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Space-time properties of free-motion time-of-arrival eigenfunctions
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The properties of the time-of-arrival operator for free motion introduced by Aharonov and Britys. Rev.
122 1649(1961)] and of its self-adjoint variants are studied. The domains of applicability of the different
approaches are clarified. It is shown that the arrival time of the eigenfunctions is not sharply defined. However,
strongly peaked real-spa¢eormalized wave packets constructed with narrow Gaussian envelopes centered
on one of the eigenfunctions provide an arbitrarily sharp arrival tif8&050-29478)05612-1

PACS numbegs): 03.65—w

[. INTRODUCTION the different operators is clarified. In Sec. Ill less abstract
aspects are studied, such as the functional form of the eigen-

The extension of the classicalrrival-time concept to functions in the coordinate representation and their time de-
guantum mechanics is problematic because of the absence péndence. Finally, the behavior of normalized wave packets
trajectories in the standard interpretation of the quantum for“peaked” around one of the eigenfunctions is discussed in
malism. The question is important since the detection of parSec. IV.
ticles in time-of-flight and coincidence experiments is quite
common and quantum mechanics should be able to predict Il. TIME OPERATORS
and interpret the statistics of the arrivals. A recent review
discusses the main theoretical approaches and open questionsT is not a self-adjoint operator, but it is in a sense the next
[1]. best thing, namely, a maximal symmetric operdttd—13.

The customary way to specify a dynamical variable inThis means that it is Hermitiafor “symmetric” in the
guantum mechanics is to define the corresponding operatdmathematica| literatupe but it does not admit a self-adjoint
but Pauli showed that a self-adjoint time operator conjugat@xtension. Indeed, one way to circumvent Pauli’'s argument
to the Hamiltoniand cannot be constructed if the spectrum is to relax the standard requirement and admit Hermitian but

~ non-self-adjoint operators as representations of physical
of H is bounded from beloy2]; see alsd3-5]. There are, . . . L . .
however, several ways to circumvent this objection anoPropertles. By imposing Hermiticity and square integrability

quantize the classical arrival time, at least in simple case8f th€ states in its range, its domah(T) is given by the set

such as free motion. Aharonov and Bohm introduced th&f States with momentum representation obeyidh
operator{6]
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The eigenvalue equation in momentum representation

by symmetrizing the classical expression for the time of ar{p|T|¢)=T(p|¥),

rival at X=0 for a particle with positiorgg and momentunp

at timet=0. The same result is obtained by using the quan- (1d 1

tization rules of Weyl, Rivier, or Born-Jordd], but this —m|h<5 dp F><p|‘/’>:T<p|‘/’>’ 3)
coincidence does not justify E¢L) since,a priori, no rule is P

more fundamental than any other rule. They simply provideg solved(for p#0) by

a number of quantum generalizations of a classical quantity;

one (or somg of these can be selected by requiring either (p|T a>:(lp|/mh)l/ZeipzT/(th)®(ap) (4)
agreement with a particular experimental procedure or that ’ ’

certain desirable conditions be satisfied, such as properti§ghereq =+ and® is the Heaviside step distribution. These

obeyed by the classical counterpart. It is thus essential Qe “weak eigenfunctions” [4] that satisfy (T a|(-“|-
carefully examine the behavior of a given operator and of its_.l_)|¢>:0 for all ¢eD('AI') These(imprope) ei e,nfunc-
eigenfunctions to ascertain their ultimate physical content y ' prop 9

Paul and others have examined the mathematical propert ggns have the appropriate transformation behavior for a state

- . o arriving at timeT,
of T as a linear operator in Hilbert spal@-10,4. In Sec. Il
we shall first review these properties. Then the relations be- e—iﬁt/h“— a)=|T—t,a) (5)

tweenT and positive operator value measures, or its self-
adjoint variants, are examined and the important question afiamely, if the original state had already evolved for a time
the domains of applicability of the theories associated wittthen it would arrive aff —t instead; however, they are not
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square integrable functions so they do not define physically IL(T; p(0))=TI(T—t; s(1)). (12)
realizable state vectors in the Hilbert spa¢eL2. The con-
stant fac_tor in Eq(4) is chosen to satisfy the resolution of |n words, the probability for arriving aT is equal to the
the identity probability for arriving atT—t when the original state has
" evolved a timet. This is a basic physical requirement that
10p:2 f dT|T,a)(T,a. ()  any candidate for an arrival time distribution should obey.
a J-o This is of course also true in classical mechanics.

