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Quantization of non-Hamiltonian physical systems

A. O. Bolivar*
Centro Brasileiro de Pesquisas Fı´sicas, CBPF-DMF, R. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

~Received 12 June 1998!

We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for ex-
ample, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are
able to obtain the Caldeira-Leggett master equation, the nonlinear Schro¨dinger-Langevin equation, and the
Caldirola-Kanai equation~with an additional term!, as particular cases.@S1050-2947~98!05512-7#

PACS number~s!: 03.65.2w, 05.30.2d, 05.40.1j, 52.65.Ff
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I. INTRODUCTION

Our underlying aim in this paper is to begin to visualize
general answer to the following question: Given a nonre
tivistic physical system initially described by the laws
classical mechanics, how does one describe it in terms o
laws of quantum mechanics? The most widely accepted
swer to this question is given by the Dirac algebraic rul
the so-called canonical or standard quantization@1#: First, the
physical system is to be described by a Hamiltonian form
ism; next the classical dynamical variablesp ~momentum!, q
~position!, and functions of themA(p,q) should be raised to
the category of linear operatorsp̂, q̂, and Â5A( p̂,q̂), re-
spectively. Thus, the symplectic structure of classical ph
space induced by the Poisson brackets between classica
servablesA(p,q), B(p,q) corresponds to the algebra
structure given by the commutators of the correspond
quantum observablesÂ,B̂ divided by ı\:

$A,B%5
]A

]p

]B

]p
2

]A

]q

]B

]q
⇒ @Â,B̂#

ı\
5

ÂB̂2B̂Â

ı\
. ~1!

Over the last 70 years a more critical analysis of the Di
quantization has given at least four crucial objections to
suitability of this method to connect the classical and qu
tum theories.

~a! In general, the correspondence between classical fu
tions A(p,q) and operatorsA( p̂,q̂) is not unambiguous@1–
3#. This gives rise to the proliferation of various orderin
rules of operators@4# in order to circumvent this difficulty.

~b! Even in the cases where there is no ambiguity in
operator ordering, the canonical quantization privileges
Cartesian frame. For example, the quantization of the Ha
tonianH(p,q) directly in terms of the angle-action variable
H(a,J) is not well defined@5#.

~c! The existence of the Hamiltonian function generati
the classical equations of motion is not sufficient to av
contradictory physical outcomes by using the canon
quantization@6#. Therefore, it is necessary for the Ham
tonian to be identified with the total energy of the physic
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system@7,8# in order for the quantum system to be physica
unique. This condition restricts the applicability of the c
nonical quantization procedure. It is worth noticing that ev
its application to the quantum-mechanical description
classically chaotic Hamiltonian systems~e.g., the kicked har-
monic oscillator! leads to very controversial physical an
epistemological results@9#.

~d! Besides its lack of generality, the canonical rules
quantization stress the conceptual abysm between clas
and quantum mechanics. The operatorsA( p̂,q̂), obtained un-
ambiguously from a classical formalism whereH5E ~where
E is the kinetic energy plus the potential energy!, act upon
wave functionsc whose physical interpretation still is prob
lematic @10#.

Despite the Dirac quantization rules being neithermath-
ematicallywell defined@2#, nor in generalphysicallyconsis-
tent, norconceptuallyunblurred, we find in the literature its
extrapolation to the quantum-mechanical study of dissipa
systems ~non-Hamiltonian systems!: Caldirola @11# and
Kanai @12#, by quantizing an explicitly time-dependen
Hamiltonian of a damped harmonic oscillator, arrived a
Schrödinger equation depending explicitly also on the tim
that violates the Heisenberg uncertainty relations@13,14# and
does not predict the vacuum fluctuation energy as timt
→` @14,15#. Dekker@16#, in turn, has proposed a genera
zation of the Dirac rules for dissipative systems by treatin
damped harmonic oscillator in classical mechanics in te
of a complex Hamiltonian other than the total energy of t
system in the limit of vanishing damping, and which also
not unique@17#; hence the canonical quantization becom
ambiguous. Recently, Tarasov@18# has investigated a gene
alization of the least action principle for dissipative pr
cesses~the Sedov variational principle! obtaining a Hamil-
tonian formulation that, being canonically quantized, leads
a quantum description of dissipative systems whose oper
algebra does not obey the Jacobi identity~nonassociative
non-Lie algebra!. Although Tarasov had assumed his Ham
tonian to be canonically conjugate to the energy, his
proach does not overcome the difficulties arising from
operator ordering when quantizing a harmonic oscillator w
friction, for instance.

