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Clones and other interference effects in the evolution of angular-momentum coherent states
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The aim of this paper is to present the interference effects that occur during the time evolution of simple
angular wave packets~WP’s! which can be associated with a diatomic rigid molecule~heteronuclear! or with
a quantum rigid body with axial symmetry like a molecule or a nucleus. The time evolution is understood
entirely within the framework of fractional revivals discovered by Averbukh and Perelman„Phys. Lett. A39,
449 ~1989!; Usp. Fiz. Nauk161, 41 ~1991! @Sov. Phys. Usp.37, 572 ~1991!#…, since the energy spectrum is
exactly quadratic. Our objectives are to study how these interference effects differ when there is a change of
the initial WP. For this purpose we introduce a two-parameter set of angular-momentum coherent states. On
the one hand, this set emerges quite naturally from the three-dimensional coherent states of the harmonic
oscillator; on the other hand, this set is shown to be built from intelligent spin states. By varying one parameter
(h), a scenario of interferences occurs on the sphere at fractional parts of the revival time that strongly depend
on h. For h561 the WP, which coincides with a WP found by Mostowski@Phys. Lett. A56, 369~1976!#, is
a superposition of Bloch@Phys. Rev.70, 460 ~1946!# or Radcliffe@J. Phys. A4, 313 ~1971!# states, and clone
exactly in time according to a scenario found for the infinite square well in one dimension, and also for a two-
dimensional rotor. In the context of intelligent spin states it is also natural to study the evolution by changing
h. For h50 the WP is called linear, and in time produces a set of rings with axial symmetry over the sphere.
The WP’s for other values ofh are called elliptic, and sets of fractional waves are generated which make a
transition between two symmetries. We call these fractional waves ‘‘mutants.’’ For specific times a clone is
produced that stands among the mutants. Therefore the change inh produces a change in the quantum spread
on the sphere. We have also constructed simple coherent states for a symmetric rotor which are applicable to
molecules and nuclei. Their time evolution also shows a cloning mechanism for the rational ratio of moments
of inertia. For irrational values of this ratio, the scenario of partial revivals completed by Bluhm, Kostelecky,
and Tudose@Phys. Lett. A222, 220 ~1996!# is valid. @S1050-2947~98!04012-8#

PACS number~s!: 03.65.Sq
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I. INTRODUCTION

In recent years the existence of a generic behavior for
time evolution of simple quantum systems has been fou
In Ref. @1#, Averbukh and and Perelman indeed discovere
universal scenario of fractional revivals in the long-term ev
lution of quantum wave packets of a bounded system wh
goes beyond the correspondence principle. They establi
this scenario by expanding the bound-state energies rele
to the wave packet up to second order with respect to
mean energy, thus producing a local spectrum that is lin
plus quadratic in one quantum number. For a we
concentrated wave packet at the initial time they defined
time constantsTcl and Trev.Tcl , such that the foregoing
evolution of the wave packet is predicted as follows: for
,t,Tcl , the wave packet spreads around a mean trajec
that can be associated with the underlying classical ev
tion, while for Tcl,t,Trev the wave packet interferes wit
itself in such a way that for fractional timest5(m/n) Trev
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rozmej@isnhp1.in2p3.fr

†Electronic address: arvieu@isn.in2p3.fr
PRA 581050-2947/98/58~6!/4314~16!/$15.00
e
d.
a
-
h
ed

ant
e

ar
-
o

ry
u-

the wave packet is divided intoq fractional wave packets. If
n is even,q5n/2; if not, thenq5n. The specificity of the
system and that of the wave packet determines the shap
the fractional wave packets which are supposed to be sp
regularly around the mean trajectory. At timet5Trev, the
wave packet is rebuilt either identically or only similarly t
the original one, depending on the importance of neglec
terms that are higher than quadratic. In some very spec
cases, the fractional wave packets are clones of the in
one, as studied in the most recent paper@2#, and the revival is
exact. This scenario has been validated in a most specta
manner by several authors for a wave packet in a circu
orbit of the hydrogen atom@3#; see also Ref.@4#, and Ref.@5#
for an elliptic orbit. This was extended by Bluhm and Ko
telecky@6# to a very long evolution with a demonstration o
superrevivals due to the cubic terms. An analytical expla
tion for the effects caused by cubic terms was found in R
@7#. Examples of vibrational wave packets in the anharmo
potential of a simple molecule have also been found si
@8,9#. The scenario was thereafter extended to cases w
the energy depends on two quantum numbers@10#. A recent
synthesis@11# contained most of the references on this top
while Ref.@12# was devoted to a definition of the experime
tal wave packets in atomic physics and molecular phys
4314 © 1998 The American Physical Society
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PRA 58 4315CLONES AND OTHER INTERFERENCE EFFECTS IN . . .
The recurrences studied in Refs.@1–12# are all devoted to
wave packets, and can be mathematically explained in te
of special Gauss sums. It is necessary to point out that s
sums were earlier extensively used in the physical littera
by Berry and Golberg@13#, and Berry@14#, who studied the
full time evolution of the propagator of a nuclear spin with
Hamiltonian of the forml z

2/2J. These authors developed
renormalization theory and discussed the semiclassical li
More recently @15#, various Talbot effects~integer, frac-
tional, fractal! were also discovered with the help of the
techniques. Finally Berry@16# showed the occurrence o
fractal dimensions both in space and time during the evo
tion of a uniform wave packet~WP! in boxes of arbitrary
dimensions.