S . . : The time-of-arrival operatofl' is the “first moment” of
In the physical interpretation of this expression, one assumes

that all particles arrive sooner or later. Notice the inclusionth® POVM. For anyg and ¢re D(T),
of negative times. In an experimental context, all measured
arrival times are positive if the single-particle statét) of 5(1) :f 2 — /415
interest is prepared at the instart0. However, as discussed (¢[B™v)= | T(4[BAD|¥)=(4[T]¥)
in considerable detail by Grog¢t al. [13], the theoretical .
analysis is much simpler if one considers a different problem => f dT(|T,a)T(T,a|yp). (13
in which it is imagined that the state is prepared=at-< in a J-o
the state thatin the absence of an interactjogvolves to the
actually prepared stat¢(t=0) and the arrival time distribu- There are in principle other POVMs compatible with Egs.
tion includes both negative and positive arrival times. This is(11) and (13), but Eq.(8) has the following unique feature:
very useful from the mathematical point of vidw.g., see |ts second moment operator obeys, for stateB (i),
Eq. (6) or Egs.(15) and(22) below.]
The eigenfunction$T,«) are complete, but they are not

orthogonal, A= [ TuBEDIn—(TulTw -0, 14

a,a’

(7)  which is by no means an obvious relation since the eigen-

vectors ofT are not orthogonal An equation like Eq(14)
Wé)u|d be satisfied trivially by a self-adjoint operator since in
fhat case the moments of the distribution of the observable
are obtained as the expectation values of the powers of the
operator] A(#) is called the variance forifil0]. In classical
mechanics the true arrival time distribution makes the analo-
gous quantity minimal, so this property has also been in-
voked to select a proper quantum distribut{dr,10.

Another condition satisfied bli(T) is that, for the state

¢ defined by(p[yn) =(ply)*,

n To
B(Tz,T1)=§a; fT |T,a)dT(T,«f (8 IL(T,%(0))=I1(—T,¢4(0)), (15)

(T",a|T,a)=

ST-T"H+ I—P(;

T\T-T'
The nonorthogonality of the eigenstates has been associat
with the intrinsically “unsharp” character of this “observ-
able” by the proponents of the “operational approach to
guantum mechanics11]. Giannitrappani in particular4],
points out that the staté3,a) provide a “positive operator
value measure”(POVM) for the arrival time. This means
that for an interval of timgT,,T,] the positive, bounded
operator

can be constructed. This is not a projector, but one does ndthich follows immediately from the symmetry property
necessarily require projectors in order to introduce probabili-
ties in quantum mechani¢41,14. By taking the trace with (p|T,a)*=(p|-T,a). (16)
the normalized physical density operafnrthe function
Equation (15) is also a classically motivated relation that
P(T,,T,)=t[B(T,,T1)p] (99  must hold when the arrival point X=0 [15,10. (If only
covariance and minimum variance were imposed the arrival
fulfills in principle the conditions of a probability for arrival point would not be specifieq.
betweenT,; andT,: It is positive, additive for disjoint sets, The distribution of arrival timeg10) was obtained by
and, using Eq(6), tends to 1 ag;— —> and T,—o. In  Kijowski [15] and was later rederived, studied, or general-
particular, an arrival time distributioffor a pure statey at  ized by several authorgl0,16,13,5,17,18 Werner in par-
timet) is defined by ticular [10], for states with positive momenta justified the
unigueness of Eq.10) subject to the condition§l?2), (14),
and (15). Grot, Rovelli, and Tat¢13] introduced a regular-
H(T;‘ﬂ(t)):; KT, el p(0)P. (10 ized self-adjoint operator and considered the full expression
(10) for possible application to more general states having