From the difficulties and limitations in the use of the c
nonical quantization rules for dissipative systems outlin
above, one can conclude that, in general, they are amb
ous, and hence it is impossible to obtain a quantum desc
tion of these systems from the Lagrangian and Hamilton
formalisms@7,14,17,19#.

r-
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A way of trying to save the canonical quantization proc
dure is to couple a thermal reservoir~system B! to the dissi-
pative system~system A!, so that the system A1B as a
whole is considered as conservative@20–23#. Nevertheless,
the resultant Hamiltonian cannot be identified with the to
energy of the system@24# and therefore this approach is n
free of physical inconsistencies@25# when one assumes mor
general physical models to describe the interaction betw
the dissipative system and the thermal bath@26#.

In order to overcome the problems arising from Dir
quantization, different quantization methods of dissipat
systems have been proposed. Razavy@17#, using the Schro¨-
dinger method of quantization@27# to the generalized
Hamilton-Jacobi equation, obtained the nonline
Schrödinger-Langevin equation@21#. Pal @28#, following the
same method, arrived at a linear dissipative Schro¨dinger
equation. Skagerstam@29# and Yasue@30# also derived the
nonlinear Schro¨dinger-Langevin equation, but using the Ne
son stochastic quantization procedure@31#. Geicke@32#, pro-
posing a~quasicanonical! quantization method by replacin
p by 2ı\]/]q and E by ı\]/]t into the expression of the
classically conserved energy E5p2/2m1V(q)
1a*(p/m)ndq which governs the motion of the dissipativ
system, found a linear dissipative Schro¨dinger equation. Fi-
nally, Enz @33# recently suggested a quantization proced
for a dissipative system by remarking upon a formal rese
blance between the classical equations of motion in a ge
alized Hamiltonian description and the generalization of
Schrödinger equation in terms of a dynamical matrix. Tza
@34#, in turn, has made use of a stochastic quantiza
method for systems with dissipation, starting from comp
Langevin equations. This brief sketch of the various exist
quantization methods of dissipative systems reveals tha
quantization of more complex non-Hamiltonian systems s
holds as aterra incognita.

However, in order to explore thisterra incognita, in Sec.
II we formally propose a general procedure of quantizat
of non-Hamiltonian systems by introducing the Wigner re
resentation of classical mechanics in phase space, rec
suggested by Olavo@35#. In Sec. III we apply it to the quan
tization of a dissipative system coupled to a thermal reser
described by the Langevin equations or equivalently by
Fokker-Planck equation and obtain the master equation
Caldeira and Leggett@23#, the nonlinear Schro¨dinger equa-
tion obtained first by Kostin@21#, and the Caldirola-Kana
equation@11# with an additional term as particular cases.
Sec. IV we make our concluding remarks.

II. GENERAL METHOD OF QUANTIZATION

Let us consider a classical physical system with massm,
momentump, and positionq described by the general non
Hamiltonian Liouville equation

]F

]t
1

]H

]p

]F

]q
2

]H

]q

]F

]p
1V~p,q,t;a!F50, ~2!

whereH[H(p,q,t) is a general Hamiltonian function, an
F[F(p,q,t) is a probability distribution function, with the
following marginal relations:
-
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f ~q,t !5E Fdp; f ~p,t !5E Fdq, ~3!

such that the average value of any physical quan
A(p,q,t) is given by

^A&5E AFdpdq. ~4!

V(p,q,t;a)F(p,q,t) is a set of terms depending on the p
rameter of non-Hamiltoniansa, so that asa→0, we recover
the Hamiltonian classical mechanics. Let us now introdu
the Wigner representation of classical mechanics, sugge
recently by Olavo@35#, by means of theclassical Wigner
transformations

xS q1
l h

2
,q2

l h

2
,t D5E Fexp~ ıph!dp ~5!

or

xS p1
l j

2
,p2

l j

2
,t D5E Fexp~ ıqj!dq, ~6!

wherel , h, andj have dimensions ofangular momentum,
~linear momentum!21, and~length!21, respectively.

Without any loss of generality, let us suppose that
Hamiltonian in Eq.~2! is given byH5p2/2m1V(q,t). Ap-
plying, then, the transformation~5! on Eq.~2! and changing
the variablesq1l h/25q1 andq2l h/25q2 , we obtain

ıl
]x

]t
52

l 2

2mS ]2x

]q1
2

2
]2x

]q2
2D 1@V~q1 ,t !2V~q2 ,t !

