. The space-time analysis that we sh
carry out in the next section should be taken with some p
caution because these are not square integrable state
occurs with the continuum stationary states used in scatte
theory, their physical interpretation requires the construct
of normalizable wave packets peaked at one of them.

III. COORDINATE REPRESENTATION

The coordinate representation of the wave function~4! is
given by the integral

^xuT1&5E
0

`

^xup&S p

mhD
1/2

eip2T/2m\dp, ~24!

where d-function normalization^xup&5h21/2exp(ixp/\) is
used for the plane waves. Let us assume for the time b
thatT.0. The original path of integration is very inefficien
numerically because of the rapid oscillations of the expon
tials. The easiest way to calculate the integral is to defo
the contour in the complexp plane along the imaginary axi
from the origin up to the intersection with the steepest
scent path defined by

pI5mx/T1pR ~25!

(pR andpI are, respectively, the real and imaginary parts
p) and then to follow this steepest descent path rightward
infinity in the first quadrant. The saddle is on the real axis
2mx/T. Two cases have to be distinguished. Forx.0 the
path does not cross the saddle and the value of the integ
small. In this case the origin is the only relevant critic
point. Use of Watson’s lemma@19# for largex and smallT
provides the leading term

^xuT1&;
h1/2e3ip/4

x3/2p25/2m1/2
, x→`. ~26!

Note that this asymptotic behavior is independent ofT. How-
ever, for x,0 the saddle becomes the dominant critic
point. Retaining the leading term@19#,

^xuT1&;
~muxu/h!1/2

T
eip/4e2 ix2m/2\T, x→2`. ~27!

In the first casê xuT1& decreases asx23/2, whereas in the
second one it increases asuxu1/2 asymptotically. In fact, the
integral can be expressed exactly in terms of parabolic
inder functions, but the approximate critical point treatme
just outlined is worthwhile since it allows a simple rationa
ization of the exact results. By means of the change of v
able

s5ap, ~28!

where
-
q.
ay

l
-
As

ng
n

ng

-

-

f
to
t

l is
l

l

l-
t

i-

a52F T

m\ G1/2

e2 ip/4, ~29!

Eq. ~24! becomes

1

hm1/2~a1/2!3EC
dss1/2e2s2/21zs, ~30!

where all square roots are calculated with a branch cut on
negative real axis and

z5xe2 ip/4S m

\TD 1/2

. ~31!

The integration pathC in Eq. ~30! goes now from 0 tò
along the bisector of the second quadrant in the comples
plane. Note thatz is the saddle point of exp(w)[exp(2s2/2
1sz). It lies on the bisector of the second/fourth quadra
for positive/negativex. The steepest descent paths from it a
parallel to the real axis andC lies on the border between th
‘‘hill’’ and ‘‘valley’’ @wR[Re(w)50#. It can, however, be
deformed into a line just above the branch cut since ther
no contribution at infinity. As the integrand across the bran
cut simply changes sign, Eq.~30! is one-half of the loop
integral around the cut. In this fashion one of the integ
forms of the parabolic cylinder functionD23/2(z) can be
recognized@20#,

^xuT1&5
G~3/2!

hm1/2~a1/2!3
ez2/4D23/2~z!. ~32!

The asymptotic behavior for largeuzu ~see@21#! is in agree-
ment with the expressions~26! and ~27!. The corresponding
results for the caseT,0 are simply obtained by using th
symmetry

^xuT1&* 5^2xu2T1&. ~33!

The asymptotic behavior for negative and positivex ~grow-
ing and decaying, respectively! changes abruptly atT50.
Since uT1& does not represent a physical state vector,
discontinuity atT50 is not problematic, but indicates aga
that a literal physical interpretation of these states is not
lowed. We shall see later that normalized wave pack
formed with these states do not present this singularity.

There is a region close tox50 that cannot be describe
by the asymptotic formulas for a large argument. In th
region, however, the parabolic cylinder function can be
pressed by means of a power series@20#

D23/2~z!5
G~21/4!

p1/225/4
2

G~1/4!

p1/223/4
z1O~z2!. ~34!