According to Eq.(5), the POVM satisfies the “covariance both positive and negative momenta but vanishing in the

condition” proximity of p=0. Delgado and Mug45], for states with
R R purely positive or negative momenta, arrive at the distribu-
e HUAR(T, T,)eM =B(T,—t,T;—1). (11  tion using a different self-adjoint operator. We shall next

discuss these two proposals for self-adjoint arrival time op-
and this means in particular that erators.
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Self-adjoint variants of T =sgn(p)H related toH by the change of the sign for nega-
Grot, Rovelli, and Tat¢13] trace the nonorthogonality of tive momenta. Technically, becaufds a maximal symmet-
the eigenfunctions to the singularity pt=0, and produce a ric operator,T_ cannot be its self-adjoint extension and only
“regularized” self-adjoint time operatof, with eigenfunc-
tions that differ from Eq.(4) only in a small momentum
region arouncdp=0,

gives the same result 45 when acting on the subspace of
positive momentdthere is a change of sign for the negative
momentum subspage

iT e dp’ So one can in principle construct self-adjoint variants of
<p|Ti)8:®(ip)[hmf8(p)]Wexp( ﬁf —,) T. However, what do they mean and what information can
=ef.(p") we extract from them? Unfortunately, neither the states
17) |T+), nor the state§T) transform according to Eq5).

wheree is a small positive number, Equivalently, none of the self-adjoint operators discussed
satisfies the covariance condition and the arrival-time distri-
1/p, Ip|>e butions computed with them do not in general satisfy the

e~ e 2p, |p|<e. (18 basic physical requiremeril2). To avoid this problem, in

both approaches the domainspifysical applicabilityof the
The integral in Eq(17), which plays the role of the energy self-adjoint operators have to be restricted with respect to the

when divided bym, becomes mathematical domains. For the approach by Grot, Rovelli,
_ and Tate the domain should be restricted to states with mo-

fp dp’  [(p*=eH)/2, |p|>e (19 mentum support outside the regularization region aropind

«f (p’) e?n(Ipl/e), |pl<e, =0 (—e¢,&), so that in fact the arrival time distribution is

again given by Eq(10). Similarly, the approach associated

so that the regularization amounts to changing the energyi, ¥ _ is only physically meaningful for states with purely
spectrum in the region arourei=0 by introducing negative itive/negative momenta and the corresponding distribu-
energies. In this manner Pauli's objection is avoided. Whil ions are therefore contained in EQ.0). In summary, the
tC;rort,f F:ozﬁlll,tisqnd Ta;teﬁomo;jr:fy triineili?eniunft(l)om;ndl apparent advantage of these two proposals is misleading
eretore the ime operatom e pro y OTp=0, Faul = qince in practice they are only applicable when their results

discussed a similar idd&], namely, to modify the physical . .
state vector wave functions infinitesimally around this pointare equivalent to the ones provided by the POVM related to

A ) the Aharonov-Bohm operator. In fact, the limitations on the
so thatT can be applied to them. He concluded, however

that h modificati t ohvsicall inaful si 'domains of applicability of these two approaches are quite
at such modifications were not pnysically meaningiul SINC&q o0 The arrivals at a screen or detector will occur for all
these infinitesimal changes may lead, for example, to arbi-

} N states irH{ and not just for a special set of states. A complete
trary values of the expectation value of the squareTof  heory should provide the arrival-time distribution in all

(T?). Note that the smalb region is responsible for the long cases. The important point is that the distribution associated
time asymptotic behavior of the arrival time distributiGee  \ith the POVM applies for all states iK (irrespectively of
Appendix A) and therefore any infinitesimal change theretheir behavior ap="0), so it is in this sense a more complete
affects drastically quantities such &$"), even though it  approach. This is perfectly compatible with(T) # H since
will affect Only InflnltGSImally other eXpeCtation Values, for the time operator is 0n|y one of its moments. Let us recall
example(q"), or (p"), with n=1,2,3... [8]. Paul's obser- that a probability distribution exists independently of the ex-
vation is correct, but we shall argue in Sec. V that the conistence of its moments. In fact, in classical mechanics en-
seguences are not necessarily as negative as he thought. sembles with nonzero probability pt=0 have no finite av-

