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The aim of this paper is to present the interference effects that occur during the time evolution of simple
angular wave packet®P’s) which can be associated with a diatomic rigid moledtleteronuclearor with
a quantum rigid body with axial symmetry like a molecule or a nucleus. The time evolution is understood
entirely within the framework of fractional revivals discovered by Averbukh and Pere{Rlays. Lett. A39,
449 (1989; Usp. Fiz. Naukl6l, 41 (1991 [Sov. Phys. Usp37, 572(1991)]), since the energy spectrum is
exactly quadratic. Our objectives are to study how these interference effects differ when there is a change of
the initial WP. For this purpose we introduce a two-parameter set of angular-momentum coherent states. On
the one hand, this set emerges quite naturally from the three-dimensional coherent states of the harmonic
oscillator; on the other hand, this set is shown to be built from intelligent spin states. By varying one parameter
(#), a scenario of interferences occurs on the sphere at fractional parts of the revival time that strongly depend
on 5. For = =1 the WP, which coincides with a WP found by MostowgRhys. Lett. A56, 369(1976)], is
a superposition of BlochPhys. Rev70, 460(1946] or Radcliffe[J. Phys. A4, 313(1971)] states, and clone
exactly in time according to a scenario found for the infinite square well in one dimension, and also for a two-
dimensional rotor. In the context of intelligent spin states it is also natural to study the evolution by changing
7. For =0 the WP is called linear, and in time produces a set of rings with axial symmetry over the sphere.
The WP’s for other values of; are called elliptic, and sets of fractional waves are generated which make a
transition between two symmetries. We call these fractional waves “mutants.” For specific times a clone is
produced that stands among the mutants. Therefore the changproduces a change in the quantum spread
on the sphere. We have also constructed simple coherent states for a symmetric rotor which are applicable to
molecules and nuclei. Their time evolution also shows a cloning mechanism for the rational ratio of moments
of inertia. For irrational values of this ratio, the scenario of partial revivals completed by Bluhm, Kostelecky,
and TudosdPhys. Lett. A222 220(1996)] is valid. [S1050-294©8)04012-§

PACS numbegps): 03.65.Sq

I. INTRODUCTION the wave packet is divided intpfractional wave packets. If
n is even,q=n/2; if not, theng=n. The specificity of the
In recent years the existence of a generic behavior for theystem and that of the wave packet determines the shape of
time evolution of simple quantum systems has been foundhe fractional wave packets which are supposed to be spread
In Ref.[1], Averbukh and and Perelman indeed discovered aegularly around the mean trajectory. At tine T,q,, the
universal scenario of fractional revivals in the long-term evo-wave packet is rebuilt either identically or only similarly to
lution of quantum wave packets of a bounded system whiclhe original one, depending on the importance of neglected
goes beyond the correspondence principle. They establishegrms that are higher than quadratic. In some very specific
this scenario by expanding the bound-state energies relevagéses, the fractional wave packets are clones of the initial
to the wave packet up to second order with respect to thene, as studied in the most recent pg@drand the revival is
mean energy, thus producing a local spectrum that is lineagxact. This scenario has been validated in a most spectacular
plus quadratic in one quantum number. For a well-manner by several authors for a wave packet in a circular
concentrated wave packet at the initial time they defined twerbit of the hydrogen atorf8]; see also Ref4], and Ref[5]
time constantsT, and T,,>T, such that the foregoing for an elliptic orbit. This was extended by Bluhm and Kos-
evolution of the wave packet is predicted as follows: for Otelecky[6] to a very long evolution with a demonstration of
<t<T, the wave packet spreads around a mean trajectoryuperrevivals due to the cubic terms. An analytical explana-
that can be associated with the underlying classical evolution for the effects caused by cubic terms was found in Ref.
tion, while for T4<t<T,, the wave packet interferes with [7]. Examples of vibrational wave packets in the anharmonic
itself in such a way that for fractional timés=(m/n) T,,,  potential of a simple molecule have also been found since
[8,9]. The scenario was thereafter extended to cases where
the energy depends on two quantum numip@€. A recent
*Electronic  address:  rozmej@tytan.umcs.lublin.pl  andsynthesig11] contained most of the references on this topic,
rozmej@isnhpl.in2p3.fr while Ref.[12] was devoted to a definition of the experimen-
TElectronic address: arvieu@isn.in2p3.fr tal wave packets in atomic physics and molecular physics.
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The recurrences studied in Refd—12] are all devoted to and it is called circular. By varying one parameter one ob-
wave packets, and can be mathematically explained in ternfgins WP’s with a cylindrical symmetry, which we call lin-

of special Gauss sums. It is necessary to point out that suckar, and a large set called elliptic. Each element of this set
sums were earlier extensively used in the physical litteratur€0rresponds to a quantum system like a diatomic molecule or
by Berry and Golberg13], and Berry[14], who studied the @ nucleus in a pure state with a specific prepgra’gion,_ giving it
full time evolution of the propagator of a nuclear spin with a @n average angular momentum, an angular distribution, and a
Hamiltonian of the forml 3/23_ These authors developed a particular spread of the distribution of the angular momen-

renormalization theory and discussed the semiclassical limitum: L . .
More recently[15], various Talbot effectginteger, frac- (IjnDSet::. ”|2't6w'” be sho;vnhth'at ar\zl\éPg)btalned by Atktlns
tional, fracta) were also discovered with the help of these 2N% DO s01]26], using a Schwingef27] boson representa-

techniques. Finally Bernj16] showed the occurrence of tiqn of spins, is aparticular circular state almost coincident
fractal dimensions both in space and time during the evolu\—’vIth the exponential WP. More generally the boson repre-

tion of a uniform wave packefWP) in boxes of arbitrary sentation for a spis is also shown to lead to circular states.

dimensions The exponential WP provides a closed and compact expres-
Our aim is to consider only angular wave packets fors'oln 'g thel\zingular_l?/atrla;bles. isely f lar WP th

diatomic molecules and also for symmetric rotors, and our n Sec. f fwetwl slae.pr?usdey. o(rj o_ursngu ?r th €

purpose is to discuss the time evolution of a large enough sgfenario ot fractional révivais derived in dll] for the

of coherent states of the angular momentum. There is engral case. Itis indeed possible to specify the shape qf the

rather extensive literature on the coherent states. A full bib—r"’mt'on"’1| revivals. The most spectacular event of cloning,

; : : - found essentially for an infinite square well in one dimension
liography on this subject can be found in Ref7]. However, : . . )

we will focus on thentelligent spin stateslescribed in Refs. [2], and for a two-dimensional rotor In Refl1], is exte_nded
[18—23. Large efforts have been made to build up suchhere to the most general case of a circular WP. For linear and

wave packets mainly in the context of group theory. Little eII|pt|i:hV\/_P.ts_ m; a<(:jt|on<:[;\l ;/;/]aves a:e generagy |_<|j|fferent
effort, on the contrary, has been made to understand the[Fom € Initia S due fo the quantum Spread. However,
time evolution in detail. Until the work of Ref1], it was not or a particular set of times, a single clone exists which co-

realized that they could evolve according to a universal scelncides with the initial WP. In the case of the most general

nario. For a diatomic molecule or for a symmetric rotor, theIInear WP the fractional waves keep a cylindrical symmetry,

spectra of which are quadratic in quantum number, such a hc_>wing isotropy.in the spread over the sphere. For th? el-
for example, the systems discussed in REZ24)] the’ uni- Iptic WP the fractional waves should accommodate two lim-

versal scenario is exact and repeats with pefiag. The iting symmetries: the plane symmetry present for circular

main question is whether the fractional wave packets aré’:a:es’ \f\‘/nd tr|1|ethcylln§jrt|cal s(;j/mtm?try t.VaI'dl for the I|rt1eatr
clones, or just resemble to the initial ones. Despite all efforts alesS. evca ese 'T ermediate Iracl IOTat' wav;]as mu &:ﬂ.s'
to concentrate the wave packet initially in the best possible N Sec. vV we present a numerical cajculation Showing this

way, the quantum evolution destroys this concentratipa- evolution for an eﬁpi[on(te)n_tlal WE - The ca_s;e_s; \{vr;ere (t:_lonlr:g
tial localization according to the rule formulated in Réf]. OCCUrs 1S somewhat obvious, however, 1 1S Interesting 1o