Combining Eqs.~34! and ~32!, explicit expressions for̂x
50uT1& and for its ‘‘flux’’ J(x50) can be obtained@22#. In
particular,

J~x50!5
@G~3/2!G~21/4!#2

~2p!3T223/2
. ~35!
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For T.0, neither the wave function̂xuT1& nor the flux are
zero at x50. Both the ‘‘density’’ z^x50uT1& z2 and J(x
50) grow monotonically asT→0. Figures 1~a! and 1~b!
illustrate all the dependences discussed.z^xuT1& z2 is de-
picted for a series of decreasing timesT.0 as a function of
x for two different scales: betweenx522 andx50.2 @Fig.
1~a!# and betweenx520.2 andx50.2 @Fig. 1~b!# ~atomic
units are used in all numerical examples!. In the larger scale
the density of the eigenstate is essentially a straight l
pivoting at x50, that approaches the vertical asT→0. The
finer scale, however, shows that the arrival is not shar
defined. Even though, in a loose sense, ‘‘most of the wav
^xuT1& passes fromx,0 to x.0 at T50, there is a tail at
x.0 present for an arbitraryT. Since these states are n
normalized to one it is not possible to quantify the fraction
particles that can be found to the right ofx50 beforeT
50.

One might think that the eigenstates of the self-adjo
operators, which are orthogonal, could avoid this type
unsharpness@23#, but they do not. For arbitrary values ofe
we have numerically checked~see Appendix B! that there is
a nonvanishing densityz^xuT1&«z2 at x.0 for fixedT. Simi-
larly, the stateŝ xuT& are also nonzero on the right-han
side. Using their defining equations~22!, ~23!, and~33!, one
finds

FIG. 1. ~a! z^xuT1& z2 versusx for T50.01 ~long-dashed line!,
0.005 ~short-dashed line!, and 0.001~solid line! and m51. All
quantities are in a.u.~b! Same as~a!, but for a smallerx interval.
e,

ly
’’

f

t
f

^xuT&52 Rê xuT1&. ~36!

@It is to be noted that the corresponding time evolv
state does not take this form. Instea
^xuTt&[^xue2 iHt /\uT&5^xu(T2t)1&1^xu(T1t)1&* .# Fig-
ure 2 represents the square of this quantity for a relativ
large spatial interval~the small but nonzero density forx
.0 is not seen in this scale!. The figure corresponding to th
imaginary part is very similar. Note the increasingly rap
oscillation asx→2`. Cancellation of these oscillations oc
curs in linear combinations of the states^xuT& or ^xuT1&
over a nonzero band leading to localization in a region clo
to the origin; see Fig. 3 and the discussion in the followi
section. There is a helpful classical association to unders
the oscillatory pattern: High-velocity particles~fast oscilla-
tions! have to start at longer distances and low-velocity p
ticles ~slow oscillations! at shorter distances if they all hav
to arrive atX50 simultaneously.

IV. COORDINATE AND TIME DEPENDENCE
OF THE NORMALIZED QUASIEIGENSTATES

We shall here construct normalized wave packets by
ing a Gaussian distribution of the states^xuTt81& peaked at
T85T @24#,

FIG. 2. z^xuT& z2 versusx for T50.01 andm51.

FIG. 3. Probability density of normalized quasieigenstates@see
Eq. ~37!# for T50.04, m51, DT50.002, t50 ~solid line!, t
50.02 ~long-dashed line!, andt50.04 ~short-dashed line!.



t

th
-

e

e

si
ed

av

i

ins:

n
’

f
e of

re

ft

en-

hat

at
cal
us-
ling
er

be
h to
the

er
ce
ro-
il-

asi-

rs,

un-

ct
y

e
nsi-

e
ons

in
ity.
the

PRA 58 4341SPACE-TIME PROPERTIES OF FREE-MOTION TIME- . . .
^xuC~ t;T,DT!&5NE
2`

`

e2~T2T8!2/2~DT!2
^xuTt81&dT8.