A second proposal that was already pointed out by Ki-erage arrival time, but the distribution is nevertheless well
jowski (Sec. 8 of[15]) and has been developed further by defined. In this respect only the POVM approach provides a

Delgado and Mug#5] is to take the two pieces df, correct classical limit.
In summary, the distributiohl (T) is satisfactory in many
T=TO(p)+TO(—p), (200  ways. There is, however, an important point that has not

] ) o been considered yet. How do the eigenfunctions‘i’olﬁe-
the first acting on the positive momentum subspace and thgaye? Do they really represent states that arrive at a given

second acting on the negative momentum subspace, afghe for a given position? The meaning of these eigenfunc-
combine them with a negative sign instead, tions, although central, has not been sufficiently discussed. In
particular, they have always been studied in the momentum
representation without paying attention to its coordinate rep-
resentation and time dependence. These aspects are exam-
ined in Sec. lll. Before doing so, it is noted that, because of
the symmetry(16), the coordinate representations of the time

ITY=|T+)+|-T-). (22)  evolved state$T,+)=exp(—iHt/4)|T+) are related by

T =T0(p)—-TO(—p). (22)

This operator is self-adjoint and has eigenvect@jsformed
by the combination

This time operator avoids Pauli’'s argument in a different
manner. It is not conjugate téi but to an operator (X[ Te=)=(=X|T+), (23)
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plification comes from the fact that, as a consequence of Eq. e '™ (29
(5), studying the time dependence of one of the states, say

IT{+), from t=0 to the nominal arrival timet=T', is  Eq. (24) becomes
equivalent to considering the sequence of eigenstates

from T=T’' to T=0. The space-time analysis that we shall 1 ,
carry out in the next section should be taken with some pre- WJ dss/2es72tzs (30
caution because these are not square integrable states. As hm™“(a™)"Jc

occurs with the continuum stationary states used in scatterin
theory, their physical interpretation requires the constructio
of normalizable wave packets peaked at one of them.

so that it is enough to study one of the cases. Further sim- { T
a= —

here all square roots are calculated with a branch cut on the
negative real axis and

1/2
. m
IIl. COORDINATE REPRESENTATION z:xe"”"‘( ﬁ) . (31

The coordinate representation of the wave functidnis
given by the integral The integration patiC in Eq. (30) goes now from 0 toe
along the bisector of the second quadrant in the complex
plane. Note thar is the saddle point of expj=exp(—s/2
+s2). It lies on the bisector of the second/fourth quadrant
for positive/negativex. The steepest descent paths from it are
where §-function normalization(x|p)=h~"2exp(xp/4) is  Parallel to the real axis and lies on the border between the

used for the plane waves. Let us assume for the time beingqi”” and “valley” [wgr=Re(w)=0]. It can, however, be
that T>0. The original path of integration is very inefficient deformed into a line just above the branch cut since there is
numerica”y because of the rapid oscillations of the exponenno contribution at |nf|n|ty As the integrand across the branch
tials. The easiest way to calculate the integral is to defornfut simply changes sign, Eq30) is one-half of the loop
the contour in the compleg plane along the imaginary axis integral around the cut. In this fashion one of the integral
from the origin up to the intersection with the steepest deforms of the parabolic cylinder functiod _3(z) can be
scent path defined by recognized20],

p 1/2
ﬁ) eipZTIZmﬁdp, (24)

T+)= | "0xdp)

HT+) = z® D-3d2). (32
(pr andp, are, respectively, the real and imaginary parts of me™)
p) and then to follow this steepest descent path rightward t . . I
infinity in the first quadrant. The saddle is on the real axis a?—nhif:v¥t?$;0t'cXberhav;orr{;% Iarr%e(|2%e$£21]) Irsr in ag;gii'
—mx/T. Two cases have to be distinguished. kor0 the € Its f the exp g_s:(;) a | .bt € c(:jobespo_ tr?
path does not cross the saddle and the value of the integral fESUILS tor € cas are simply obtained by using the
small. In this case the origin is the only relevant critical Symmetry
point. Use of Watson’s lemml9] for large x and smallT * /]
provides the leading term X[TH)* =(=x|=T+). (33