In this paper we will show under what conditions the waveOlefine properly the time windows during which a given sys-

packets separate into clones, and in what conditions there fgm OI c;l_ones go(;/erlns t?\%gg]]e. eVOIl.Jt'ton' Tthe tcarlp_et th(ep-
a more restricted scenario of partial revivals. We will also'S€ntation, used eisew IS an interesting tool In this

show the existence of fractional waves with different shapegeSpeCt' A second interest'ing result of this section lies in the
that we call “mutants.” It is crucial to present a simple and shape of the mutants, which can hardly be found from ana-

physically meaningful picture of a coherent state and to deI_ytical considerations. It is found that these fractional waves

crease the number of its parameters to a minimum. On reserve a good angular localization on the sphere. However,
should keep in mind that a coherent wave packet has a clagje!r shape diffgrs from thgt of the Initial .WP since the ge-
sical content larger than the eigenstates of the angular mdreric structure is a weII-defmed_ crescentlike shape.

Finally in Sec. VI, we will construct an angular-

mentum. Due to this property, it is possible to choose a co-

herent wave packet in the simplest manner, as we will shoomentum coherent state of a symmetric ri_gid rotor a_ccord-
below ' ing to the rules defined by Jansg&@8]. The time evolution

In Sec. Il we will study a large set of coherent angularOf such a state is studied in Sec. VII. Once the number of
WP’s which depend only on the anglésand . If we im- parameters is reduced, the time evolution of the coherent

pose one condition of minimum uncertainty, these WP’s areState’ which is now a three-dimensional syste.m with .tWO
composed of eigenstates bf and contain, after a proper quantum numbers as in R¢.0], presents clones if the ratio

choice of the axis of coordinates, only spherical harmonicé)f _th(_e moments of inertia is rational. _In the case when this
with a magnetic quantum number of the same parity as ratio is not a rational number, the fractional wave packets are
These states belong to a family of coherent states cailed not clones.

telligent spin state§18—23. The main body of this paper is
organized around a particular subset: exponential WP’s,
which are shown to be narrowly related to the coherent states
of the harmonic oscillatofsee the Appendix Moreover the Coherent angular WP’s can be defined as functiong of
angular spread of the probability density depends on a singland ¢, which fulfill two requirements.

adjustable parameter. One of the limiting cases is a WP de- (1) Their angular spread should be under control, i.e., it
rived originally by Mostowski25] for a diatomic molecule, should be possible to adjust their angular distribution in the

II. DERIVATION OF COHERENT ANGULAR
WAVE PACKETS
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easiest manner by changing a few parameters or a simphkpin statesLet us briefly sketch a few of their properties and
function. explain why we will consider only a subset of them.

(2) A criterion of minimum uncertainty should be obeyed  The intelligent spin states are the eigenstates of L2
in @ manner similar to the conditions satisfied by the coherand of the(non-Hermitian operatorL,+inL,, with an ei-
ent states of the harmonic oscillator: genvaluew such that

Ly+inLy) |wy=w|w). 8

Ainp%, oy " (LytinLy) [w)=w|w) ®
The 2+ 1 eigenvectors of Eq(8) were discussed exten-
In this direction many attempts have used uncertainty relasively in Refs.[19-21]. It was shown by Rashif21] that
tions derived with the angular variables and the angular mothere is a one-to-one correspondence between each eigenvec-
mentum operatofsee, for example, Ref17] for a complete  tor |w) and a parent statém). Therefore, instead dfv) it is
reference to these worksDespite the long list of works better to denote a solution of E() as|»Im). The relation
devoted to this field, there is no detailed description of thebetween/im) and|» Im) implies a normalization factoa,,,
time evolution of these WP’s in the literature, as we stated irgiven in Ref.[21], and an operator such that
Sec. |. The first attempts in line with modern developments
were made in Refl11], in which a WP of the rigid rotor in -
two dimensions was shown to clone exactly. Our work will |w)=|nIm)=anexpsL,) ex;{ —i ELy> [Im). (9
extend these results to three dimensions, and will discuss a
rather large class of WP.

In the following we will use only uncertainty relations
based upon the components of the angular momentum and

: ; ; 1T
we will call all the states which satisfy exp(8) = /1_ Z (10
ALZALI=%(L,)? 2)

The parameteb is related ton by

coherent states. We assume that this equation holds with tﬁiend the eigenvalua is expressed in terms oh by

axis of coordinates such that

w=m1— 7% (11)
<Lx>:01 <Ly>:0- ©)
_ o . Among the 2+1 stategEq. (9)], one can identify the fol-
It is a textbook result that a general WP satisfies the |nequa|owing_
ity (in units with7=1) (1) The states wittm=0 which fulfill Egs. (2) and (3).
> 21 ) These states will be taken into account, and will be made
AL ALy=3[([Ly,LyDI% (4)  explicit thereafter.

(2) The states withm= = 1. These particular states were

This.result is der'iveq by Considerling the norm of the Stat§;t introduced by Bloch and Radcliffe8]. In a more con-
obtained by application of a special combinationlgfand  \enient system of coordinates they fulfill the simpler equa-

Ly, which involve a real parameter called tion with =1 [20,21]:
Ly+igl,)|¥). 5
(bt inL I ® (Ly+iLy) [w)=0. (12)
If the minimum uncertainty condition is realized, there exists
a value of# for which Therefore, these states will also be considered in our paper,
and we will call them circular states.
(Ly+inLy)|¥)=0. (6) (3) The states for which the parent valmeis neither 0 or

_ _ *+1. These states do not coincide with the previous ones.
This value of7 is related to the average values by two for- However, they are not orthogonal to them. Moreover, they

mulas[29]: require a value of larger than or equal to 2, i.e., a tensor of
rank at least equal to 2 is needed in order to generate them.
(Ly ALZ We have not studied these states, and it is still an open ques-
n= SAL2 ==* ALZ (7)) tion of how to build a convenient WP by implying them.
y y Conversely, the states withh=0 can be generated quite

The second of these equations provides a meaningful intep_aturall_y starting from a three-dimensipnal Gauss_ian WP, as
pretation of in terms of ALZ and ALZ. Let us now con- shown in the Appendix, and they require a very simple vec-
struct statesnwhich satisfy E)&S) y tor operator. The states with=0 have a very simple struc-

ture in terms of spherical harmonics, which is worth briefly
) presenting independently on grounds of the general solution
A. Eigenstates ofL* found in Ref.[21]. Let us denote by' (6,¢) these new
The simplest and most natural possibility is to constructspherical harmonics which depend on a continuous real pa-
the state$¥) as eigenstates af2. This problem was solved rametery, and let us expand them in terms of the usvg|
long ago[18—23, and the solutions were calladtelligent as
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I B. General WP’s

V! (0. ¢)= Z m(" (9’¢)' (13 The most general WP solutions of E@) which fulfill
Eq. (2) will be written as

The recurrence between tfién derived from Eq(6) implies
that sum(13) is restricted in such a way thatand| have the | ) genera > )\L7 |y',,>. (22
same parity; indeed the recurrence is !