~37!

Carrying out the Gaussian integral overT8 and then deter-
mining the normalization constantN by evaluation of
*2`

` dxz^xuC(t;T,DT)& z2 gives the normalized wave packe

^xuC~ t;T,DT!&5
2p1/4~DT!1/2

hm1/2 E
0

`

p1/2eipx/\

3ei ~T2t !p2/2m\e2~DT!2p4/8m2\2
dp. ~38!

This integral is readily evaluated numerically because of
exponential dependence on2p4. The momentum represen
tation is given explicitly by

^puC~ t;T,DT!&

5
2p1/4~DT!1/2

~hm!1/2
p1/2ei ~T2t !p2/~2m\!e2~DT!2p4/~8m2\2!Q~p!.

~39!

As DT→0 these states are orthogonal and satisfy the eig
value equation to any desired degree of accuracy:

^C~ t;T8,DT!uC~ t;T,DT!&

5wS T2T8

2DT D5H 1 if T5T8

;OS DT

T2T8
D as

DT

T2T8
→0,

~40!

^puT̂uC~0;T,DT!&5T^puC~0;T,DT!&1O~DT!5/2,
~41!

wherew(z)5exp(2z2)erfc(2 iz) is the ‘‘w function’’ @20#.
The momentŝ p̂n& of the momentum distribution can b
obtained from Eq.~39!,

^ p̂n&5GS n12

4 Dp2~11n!/2S DT

hmD 2n/2

. ~42!

Both the average energŷE&[^ p̂2&/2m5h/2p3/2DT and
DE5@2212p21#1/2\/DT diverge asDT goes to zero.

Similarly, from Eq.~38! one finds

^ x̂&52
G~3/4!

p S h

mDTD 1/2

~T2t !, ~43!

whereas higher moments diverge.~A finite ‘‘width’’ can,
however, be defined as the half-width at half height.! The
average velocitŷ p̂/m&, which is also the velocity of the
centroid^x̂&, is given byG(3/4)@h/DTmp2#1/2. The behav-
ior of these states is arbitrarily close to what one could de
for an ideal arrival time eigenvector: They are normaliz
and there is no discontinuity att5T; for a fixed DT, they
still obey a transformation law of the form~5!; the wave
travels towards the origin with constant velocity and the
erage position crosses the origin at timet5T, which is also
the time when the spatial width of the wave packet attains
e

n-

re

-

ts

minimum value. Of course a certain unsharpness rema
From Eq. ~38! one finds ^2xuC(2T2t;T,DT)&
5^C(t;T,DT)ux&, so the probability density has inversio
symmetry in (x,t) with respect to the space time ‘‘origin’
(0,T). In particular, fort5T, half the norm is to the right of
x50 independently ofDT. ~The question of the existence o
quantum states where the particle stays strictly on one sid
X before T and on the other side afterT is addressed in
Appendix C.! However, the wave packet density and flux a
more and more peaked at the space-time point (x50, t
5T) asDT→0, so that the passage of probability from le
to right is sharp to any desired accuracy,

z^x50uC~ t5T;T,DT!& z25S m

hDTD 1/2G~3/8!2

p25/4
, ~44!

J~x50,t5T!5
G~3/8!G~5/8!

DTp3/223/4
. ~45!

The normalized wave packets constructed with the eig
functions ~17! have been examined in@25#, where it is re-
ported that this arbitrarily sharp accuracy is not found in t
case.

V. DISCUSSION

Given the importance of the timed detection of particles
screens or in time-of-flight experiments, finding a theoreti
description of the arrival times seems imperative. Apparat
dependent results are available, for example, via mode
the detection with complex absorbing potentials or oth
measurement models@26–28#, but it is reasonable to inquire
if an intrinsic, apparatus-independent distribution can
naturally defined by means of the usual operator approac
quantum mechanics. We have seen in Secs. II and III that
POVM and the corresponding distributionP(T) associated
with the time operatorT̂ provide a rather satisfactory answ
from the point of view of the properties satisfied: covarian
with respect to time translations, minimum variance, app
priate symmetries, physically correct domain of applicab
ity, and sharp space-time behavior of the normalized qu
eigenstates.