1O~q1 ,q2 ,t !#x2ıl I ~q1 ,q2 ,t;a!x, ~7!

wherex[x(q1 ,q2 ,t),

I ~q1 ,q2 ,t;a!x5E V~p,q,t;a!Fexp~ ıph!dp, ~8!

and

O~q1 ,q2 ,t !52 (
n53,5,7, . . .

`
2

n! S q12q2

2 D n

3S ]

]q1
1

]

]q2
D n

VS q11q2

2
,t D . ~9!

Equation~7! is a differential equation fully equivalent to Eq
~2! due to the existence of the inverse of Eq.~5!. We now
define the quantization process of non-Hamiltonian syste
~2!, via Eq. ~7!, by taking into account the following condi
tion:

O~q1 ,q2 ,t !→0, ~10!

and taking the quantum limit

l →\5
h

2p
, ~11!
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wherel has dimensions of angular momentum and chan
continuously whileh has dimensions of action and is a un
versal constant~Planck’s constant!. Thus, the quantized ver
sion of Eq.~7! becomes the generalized von Neumann eq
tion in coordinate representation

ı\
]r

]t
5

2\2

2m S ]2r

]q1
2

2
]2r

]q2
2D 1@V~q1 ,t !2V~q2 ,t !#r

2ı\I ~q1 ,q2 ,t !r ~12!

describing a non-Hamiltonian quantum system. By go
from Eq.~7! to Eq.~12! we have exchangedx(q1 ,q2 ,t), the
solution of a classical equation, withr(q1 ,q2 ,t), the solu-
tion of a quantal equation.

By quantizing a classical system described by the Li
ville equation~2!, with V(p,q,t;a50)F50, we obtain Eq.
~12! without the non-Hamiltonian termI (q1 ,q2 ,t;a)

ı\
]r

]t
5

2\2

2m S ]2r

]q1
2

2
]2r

]q2
2D 1@V~q1 ,t !2V~q2 ,t !#r,

~13!

which in turn can be derived from the Schro¨dinger equation
at pointq1

ı\
]c~q1 ,t !

]t
5

2\2

2m

]2c~q1 ,t !

]q1
2

1V~q1 ,t !c~q1 ,t !

~14!

and its complex conjugate at pointq2 . Note that the Hamil-
tonian that generates the Newtonian equations of motio
phase space does not necessarily need to be identified
the total energy of the system@6#.

For the particular case I (q1 ,q2 ,t;a)5I (q1 ,a)
1I (q2 ,a), Eq. ~12! is reducible to any generalized Schr¨-
dinger equation, i.e.,r(q1 ,q2 ,t)5c* (q2 ,t)c(q1 ,t):

ı\
]c~qk ,t !

]t
5

2\2

2m

]2c~qk ,t !

]qk
2

1V~qk ,t !c~qk ,t !

2ı\I ~qk ,t;a!c~qk ,t !, ~k51,2!.

~15!

However, in general, the quantization of non-Hamiltoni
systems leads to master equations where the density matr
cannot be factorizedrÞc* c. After these general conside
ations about the formal peculiarities of the master equa
~12!, in the next section we shall take into account a spec
example of a non-Hamiltonian system: Dissipation arou
by the interaction between a particle and a thermal reser
described by the Langevin equations or equivalently by
Fokker-Planck equation.

III. APPLICATION: THE FOKKER-PLANCK EQUATION

Let us consider a particle of massm, momentump, and
position q immersed in a reservoir whose temperature
thermal equilibrium isT. The one-dimensional movement o
this particle is described by the Newton equation
s

-

g

-

in
ith

n
c
d
ir
e

t

dp

dt
5F11F21F31F4 , ~16!

with p5m(dq/dt) and where

F152
dV

dq
~17!

is the force derived from an external potentialV5V(q,t)
applied to the particle, and

F2522gm
dq

dt
22g

l

m

]Z

]q
~18!

is the friction force dependent of the speedsdq/dt and v
5(l /m)(]Z/]q), wherev is derived from the functionZ
5Z(q,t). In Eq. ~18! 2g is the friction coefficient andl a
physical variable with dimensions of angular momentum.
Eq. ~16! F35F(t) and F452(]VR /]q) are forces due to
the reservoir andVR(q,t) is a general random potentia
These stochastic forces give rise to fluctuations in the p
ticle motion. Supposing that the particle follows Markovia
evolution, i.e., the friction term~18! does not contain
memory effects, and that the fluctuating forceF(t) has the
following statistical properties:

^F~ t !&50, ~19!