They depend om, which can be interpreted with the help of
1ty \/l(l +1)—m(m—1) (14 Ea.(7.andon weighta." which can be determined in order

Crmi1=~Cn-1 1- VI(l+1)—m(m+1) to provide a convenient angular localization. Again there will
be states withy= =1 that will be called circular, and others
In the following we will need the expression 01'77 for | with =0 that will be called linear. The WP defined with
=1, which is other values ofy will be called elliptic in the following. The
justification of this name will be given in the Appendix. In
) (1+p)Yi-(1-nY:, Sec. lll many results will be derived for the particular class
Vo (0,)= > of WP that will be defined in Sec. Il C. Most of them can be
V2(1+7°%) seen to apply to the general WEq. (22)].
1 /3 1 .
— \/——=—=siné#(cos¢p+insing). C. Exponential coherent WP
4 m1+ 7]2

Among functions that are possible, those that can be ex-
(15 panded in a power series of the variabledefined by Eq.
(16) are particularly interesting, because they will contain all
The combination of, ¢, and7 given above will be defined  the partial wave$’, . We have chosen to concentrate on the

as exponential coherent WP
v=siné(cos¢+insing). (16 / N i o
v,(0,¢)= mexp:N sinf(cosep+insing)],
One has (23)

which possess important properties: they fulfill E); they

(17) have a direct connection to coherent states of the harmonic
oscillator(see the Appendixand, finally, they have a simple
geometrical interpretation. Indeed the real parandtietro-

27
1 1\ _
<y1;|LZ|y7]>_1+7]2

Similarly, for =2, the coherent states are duced there allows a proper adjustment of the angular spread.
The probability density depends only dhand on the angle
V2(0,0)=[5(1+ n")+Z 52 Y2{(1+ 5)?Y; 0" defined by Eq(20); the expression is
201 ,2yy2 _ 2\v2 N
\/;(1 n )Y0+(1 7) Y,z}, (18 2_ 2N cosé’
|V ,(6,0)|°= S snhoN & : (24)

while the average of, is . .
If we put =1 into Eq.(18), we obtain a coherent state
6n(1+172) 19 defined by Mostowskj25]|, who wrote it as

2 2
L|y2y=——". i
<y7}| Z|y77> 1+4772+ 7]4 \I’M(e, (;b):Cfl/ZeN(ulﬂuz)-n' (25)

It is interesting to point out thap= + 1 corresponds to states Here U, and u, are two perpendicular unit vectofs our
with m= =1, Whlle-StateS Wlth =0 ar-e elgenstatfas dlfx and - Caseljl is a|ongOX and 62 a|ong Oy' and we have EC(B),

can be the more simply written as single spherical harmonlcandﬁ is a unit vector in the directioné( ¢)]

of the angle¢" defined as The generalization of Eq25) with a parametery has
never been considered until now to our knowledge, and the

time evolution has never been studied. Let us point out that
Eq. (23) can be generalized as

cosf’' =sinfcosqe, (20

and one has

W ,(6,¢)=C " Y2eNUrriniz)n, (26)

| vl ’ ’ N o N

Vo0, $)=Yo(0",¢")= 2 ¢ m(0) Y m(0.). (21) with arbitrary but perpendiculau,; and u,. Calling u; a

third unit vector perpendicular to, andu,, we will obtain

The coherent spherical harmon@;’%(a,d;) have no free- WP’s which do not fulfill Eq.(2) but rather

dom in them, which allows a proper angular localization. It 52 )

is therefore necessary to consider linear combinations. ALTALS=5(L3)". 27
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Instead of Eq(3), we would have =—1 or negativen are trivially deduced fom cases with
positive 77 by inversing the sense of rotation of the WPor
(L1)=0, (Lp)=0. (28 n=1, i.e., a circular exponential WP, or Mostowski's WP,
one has

The choice of axis made in ER3) considerably simplifies
the interpretation and the partial-wave expansion. This ex- V(0,6)=V,(6,6)
pansion will be given in Sec. II D.

It is not difficult to derive that ourV",, defined by Eq. * 2N)' |
ﬁS), have the following average values and limits for large smh Z \/7)'\0(9, @). (39
Nosoo For »=0, i.e., a linear exponential WP, it is found that
(WL ,)=(L)=7[Ncoth(2N)— 3] —— #[N [N s
_ oy — cos
Therefore Eq(7) implies that
2 J21 +
, 1] 1] N—= 1 1 smh
ALy=<Ly>=choth(2N)—§_ —>§[N—E , p- |
(30) X m||+(1/2)(N) Yo(6',¢"), (36)
27 ] N—o 2 - . . .
7 1 7 1 wherel |, 12(N) is a spherical Bessel function of the first
AL,=(LY=—o|Ncoth(2N) - 5| —— — N—E}. knd, 2
) ’ (31) For a general value of;, i.e., an elliptic WP, the argu-

mentv can be separated into two parts
The average oL and the total uncertainthL’ require
i i i 1+ 1= .
independent calculations, with the results b= 7 singeld+ ; 7 singe ¢, 37
(LD =(LDIL—277]+ 7°N?, (32
Thene'' is calculated as two power series containing prod-
ucts of Y} and Y'l,,. These products are then expanded in

terms ofY}, as

N—oo

1 N
ALZ=(L?) (L)) —— N—§+n2?. (33

D. Partial-wave expansion of the exponential coherent state q;n( 0,p)= 2 bm(N, 7) Y:v'( 0,0), (38
™

We need to distinguish the case with a general valug of
from the simpler cases witly=1 or 0. (The cases withy  with the weightsb,,, given by

2N s (=D [N@+ T [N1-7]" I’ oo||o><|| -1’ |IM)
sinh(2N) 17 (2hr2i’n J21+

bim(N,7)= (39

From the discussion made in Sec. I8, is proportional to  ized this case to any spin integer or half-integer. His work
Cm - The known selection rules of the Clebsh-Gordan coefwas complemented by Gulshani32]. According to
ficients which appear in Eq39) assure thaM should have Mikhailov, a coherent state formed withs2 1 bosons de-
the parity ofl. pends on two complex numbers called anda_ combined

to define other complex constants,,, by

Ill. COMPARISON WITH COHERENT STATES DEFINED - 2j |12
IN TERMS OF BOSONS ajn=a) Ma) " J_m) , (40)
In this section we will compare the previous coherent
states to another set defined in terms of bosons of spin for j=0s2s, ... ps, ... andm=—j,—j+1,... j—1}.
Based on Schwinger's work[27], several angular-  The coherent state, generically callges), is expressed

momentum coherent states have been constructed which rely

upon a boson representation of sginThe case withs= 3 25

was first considered in Ref30], and studied more exten- |as>=exp( n ) T expagal) |0) (41)
1"’

sively by Atkins and Dobsof26]. Mikhailov [31] general- 2

M
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n2s * i 1
=exp<—7> - E 2 _'ajm“mS)'
j=0s,....pS, ... m=—j p:
(42

|0) represents the vacuursz (u=-—s, ...,8) is acreation
operator of a boson of spi& and the normalization constant
depends onx, and «_ through

= (la. P+ ]a- )= 2 ag,?. (43
o
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ing to compare the properties of the stpts) to those of the
general state defined by E@®2) or (23). Sinceaj, is gen-
erally nonzero for all values gfandm, the statesas) can-
not be identified with our elliptic state for whigh should be
of the same parity ag Clearly, formulas(40) and (39) are
different. At first sight one could think that E¢41), which
depends ors and on two complex numberg, and «_,
describes an ensemble of WP’s larger than ¢H. (23)],
which depend only oN and z and would therefore apply to
a larger variety of physical situations. We will show that, on
the contrary, state@ll) are a particular set of circular states

The stategjms) are normalized states of angular momentumand do not contain the freedom allowed with the parameter

j constructed fromaL (see Mikhailov for the full expres-
siong. Expansion(42) contains integer and half-integgis
for s=3, reduces to integgrfor s=1, evenj, for s=2, etc.