One of the objections by Paul toT̂, which is also a short-
comming of the theories based on self-adjoint operato
namely, the restrictive domain of the time operator~s! ~which
does not include, for example, states such as minimum
certainty product Gaussians!, is overcome by the POVM
theory. An important point is to consider the primary obje
as the POVM~or, equivalently, the resolution of the identit
or the arrival time distribution! rather than the operator. In
this manner, the domain of applicability of the theory isH
and the classical limit is correct. Moreover, in this light th
other problem indicated by Paul, namely, the extreme se
bility of the expectation values of powers ofT̂ to small per-
turbations, is relatively unimportant. It is a fact that som
quantities are very sensitive to certain small perturbati
and we are simply dealing with one of them. The moments
the classical case would also suffer from such a sensitiv
The moral is that one should not pay as much attention to
moments of a time-of-arrival distribution~highly unstable
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with respect to small perturbations or changes in the app
tus resolution and possibly divergent! but to general feature
of the distribution ~peaks, global form, or width at hal
height, for example!. A consequence is that an uncertain
principle in terms of̂ T̂2& is not of much use since this quan
tity will generally diverge. If it does not, it will be too un
stable with respect to small perturbations. It is preferable
express the uncertainty principle in terms of other meas
ments of width, such as the half-width at half height.

Apart from the positive features ofP(T), it is also fair to
point out several unclear points or open questions. For
ample, it is necessary to generalize the treatment to hig
dimensions or to scattering problems. The connection
tween P(T) and measurements~especially in nonclassica
cases! is also pending; see@27#. We can, however, advanc
as a preliminary analysis two important features of a hy
thetical measurement ofP(T). The resolution of identity~6!
implies the structure ofP(T),

P~T!5 z^T1uc1& z21 z^T2uc2& z2, ~46!

whereuc6&5Q(6 p̂)uc&. This implies ignoring the ‘‘inter-
ference terms’’uc2&^c1u and uc1&^c2u, so that in a hypo-
thetical operational procedure to measureP(T), only the
diagonal terms of the density operator contribute,

r̂→uc1&^c1u1uc2&^c2u. ~47!

Apart from the fact that the practical implementation of th
diagonalization may be cumbersome, the neglect of inter
ences is not a desirable feature since many different quan
states would give the same distribution. A second proble
atic aspect is associated with the interpretation
z^T1uc1& z2 as the contribution toP(T) from particles arriv-
ing from the left and ofz^T2uc2& z2 as the contribution from
those arriving from the right. This is particularly evide
when thebackflow effect

J<0 for uc&5uc1&, ~48!

J>0 for uc&5uc2& ~49!

occurs@29#. ThenP(T) assigns zero probability to arrival
from the ‘‘anomalous side’’~e.g., from the right whenuc&
5uc1&). This implies that ifuc&5uc1& or uc&5uc2& then
either particles should be found to arrive either only from
left or only from the right, respectively, even during the tim
interval whenJ has the ‘‘wrong sign,’’ or the theory is ap
propriate when the ‘‘screen’’ is ‘‘one sided,’’ failing to de
tect any particles arriving from the anomalous side. N
consider the corresponding implication for the general s
uc&5uc1&1uc2& with both uc1& anduc2& nonzero. One
possibility is that the interference terms do not in fact co
tribute to the intrinsic arrival time distribution. The other
that the distribution~46! is only appropriate when the appa
ratus measures the sign of the momentum of each inci
particle, thus collapsing the wave function of that particle
either uc1& or uc2& and then switches on the appropria
one-sided detecting screen.
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APPENDIX A: LARGE- T BEHAVIOR OF P„T…

Let us consider the asymptotic, large-T behavior of
^T1uc&,

^T1uc&5
1

~mh!1/2E0

`

p1/2e2 ip2T/~2m\!^puc&dp. ~A1!