^F~ t !F~ t8!&54mgkBTd~ t2t8!, ~20!

where ^•••& denotes the average value,kB the Boltzmann
constant, andd the Dirac delta function, Eq.~16! gives us the
Langevin equations

dp52FdV

dq
12gp12g

l

m

]Z

]q
1

]VR

]q Gdt

1~4mgkBT!1/2dW~ t !, ~21!

dq5
p

m
dt, ~22!

wheredW(t)5(4mgkBT)21/2F(t)dt is the Wiener process
with ^dW(t)&50 and ^dW(t)dW(t8)&5d(t2t8)dt. Thus,
the particle described by the Langevin equations~21! and
~22! realizes a stochastic process of the Brownian type
may also be described equivalently by the Fokker-Pla
equation in phase space@36#

]F

]t
5F2

]D1
~1!

]q
2

]D2
~1!

]p
1

]2D ~2!

]p2 GF. ~23!

F5F(p,q,t) is the probability density evaluated from th
initial conditions F(p,q,t50)5d(p2p8)d(q2q8), @p8
5p(t50), q85q(t50)], D1

(1) and D2
(1) are the drift coef-

ficients

D1
~1!5

p

m
, ~24!
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D2
~1!52FdV

dq
12gp12g

l

m

]Z

]q
1

]VR

]q G , ~25!

and

D ~2!54mgkBT ~26!

is the diffusion coefficient.
Performing now the classical Wigner transformation~5!

on Eq. ~23!, changing the variablesq1l h/25q1 , q
2l h/25q2 , and quantizing via Eqs.~10! and ~11!, we ob-
tain the generalized quantum von Neumann equation

ı\
]r

] t
52

\2

2mH ]2r

] q1
2

2
]2r

] q2
2J 1$V~q1 ,t !2V~q2 ,t !%r

1$VR~q1 ,t !2VR~q2 ,t !%r

1
2g\

m
$Z~q1 ,t !2Z~q2 ,t !%r2ı\g~q12q2!

3H ]r

] q1
2

]r

] q2
J 2

2ımgkBT

\
~q22q1!2r ~27!

with the initial conditions r(q1 ,q2 ,t50)5d@(q11q2)/2
2(q181q28) /2# @11(ıp8/\) (q12q2)2(p82/\2) (q12q2)2# .
Equation~27! reduces in form to the master equation fou
by Caldeira and Leggett@23#, makingVR , Z50. In contrast
to the Caldeira-Leggett approach, our Eq.~27! is valid for
any temperature and no coupling-induced renormalizatio
the external potential was introduced here. Furthermore,
suming the reservoir to be at thermal equilibrium at the i
tial time t50, requirements of translational and time rever
invariance imply that the initial coordinates of the reserv
are given byQeq8 5(q181q28)/2 @37#. So in our approach, the
process of quantization of the system particle1 reservoir is
performed on the particle variables alone, whereas the re
voir variables enter only through their initial values@38#

r~q1 ,q2 ,t50!5dS q11q2

2
2Qeq8 D F 11

ıp8

\
~q12q2!

2
p82

\2
~q12q2!2G . ~28!

These initial conditions~28! correlate the particle with the
thermal reservoir. This relevant physical detail is neglec
in the Caldeira-Leggett theory based on the factorization
sumption.

Making the approximationq12q2!1 into Eq. ~27!, we
find

ı\
]r

]t
52

\2

2mH ]2r

]q1
2

2
]2r

]q2
2J 1$V~q1 ,t !2V~q2 ,t !%r

1$VR~q1 ,t !2VR~q2 ,t !%r

1
2g\

m
$Z~q1 ,t !2Z~q2 ,t !%r, ~29!
of
s-
-
l
r

er-

d
s-

which can be obtained, by introducingc5(r)1/2exp(ıZ),
from the generalized Schro¨dinger equation

ı\
]c~q1 ,t !

]t
52

\2

2m

]2c~q1 ,t !

]q1
2

1$V~q1 ,t !1VR~q1 ,t !%c~q1 ,t !

2
ı\g

m
lnF c~q1 ,t !

c* ~q1 ,t !
Gc~q1 ,t ! ~30!

at pointq1 and its complex conjugate at pointq2 . Equation
~30! is called the Schro¨dinger-Langevin equation originally
derived by Kostin@21# from the Heisenberg-Langevin equa
tion for a Brownian particle interacting with a thermal env
ronment. In our derivation the conditionq12q2!1 means
that Eq.~30! describes a deterministic process, i.e., a proc
without diffusion, from the initial conditionsc(q1 ,t)5d(q1

2Qeq8 ), and also without dissipation due to friction force
depending on the velocitydq/dt, in contrast to the Nelson
stochastic quantization procedure followed by Skagers
@29# and Yasue@30# on deriving Eq.~30!.