7. Indeed, ifa . anda_ are both nonzero, staté$l) do not
fulfill conditions (3). In order to fulfill these conditions it is
necessary that either, or «_ should be zerd.In Ref.[31]

Stateg(41) and(42) are eigenstates of the annihilation opera-it \as indeed shown thatL,)~ Re (a* «_) and (L,

tor a, (u=—s---+s) with eigenvalueag,. Mikhailov

~Im(a%} «_).] A change of axis leads ta;,=0 except if

also calculated the expectation values of various operator'.?.]:j (if @_=0) orm=—j (if @, =0). The phase of, or
- + . +

which are expressed in terms aﬁ and a, . Due to this

e

technical simplification, calculations of expectation values

are easier than the work necessary to obtain form{#8s-
(33) in the case of the coherent stalg (0, ¢). It is interest-

2\2s
|ks)=ex;{—(kT)

p(k
=exp —

S

4s

In Sec. Il, it was clear from the compact expressi@s)

e PS L

7) ex as3](0) .

a_ can be incorporated into the phase of the stétga=
*+j,s). Choosing, for exampleg_=0 and a, =k= (real
numbey, the statd as) is now simply denoted aks):

1 . i
—(k»)!|j=psm=j,s) (44)

Jor

(45

These formulas, and expansio@g!) and (45), compared to

given by Mostowski that the same physical state can be writformulas(29)—(32), show thatks) does not coincide exactly
ten by introducing three additional angles which are neceswith Mostowski’s coherent state. Fer= 7, Atkins and Dob-

sary to specif}ﬁl and 62_ The proof that this freedom also SON proposed to truncate the sum oyér order to take into

exists in the boson representation was given by Mikhailoyccount only integer values pfin this process, the state that
[31]. By a convenient choice of axis, the state written in Eq.we will call [k,3); (i for intege) needs to be normalized
(41) with 2s+ 1 bosons and two complex parameters, can béroperly, and formulagd6)—(48) cease to be valid. Equation
brought to the simple form of Eq$44) and (45) with only (49) still holds because the state is nevertheless a circular
one boson of spis with x=s and one parameter,=a?°  State.

=k?S, Such a choice was also made by Atkins and Dobson N=20

[26] for the cases=3. The matrix elements of the compo- 015
nents of L given below are a particular case of formulas N
given in Ref.[26]:
01}
(kslL,|ks)=s K*s, (46) &
005 |
(ks|L2|ks)=s?k*S(k*+1), (47
S 0o 5 10 :1.5: 20 | 25\¥30¥ 35
(klef|ks>=<ks|L§|ks)=Ek“s, (48) |
FIG. 1. Probabilities of finding the partial wava$ in the co-
1 herent states of Mostowsksolid line) and Atkins-Dobsoridashed
: A 5 .
ALZAL2=2(L.)2. 49 impulse$ for parameter® =20=1/2(k“+ 1) ensuring the same an-
=Ty 4< 2) (49) gular velocity for both wave packets.
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Our purpose is now to compakey, (6, ) to |k,1);. Itis ~ For the case of an exponential WP, one obtains, with the help
interesting to choose the parametdraindk in such a way ©f Eds.(30—(32),
that limit (29) for largeN is valid (=1). Then, using Eq.

N—oo
(46), one puts I_(I_+ 1):(L2) (N=1)+ 22[N2=3(N=1)].

1ke=N-1. (50) (59

The comparison presented in Fig. 1 shows that the probabil-—rhe classical imd, is defined as

ity C? of finding the partial waver| in ¥, and in|k,3); is o
practically the same foN=20. For smalleN andk (i.e., N Tyg=———. (56)
of the order of unity we have observed small but not mean- wo (21 +1)

ingful differences. It is therefore possible, M is large , ) ) ,

enough, to identify Mostowski's coherent state to the boson c IS the period of a classical rotator having angular momen-

representation of spik of Atkins and Dobson. tuml=1. Attimest=(m/n) T, where 2n<n(m andn are
We have shown in this section that the coherent stategutually prime integejs we will use the trick developed in

derived in the literature using a boson representation belongef. [1] to write the quadratic exponential Inas

to the particular class of coherent circular states defined in

Sec. Il. The exponential coherent states defined in Sec. Il C

above have the advantage of a well-controllable localization,

and also depend on an interesting parameter

-1
. 2 .
el 2 | (m/n):E0 ase7|27rl(sll)‘ (57)
S=

It is necessary to distinguish three cases.
IV. TIME EVOLUTION OF COHERENT ANGULAR WP'S (& n is odd; thenl=n, and all the coefficients, are

- . nonzero. However, they have the same modulu$.1/
The coherent states built in Sec. Il are applicable to sys- (b) n is even and a multiple of 4: theh=n/2, and the
tems which have only angular coordinates on the spher odulus ofa. has the same value as, above '

s .

This is the case of the three-dimensional rotor with an axis o (©) nis even and not a multiple of 4; thdr=n, buta
symmetry like the heteronuclear molecule or some deforme%ith evens is zero. and others have théir modul’us equal to
nuclei. In the following we will assume that the eigenvaluesan—/2 '

of these systems rigorously obey th@d +1) law, and we '
will use the frequecyw, written in terms of the moment of
inertiaJg as

The number of values & which are nonzero is callegl
with g=n if nis odd, andy=n/2 if nis even. The phase of
as can be calculated as described in Rdfl. Using these
A results and inserting E@55) into Eq.(53), one obtains Egs.

wo (51) (58 and(59) below:

m
Our WP’s do not allow us to consider other degrees of\I’,?( 0,¢,FTre\,

freedom such as vibrational or internal excitations. However, general

we are confident in the usefulness of our work, which pro- -1

vides a full quantum-mechanical description of the rotation = ) > ase*‘Z”[(m’””(S“)]y'n(0,¢) (58)
of a pure state of a three-dimensional system. [ s=0

Let us define theevival time T, as

-1
o7 =2 aWy(0,.t). (59)
T,e\,=w—0=(2l +1) Ty (52 s=0

o ) ] . ] At timest=(m/n) T,.,, any WP is a sum ofj fractional
This time is twice the period of true revival of the WP. \np'swS  each with a different effective time :

Indeed, for the general cag®?), one has ol

ts= Trev- (60)

m S
. _+_
%(e,qs,t)gene,fEl e i2miFDeotyl (g ). (53) no |

The fractional WP at times, is given by
Sincel(l+1) is always even, the period is indedd.,/2.