Assuming that̂ puc& can be analytically continued into th
fourth quadrant in the complexp plane we deform the inte
gral contour into the rayp5ge2 ip/4 (0<g,`). With the
changeg5g2/2m\ the integral takes the form

^T1uc&5
~mh!1/4

2p3/4
e2 ip3/8E

0

`

dge2gtc~g!g1/4, ~A2!

where the origin appears as the critical point. If, asg→0,
c(g);cgu ~where u is not necessarily an integer!, use of
Watson’s lemma provides the dominant term

^T1uc&;e2 ip3/8
c~mh!1/4

2p3/4

G~u15/4!

Tu15/4
. ~A3!

APPENDIX B: COORDINATE
REPRESENTATION OF zT1‹«

The integral overp for the coordinate representatio
^xuT1&« can be separated into two parts, from 0 to«, I 1 ,
and from« to `, I 2 . The second one can be obtained n
merically with the treatment of Sec. III by deforming th
contour and using the steepest descent path from the sa
I 1 can be expressed as

I 15
«12 iT«2/m\

hm1/2 E
0

«

eixp/\p~ iT«2/m\21/2!dp. ~B1!

With the change of variableu52 ixp/\ the incompleteg
function is recognized,

I 15
«3/2

hm1/2S x«

i\ D 2A

g~A,2 ix«/\! ~B2!

5
«3/2

hm1/2(n50

`
~ ix«/\!n

n! ~A1n!
, ~B3!

where A5 iT«2/m\11/2. It is easy to calculate an uppe
bound on thep<e contribution,I 1(x,t;T), to ^xuTt1&. The
change of variablep5eu gives

I 1~x,t;T!5
e3/2

hm1/2E0

1 du

u1/2
expF i S exu

\
2

e2tu2

2m\
1

e2T

\m
ln uD G .

~B4!
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Hence both the real and imaginary parts ofI 1(x,t;T) are
bounded in an absolute value by

e3/2

hm1/2E0

1 du

u1/2
5

2e3/2

hm1/2
~B5!

anduI 1(x,t;T)u<(2e)3/2/hm1/2, independently ofx, t, andT.

APPENDIX C: STRICTLY SHARP ARRIVAL STATES

Are there quantum-mechanical states where the par
stays strictly on one side ofX beforeT and on the other side
after T? We have seen, by examining the coordinate rep
sentation of the eigenstates of different time operators,
none of the proposals~fulfilling either the covariance condi
tion or the self-adjointness condition! satisfies strictly this
requirement. Is this an inherent limitation of standard qu
tum mechanics? We shall argue that there are no quan
states, pure or mixed, that satisfy fully this condition. To th
end let us use the equivalent phase-space Weyl-Wigner
malism. Its advantage for free motion dynamics is that
evolution kernel and dynamical equation of motion are eq
in classical and quantum mechanics@30#. Therefore, a Liou-
ville theorem applies, so that each phase-space point ca
its own ‘‘probabilistic weight’’ ~that can be negative in th
quantum case!, so that in the intermediate calculations o
ru

f

le

e-
at

-
m

r-
e
l

ies

may think and operate classically, the only difference be
in the domains of states allowed in both mechanics and
interpretation of the formalism@30,31#. The Wigner distribu-
tion f (q,p) in the position-momentum phase space rep
sents a valid quantum-mechanical state if the associated
sity operator r̂ is positive; see, e.g.,@32#. Necessary
conditions may be found forf (q,p) itself, such as

u f ~q,p!u<2/h, ~C1!

hE f ~q,p!dq dp<1. ~C2!

What kind of ensemble of classical particles, having nega
positions at timet50, would arrive at the same timeT at a
point X50? Since momentum is conserved, it is necessa
a coordinated motion where faster particles start moving
ther away and slower particles start closer toX50 so that
they all arrive at the same time. The phase-space density
satisfies these requisites is

f T~x0 ,p;t50!5g~x0!Q~2x0!d~x01pT/m!, ~C3!

with g(x0)>0. However, this distribution is too singular t
satisfy Eq.~C1! or ~C2!.
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