Now going back to Eq.~23! given explicitly by

]F

]t
52

p

m

]F

]q
1

]V

]q

]F

]p
12gF12gp

]F

]p
12gmkBT

]2F

]p2
,

~31!

with VR , Z50, and performing the following noncanonica
transformation (p,q)°(P,Q):

P5e2gtp,

Q5q, ~32!

we arrive at

] f

]t
52

P

m
e22gt

] f

]q
1e2gt

] f

]q
1e2gt

]V

]q

] f

]P
14g f 12gP

] f

]P

12gmkBTe4gt
]2f

]P2
, ~33!

where f (P,q,t)5e2gtF(p,q,t). Introducing the classica
Wigner function in the form

xS q1
l z

2
,q2

l z

2
,t D5E f ~P,q,t !exp~ ıPz!dP, ~34!

defining new variablesq15q1l z/2, q25q2l z/2, using
Eq. ~10! and quantizingl →\, and taking into account the
approximationq12q2!1, we obtain the evolution equatio
for the matrix densityr

ı\
]r

]t
5

2\2

2m
e22gtH ]2r

]q1
2

2
]2r

]q2
2J

1e2gt$V~q1 ,t !2V~q2 ,t !%r22ı\gr, ~35!

which is reducible to the following deterministic Schro¨dinger
equation:
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ı\
]c

]t
5F2

\2

2m
e22gt

]2

]q2
1e2gtV~q,t !2ı\gGc ~36!

at a generic pointq of Euclidean space. Apart from the ter
2ı\g Eq. ~36! is formally equal to the Caldirola-Kana
equation@11,12#, obtained making use of the Dirac canonic
quantization procedure from the classical Hamilton
H(p,q,t)5e22gtp2/2m1e2gtV(q,t), and that describesex-
actly an isolated particle dissipatingall its energy@14,15#
and staying localizable ast→` @13,14#.

It is straightforward to verify that Eq.~36! predicts the
zero point energy. For instance, for the case of the harm
oscillatorV5 1

2 mv2q2 at the fundamental state

c05S mv

p\ D 1/4

e2~1/2!~g1ıV!te2~m/2\!~ ıg1V!q2e2gt
, ~37!

andv.g, the mean energŷp2/2m1mv2q2/2& is

\v2

4V
~11e24gt!, ~38!

where V5(v22g2)1/2 is the damped frequency. Cons
quently, ast→` Eq. ~38! yields correctly the zero poin
energy. However, by evaluating the relationnqnp we find

nqnp5
\v

2V
e22gt. ~39!

This result shows the incompatibility of Eq.~38! with the
Heisenberg uncertainty principle in caset→`. Therefore,
our Eq.~36! approximatelydescribes an isolated dissipativ
system becoming well localizable with a determined qu
tum energy in the limitt→`.
n,
n
o
-

l

ic

-

IV. CONCLUDING REMARKS

Based on the Wigner representation of classical mech
ics we have proposed a general method of quantizing n
Hamiltonian systems. We then obtained a generalized
Neumann equation irreducible to any Schro¨dinger equation.
That is, no wave function exists subjacent to the von N
mann matrix, in general. Analyzing the specific case of
particle interacting with a thermal bath, we successfully d
rived three equations of motion describing quantum dissi
tive systems asapproximations.

~a! The Caldeira-Leggett stochastic equation describ
quantum Brownian motion caused by the thermal fluct
tions coming from the reservoir and the dissipation aris
from the friction force depending on the velocitydq/dt.

~b! The deterministic Schro¨dinger-Langevin equation
whose nonlinearity is solely associated with the dissipat
due to the friction force depending on the velocityv
5(l /m)]Z/]q.

~c! The deterministic Caldirola-Kanai equation with a
additional term~not introducedad hoc! which correctly pre-
dicts the zero-point fluctuation energy for a particle which
well localizable ast→`. Here, the dissipation arises kine
matically from a noncanonical transformation.

To conclude, we would like to remark that theoperator
structure induced by the Wigner representation of classi
mechanics@Eqs.~5!,~6!# and the classical limit\→0 of the
dissipative quantum equations of motion will be examin
elsewhere.
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