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Quantization of non-Hamiltonian physical systems
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We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for ex-
ample, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are
able to obtain the Caldeira-Leggett master equation, the nonlinear ddofpeo-Langevin equation, and the
Caldirola-Kanai equatiofwith an additional term) as particular casefS1050-294{08)05512-1

PACS numbgs): 03.65—w, 05.30—d, 05.40:+j, 52.65.Ff

I. INTRODUCTION system 7,8] in order for the quantum system to be physically
unigue. This condition restricts the applicability of the ca-
Our underlying aim in this paper is to begin to visualize anonical quantization procedure. It is worth noticing that even
general answer to the following question: Given a nonrelaits application to the quantum-mechanical description of
tivistic physical system initially described by the laws of classically chaotic Hamiltonian systertesg., the kicked har-
classical mechanics, how does one describe it in terms of th@0nic oscillatoy leads to very controversial physical and
laws of quantum mechanics? The most widely accepted arPistemological resultsd]. _ _
swer to this question is given by the Dirac algebraic rules, (@ Besides its lack of generality, the canonical rules of
the so-called canonical or standard quantizafidnFirst, the guantization stress th_e conceptual abys[n betwgen classical
physical system is to be described by a Hamiltonian formaland quantum mechanics. The operadfp,q), obtained un-
ism; next the classical dynamical variabeémomentun), g ambiguously from a classical formalism whefle= E (where

(position, and functions of ther(p,q) should be raised to E IS thekinetic energy plus the potential enejggct upon

the category of linear operators g, and A=A(p,q), re- :’;?r\]/aetiiu[q((:)t]'_ons’/j whose physical interpretation still is prob-

spectiyely. Thus, the symplectic structure of classical phase Despite the Dirac quantization rules being neitheath-
space induced by the Poisson brackets between classical O@maticallywell defined[2], nor in generaphysicallyconsis-

servablesA(p,q), B(p,q) corresponds to the algebraic tent norconceptuallyunblurred, we find in the literature its
structure given by the commutators of the correspondingxtrapolation to the quantum-mechanical study of dissipative

quantum observables, B divided by 17: systems (non-Hamiltonian systemis Caldirola [11] and
Kanai [12], by quantizing an explicitly time-dependent
oA 9B JA B [AB] AB—BA Hamiltonian of a damped harmonic oscillator, arrived at a
{AB}= — ———— = = 1 Schralinger equation depending explicitly also on the time

dp dp 99 dq 1% % that violates the Heisenberg uncertainty relatipt14] and

. , . does not predict the vacuum fluctuation energy as time
Over the last 70 years a more critical analysis of the Dirac_, [14,15. Dekker[16], in turn, has proposed a generali-

quantization has given at least four crucial objections 0 thg o of the Dirac rules for dissipative systems by treating a
suitability of this method to connect the classical and quangamped harmonic oscillator in classical mechanics in terms

tum theories. _ of a complex Hamiltonian other than the total energy of the
_ (@ In general, the Correspi)nAde.nce between -classmal funGystem in the limit of vanishing damping, and which also is
tions A(p,q) and operator#\(p,q) is not unambiguoufl—  not unique[17]; hence the canonical quantization becomes