Our aim is to consider only angular wave packets
diatomic molecules and also for symmetric rotors, and
purpose is to discuss the time evolution of a large enough
of coherent states of the angular momentum. There
rather extensive literature on the coherent states. A full b
liography on this subject can be found in Ref.@17#. However,
we will focus on theintelligent spin statesdescribed in Refs.
@18–23#. Large efforts have been made to build up su
wave packets mainly in the context of group theory. Lit
effort, on the contrary, has been made to understand t
time evolution in detail. Until the work of Ref.@1#, it was not
realized that they could evolve according to a universal s
nario. For a diatomic molecule or for a symmetric rotor, t
spectra of which are quadratic in quantum number, such
for example, the systems discussed in Refs.@2,24#, the uni-
versal scenario is exact and repeats with periodTrev. The
main question is whether the fractional wave packets
clones, or just resemble to the initial ones. Despite all effo
to concentrate the wave packet initially in the best poss
way, the quantum evolution destroys this concentration~spa-
tial localization! according to the rule formulated in Ref.@1#.
In this paper we will show under what conditions the wa
packets separate into clones, and in what conditions the
a more restricted scenario of partial revivals. We will al
show the existence of fractional waves with different sha
that we call ‘‘mutants.’’ It is crucial to present a simple an
physically meaningful picture of a coherent state and to
crease the number of its parameters to a minimum. O
should keep in mind that a coherent wave packet has a c
sical content larger than the eigenstates of the angular
mentum. Due to this property, it is possible to choose a
herent wave packet in the simplest manner, as we will sh
below.

In Sec. II we will study a large set of coherent angu
WP’s which depend only on the anglesu andf. If we im-
pose one condition of minimum uncertainty, these WP’s
composed of eigenstates ofL2 and contain, after a prope
choice of the axis of coordinates, only spherical harmon
with a magnetic quantum numberm of the same parity asl.
These states belong to a family of coherent states calledin-
telligent spin states@18–23#. The main body of this paper i
organized around a particular subset: exponential W
which are shown to be narrowly related to the coherent st
of the harmonic oscillator~see the Appendix!. Moreover the
angular spread of the probability density depends on a si
adjustable parameter. One of the limiting cases is a WP
rived originally by Mostowski@25# for a diatomic molecule,
s
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and it is called circular. By varying one parameter one o
tains WP’s with a cylindrical symmetry, which we call lin
ear, and a large set called elliptic. Each element of this
corresponds to a quantum system like a diatomic molecul
a nucleus in a pure state with a specific preparation, givin
an average angular momentum, an angular distribution, a
particular spread of the distribution of the angular mome
tum.

In Sec. III it will be shown that a WP obtained by Atkin
and Dobson@26#, using a Schwinger@27# boson representa
tion of spin 1

2 , is a particular circular state almost coincide
with the exponential WP. More generally the boson rep
sentation for a spins is also shown to lead to circular state
The exponential WP provides a closed and compact exp
sion in the angular variables.

In Sec. IV we will state precisely for our angular WP th
scenario of fractional revivals derived in Ref.@1# for the
general case. It is indeed possible to specify the shape o
fractional revivals. The most spectacular event of cloni
found essentially for an infinite square well in one dimens
@2#, and for a two-dimensional rotor in Ref.@11#, is extended
here to the most general case of a circular WP. For linear
elliptic WP’s the fractional waves are generally differe
from the initial WP’s due to the quantum spread. Howev
for a particular set of times, a single clone exists which c
incides with the initial WP. In the case of the most gene
linear WP the fractional waves keep a cylindrical symmet
showing isotropy in the spread over the sphere. For the
liptic WP the fractional waves should accommodate two li
iting symmetries: the plane symmetry present for circu
states, and the cylindrical symmetry valid for the line
states. We call these intermediate fractional waves muta

In Sec. V we present a numerical calculation showing t
evolution for an exponential WP. The cases where clon
occurs is somewhat obvious; however, it is interesting
define properly the time windows during which a given sy
tem of clones governs the time evolution. The ‘‘carpet’’ re
resentation, used elsewhere@33#, is an interesting tool in this
respect. A second interesting result of this section lies in
shape of the mutants, which can hardly be found from a
lytical considerations. It is found that these fractional wav
preserve a good angular localization on the sphere. Howe
their shape differs from that of the initial WP since the g
neric structure is a well-defined crescentlike shape.

Finally in Sec. VI, we will construct an angular
momentum coherent state of a symmetric rigid rotor acco
ing to the rules defined by Janssen@28#. The time evolution
of such a state is studied in Sec. VII. Once the number
parameters is reduced, the time evolution of the cohe
state, which is now a three-dimensional system with t
quantum numbers as in Ref.@10#, presents clones if the ratio
of the moments of inertia is rational. In the case when t
ratio is not a rational number, the fractional wave packets
not clones.

II. DERIVATION OF COHERENT ANGULAR
WAVE PACKETS

Coherent angular WP’s can be defined as functions ou
andf, which fulfill two requirements.

~1! Their angular spread should be under control, i.e.
should be possible to adjust their angular distribution in
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4316 PRA 58P. ROZMEJ AND R. ARVIEU
easiest manner by changing a few parameters or a sim
function.

~2! A criterion of minimum uncertainty should be obeye
in a manner similar to the conditions satisfied by the coh
ent states of the harmonic oscillator:

Dqi Dpi5
\

2
, i 5x,y,z. ~1!

In this direction many attempts have used uncertainty r
tions derived with the angular variables and the angular m
mentum operator~see, for example, Ref.@17# for a complete
reference to these works!. Despite the long list of works
devoted to this field, there is no detailed description of
time evolution of these WP’s in the literature, as we stated
Sec. I. The first attempts in line with modern developme
were made in Ref.@11#, in which a WP of the rigid rotor in
two dimensions was shown to clone exactly. Our work w
extend these results to three dimensions, and will discu
rather large class of WP.

In the following we will use only uncertainty relation
based upon the components of the angular momentum
we will call all the states which satisfy

DLx
2 DLy

25 1
4 ^Lz&

2 ~2!

coherent states. We assume that this equation holds with
axis of coordinates such that

^Lx&50, ^Ly&50. ~3!

It is a textbook result that a general WP satisfies the ineq
ity ~in units with \51)

DLx
2 DLy

2> 1
4 u^@Lx ,Ly#&u2. ~4!

This result is derived by considering the norm of the st
obtained by application of a special combination ofLx and
Ly , which involve a real parameter calledh:

~Lx1 ihLy!uC&. ~5!

If the minimum uncertainty condition is realized, there exi
a value ofh for which

~Lx1 ihLy!uC&50. ~6!

This value ofh is related to the average values by two fo
mulas@29#:

h5
^Lz&

2DLy
2

56ADLx
2

DLy
2
. ~7!

The second of these equations provides a meaningful in
pretation ofh in terms ofDLx

2 and DLy
2 . Let us now con-

struct states which satisfy Eq.~6!.