Nevertheless we will continue to use the same notations as in s ot
Ref.[1]. These authors also introduced a second characteris- V(0. d.t5)= Z Nje " w0sY (6, 6). (61)
tic time T, called theclassical time It is defined in terms of

the average angular momentumdefined by the average There are several cases for which all #§ are clones of the

energy of the Wp: initial WP defined by Eq(22) for all possible valus of;.
There are also cases where only one of all the fractional
|—(|—+ 1)= E 21+ 1), (54 Wwaves is a clone of a particulty. Let us describe now these
|

events, keeping arbitrary, in mind as far as possible.
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A. Cloning of circular WP’s
If =1, one has
e 10tY}(0,¢)=e""10'sY|(0,¢)=Y|(8,4— woty).
(62)
Independently of\,, the fractional waves verify the cloning
property

‘I’a(ﬁ,q’),ts)=\I’(0,¢—wots,0). (63)

Among all circular WP’s, which all clone in this way, the

exponential WP’s, which can be sharply localized in the

angle 6 by considering high enough, clone accordingly
aroundg directions disposed symmetrically in tley plane
defined byq values of the anglests.

B. Cloning for some particular tg

This special situation occurs when there exist values of
such thatwgts is a multiple of 27, and for whichag is
nonzero. Lets, be defined bys,=n—m. One has the prop-
erty

W20, ¢,ts) =V (6,$,0). (64)
This event occurs whenever is odd or even, and not a

multiple of 4. The clone is always identical to the initial WP.
Obviously it is multiplied byaso. The existence of the clone
is independent ol\, and . For the values ok#s;, the
fractional WP’s are different from the initial WP’s. Starting
from =1 their shape evolves witly, and we propose to

call them mutants This mutation can indeed be seen as a
transition between two symmetries, as we will show numeri-

cally in Sec. V.

C. Symmetry properties of the fractional waves

In the following discussion it will be assumed that
#0 both for even and odd values bflf some further sym-
metry is assumedfor example\,=0 for oddl), properties
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FIG. 2. The autocorrelation function fod=20, and different
values of parametey corresponding to a smooth transition between
two different symmetries.

V(0,4)=Y",*(6,0) (68)

on the other hand. In addition to being real, it is important
that\, should be an even function af [as for the exponen-
tial WP defined by Eqs(38) and (39)].

For »=0 the fractional wave¥$ and¥s$, have the same
probability density on the sphere. This leads to a reduction in
the number of fractional waves which occur: for adhere

will be one clone plusrf—1)/2 fractional waves; for evem,

not a multiple of 4, there is one clone and-{2)/4 frac-
tional waves; finally fom tht is multiple of 4 there will be
n/4 fractional waves.

will result which will not be discussed in the present paper.

We first remark that, apart for the valwg defined above,

associated with a clone, the fractional waves can be paired

for each value ofn andn in the following manner: associ-
ated withs, there exists another valg such that

e+i|wotsr:e—ilwots,

(65)

and also(noting a difference in the sign af on the right-
hand sidé¢

W (0, ¢,ts) ,=V3(0,b,1)* . (66)

V. NUMERICAL CALCULATIONS
WITH EXPONENTIAL WP’S

In this section we will describe some figures showing the
time evolution of typical exponential coherent WP’s. The
value of N will generally be the same, and we will change
the parameter. Most of the figures are calculated for
=20. This value is typical of rather concentrated WP’s. Val-
ues near unity correspond to broad WP’s which occupy the
whole of the sphere and are not interesting for our purpose.
Let us note that keeping the sarkand changingy pro-
duces the same probability densftyq. (24)] att=0; how-

This equation shows that fractional waves corresponding tever, formulas(38)—(39) show that the distribution of the

oppositez, i.e., oppositéL,), are intermixed. Equality66)
is based on the equality which defingsin terms ofs

tgtty

=0
Trev

(mod D), (67)

on the one hand, and from the conjugation property

partial wave depends strongly ap The averagéd is very

low for =0, and this produce a difference in the time evo-
lution which shows less structure =20 and if » is de-
creased. These features can be seen if one studies the auto-
correlation function represented for three values;oh Fig.

2. It is seen that this function is composed of peaks which
have a larger width ify is small. The structure becomes very
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=(110)T,q,

YT oy

FIG. 4. Time evolution of Mostowski's wave packet with
=20. |¥(6,4,1)|? for fixed 6= m/2 is presented in the contour
plot. The larger values df¥ (6, ¢,t)|? result in heavy lines due to

almost overlapping cuts for fractional revivals. One can clearly see
the fractional revivals of orders, 35, %, & %, % and so on
(corresponding times ark, %, £, 7, 5, and3 of Te).

¢ B. Linear WP’s

FIG. 3. Time evolution of Mostowski’'s wave packet witt For =0 the fractional WP has cylindrical symmetry
=20. The left column represents changes of the probability densityroundOx at all times, since it is written as

during short term evolution, the right one at fractional revival times.

The probability density at times equal 1/5, 1/3, and T/Q¥ are il T

identical with those presented at 1/10, 1/6, and T/4* respec- Vy(0',¢' )=2 be ™ UTevYi(9',¢'). (69
tively. (The vertical scale is not the same in all figuyes. !

rich if » is nearer to 1. This autocorrelation function is very The quantity 27 sin@'|¥|? is represented in Fig. 5. This

similar to that studied in Ref24]. shows that the revival wave packets are rings on the sphere
and, due to this special topology, do not clone the initial
A. Cloning for circular WP’s wave function.

The time evolution of the circular wave packet corre- The time evolution of¥(6',4',t) is represented in Fig.
sponding toN=20 is shown in Figs. 3 and 4. In Fig. 3, a 6. Since the wave packet is in fact one dimensional, the
convenient set of times has been chosen to show the proﬁarpet representation prOVideS the essential features of the
ability density as a function op and ¢ during the regime time evolution. However, in order to produce a similar rich-
when the wave packet is spreatk(T,), then for a few hess as fom=1 (and a similar expectation value bf), we
cloning times followed by a full revival for=T,,/2. In Fig.  have increased the value &f for »=0 to N=50. On a
4, a “carpet’ is shown of the section9t<T,/2 of the SPhere, areas of constant probability densny.could be repre-
probability density for6= /2, which shows up tay=7  Sented by parallel circles centered on Mg axis. The pat-
clones. tern of the carpet shown in Fig. 6 very much resembles that

The difference between Mostowski's coherent state and
that created by Atkins and Dobsg¢kis=3); is so tiny that it
does not present enough interest to be shown. Despite the
analogy with the one-dimensional results of the infinite
square well[2] and the two-dimensional rotdrl1], some
interesting aspects of our results need to be stressed. Indeed,
circular WP’s spread in theé direction and clone around the ; 0.8
Oxy plane, which is natural since there is initially a linear
momentum along)y. However, there is no change in time
in the azimuthal spread. The cloning mechanism found in
guantum mechanics is not possible for a single classical par-
ticle; however, it will appear if one uses the ensemble inter- FIG. 5. Time evolution of¥' [Eq. (69)] for N=50. The prob-
pretation of quantum mechanics as underlined by authors cfbility density 27 sin ¢'|¥4|? is presented as a function éf andt
Ref. [4]. within one revival period.