3]. This gives rise to the proliferation of various ordering ambiguous. Recently, Taraspi8] has investigated a gener-
rules of operator§4] in order to circumvent this difficulty.  alization of the least action principle for dissipative pro-
(b) Even in the cases where there is no ambiguity in thecessegthe Sedov variational principleobtaining a Hamil-
operator ordering, the canonical quantization privileges theonian formulation that, being canonically quantized, leads to
Cartesian frame. For example, the quantization of the Hamila quantum description of dissipative systems whose operator
tonianH(p,q) directly in terms of the angle-action variables algebra does not obey the Jacobi identiponassociative
H(a,J) is not well defined5]. non-Lie algebra Although Tarasov had assumed his Hamil-
(c) The existence of the Hamiltonian function generatingtonian to be canonically conjugate to the energy, his ap-
the classical equations of motion is not sufficient to avoidproach does not overcome the difficulties arising from the
contradictory physical outcomes by using the canonicabperator ordering when quantizing a harmonic oscillator with
quantization[6]. Therefore, it is necessary for the Hamil- friction, for instance.
tonian to be identified with the total energy of the physical From the difficulties and limitations in the use of the ca-
nonical quantization rules for dissipative systems outlined
above, one can conclude that, in general, they are ambigu-
*Permanent address: Instituto Cultural Eudoro de Souza, Depaous, and hence it is impossible to obtain a quantum descrip-
tamento Maio Schmberg de Rica, Ceiladia 72221-970(C.P.  tion of these systems from the Lagrangian and Hamiltonian
7316, D.F., Brazil. formalisms[7,14,17,19.
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A way of trying to save the canonical quantization proce-
dure is to couple a thermal reservsystem B to the dissi- f(q,t)=J Fdp; f(p,t):J Fdq, ()
pative system(system A, so that the system AB as a
whole is considered as conservat[\ﬁi)—za. Nevertheless, such that the average value of any physical quantity
the resultant Hamiltonian cannot be identified with the totala(p,q,t) is given by
energy of the systeri24] and therefore this approach is not
free of physical inconsistenci¢25] when one assumes more
general physical models to describe the interaction between (A= f AFdpdg (4)
the dissipative system and the thermal b&#.

In order to overcome the problems arising from Dirac(Q(p,q,t;@)F(p,q,t) is a set of terms depending on the pa-
guantization, different quantization methods of dissipativerameter of non-Hamiltonians, so that asx— 0, we recover
systems have been proposed. RaZagl, using the Schro  the Hamiltonian classical mechanics. Let us now introduce
dinger method of quantizatio27] to the generalized the Wigner representation of classical mechanics, suggested
Hamilton-Jacobi  equation, obtained the nonlinearrecently by Olavo[35], by means of theclassical Wigner
Schralinger-Langevin equatiof21]. Pal[28], following the  transformations
same method, arrived at a linear dissipative Sdimger
equation. Skagerstafi29] and Yasud30] also derived the
nonlinear Schrdinger-Langevin equation, but using the Nel- X
son stochastic quantization proced{®&]. Geicke[32], pro-
posing a(guasicanonicalquantization method by replacing or
p by —1Ad/dq and E by 144/t into the expression of the
classically conserved energy E=p%2m+V(q)

+ af (p/m)"dq which governs the motion of the dissipative X
system, found a linear dissipative Sctlimger equation. Fi-

nally, Enz[33] recently suggested a quantization proceduravhere/, 7, and¢ have dimensions adingular momentum
for a dissipative system by remarking upon a formal resem¢linear momentum %, and(length 2, respectively.

blance between the classical equations of motion in a gener- Without any loss of generality, let us suppose that the
alized Hamiltonian description and the generalization of theHamiltonian in Eq.(2) is given byH=p?/2m+V(q,t). Ap-
Schralinger equation in terms of a dynamical matrix. Tzaniplying, then, the transformatiof®) on Eq.(2) and changing
[34], in turn, has made use of a stochastic quantizationhe variablesj+/ 7/2=q, andq—/ 7/2=q,, we obtain
method for systems with dissipation, starting from complex

Langevin equations. This brief sketch of the various existent ax /2
guantization methods of dissipative systems reveals that the I/E =" 5m
guantization of more complex non-Hamiltonian systems still

holds as derra incognita iy .

However, in order to explore thigrra incognitg in Sec. 001,62,V 1x = 171(A1, 62 ) x, 0
Il we formaI'Iy propose a genera}l procedure of qqantizatiothereXEX(ql,qzlt)1
of non-Hamiltonian systems by introducing the Wigner rep-
resentation of classical mechanics in phase space, recently
suggested by Olavi85]. In Sec. lll we apply it to the quan- |(Q1,Q2,t;a))(=f Q(p,q.t;e)Fexpipn)dp,  (8)
tization of a dissipative system coupled to a thermal reservoir
described by the Langevin equations or equivalently by theyng
Fokker-Planck equation and obtain the master equation of