A. Eigenstates ofL 2

The simplest and most natural possibility is to constr
the statesuC& as eigenstates ofL2. This problem was solved
long ago@18–23#, and the solutions were calledintelligent
le
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spin states. Let us briefly sketch a few of their properties an
explain why we will consider only a subset of them.

The intelligent spin states are the eigenstatesuw& of L2

and of the~non-Hermitian! operatorLx1 ih Ly , with an ei-
genvaluew such that

~Lx1 ih Ly! uw&5w uw&. ~8!

The 2l 11 eigenvectors of Eq.~8! were discussed exten
sively in Refs.@19–21#. It was shown by Rashid@21# that
there is a one-to-one correspondence between each eige
tor uw& and a parent stateu lm&. Therefore, instead ofuw& it is
better to denote a solution of Eq.~8! asuh lm&. The relation
betweenu lm& and uh lm& implies a normalization factoralm
given in Ref.@21#, and an operator such that

uw&5uh lm&5almexp~d Lz! expS 2 i
p

2
LyD u lm&. ~9!

The parameterd is related toh by

exp~d!5A11h

12h
, ~10!

and the eigenvaluew is expressed in terms ofm by

w5mA12h2. ~11!

Among the 2l 11 states@Eq. ~9!#, one can identify the fol-
lowing.

~1! The states withm50 which fulfill Eqs. ~2! and ~3!.
These states will be taken into account, and will be ma
explicit thereafter.

~2! The states withm561. These particular states wer
first introduced by Bloch and Radcliffe@18#. In a more con-
venient system of coordinates they fulfill the simpler equ
tion with h51 @20,21#:

~Lx1 i Ly! uw&50. ~12!

Therefore, these states will also be considered in our pa
and we will call them circular states.

~3! The states for which the parent valuem is neither 0 or
61. These states do not coincide with the previous on
However, they are not orthogonal to them. Moreover, th
require a value ofl larger than or equal to 2, i.e., a tensor
rank at least equal to 2 is needed in order to generate th
We have not studied these states, and it is still an open q
tion of how to build a convenient WP by implying them.

Conversely, the states withm50 can be generated quit
naturally starting from a three-dimensional Gaussian WP
shown in the Appendix, and they require a very simple v
tor operator. The states withm50 have a very simple struc
ture in terms of spherical harmonics, which is worth brie
presenting independently on grounds of the general solu
found in Ref. @21#. Let us denote byY h

l (u,f) these new
spherical harmonics which depend on a continuous real
rameterh, and let us expand them in terms of the usualYm

l

as
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PRA 58 4317CLONES AND OTHER INTERFERENCE EFFECTS IN . . .
Y h
l ~u,f!5 (

m52 l

l

Cm
l ~h!Ym

l ~u,f!. ~13!

The recurrence between theCm
l derived from Eq.~6! implies

that sum~13! is restricted in such a way thatm andl have the
same parity; indeed the recurrence is

Cm11
l 52Cm21

l 11h

12h
Al ~ l 11!2m~m21!

l ~ l 11!2m~m11!
. ~14!

In the following we will need the expression ofY h
l for l

51, which is

Y h
1~u,f!5

~11h!Y1
12~12h!Y21

1

A2~11h2!

52
1

4
A3

p

1

A11h2
sinu~cosf1 ih sinf!.

~15!

The combination ofu, f, andh given above will be defined
as

v5sinu~cosf1 ih sinf!. ~16!

One has

^Y h
1 uLzuY h

1&5
2h

11h2
. ~17!

Similarly, for l 52, the coherent states are

Y h
2~u,f!5@ 8

3 ~11h4!1 32
3 h2#21/2$~11h!2Y2

2

2A 2
3 ~12h2!Y0

21~12h!2Y22
2 %, ~18!

while the average ofLz is

^Y h
2 uLzuY h

2&5
6h~11h2!

114h21h4
. ~19!

It is interesting to point out thath561 corresponds to state
with m56 l , while states withl 50 are eigenstates ofLx and
can be the more simply written as single spherical harmo
of the angleu8 defined as

cosu85sinu cosf, ~20!

and one has

Y 0
l ~u,f!5Y0

l ~u8,f8!5 (
m52 l

l

Cm
l ~0! Ym

l ~u,f!. ~21!

The coherent spherical harmonicsY h
l (u,f) have no free-

dom in them, which allows a proper angular localization.
is therefore necessary to consider linear combinations.
s

t

B. General WP’s

The most general WP solutions of Eq.~6! which fulfill
Eq. ~2! will be written as

uCh&general5(
l

lh
l uY h

l &. ~22!

They depend onh, which can be interpreted with the help o
Eq. ~7!, and on weightsl l which can be determined in orde
to provide a convenient angular localization. Again there w
be states withh561 that will be called circular, and other
with h50 that will be called linear. The WP defined wit
other values ofh will be called elliptic in the following. The
justification of this name will be given in the Appendix. I
Sec. III many results will be derived for the particular cla
of WP that will be defined in Sec. II C. Most of them can b
seen to apply to the general WP@Eq. ~22!#.

C. Exponential coherent WP

Among functions that are possible, those that can be
panded in a power series of the variablev defined by Eq.
~16! are particularly interesting, because they will contain
the partial wavesY h

l . We have chosen to concentrate on t
exponential coherent WP

Ch~u,f!5A N

2p sinh 2N
exp@N sinu~cosf1 ih sinf!#,

~23!

which possess important properties: they fulfill Eq.~2!; they
have a direct connection to coherent states of the harm
oscillator~see the Appendix!; and, finally, they have a simple
geometrical interpretation. Indeed the real parameterN intro-
duced there allows a proper adjustment of the angular spr
The probability density depends only onN and on the angle
u8 defined by Eq.~20!; the expression is

uCh~u,f!u25
N

2p sinh 2N
e2N cosu8. ~24!

If we put h51 into Eq. ~18!, we obtain a coherent stat
defined by Mostowski@25#, who wrote it as

CM~u,f!5C21/2eN~uW 11 iuW 2!•nW . ~25!

Here uW 1 and uW 2 are two perpendicular unit vectors@in our
caseuW 1 is alongOx anduW 2 alongOy, and we have Eq.~3!,
andnW is a unit vector in the direction (u,f)].