3n/4 0
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e i, el t=(1/10)T,y

0.2

YT oy

FIG. 6. Time evolution of the wave packédEqgs.(35) and(36)]
for N=50. The probability density 2 sin ¢'|¥|? is presented in the
contour plot. The larger values ofi2sin ' |W|? result in heavy lines
due to almost overlapping cuts for fractional revivals.

discussed recently in R€f33] for a special wave packet in a
one-dimensional box. Indeed there is a superposition of
ridges and valleys with simple slopes as a function. @he
interpretation of this effect can be given in terms similar to  FIG. 7. Time evolution of the WR70) with infinite % but 7N
those in Ref[33]. Note that the quantity plotted in Figs. 6 =20. Att=0 the probability density is 1. See explanations in
and 5 has the same boundary conditions as the wave packét text.

on the edge of the box. This produces a reflection effect in

Fig. 6 totally absent in Fig. 4, since the boundary conditionscione which interferes with all the other fractional waves.
are different on the circle. Thus fop=0 the WP spreads The time evolution is shown in Fig. 7 foyN=20. For small
uniformly in all directions defined by the angl®’. Such a  values oft, such ast=1/100T,.,, the WP is concentrated
WP is total nonsense for a single classical particle, anéimost totally on the hemisphere wit>0, with a spike

makes sense only with the ensemble interpretation. along Oy surrounded by concentric rings. Foe 1/50T g,
Another interesting linear WP correspondingrte-» but  the same behavior occurs, but this time on the hemisphere
keepingyN finite is defined as follows: with y<0. For other times both parts of the sphere are cov-
ered with rings, and the spike also occurs on both sides of the
W (0, b)= Lei N singsing (70) Oy axis. Fort=Tg,m/n, with smallm/n, a symmetry be-
N tween the two hemispheres takes place. The existence of the

clone can be seen clearly as a small uniform background at
It is derived from the harmonic oscillator WP of the Appen- times t=3x T,,, and t=:5 T,,,. There is always a strong
dix by keeping only the term ip,. This WP has its prob- interference between the fractional waves which does not
ability density uniformly distributed over the sphere, andallow one to make a clear counting even for small values of
obeys the equation m/n.

L,¥,,=0. 71
y oo () C. Elliptic WP's

It has therefore cylindrical symmetry arour@ly, and de-

: For the general elliptic wave packet, as deduced from the
pends on the anglé” defined by

previous discussion, there are no clones, but partial revivals
72 with different topology. Due to the change of symmetry, it is

indeed necessary to make a smooth transition between a sys-
lts expansion in spherical harmonics now contains sphericdem of clones located fop=1 in the Oxy plane and the
Bessel functions system of rings discussed in Sec. Il B. In the system of co-
ordinates adopted in Sec. Il A and correspondingyte0,
these rings hav®x as the symmetry axis. The transition
from the clones forp=1 to the rings forp=0 is made by
developing, forn smaller than 1, a system of pairs of cres-
Obviously the fractional waves also have cylindrical symme-cents perpendicular to th®xy plane. This transition is
try aroundOy, but there is, in addition, far=ts , a uniform  clearly visible in Fig. 8 for particular fractional revival times.

cos#”=sin @ sing.

llan=2l V2141 ,(7N) Yo(6",¢") . (73
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N=20 N=20 1=0.5
t=(1/4)T ey

t=(1/3)T

FIG. 8. Transition of fractional wave packets from exact clones ~FIG. 9. Time evolution of the coherent state deduced from el-
(7=1) through developing crescentg+1/2,7=1/4) to ring to- liptic mot!on _(7;=0.5). Thg time sequence presented here is the
pology (7=0) is demonstrated for two fractional revival times sgme as in Fig. 3. Comparing to this flgurelthe crescents are clearly
=1/3*T,e, (left) and t=1/4*T,,, (right). The fractional waves Visible; they are the most pronounced fe 5 Ty .

called mutants are clearly seen in the lower rows of the figure. N )
The transition between the two shapes of fractional wave

For a very small value of; the upper and lower parts of one packets can be explained by comparing, as a function, of
crescent meet the corresponding parts of a symmetric creghe spread of the angle to the spread of the anglé. If 7
cent in order to build up such a ring symmetric aroUdd  —q the wave packet has no privileged direction on the
Again, this change of topology in the construction forbidssphere. It therefore spreads equally. In the case wjred,

the cloning of all fractional waves. Most of them revive in ne wave packet is peaked near the plane withm/2, and
shapes different from that.of the initial wave packet. Weine spread i is strongly reduced. The spread ¢nis seen
propose to call these fractional wave packets mutants. Af, the scenario of cloning in theOy plane. For intermediate
example of the time evolution of wave packet wit=0.51s  yajyes of, there is a competition between the two effects
given in Fig. 9. It can be seen in both Figs. 8 and 9 thalyhich manifests itself most strongly in the shape of the frac-
clones and mutants can occur at the same time. For examplgynal waves.

for =3 and t:%Trev there is a fractional revival ag For »>1 (results not presentgdwe observed a strong
=m/2 and ¢=0, with the same shape as the initial wave oqyction of the spread ifl. For particular values ofrt/n),
packet and two crescents which almost close. This situatiogome mutants can be peaked with higher amplitudes than
. . . . . _ _ 1 ) R . . . R ~ . .
is similar to that which exists fon=0 and fort=3 Tre,. FOT  theijr neighbors. This is in direct connection to the increase in

_1 _1 i ) . -
7=z andt=g T, the two crescents do not form a ring. , \which was necessary in the initial wave packet.
Among the three fractional waves which are present, there

are two which are identical to each other but with a larger
spread ind. For this valuen=3, there are three different
topologies for the five fractional waves. In other publications We can measure the aperture of the probability density of
on a different systeni34], we already found a transition the WP by the solid angl€ =4m/(4N+1) corresponding
from a Gaussian three-dimensional wave packet to a vorteto the cone defined by tad(/2)=1/2\N. The time of
ring. Referencg34] was devoted, as our previous works, to spreadingr,, of this wave packet of widtiAL , [Eq. (33)] is

the time evolution of such coherent waves in the case wheref the order of

the Hamiltonian contains a spin-orbit interaction in addition

to the harmonic-oscillator potential. If the spin is oriented ;= i (74)
along the initial wave-packet displacemer®X axis), the 7w AL,

cylindrical symmetry is imposed on the system and pre-

served during evolution, and vortex rings appear. The difference in spreading withy is clearly seen in the

D. Final remarks

N
3

g
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autocorrelation functions represented in Fig. 2. We can also Jy
define the maximum number of fractional wave packets that o= J——l . (77
can be observed, knowing that t&(2)=1/2\N, as z
The energy spectrum is then
) (75 h?
Amax arctari 1/2yN) E(LK) =53 [1(1+1)+5K?]. (79)
X
This number is confirmed by the observation of the carpet of A convenient rotational wave packet was defined and
Fig. 4 forN =20, for which we have up to seven clones. Thesy,died by Janssei28] on the basis of the work of Perelo-
lifetime 7, of a system of fractional wave packets can be mov[35] and Schwingef27]. This wave packet, denoted by

estimated as three complex numbers,y, andz, is a mixture ofD},
functions
2
wOT;]AL,]=—. (76) 1

d |xyz)=ex;<—5yy*(1+xx*)(1+zz*)
Also, in Fig. 4, one clearly sees, for=2 and 3, large inter-
vals of time during which clones are observed. \/ (21!

X & (T+M)LT=M)T(1+K)! (1= K)!