112431 mla The asymptotiq behavior fqr negative and positvégrow-
(X|T+)~ X0, (26) ing and decaying, respectlvelychanges_abruptly at=0.
x3/27252m112 Since|T+) does not represent a physical state vector, the
discontinuity atfT=0 is not problematic, but indicates again
Note that this asymptotic behavior is independerit.dflow-  that a literal physical interpretation of these states is not al-
ever, for x<0 the saddle becomes the dominant criticallowed. We shall see later that normalized wave packets
point. Retaining the leading terfi 9], formed with these states do not present this singularity.
There is a region close to=0 that cannot be described
by the asymptotic formulas for a large argument. In that
region, however, the parabolic cylinder function can be ex-
pressed by means of a power sefi2g]
In the first casgx|T+) decreases as *2, whereas in the
second one it increases pg/? asymptotically. In fact, the r(-=14 T11/9 )
integral can be expressed exactly in terms of parabolic cyl- D_32)= e — 1zl T O(2). (34
. . . . ) T2 T2
inder functions, but the approximate critical point treatment
just_outlined is worthwhile since it allows a simple rational'.Combining Eqs.(34) and (32), explicit expressions fotx
;zsltéon of the exact results. By means of the change of van-:0|-.|.+> and for its “flux” J(x=0) can be obtainef22]. In
particular,

(mix|/h)¥2
T ¢

<X|T+>~ iw/4e—ix2m/2ﬁT, X—s — 00, (27)

3

s=ap, (28)

_ 2
Ix=0)= [['(312T(—1/4)]

35
where (277)3T2287 (
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FIG. 2. |(x|T)|? versusx for T=0.01 andm=1.

0 (X|T)=2 Re(x|T+). (36)

[It is to be noted that the corresponding time evolved
state does not take this form. Instead,
(XITY=(xle” ™A T)=(x|(T—t) +)+(x|(T+1) +)*.] Fig-
ure 2 represents the square of this quantity for a relatively
large spatial intervalthe small but nonzero density for
>0 is not seen in this scaleThe figure corresponding to the
imaginary part is very similar. Note the increasingly rapid
oscillation asx— —. Cancellation of these oscillations oc-
curs in linear combinations of the statégT) or (x|T+)
over a nonzero band leading to localization in a region closer
to the origin; see Fig. 3 and the discussion in the following
section. There is a helpful classical association to understand
the oscillatory pattern: High-velocity particlégast oscilla-
FIG. 1. (@ [(x|T+)[* versusx for T=0.01 (long-dashed line  tions) have to start at longer distances and low-velocity par-
0.005 (short-dashed line and 0.001(solid line) and m=1. Al tjcles (slow oscillations at shorter distances if they all have

3001

200

density

1004

(b)

guantities are in a.uUb) Same aga), but for a smallex interval. to arrive atX=0 simultaneously.

For T>0, neither the wave fUI"ICtiO("K|T+> nor the flux are IV. COORDINATE AND TIME DEPENDENCE

zero atx=0. Both the “density” |(x=0|T+)[* and J(x OF THE NORMALIZED QUASIEIGENSTATES

=0) grow monotonically asT—0. Figures 1a) and 1b) ]

illustrate all the dependences discussgd|T+)[? is de- We shall here construct normalized wave packets by us-

picted for a series of decreasing tiniEs 0 as a function of iNg & Gaussian distribution of the stategT{ +) peaked at
x for two different scales: betweer= —2 andx=0.2[Fig. T'=T [24],
1(a)] and betweerx=—0.2 andx=0.2 [Fig. 1(b)] (atomic

units are used in all numerical examplels the larger scale 104
the density of the eigenstate is essentially a straight line, "
pivoting atx=0, that approaches the vertical &s-»0. The 5 "

finer scale, however, shows that the arrival is not sharply

defined. Even though, in a loose sense, “most of the wave” -
(x|T+) passes fronx<<0 tox>0 atT=0, there is a tail at +
x>0 present for an arbitrary. Since these states are not ¢
normalized to one it is not possible to quantify the fraction of %
particles that can be found to the right =0 beforeT o

=0.