The generalization of Eq.~25! with a parameterh has
never been considered until now to our knowledge, and
time evolution has never been studied. Let us point out t
Eq. ~23! can be generalized as

Ch~u,f!5C21/2eN~uW 11 ihuW 2!•nW , ~26!

with arbitrary but perpendicularuW 1 and uW 2 . Calling uW 3 a
third unit vector perpendicular touW 1 anduW 2 , we will obtain
WP’s which do not fulfill Eq.~2! but rather

DL1
2 DL2

25 1
4 ^L3&

2. ~27!
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Instead of Eq.~3!, we would have

^L1&50, ^L2&50. ~28!

The choice of axis made in Eq.~23! considerably simplifies
the interpretation and the partial-wave expansion. This
pansion will be given in Sec. II D.

It is not difficult to derive that ourCh, defined by Eq.
~23!, have the following average values and limits for lar
N:

^ChuLzuCh&5^Lz&5h@N coth~2N!2 1
2 # ——→

N→`

h@N

2 1
2 #. ~29!

Therefore Eq.~7! implies that

DLy5^Ly
2&5

1

2FN coth~2N!2
1

2G ——→
N→` 1

2 FN2
1

2G ,
~30!

DLx5^Lx
2&5

h2

2 FN coth~2N!2
1

2G ——→
N→` h2

2 FN2
1

2G .
~31!

The average ofLz
2 and the total uncertaintyDLh

2 require
independent calculations, with the results

^Lz
2&5^Ly

2&@122h2#1h2N2, ~32!

DLh
25^L2&2^Lz

2& ——→
N→`

N2
1

2
1h2

N

2
. ~33!

D. Partial-wave expansion of the exponential coherent state

We need to distinguish the case with a general value oh
from the simpler cases withh51 or 0. ~The cases withh
e

n
n

r

-

x-

521 or negativeh are trivially deduced fom cases wit
positiveh by inversing the sense of rotation of the WP.! For
h51, i.e., a circular exponential WP, or Mostowski’s W
one has

CM~u,f!5C1~u,f!

5A 2N

sinh 2N (
I 50

`
~2N! I

A~2I 11!!
YI

I~u,f!. ~34!

For h50, i.e., a linear exponential WP, it is found that

C0~u,f!5C0~u8,f8!5A N

2p sinh 2N
eN cosu8 ~35!

5A 2N

sinh 2N (
I 50

`

A2I 11

3A p

2N
I I 1~1/2!~N! Y0

I ~u8,f8!, ~36!

where I I 1(1/2)(N) is a spherical Bessel function of the fir
kind.

For a general value ofh, i.e., an elliptic WP, the argu-
mentv can be separated into two parts

v5
11h

2
sinu eif1

12h

2
sinu e2 if. ~37!

TheneNv is calculated as two power series containing pro

ucts of Yl
l and Y2 l 8

l 8 . These products are then expanded
terms ofYM

I as

Ch~u,f!5(
IM

bIM ~N,h! YM
I ~u,f! , ~38!

with the weightsbIM given by
bIM ~N,h!5A 2N

sinh~2N! (l l 8
~21! l 8@N~11h!# l @N~12h!# l 8

A~2l !! ~2l 8!!

^ l l 800uI0&^ l l 8l 2 l 8uIM &

A2I 11
. ~39!
rk
From the discussion made in Sec. II A,bIM is proportional to
CIM . The known selection rules of the Clebsh-Gordan co
ficients which appear in Eq.~39! assure thatM should have
the parity ofI.

III. COMPARISON WITH COHERENT STATES DEFINED
IN TERMS OF BOSONS

In this section we will compare the previous cohere
states to another set defined in terms of bosons of spis.
Based on Schwinger’s work@27#, several angular-
momentum coherent states have been constructed which
upon a boson representation of spins. The case withs5 1

2

was first considered in Ref.@30#, and studied more exten
sively by Atkins and Dobson@26#. Mikhailov @31# general-
f-

t

ely

ized this case to any spin integer or half-integer. His wo
was complemented by Gulshani@32#. According to
Mikhailov, a coherent state formed with 2s11 bosons de-
pends on two complex numbers calleda1 anda2 combined
to define other complex constantsa jm by

a jm5a1
j 1ma2

j 2mS 2 j

j 2mD 1/2

, ~40!

for j 50,s,2s, . . . ,ps, . . . andm52 j ,2 j 11, . . . ,j 21,j .
The coherent state, generically calleduas&, is expressed

by

uas&5expS 2
n2s

2 D )
m

exp~asmam
† ! u0& ~41!
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5expS 2
n2s

2 D (
j 50,s, . . . ,ps, . . .

`

(
m52 j

j
1

Ap!
a jm u jms& .

~42!

u0& represents the vacuum,am
† (m52s, . . . ,s) is a creation

operator of a boson of spins, and the normalization constan
depends ona1 anda2 through

n2s5~ ua1u21ua2u2!2s5(
m

uasmu2 . ~43!

The statesu jms& are normalized states of angular momentu
j constructed fromam

† ~see Mikhailov for the full expres-
sions!. Expansion~42! contains integer and half-integerj ’s
for s5 1

2 , reduces to integerj for s51, evenj, for s52, etc.
States~41! and~42! are eigenstates of the annihilation ope
tor am

† (m52s•••1s) with eigenvalueasm . Mikhailov
also calculated the expectation values of various opera
which are expressed in terms ofam