VI. COHERENT STATES FOR A SYMMETRIC TOP

. , _ X xI TMy2lZ T K MK (79
It is natural to enlarge our previous study to include rota-

tional coherent states of symmetric tops which contain aThe sum ovet contains integer as well as half-integer values
additional degree of freedom. There are several possibilitiesf |, i.e., this state extends that presented by Atkins and
in the literature for constructing such a state. Our aim isDobson. Similarly to Sec. Ill, we calkyz); the normalized
again to choose an axis of coordinates in order to eliminat@rojection into space with integdr A particularly conve-
irrelevant parameters and to make evolution understandablaient choice ofx,y, andz, as well as of the system of coor-
This is possible only in the case of a symmetric top. We willdinates, decreases the number of parameters to two, and re-
assume moments of inertia in the intrinsic fradje=J,, and  duces the summation tb and K only. The simpler wave

introduce the paramete¥ such that packet is then
)\ I1+K )\ 1-K
(sin— (COSE)
rA)=exp—r —1)!'*K2r) I —1K). (80)
r)=exp(—r) 2 (-1 (2n) oo
|
If Ly,Ly, andL, are the components df in the intrinsic (L)?
ALZALZ= (85
axesL,,Ly, andL,, those related to the laboratory axes, one XY 4 o)
has, according to Janssen,
(PMLPN)=(PN[LyrA)=0, (A |Lrn)y=—r, Therefore, Eq(2) is also verified for the components in the

(81)  rigid-body system ifOZ is directed along_. On the other
hand, expansion80) of the rotational coherent states, in

(r\|Lz|r\)=—r cos\, terms of|l1 —IK) has the same coefficients as the expansion
(820  of Atkins and Dobson in terms of angular-momentum eigen-
(rN|Ly|rA)=—=rsin\, (r\|Ly|rA)=0, states|IK). The two expansions are connected by defining
a, anda_ as
(rN|LZrN)=r(r+3). (83
Since the WP given by E¢80) contains only components @, = \/Esini, a. = \/Ecos)zl_ (86)
with M= —1, it is a circular WP withn= —1 which fulfills 2

Eqg. (2) with the components of taken in the laboratory o o
system. From Janssen’s work, the components in the rigid- The projection|r,\);, deduced by restricting E¢80) to

body system verify the equation integer values of andK, verifies Eqs.(81)—(83) only ap-
proximately. However, ifr is large enough, these equations
AL)2(=AL$, (84) are obtained in a very good approximation. The time evolu-

tion of the wave packgt,\); will be studied in Sec. VIl for
while their product takes the value a rigid-body symmetric rotor.
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VII. TIME EVOLUTION OF JANSSEN'S COHERENT which depends quadratically on two quantum numbers, in
STATE our casd andK. There are four time constants: the first pair,
. L defined as
The energy spectrum of the axially symmetric rigid rotor
is written as 2 2 —
Ty=———, Tl=—=QI+1) Ty, (92
Ex=hoo[1(1+1)+5K?]. (87) wo(21+1) @o

We will study the time evolution of a wave packet deduceds related to the motion around iz axis (laboratory axis

from Eq. (80) with wy=%/(2J,), and with average values €. it is connected to the Euler angle The second pair
plays a parallel role; it concerns the motion around the sym-

(r)\le|r)\):E: —I COS\, (88)  metricOZ axis and the Euler angle:
(EN|Lr\y=1=~r. (89) TK= ZW_:EZIilTl K :2_772514 _
B B cl w052K S 2K cl» rev 5")0 S rev
The energyEk is written by takingK and| as references, (93

and definingk; andk; as The system of coordinates and the parametrization in Eq.

ky=1—T1, ky=K—K (90) (80 Tnable>one to profit by the separation of variables in the
' ’ state|l — 1K), since
Exk,=h o [I_(I_+ 1+ 5?2]+hwo(2l_+ 1)k, (aBy|]l—IK)=¢'" dln((ﬁ) efi7K=Dl,K(a,,8,y) _( )
94

+hwo 8(2K)ky+ o k3 +fiwg Ska. (91
wo A(ZK)kptfiwo kit hiwg Ok D The wave packefEq. (80)] at timet, under conditions

We now follow the lines drawn by Bluhm, Kostelecky, and (88) and(89) with integersl andK, will be denoted a$l K)
Tudose[10], who considered the time evolution of a systemand written as

<a3y|W>t=% Ci(rN) d! w(Bexpli[al —2ml (1+1) t/T! ]} exd —i (yK+27K2t/TK)] (95)

=exp{—i[1(1+1)+ K2 t/T!} ka Chyi(1:N) Ay (BeXpi[ aky — 27Ky I Ty + K3/ Tie )]}
172

X expl —i[ yko+ 27 (ko I TS+ KA/ TX )11} (96)

The summation om andK has been changed to a sum over p T'revzr-rfev: T|ré|\</ ) (98)
k, andk,, and the coefficien€C dllK has been given the
new indexes. The discussion of the time evolution of Egs.

(95) and(96) follows that given by Bluhm, Kostelecky, and The time evolution of the rotational wave packets is pre-
Tudos€g10] inKa straiglhtforward manner. The crucial param-sented in Figs. 10 and 11.
eter isé. If Ty, and Ty, are not commensurate there is N0 pe particular choicé&K =0 leads toTX=c, but T is

rev rev
cloning; however, fot=(m/n)T,,, there are partial revivals finite as well asT!, and T',,. For a smaller value of, the
wave packet arouz andOZ is different,

in the variablea: i.e., the wave packet is a superposition of yo2vior of the ot
q fractional wave packets peaked regularly along Ow as seen from Fig. 11. There is indeed a classical rotation and
spreading aroun@®z, while no rotation occurs aroundZz;

axis. [g=(n/2) if n is even andn in other case$.For t
only spreading is observed around this axis.

=(m’/n’)TrKeV the same scenario of partial revival occurs,
Figure 10 illustrates the case of an irrational valuespf

but this time there arg’ fractional wave packets peaked
around theOZ axis.[q"=(n"/2) if n" is even, anch” oth- where there are partial revivals for times=(m/n) T},
K

erwise] ’ A )
The interesting situation of commensurability B, and ~ &/0undOz, and for times=(m'/n") Tr, where the revivals
are aroundOZ. Note that the concentration of the wave

TK,, allows, on the contrary, the constructiongsfclones for . .
&Y y ot packet for some definite values af(or y) has no influence

all time such that on the other variables (or «).
m_, Figure 11 illustrates the case of a rational valueSpfor
t= Ty (970 which there arej? clones. The proof that there ag@ clones
if condition (98) holds is rather simple, one applies twice the
The revival timeT. is the least common multiple of,,,  method of Averbukh and Perelman to linearize the exponen-
andTK,: tial containingk? andk3 in Egs.(95) and (96).

rev-
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FIG. 10. Time evolution of Janssen’s coherent state for an axi- FIG. 11. The same as in Fig. 10 but for ratiodat 1/2 implying
ally symmetric top(95-96 for irrational §=1//3 implying Tl,,  Th=TK,=2T,.,. Clones for times 1/6, 1/3, and 112 are
=1//3TK,~0.577TK,. Shown is the probability density clearly visible as well as full revivals. Notice that the vertical scale
[{aBy|IK)? for B= /2, 1=4, andK=0. Notice that the vertical IS not the same in all figures.
scale is not the same in all figures.