One might think that the eigenstates of the self-adjoint 3 -
operators, which are orthogonal, could avoid this type of - N
unsharpnesf23], but they do not. For arbitrary values ef 0 . : — \ ‘ .
we have numerically checkddee Appendix Bthat there is w02 20 s y S S0s el s

a nonvanishing densityx|T+),|? atx>0 for fixed T. Simi-
larly, the statex|T) are also nonzero on the right-hand  FIG. 3. Probability density of normalized quasieigenstises
side. Using their defining equatiofi2), (23), and(33), one  Eq. (37)] for T=0.04, m=1, AT=0.002, t=0 (solid line), t
finds =0.02 (long-dashed ling andt=0.04 (short-dashed line
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% )2 5 minimum value. Of course a certain unsharpness remains:
<X|‘1’(t;T7AT)>=NJ' e (TmTOTAD K| ) +)dT". From Eq. (38 one finds (—x|¥(2T—t;T,AT))
o 37) =(W(t;T,AT)|x), so the probability density has inversion
symmetry in ,t) with respect to the space time “origin”
Carrying out the Gaussian integral ovef and then deter- (0,T). In particular, fort=T, half the norm is to the right of
mining the normalization constanl by evaluation of Xx=0 independently oAT. (The question of the existence of

IZ . dx|(x| W (t;T,AT))|? gives the normalized wave packet quantum states where the particle stays strictly on one side of
X before T and on the other side aftér is addressed in

274 AT)V2 [ Yool Appendix C) However, the wave packet density and flux are
hrmb/2 f e’ more and more peaked at the space-time point(, t
m =T) asAT—0, so that the passage of probability from left

(X|W(t;T,AT))=
0

@l (T=tp?/2mh o~ (AT)?pHem?h? 4 . (38) to right is sharp to any desired accuracy,
This integral is readily evaluated numerically because of the (x=0[W(t=T:T,AT))]P= m \ Y2 (3/8)? (44)
exponential dependence enp*. The momentum represen- T hAT 7254 "
tation is given explicitly by
. I'(3/8I'(5/8
(p|¥(t;T,AT)) J(x=0t=T)= LS/ ). (45)
AT7T3/223/4

2’771/4(AT)1/2
_ 1/2ei(T—t)pZ/(zmh)e—(AT)Zp“/(SmZhZ)@( ) ) ] ]
(hm)2 P)- " The normalized wave packets constructed with the eigen-

functions (17) have been examined i25], where it is re-
(39 ported that this arbitrarily sharp accuracy is not found in that

: . _case.
As AT—0 these states are orthogonal and satisfy the eigen-

value equation to any desired degree of accuracy: V. DISCUSSION

(PET.AD(HT.AT) Given the importance of the timed detection of particles at

1 if T=T’ screens or in time-of-flight experiments, finding a theoretical
T-T' description of the arrival times seems imperative. Apparatus-
ZW(W) = ~O( AT s AT .o 40 dependent results are available, for example, via modeling
T—T' T—T ' the detection with complex absorbing potentials or other

measurement mode]86-28§, but it is reasonable to inquire
(pIT|W(0:T,AT))=T(p|¥(0:T,AT)) + O(AT)52 if an intrinsic, apparatus-independent distribution can be

(41) naturally defined by means of the usual operator approach to
guantum mechanics. We have seen in Secs. Il and Il that the
wherew(z) = exp(—2Z)erfc(—iz) is the “w function” [20]. POVM and the corresponding distributidh(T) associated