/' /'
q+ 0= 5t =fFexp(lpn)dp 5

p+ ;,p—;,t)=f Fexp(1gé)dq, (6)

x 7
2

+[V =V |t
PR [V(g:,1)—V(Qz,t)

Caldeira and Leggeft23], the nonlinear Schdinger equa- * 2(g;—0q,\"
tion obtained first by Kostif21], and the Caldirola-Kanai O(d1,92,t)=— E n_'< > )
equation[11] with an additional term as particular cases. In n=3s7...
Sec. IV we make our concluding remarks. ( 9 9 )n 9y + 95
—t— 1 9
dd;  d0; 2 ®

Il. GENERAL METHOD OF QUANTIZATION _ _ _ _ _ _
Equation(7) is a differential equation fully equivalent to Eq.

Let us consider a classical physical system with ntass (2) due to the existence of the inverse of E§). We now
momentump, and positiong described by the general non- define the quantization process of non-Hamiltonian systems
Hamiltonian Liouville equation (2), via Eq.(7), by taking into account the following condi-

tion:

JF JH oF oJH JF
_____ +Q(p,q,t,a)|:=0, (2) O(qlvq21t)_>ov (10)

and taking the quantum limit
whereH=H(p,q,t) is a general Hamiltonian function, and
F=F(p,q,t) is a probability distribution function, with the

h
following marginal relations: /oh= 27 (D
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where/ has dimensions of angular momentum and changes dp

continuously whileh has dimensions of action and is a uni- gt T1tFatFstFy, (16)
versal constanfPlanck’s constant Thus, the quantized ver-

sion of Eq.(7) becomes the generalized von Neumann equay,itn p=m(dg/dt) and where

tion in coordinate representation

ap —h?d*p °p F1=—d—v (17)
L — d
is the force derived from an external potentia&V(q,t)
—171(A1,02,1)p (12 applied to the particle, and
describing a non-Hamiltonian quantum system. By going d / 9z
from Eq.(7) to Eq.(12) we have exchanged(q;,0,,t), the F,= —zym—q—zy; = (18)
solution of a classical equation, with(q,,q,,t), the solu- dt mdq

tion of a quantal equation. . -
By quantizing a classical system described by the LioulS the friction force dependent of the speeaitydt and v

ville equation(2), with Q(p,q,t;@=0)F=0, we obtain Eq. = (//mM)(dZ/3q), wherev is derived from the functiorz

(12) without the non-Hamiltonian term(q; ,qs,,t; @) =Z(q,t). In Eq. (18) 27 is the friction coefficient and” a
physical variable with dimensions of angular momentum. In

ap —h2dPp p Eq. (16) F3=F(t) and F,=—(dVRr/dq) are forces due to
1h—=—— ————| +[V(q:,t)—V(q,,t)]p, the reservoir andvg(q,t) is a general random potential.
ot 2m\ g2 992 : > 9 o F
q; 20z These stochastic forces give rise to fluctuations in the par-

(13)  ticle motion. Supposing that the particle follows Markovian
evolution, i.e., the friction term(18) does not contain

which in turn can be derived from the Schinger equation memory effects, and that the fluctuating fofgét) has the

at pointq; following statistical properties:
dp(qy,t)  —h? a%p(qy,t) (F(1))=0, (19)
1 ot - 2m ﬁqi +V(qllt)¢’(ql!t)
(14 (F(F(t"))=4mykgTS(t—t"), (20

and its Complex Conjugate at pOIq& Note that the Hamil- Where<. . > denotes the average Va|uq3 the Boltzmann

tonian that generates the Newtonian equations of motion igonstant, and the Dirac delta function, Eq16) gives us the
phase space does not necessarily need to be identified witlangevin equations

the total energy of the systef8].
For the particular case 1(q;,02,t;@)=1(qq,a) dv /92 Vg
+1(q,,), Eq. (12) is reducible to any generalized Schro dp=-— d—q+27p+ 2y——+——|dt
dinger equation, i.ep(qy,dz,t) = ¢* (dz,t) #(qy,t):
+(4mykgT)Y2dW(1), (21)
ap(a,t)  —h% FPq.t)
=5 > V(A ¥(ag.t) p
I do=—dt, (22)