shown that for =1 the wave packets spread at
=(m/n) T, into clones. However, the difference between
Finally we want to stress that the varialffedoes not play  the symmetries fo;;=0 and =1 necessitates a change in
a role in the time evolution. Obviously this is due to our the topology of the fractional wave packets. This change is
particular choice of axis in Eq80). The role played byg for ~ such that these wave packets can be called mutants due to a
the axial rotor is similar to the role played lin the di- certain amount of deformation in their shape. Aronstein and
atomic molecule. Stroud[2] showed that “the infinite square well is an ideal
system for fractional revivals since all wave functions ex-
VIll. CONCLUSIONS hibit fractional revivals of all orders.” The same statement
We have discussed the time evolution of angular-app”es to the case of the diatomic molecule, but is limited to

momentum coherent states that are built from intelligent spirfircular wave packets, i.e., to those which contain oily
states, but which, as pointed in the Appendixl can be Con_:| partlal waves In a convenient axis system. The genera-
structed by a simple, purely geometric, generating procedurdion mechanism used in this paper can be extended to shapes
The basic ingredients are the three-dimensional Gaussiddifferent from Gaussian distribution. Clones will always re-
wave packets of the harmonic oscillator. We have used twault in this particular condition. For wave packets which con-
of the parameters of the Gaussian to derive an ensemble tdin populations of sublevel® # 1, mutants will appear. All
coherent states which depends finally on two paramé{ers these results hold independently of the realization of the un-
and ». The angular distribution of the probability density certainty conditioEq.(2)]. For systems where the energy is
depends only orN, while the momentum distribution de- quadratic in one quantum number, we have shown that the
pends both omN and %». The uncertainty relatiofEq. (2)]is  time evolution can exhibit a rich structure of cloning and
valid for all N and . Such a variety of wave packets does mutation of fractional revivals. It is a challenging question to
not arise from the previous works on angular-momentunfind a proper way to excite such wave packets in a rotational
coherent states with bosons. It is, for example, simple tdand of a molecule or of a deformed nucleus. Let us briefly
show[36] that there is no place in the work of Atkins and describe the efforts made under this perspective.
Dobson or Mihailov for wave packe{&gs. (40) and (41)] Wave packets witltpy=0 or M =0 have already been con-
which correspond ta;= 0. Also, the coefficienty;,, defined  sidered several times. In a reference work on Coulomb exci-
by Eq. (45) in terms ofa,. anda_ cannot generally be put tation of nuclei with heavy ions, Broglia and Winthg37]
into the form of Eq.(44), which ensures thdi,y, is zero ifl showed that such wave packets are generated in backward
andM have opposite parities. scattering. Their population of the excited states of a rota-
In the framework of the scenario of Rdfl], we have tional band withK=0 does not coincide with the very sim-



4328 P. ROZMEJ AND R. ARVIEU PRA 58

plified expression$40) and(41). Indeed, interference effects are coherent states of the harmonic oscillator. Such a general
during the excitation process modulate this population to ayp with an average positian, and momentunpy, is writ-
large extent(Fig. 8; p. 82 of Ref[37]). However, we have (ap a5

studied the time evolution of such a wave packet, and this

will be the subject of a future publicatidi38]. R I

The authors of Ref{36] wrote an important analysis on V(r,0,¢)= exd — (r=ro)” . Pol
coherent rotational states, completing the work of R&T]. Y (277)345302 20° h
They used the wavék,3); of Sec. I, derived from Ref. (A1)

[26], and considered an extension toward other symmetries ) )

like SP(2,R), SP4,R). Time evolution was studied, but One gets rid of three unecessary parameters if one chooses
only for average values of operators like quadrupole mofhe axis in such a way that
ments. The physical systems considered were the nucleus

238 and the molecule GS The time evolution of expecta- Poz=0, Trp=Xrg. (A2)
tion values of more general operators for wave packets due

to quadratic dependence was studied in IR&9]. The opera- With such choices the probability density is

tors studied in Refl36] have very strict selection rules, and

the time evolution reflected there is much poorer than what is 1 r2+r2

exhibited by the full wave packet and by the average values |W 2= 3 38X ———

of the more complex observablg39] related to the position. (2m)" 0o o

It is, however, clear that all the wave packets considered in

Ref. [36] must evolve according to the scenario of R, Xexp( 2rry sinecos¢). (A3)
with a very rich sequence of changes of shapes. o2

Our work comes very near to the spirit of two recent
publications devoted to molecular physics. In Rd0], the  Apart from a normalization factor, this coincides with Eq.
population of a set of rotational states of a molecule by ana4) if r andr, are both chosen as
intense laser was calculated. However, the number of states
excited in this way is rather small €4), the symmetry r=r-=o JN Ad
implies only states witiM =0, and therefore the WP pro- 0= ¢ W. A4)

duced is not concentrated on the sphere as sharply as OUffie solid an _ : .
: = X ; gl =47/(4N+1) is thus the angle at which
with N=20 or 50. In Ref.[41]. Ortigoso studied how to }he width o of the density of the Gaussian WP is observed

tailor microwave pulses in order to create rotational coheren . .
states for an asymmetric-top molecule, which is built from "0 the center of the sphere of the radius given by Bd).

Radcliffe’s intelligent spin states discussed in Sec. Il. It isTh'S. ch0|ce_st|II leaves wo parametgrg andpoy free. The
gratifying that such a mechanism, which involves optimaIChO'Ces which lead to Ed23) are

control theory, is possible. However, our demand is more
ambitious, since one needs to combine intelligent spin states

of different angular momenta in order to achieve a Propele [ o takes the width of the harmonic oscillatar

angular concentration. In addition, one has to find a mecha- . :
nism that allows one to change our variabjeontinuously, — _ ﬁt{)m w, the value ofpo, given in Eq.(AS) leads fory

i.e., the relative uncertainties in, andL,, in order to ex-
plore the total variety of our states as well as of the intelli- Poy=M Ty ® (A6)
gent spin states. It is indeed interesting that Radcliffe’s states oy o™

were used quite thoroughly, for example, in Re#2,43,

but our paper points out the fact that a richer structure exist

nearby in accordance with older worki9-21]. As stated in .cillator. In the same manner the valug=0 is associated

the tex.t, we have not used' the "'?“ger class of intelligent SPWith a linear trajectory, and the other valuesptorrespond
states in the case of the diatomic molecule, and we are al

: X 13 elliptic trajectories. In the second case the initial point is
conscious that our work on the symmetric top leaves op

o ither the apogee or perigee of the ellipsis. In this manner
possibilities of coherent states that have not yet been fhore generffl)l \?VP'S ca?1 algso be construé)ted which start from
plored.

It is worth mentioning a very recent paper by Chen andarbltrary points according to a nonzero value giverpig.

Yeazell [44] concerning an analytical wave-packet designLet us define a parameterby
scheme that is able to create the desired Rydberg wave pack-
ets and control their dynamics. We believe that we have
enriched the examples given in R¢f.0] by pointing out
how different the fractional revivals may be.

. / N
APPENDIX: CONNECTION BETWEEN THE v, o 0,0)=\| 7——==—=exp[Nsing[(1+ie€) cos¢
EXPONENTIAL COHERENT WP AND COHERENT ’ 27 sinh 2N

STATES OF THE HARMONIC OSCILLATOR . .
+igsing]} (A8)

Pox=0, Tg pOy:nNﬁ- (A5)

The coherent statéAl) associated with this value evolves
round a circular trajectory in the field of the harmonic os-

I'o Pox= €N7. (A7)

The exponential WIPEQ. (23)] becomes, in these conditions,

The exponential WP defined by E@3) can be manufac-
tured from Gaussian wave packets in three dimensions whicand verifies the condition
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[(1+ie)Ly+inL,] ¥, =0. (A9) (A9) is not. It was then consistent to consider only those
WP’s with e=0. This result is in accordance with an older
The probability density is again given by EQ4). However, result by Rashid21], and marks a difference between so
these more general states do not fulfill conditi@h Indeed, calledquasi-intelligent spin stateshich solve Eq.(A8) but
for those states which obey this equation there exists a valugo not satisfy Eq.(2), and theintelligent spin statesor
of n given by Eq.(7), such that Eq(6) is obeyed and Eq. which e=0.
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