The moments(ﬁ“) of the momentum distribution can be with the time operatoll provide a rather satisfactory answer

obtained from Eq(39), from the point of view of the properties satisfied: covariance
with respect to time translations, minimum variance, appro-
A o[Nt2 —(1+n)2 AT\ "2 priate symmetries, physically correct domain of applicabil-
(P =T 4 |7 hm ' (42 ity, and sharp space-time behavior of the normalized quasi-
eigenstates.
Both the average energyE)=(p?)/2m=h/273?AT and One of the objections by Paul fa which is also a short-
AE=[2"1—7"1Y2/AT diverge asAT goes to zero. comming of the theories based on self-adjoint operators,
Similarly, from Eq.(38) one finds namely, the restrictive domain of the time operé&pfwhich
2 does not include, for example, states such as minimum un-
(Ry=— F(3/4)(L) (T—1) 43) certainty product Gaussiansis overcome by the POVM
7 \MAT ' theory. An important point is to consider the primary object

as the POVM(or, equivalently, the resolution of the identity
whereas higher moments divergé finite “width” can,  or the arrival time distributionrather than the operator. In
however, be defined as the half-width at half heigfihe  this manner, the domain of applicability of the theoryHs
average velocityp/m), which is also the velocity of the and the classical limit is correct. Moreover, in this light the
centroid(x), is given byI'(3/4) h/ATm=m?]Y2. The behav- other problem indicated by Paul, namely, the extreme sensi-
ior of these states is arbitrarily close to what one could desiréility of the expectation values of powers fto small per-
for an ideal arrival time eigenvector: They are normalizedturbations, is relatively unimportant. It is a fact that some
and there is no discontinuity at=T; for a fixed AT, they  quantities are very sensitive to certain small perturbations
still obey a transformation law of the forrtb); the wave and we are simply dealing with one of them. The moments in
travels towards the origin with constant velocity and the av-the classical case would also suffer from such a sensitivity.
erage position crosses the origin at titreT, which is also  The moral is that one should not pay as much attention to the
the time when the spatial width of the wave packet attains itsnoments of a time-of-arrival distributiothighly unstable
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Apart from the positive features ®f(T), it is also fair to Let us consider the asymptotic, large-behavior of
point out several unclear points or open questions. For exT+ ),
ample, it is necessary to generalize the treatment to higher
dimensions or to scattering problems. The connection be- 1
tweenII(T) and measurement@specially in nonclassical (T+[w)= (mh) 2
casej is also pending; sei27]. We can, however, advance

as a preliminary analysis two important features of a hypO'Assuming thaip|4) can be analytically continued into the
thetical measurement &I(T). The resolution of identity6)  fgourth quadrant in the complex plane we deform the inte-
implies the structure ofI(T), gral contour into the rap=ye '™* (0<y<o). With the
changeg= y?/2m# the integral takes the form
(M) =KT+[¢ )P+ KT—w)F, (46)

h 1/4 . 0
<T+|¢>=%e'”3’8f dge %'y(g)g", (A2)
21 0

APPENDIX A: LARGE- T BEHAVIOR OF II(T)

| “prreetremiplap. )
0

where| .. )=0(*p)|). This implies ignoring the “inter-
ference terms™_ )¢, | and|¢ ) _|, so that in a hypo-
thetical operational procedure to measuiéT), only the
diagonal terms of the density operator contribute,

where the origin appears as the critical point. If,gs 0,
¥(g)~cg" (whereu is not necessarily an integeruse of
Watson'’s lemma provides the dominant term

p= |+ [ ). (47) (T4 gy - iman S DU+ 514

2 773/4 Tut 5/4 (A3)

Apart from the fact that the practical implementation of this
diagonalization may be cumbersome, the neglect of interfer-

ences is not a desirable feature since many different quantum APPENDIX B: COORDINATE
states would give the same distribution. A second problem- REPRESENTATION OF |T+),
atic aspect is associated with the interpretation of
[(T+].)|? as the contribution tdI(T) from particles arriv-
ing from the left and of( T—|_)|? as the contribution from
those arriving from the right. This is particularly evident
when thebackflow effect

The integral overp for the coordinate representation
(x|T+), can be separated into two parts, from Ostol ,

and frome to «, I,. The second one can be obtained nu-
merically with the treatment of Sec. Il by deforming the
contour and using the steepest descent path from the saddle.