=1l (A, ta) p(ae,t),  (k=1,2).
(15) wheredW(t) = (4mykgT) ~Y2F(t)dt is the Wiener process,
with (dW(t))=0 and (dW(t)dW(t")})=8(t—t')dt. Thus,

However, in general, the quantization of non-Hamiltonianthe particle described by the Langevin equati¢2$ and
systems leads to master equations where the density rpatrix(22) realizes a stochastic process of the Brownian type that
cannot be factorizeg# ¢* . After these general consider- may also be described equivalently by the Fokker-Planck
ations about the formal peculiarities of the master equatiogquation in phase spa¢ao]
(12), in the next section we shall take into account a specific
example of a non-Hamiltonian system: Dissipation aroused oF DM DY #D@
by the interaction between a particle and a thermal reservoir 7| g ap + P2 F. (23
described by the Langevin equations or equivalently by the
Fokker-Planck equation.

F=F(p,q,t) is the probability density evaluated from the
initial conditions F(p,q,t=0)=48(p—p')8(a—q’), [p’
I1l. APPLICATION: THE FOKKER-PLANCK EQUATION =p(t=0), q'=q(t=0)], D(ll) and D(Zl) are the drift coef-

Let us consider a particle of mass momentump, and ~ ficients
position g immersed in a reservoir whose temperature at
thermal equilibrium isT. The one-dimensional movement of D(”:E (24)
this particle is described by the Newton equation !

3
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(M= — d—V+2 +2 i/‘%Jr% (25
and
D@ =4mykgT (26)

is the diffusion coefficient.

Performing now the classical Wigner transformati@n
on Eg. (23), changing the variablegyj+/7/2=q;, q
—/'nl2=q,, and quantizing via Eqg10) and(11), we ob-
tain the generalized quantum von Neumann equation

ap 2| ?p  p
R O —— + —

+{Vr(Q1,t)—

Vr(d2.D)}p

2vh
+ ?{Z(QLU_Z(QZJ)}P_ 17 y(q1—dy)

(42— 00)%

with the initial conditions p(gy,0,,t=0)=45[(0,+0q,)/2
—(93+92) /21[1+ (1p' /%) (41— A2) — (P ¥1%) (41— 02)°].

Equation(27) reduces in form to the master equation found
by Caldeira and Leggef23], makingVg, Z=0. In contrast

to the Caldeira-Leggett approach, our ER7) is valid for
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which can be obtained, by introducing=(p)%exp(Z2),
from the generalized Schilinger equation

LA A% Pt

+{V(ay,t) +Vgr(as,t)}(qy,t)

#(dy,t)
lﬂ* (ql rt)

at pointq, and its complex conjugate at poigs. Equation
(30) is called the Schidinger-Langevin equation originally
derived by Kostin21] from the Heisenberg-Langevin equa-
tion for a Brownian particle interacting with a thermal envi-
ronment. In our derivation the conditiamy — q,<1 means
that Eq.(30) describes a deterministic process, i.e., a process
without diffusion from the initial conditions/(q4,t) = 8(q;
—Q¢q and also without dissipation due to friction forces
depending on the velocitgg/dt, in contrast to the Nelson
stochastic quantization procedure followed by Skagerstam
[29] and Yasud30] on deriving Eq.(30).

Now going back to Eq(23) given explicitly by

1hy

- (30)

w(ql !t)

PP F+2 kBTaZF
—_— — — m _,
aq ap T2 2R, T 2ymieT

JoF p JF

. moaq
(31)

with Vg, Z=0, and performing the following noncanonical

any temperature and no coupling-induced renormalization ofransformation ,q)—(P,Q):

the external potential was introduced here. Furthermore, as-
suming the reservoir to be at thermal equilibrium at the ini-
tial timet=0, requirements of translational and time reversal
invariance imply that the initial coordinates of the reservoir Q=q, (32
are given byQ..=(d;+03)/2 [37]. So in our approach, the
process of quantization of the system parti¢gleeservoir is