† and am . Due to this
technical simplification, calculations of expectation valu
are easier than the work necessary to obtain formulas~29!–
~33! in the case of the coherent stateCh(u,f). It is interest-
ri
e
o
lo
q
b

so
-

as
-

rs

s

ing to compare the properties of the stateuas& to those of the
general state defined by Eq.~22! or ~23!. Sincea jm is gen-
erally nonzero for all values ofj andm, the statesuas& can-
not be identified with our elliptic state for whichm should be
of the same parity asj. Clearly, formulas~40! and ~39! are
different. At first sight one could think that Eq.~41!, which
depends ons and on two complex numbersa1 and a2 ,
describes an ensemble of WP’s larger than ours@Eq. ~23!#,
which depend only onN andh and would therefore apply to
a larger variety of physical situations. We will show that,
the contrary, states~41! are a particular set of circular state
and do not contain the freedom allowed with the parame
h. Indeed, ifa1 anda2 are both nonzero, states~41! do not
fulfill conditions ~3!. In order to fulfill these conditions it is
necessary that eithera1 or a2 should be zero.@In Ref. @31#
it was indeed shown that̂Lx&; Re (a1* a2) and ^Ly&
; Im (a1* a2).] A change of axis leads toa jm50 except if
m5 j ~if a250) or m52 j ~if a150). The phase ofa1 or
a2 can be incorporated into the phase of the statesu j ,m5
6 j ,s&. Choosing, for example,a250 and a15k5 ~real
number!, the stateuas& is now simply denoted asuks&:
uks&5expF2
~k2!2s

2 G (
j 50,s, . . . ,ps, . . .

`
1

Ap!
~k2! j u j 5ps,m5 j ,s& ~44!

5expS 2
k4s

2 D exp@assas
†# u0& . ~45!
t

n
ular

-

In Sec. II, it was clear from the compact expression~25!
given by Mostowski that the same physical state can be w
ten by introducing three additional angles which are nec
sary to specifyuW 1 anduW 2 . The proof that this freedom als
exists in the boson representation was given by Mikhai
@31#. By a convenient choice of axis, the state written in E
~41! with 2s11 bosons and two complex parameters, can
brought to the simple form of Eqs.~44! and ~45! with only
one boson of spins with m5s and one parameterass5a1

2s

5k2s. Such a choice was also made by Atkins and Dob
@26# for the cases5 1

2 . The matrix elements of the compo
nents ofLW given below are a particular case of formul
given in Ref.@26#:

^ksuLzuks&5s k4s , ~46!

^ksuLz
2uks&5s2 k4s~k4s11! , ~47!

^ksuLx
2uks&5^ksuLy

2uks&5
s

2
k4s , ~48!

DLx
2 DLy

25
1

4
^Lz&

2 . ~49!
t-
s-

v
.
e

n

These formulas, and expansions~44! and ~45!, compared to
formulas~29!–~32!, show thatuks& does not coincide exactly
with Mostowski’s coherent state. Fors5 1

2 , Atkins and Dob-
son proposed to truncate the sum overj in order to take into
account only integer values ofj. In this process, the state tha

we will call uk, 1
2 & i ( i for integer! needs to be normalized

properly, and formulas~46!–~48! cease to be valid. Equatio
~49! still holds because the state is nevertheless a circ
state.

FIG. 1. Probabilities of finding the partial wavesYI
I in the co-

herent states of Mostowski~solid line! and Atkins-Dobson~dashed
impulses! for parametersN52051/2(k211) ensuring the same an
gular velocity for both wave packets.



b

n-

o

te
lo
d
II
io

y
er

o
e

e

f

o
e
ro
io

.

s
er

e

elp

en-

to

f

.

nal
e

4320 PRA 58P. ROZMEJ AND R. ARVIEU
Our purpose is now to compareCM(u,f) to uk, 1
2 & i . It is

interesting to choose the parametersN andk in such a way
that limit ~29! for largeN is valid (h51). Then, using Eq.
~46!, one puts

1
2 k25N2 1

2 . ~50!

The comparison presented in Fig. 1 shows that the proba

ity CI
2 of finding the partial waveYI

I in CM and in uk, 1
2 & i is

practically the same forN520. For smallerN andk ~i.e., N
of the order of unity! we have observed small but not mea
ingful differences. It is therefore possible, ifN is large
enough, to identify Mostowski’s coherent state to the bos
representation of spin12 of Atkins and Dobson.

We have shown in this section that the coherent sta
derived in the literature using a boson representation be
to the particular class of coherent circular states define
Sec. II. The exponential coherent states defined in Sec.
above have the advantage of a well-controllable localizat
and also depend on an interesting parameterh.

IV. TIME EVOLUTION OF COHERENT ANGULAR WP’S

The coherent states built in Sec. II are applicable to s
tems which have only angular coordinates on the sph
This is the case of the three-dimensional rotor with an axis
symmetry like the heteronuclear molecule or some deform
nuclei. In the following we will assume that the eigenvalu
of these systems rigorously obey theI (I 11) law, and we
will use the frequecyv0 written in terms of the moment o
inertia J0 as

v05
\

2J0
. ~51!

Our WP’s do not allow us to consider other degrees
freedom such as vibrational or internal excitations. Howev
we are confident in the usefulness of our work, which p
vides a full quantum-mechanical description of the rotat
of a pure state of a three-dimensional system.

Let us define therevival time Trev as

Trev5
2p

v0
5~2 Ī 11! Tcl . ~52!

This time is twice the period of true revival of the WP
Indeed, for the general case~22!, one has

Ch~u,f,t !general5(
I

l I e2 i2pI ~ I 11!v0 tY h
I ~u,f!. ~53!

Since I (I 11) is always even, the period is indeedTrev/2.
Nevertheless we will continue to use the same notations a
Ref. @1#. These authors also introduced a second charact
tic time Tcl called theclassical time. It is defined in terms of
the average angular momentumĪ defined by the averag
energy of the WP:

Ī ~ Ī 11!5(
I

ul I u2 I ~ I 11!. ~54!
il-

n

s
ng
in
C
n,

s-
e.
f
d

s

f
r,
-
n

in
is-

For the case of an exponential WP, one obtains, with the h
of Eqs.~30!–~32!,

Ī ~ Ī 11!5^L2& ——→
N→`

~N2 1
2 !1h2@N22 1

2 ~N2 1
2 !#.

~55!

The classical timeTcl is defined as

Tcl5
2p

v0 ~2 Ī 11!
. ~56!

Tcl is the period of a classical rotator having angular mom
tum I 5 Ī . At timest5(m/n) Trev where 2m,n(m andn are
mutually prime integers!, we will use the trick developed in
Ref. @1# to write the quadratic exponential inI as

e2 i 2p I 2~m/n!5(
s50

l 21

as e2 i2pI ~s/ l !. ~57!