I, can be expressed as
I<0 for [y)=|u.), (49)

1-iTe2imh o, ,
- ixplh (i Te2/mh—1/2)
J=0 for |¢)=|¢_) (49 1 hmV2 joe p dp. (B1)

occurs[29]. ThenTI(T) assigns zero probability to arrivals With the change of variable=—ixp/% the incompletey
from the “anomalous side’{e.g., from the right whery) ~ function is recognized,

=i )). This implies that ifj ) =|¢+) or |¢)=|¢—) then a2
either particles should be found to arrive either only from the €
left or only from the right, respectively, even during the time
interval whenJ has the “wrong sign,” or the theory is ap-
propriate when the “screen” is “one sided,” failing to de- 32 2 (ixslh)"
tect any particles arriving from the anomalous side. Now = AT
consider the corresponding implication for the general state hm'Zi=o nt(A+n)

|)=|w+)+|y—) with both|¢+) and|—) nonzero. One s :

possibility is that the interference terms do not in fact con-\gherzA_'tgg i mh+1t/ 2b ltt. IS leasyt.t_;_) C?Icule::tl_te+an Tuhpper

tribute to the intrinsic arrival time distribution. The other js POUNd 0N &= e contribution, 16 T), to(x|Ty+). The
change of variabl@= eu gives

that the distributior(46) is only appropriate when the appa-

Xe
in

Iy

~A
:hml/2 ) v(A,—ixelh) (B2)

(B3)

ratus measures the sign of the momentum of each incident 32 g 202 2T
particle, thus collapsing the wave function of that particle to | (x ¢:1)= € —uexp{i e iJr ‘i u)
either [+) or |_) and then switches on the appropriate hmt2Jo u/2 ho 2mh  hm

one-sided detecting screen. (B4)
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Hence both the real and imaginary partslgfx,t;T) are  may think and operate classically, the only difference being
bounded in an absolute value by in the domains of states allowed in both mechanics and the
interpretation of the formalisif80,31]. The Wigner distribu-
tion f(q,p) in the position-momentum phase space repre-
e? ridu 2637 sents a valid quantum-mechanical state if the associated den-
(B5) : - o
1/2 sity operator p is positive; see, e.g.[32]. Necessary
conditions may be found foir(q,p) itself, such as

hmt2) o 412 -

hm

and|l,(x,t;T)|<(2€)¥¥hm"2 independently ok, t, andT.
[11( )I=(2¢) p y If(q.p)|<2h. )

APPENDIX C: STRICTLY SHARP ARRIVAL STATES

Are there quantum-mechanical states where the particle hj f(g,p)dqdp<1. (C2
stays strictly on one side of beforeT and on the other side
after T? We have seen, by examining the coordinate repre-

sentatlcf)nhof the elgensltfql'lt_es Of. (rj]ﬁferr(]ant tlme'Operatorsd.tha\;\/hat kind of ensemble of classical particles, having negative
none of the proposaldulfilling either the covariance condi- positions at tim& =0, would arrive at the same timEat a

tion or the self-adjointness conditipsatisfies strictly this point X=07? Since momentum is conserved, it is necessarily
requirement. I this an inherent limitation of standard quang, ¢, dinated motion where faster particles start moving fur-
tum mechanics? We shall argue that there are no quantup o, away and slower particles start closerdte 0 so that

states, pure or mixed, that satisty fully this condmon.. To thISthey all arrive at the same time. The phase-space density that
end let us use the equivalent phase-space Weyl-Wigner fors'atisfies these requisites is

malism. Its advantage for free motion dynamics is that the
evolution kernel and dynamical equation of motion are equal

in classical and quantum mechanj&8)]. Therefore, a Liou- fr(X0,P;t=0)=9(X0)O(—Xo) (Xo+pT/m), (CI
ville theorem applies, so that each phase-space point carries

its own “probabilistic weight” (that can be negative in the with g(xg)=0. However, this distribution is too singular to
guantum case so that in the intermediate calculations onesatisfy Eq.(C1) or (C2).
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