P=e?"p,

we arrive at

performed on the particle variables alone, whereas the reset:
) : daf P .0t L df 9V af
voir variables enter only through their initial valuggs] = —e ¥/ ﬁ-;-e ¥ a 27 7q 9P +4yf+27p
ql Ip’ a1
p(Q1,02,t=0)=4 —Qeq + (0192 +2ymkgTe prect (33
p'z where f(P,q,t)=e2"'F(p,q,t). Introducing the classical
__2(q1_q2)2 _ (28)  Wigner function in the form
fi

L L
X a+—.a- =

These initial conditiong28) correlate the particle with the ) J f(P,q,H)exp(IP{)dP, (34)
thermal reservoir. This relevant physical detail is neglected

in the Caldeira-Leggett theory based on the factorization asdefining new variablesy;,=q+/¢/2, q,=q—/¢/2, using

sumption. Eq. (10) and quantizing”—#, and taking into account the
Making the approximationj; —g,<1 into Eq.(27), we  approximationg; —q,<1, we obtain the evolution equation
find for the matrix densityp

dp 2| a%p  9%p
= [—2— —( H{V(a1,t)=V(az.H)}p
gqi 995

+{VRr(Q1,t) = Vr(dz,t)}p

2vh
+W{Z(Q1,t)_Z(Q2yt)}P- (29

aqi a3
+e2M{V(qy,t) — V(gy,t)}p— 217 yp,

which is reducible to the following deterministic Schinger
equation:

(39
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52 92 IV. CONCLUDING REMARKS

J
v e*27‘—2+e27tV(q,t)—|ﬁy U (36)
dq

Iﬁg—

2m Based on the Wigner representation of classical mechan-
ics we have proposed a general method of quantizing non-
at a generic point| of Euclidean space. Apart from the term Hamiltonian systems. We then obtained a generalized von
—1hy Eq. (36) is formally equal to the Caldirola-Kanai Neumann equation irreducible to any Satirger equation.
equation 11,12, obtained making use of the Dirac canonical That is, no wave function exists subjacent to the von Neu-
quantization procedure from the classical Hamiltonianmann matrix, in generalAnalyzing the specific case of a
H(p,q,t)=e 2"p?/2m+e?"'V(q,t), and that describesx-  particle interacting with a thermal bath, we successfully de-
actly an isolated particle dissipatingll its energy[14,15  rived three equations of motion describing quantum dissipa-
and staying localizable as- [13,14. tive systems aspproximations

It is straightforward to verify that Eq(36) predicts the (8 The Caldeira-Leggett stochastic equation describing
zero point energy. For instance, for the case of the harmoniguantum Brownian motion caused by the thermal fluctua-

oscillator V= 2mw?q? at the fundamental state tions coming from the reservoir and the dissipation arising
from the friction force depending on the velocityy/dt.

(b) The deterministic Schrdinger-Langevin equation
whose nonlinearity is solely associated with the dissipation
due to the friction force depending on the velocity
=(/1m)dZl3q.

(c) The deterministic Caldirola-Kanai equation with an
additional term(not introducedad hog which correctly pre-
dicts the zero-point fluctuation energy for a particle which is
well localizable ag—o. Here, the dissipation arises kine-
matically from a noncanonical transformation.

To conclude, we would like to remark that tloperator
structureinduced by the Wigner representation of classical
mechanicgEqgs. (5),(6)] and the classical limit —0 of the
dissipative quantum equations of motion will be examined
elsewhere.

1/4
02(%) e—(l/Z)(y+|Q)te—(m/2fi)(|y+Q)qzezyt’ 37)
and 0>y, the mean energyp?/2m+ mw?2q?/2) is
Rt | ream (39)
4Q) '

where Q= (w?— 9?2 is the damped frequency. Conse-

quently, ast—o Eq. (38) yields correctly the zero point
energy. However, by evaluating the relatid’lgA p we find

AgAp= 12 o 39
qap=Hae 2t (39

This result shows the incompatibility of E¢38) with the
Heisenberg uncertainty principle in cates». Therefore,

our Eq.(36) approximatelydescribes an isolated dissipative
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