It is necessary to distinguish three cases.
~a! n is odd; thenl 5n, and all the coefficientsas are

nonzero. However, they have the same modulus 1/Al .
~b! n is even and a multiple of 4; thenl 5n/2, and the

modulus ofas has the same value as above.
~c! n is even and not a multiple of 4; thenl 5n, but as

with evens is zero, and others have their modulus equal
1/An/2.

The number of values ofas which are nonzero is calledq,
with q5n if n is odd, andq5n/2 if n is even. The phase o
as can be calculated as described in Ref.@1#. Using these
results and inserting Eq.~55! into Eq. ~53!, one obtains Eqs
~58! and ~59! below:

ChS u,f,
m

n
TrevD

general

5(
I

l I (
s50

l 21

ase
2 i2p[ ~m/n!1~s/ l !]Y h

I ~u,f! ~58!

5(
s50

l 21

asCcl
s ~u,f,ts!. ~59!

At times t5(m/n) Trev, any WP is a sum ofq fractional
WP’s Ccl

s , each with a different effective timets :

ts5S m

n
1

s

l D Trev. ~60!

The fractional WP at timests is given by

Ccl
s ~u,f,ts!5(

I
l I e2 i I v0 tsY h

I ~u,f!. ~61!

There are several cases for which all theCcl
s are clones of the

initial WP defined by Eq.~22! for all possible valus ofts .
There are also cases where only one of all the fractio
waves is a clone of a particularts . Let us describe now thes
events, keeping arbitraryl I in mind as far as possible.
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A. Cloning of circular WP’s

If h51, one has

e2 i I v0 tsY 1
I ~u,f!5e2 i I v0 tsYI

I~u,f!5YI
I~u,f2v0 ts!.

~62!

Independently ofl I , the fractional waves verify the clonin
property

Ccl
s ~u,f,ts!5C~u,f2v0 ts,0!. ~63!

Among all circular WP’s, which all clone in this way, th
exponential WP’s, which can be sharply localized in t
angle u by considering high enoughN, clone accordingly
aroundq directions disposed symmetrically in theOxy plane
defined byq values of the anglev0 ts .

B. Cloning for some particular ts

This special situation occurs when there exist valuess
such thatv0 ts is a multiple of 2p, and for whichas is
nonzero. Lets0 be defined bys05n2m. One has the prop
erty

Ccl
s0~u,f,ts0

!5C~u,f,0!. ~64!

This event occurs whenevern is odd or even, and not a
multiple of 4. The clone is always identical to the initial W
Obviously it is multiplied byas0

. The existence of the clon

is independent ofl I and h. For the values ofsÞs0 , the
fractional WP’s are different from the initial WP’s. Startin
from h51 their shape evolves withh, and we propose to
call them mutants. This mutation can indeed be seen as
transition between two symmetries, as we will show nume
cally in Sec. V.

C. Symmetry properties of the fractional waves

In the following discussion it will be assumed thatl I
Þ0 both for even and odd values ofI. If some further sym-
metry is assumed~for example,l I50 for odd I ), properties
will result which will not be discussed in the present pap
We first remark that, apart for the values0 defined above,
associated with a clone, the fractional waves can be pa
for each value ofm andn in the following manner: associ
ated withs, there exists another values8 such that

e1 i I v0 ts85e2 i I v0 ts, ~65!

and also~noting a difference in the sign ofh on the right-
hand side!

Ccl
s8~u,f,ts8!h5Ccl

s ~u,f,ts!2h* . ~66!

This equation shows that fractional waves corresponding
oppositeh, i.e., oppositê Lz&, are intermixed. Equality~66!
is based on the equality which definess8 in terms ofs

ts1ts8
Trev

50 ~mod 1!, ~67!

on the one hand, and from the conjugation property
i-

.

ed

to

Y h
I ~u,f!5Y2h

I * ~u,f! ~68!

on the other hand. In addition to being real, it is importa
thatl I should be an even function ofh @as for the exponen-
tial WP defined by Eqs.~38! and ~39!#.

For h50 the fractional wavesCcl
s andCcl

s8 have the same
probability density on the sphere. This leads to a reductio
the number of fractional waves which occur: for oddn, there
will be one clone plus (n21)/2 fractional waves; for evenn,
not a multiple of 4, there is one clone and (n22)/4 frac-
tional waves; finally forn tht is multiple of 4 there will be
n/4 fractional waves.

V. NUMERICAL CALCULATIONS
WITH EXPONENTIAL WP’S

In this section we will describe some figures showing t
time evolution of typical exponential coherent WP’s. Th
value of N will generally be the same, and we will chang
the parameterh. Most of the figures are calculated forN
520. This value is typical of rather concentrated WP’s. V
ues near unity correspond to broad WP’s which occupy
whole of the sphere and are not interesting for our purpo
Let us note that keeping the sameN and changingh pro-
duces the same probability density@Eq. ~24!# at t50; how-
ever, formulas~38!–~39! show that the distribution of the
partial wave depends strongly onh. The averageĪ is very
low for h50, and this produce a difference in the time ev
lution which shows less structure ifN520 and if h is de-
creased. These features can be seen if one studies the
correlation function represented for three values ofh in Fig.
2. It is seen that this function is composed of peaks wh
have a larger width ifh is small. The structure becomes ve

FIG. 2. The autocorrelation function forN520, and different
values of parameterh corresponding to a smooth transition betwe
two different symmetries.
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4322 PRA 58P. ROZMEJ AND R. ARVIEU
rich if h is nearer to 1. This autocorrelation function is ve
similar to that studied in Ref.@24#.

A. Cloning for circular WP’s

The time evolution of the circular wave packet corr
sponding toN520 is shown in Figs. 3 and 4. In Fig. 3,
convenient set of times has been chosen to show the p
ability density as a function ofu and f during the regime
when the wave packet is spread (t,Tcl), then for a few
cloning times followed by a full revival fort5Trev/2. In Fig.
4, a ‘‘carpet’’ is shown of the section 0<t<Trev/2 of the
probability density foru5p/2, which shows up toq57
clones.

The difference between Mostowski’s coherent state
that created by Atkins and Dobsonuk,s5 1

2 & i is so tiny that it
does not present enough interest to be shown. Despite
analogy with the one-dimensional results of the infin
square well@2# and the two-dimensional rotor@11#, some
interesting aspects of our results need to be stressed. Ind
circular WP’s spread in thef direction and clone around th
Oxy plane, which is natural since there is initially a line
momentum alongOy. However, there is no change in tim
in the azimuthal spread. The cloning mechanism found
quantum mechanics is not possible for a single classical
ticle; however, it will appear if one uses the ensemble int
pretation of quantum mechanics as underlined by author
Ref. @4#.

FIG. 3. Time evolution of Mostowski’s wave packet withN
520. The left column represents changes of the probability den
during short term evolution, the right one at fractional revival tim
The probability density at times equal 1/5, 1/3, and 1/2*Trev are
identical with those presented at 1/10, 1/6, and 1/4*Trev, respec-
tively. ~The vertical scale is not the same in all figures.!
b-

d

he

ed,

n
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r-
of

B. Linear WP’s

For h50 the fractional WP has cylindrical symmetr
aroundOx at all times, since it is written as

Ccl~u8,f8,t !5(
I

bI e22ipI t /Trev Y0
I ~u8,f8!. ~69!

The quantity 2p sinu8uCclu2 is represented in Fig. 5. Thi
shows that the revival wave packets are rings on the sp
and, due to this special topology, do not clone the init
wave function.

The time evolution ofC0(u8,f8,t) is represented in Fig
6. Since the wave packet is in fact one dimensional,
carpet representation provides the essential features o
time evolution. However, in order to produce a similar ric
ness as forh51 ~and a similar expectation value ofL2), we
have increased the value ofN for h50 to N550. On a
sphere, areas of constant probability density could be re
sented by parallel circles centered on theOx axis. The pat-
tern of the carpet shown in Fig. 6 very much resembles t

ty
.

FIG. 4. Time evolution of Mostowski’s wave packet withN
520. uCM(u,f,t)u2 for fixed u5p/2 is presented in the contou
plot. The larger values ofuCM(u,f,t)u2 result in heavy lines due to
almost overlapping cuts for fractional revivals. One can clearly
the fractional revivals of orders17 , 1

12 , 1
5 , 1

8 , 1
6 , 1

4 , and so on
~corresponding times are17 , 1

6 , 1
5 , 1

4 , 1
3 , and 1

2 of Trev).

FIG. 5. Time evolution ofCcl @Eq. ~69!# for N550. The prob-
ability density 2p sinu8uCclu2 is presented as a function ofu8 andt
within one revival period.
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discussed recently in Ref.@33# for a special wave packet in
one-dimensional box. Indeed there is a superposition
ridges and valleys with simple slopes as a function oft. The
interpretation of this effect can be given in terms similar
those in Ref.@33#. Note that the quantity plotted in Figs.
and 5 has the same boundary conditions as the wave pa
on the edge of the box. This produces a reflection effec
Fig. 6 totally absent in Fig. 4, since the boundary conditio
are different on the circle. Thus forh50 the WP spreads
uniformly in all directions defined by the anglef8. Such a
WP is total nonsense for a single classical particle, a
makes sense only with the ensemble interpretation.

Another interesting linear WP corresponding toh→` but
keepinghN finite is defined as follows:

ChN~u,f!5
1

A4p
eihN sin u sin f . ~70!

It is derived from the harmonic oscillator WP of the Appe
dix by keeping only the term inpy . This WP has its prob-
ability density uniformly distributed over the sphere, a
obeys the equation

Ly ChN50 . ~71!

It has therefore cylindrical symmetry aroundOy, and de-
pends on the angleu9 defined by

cosu95sinu sinf. ~72!

Its expansion in spherical harmonics now contains spher
Bessel functions

ChN5(
I

A2I 11 j I~hN! Y0
I ~u9,f9! . ~73!

Obviously the fractional waves also have cylindrical symm
try aroundOy, but there is, in addition, fort5ts0

, a uniform

FIG. 6. Time evolution of the wave packet@Eqs.~35! and~36!#
for N550. The probability density 2p sinu8uCu2 is presented in the
contour plot. The larger values of 2p sinu8uCu2 result in heavy lines
due to almost overlapping cuts for fractional revivals.
of

ket
in
s

d

al
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clone which interferes with all the other fractional wave
The time evolution is shown in Fig. 7 forhN520. For small
values of t, such ast51/100Trev, the WP is concentrated
almost totally on the hemisphere withy.0, with a spike
along Oy surrounded by concentric rings. Fort51/50Trev
the same behavior occurs, but this time on the hemisph
with y,0. For other times both parts of the sphere are c
ered with rings, and the spike also occurs on both sides of
Oy axis. Fort5Trevm/n, with small m/n, a symmetry be-
tween the two hemispheres takes place. The existence o
clone can be seen clearly as a small uniform backgroun
times t5 1

25 Trev and t5 1
10 Trev. There is always a strong

interference between the fractional waves which does
allow one to make a clear counting even for small values
m/n.

C. Elliptic WP’s

For the general elliptic wave packet, as deduced from
previous discussion, there are no clones, but partial revi
with different topology. Due to the change of symmetry, it
indeed necessary to make a smooth transition between a
tem of clones located forh51 in the Oxy plane and the
system of rings discussed in Sec. II B. In the system of
ordinates adopted in Sec. II A and corresponding toh50,
these rings haveOx as the symmetry axis. The transitio
from the clones forh51 to the rings forh50 is made by
developing, forh smaller than 1, a system of pairs of cre
cents perpendicular to theOxy plane. This transition is
clearly visible in Fig. 8 for particular fractional revival times

FIG. 7. Time evolution of the WP~70! with infinite h but hN
520. At t50 the probability density is 1/4p. See explanations in
the text.
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For a very small value ofh the upper and lower parts of on
crescent meet the corresponding parts of a symmetric c
cent in order to build up such a ring symmetric aroundOx.
Again, this change of topology in the construction forbi
the cloning of all fractional waves. Most of them revive
shapes different from that of the initial wave packet. W
propose to call these fractional wave packets mutants.
example of the time evolution of wave packet withh50.5 is
given in Fig. 9. It can be seen in both Figs. 8 and 9 t
clones and mutants can occur at the same time. For exam
for h5 1

4 and t5 1
3 Trev there is a fractional revival atu

5p/2 and f50, with the same shape as the initial wa
packet and two crescents which almost close. This situa
is similar to that which exists forh50 and fort5 1

3 Trev. For
h5 1

2 and t5 1
6 Trev, the two crescents do not form a rin

Among the three fractional waves which are present, th
are two which are identical to each other but with a larg
spread inu. For this valueh5 1

2 , there are three differen
topologies for the five fractional waves. In other publicatio
on a different system@34#, we already found a transition
from a Gaussian three-dimensional wave packet to a vo
ring. Reference@34# was devoted, as our previous works,
the time evolution of such coherent waves in the case wh
the Hamiltonian contains a spin-orbit interaction in additi
to the harmonic-oscillator potential. If the spin is orient
along the initial wave-packet displacement (Ox axis!, the
cylindrical symmetry is imposed on the system and p
served during evolution, and vortex rings appear.

FIG. 8. Transition of fractional wave packets from exact clon
(h51) through developing crescents (h51/2,h51/4) to ring to-
pology (h50) is demonstrated for two fractional revival timest
51/3*Trev ~left! and t51/4*Trev ~right!. The fractional waves
called mutants are clearly seen in the lower rows of the figure.
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The transition between the two shapes of fractional wa
packets can be explained by comparing, as a function oh,
the spread of the angleu to the spread of the anglef. If h
50, the wave packet has no privileged direction on t
sphere. It therefore spreads equally. In the case whenh51,
the wave packet is peaked near the plane withu5p/2, and
the spread inu is strongly reduced. The spread inf is seen
in the scenario of cloning in thexOy plane. For intermediate
values ofh, there is a competition between the two effec
which manifests itself most strongly in the shape of the fr
tional waves.

For h.1 ~results not presented!, we observed a strong
reduction of the spread inu. For particular values of (m/n),
some mutants can be peaked with higher amplitudes t
their neighbors. This is in direct connection to the increase
p0 which was necessary in the initial wave packet.

D. Final remarks

We can measure the aperture of the probability density
the WP by the solid angleV54p/(4N11) corresponding
to the cone defined by tan(u8/2)51/2AN. The time of
spreadingth of this wave packet of widthDLh @Eq. ~33!# is
of the order of

th5
2p

v0

1

DLh
. ~74!

The difference in spreading withh is clearly seen in the

s FIG. 9. Time evolution of the coherent state deduced from
liptic motion (h50.5). The time sequence presented here is
same as in Fig. 3. Comparing to this figure the crescents are cle
visible; they are the most pronounced fort5 1

4 Trev.
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PRA 58 4325CLONES AND OTHER INTERFERENCE EFFECTS IN . . .
autocorrelation functions represented in Fig. 2. We can a
define the maximum number of fractional wave packets t
can be observed, knowing that tan(u8/2)51/2AN, as

qmax5
p

arctan~1/2AN!
. ~75!

This number is confirmed by the observation of the carpe
Fig. 4 for N520, for which we have up to seven clones. T
lifetime th8 of a system ofq fractional wave packets can b
estimated as

v0th8 DLh5
2p

q
. ~76!

Also, in Fig. 4, one clearly sees, forq52 and 3, large inter-
vals of time during which clones are observed.

VI. COHERENT STATES FOR A SYMMETRIC TOP

It is natural to enlarge our previous study to include ro
tional coherent states of symmetric tops which contain
additional degree of freedom. There are several possibil
in the literature for constructing such a state. Our aim
again to choose an axis of coordinates in order to elimin
irrelevant parameters and to make evolution understanda
This is possible only in the case of a symmetric top. We w
assume moments of inertia in the intrinsic frameJx5Jy , and
introduce the parameterd such that
ne

s

gi
o
t

f

-
n
s

s
te
le.
l

d5
Jx

Jz
21 . ~77!

The energy spectrum is then

E~ I ,K !5
\2

2Jx
@ I ~ I 11!1dK2# . ~78!

A convenient rotational wave packet was defined a
studied by Janssen@28# on the basis of the work of Perelo
mov @35# and Schwinger@27#. This wave packet, denoted b
three complex numbersx,y, and z, is a mixture ofDMK

I

functions

uxyz&5expS 2
1

2
yy* ~11xx* !~11zz* ! D

3 (
IMK

A ~2I !!

~ I 1M !! ~ I 2M !! ~ I 1K !! ~ I 2K !!

3xI 1My2IzI 1K uIMK & . ~79!

The sum overI contains integer as well as half-integer valu
of I, i.e., this state extends that presented by Atkins a
Dobson. Similarly to Sec. III, we calluxyz& i the normalized
projection into space with integerI. A particularly conve-
nient choice ofx,y, andz, as well as of the system of coor
dinates, decreases the number of parameters to two, an
duces the summation toI and K only. The simpler wave
packet is then
ur ,l&5exp~2r ! (
IK

~21! I 1K ~2r ! I
S sin

l

2D I 1KS cos
l

2D I 2K

A~ I 1K !! ~ I 2K !!
uI 2IK &. ~80!
e

in
ion
n-

ing

s
lu-
If LX ,LY , andLZ are the components ofLW in the intrinsic
axesLx ,Ly , andLz , those related to the laboratory axes, o
has, according to Janssen,

^rluLxurl&5^rluLyurl&50, ^rluLzurl&52r ,
~81!

^rluLZurl&52r cosl,
~82!

^rluLXurl&52r sinl, ^rluLYurl&50 ,

^rluL2url&5r ~r 1 3
2 ! . ~83!

Since the WP given by Eq.~80! contains only component
with M52I , it is a circular WP withh521 which fulfills
Eq. ~2! with the components ofLW taken in the laboratory
system. From Janssen’s work, the components in the ri
body system verify the equation

DLX
25DLY

2 , ~84!

while their product takes the value
d-

DLX
2 DLY

25
^LZ&2

4 cos2l
. ~85!

Therefore, Eq.~2! is also verified for the components in th
rigid-body system ifOZ is directed alongLW . On the other
hand, expansion~80! of the rotational coherent states,
terms ofuI 2IK & has the same coefficients as the expans
of Atkins and Dobson in terms of angular-momentum eige
statesuIK &. The two expansions are connected by defin
a1 anda2 as

a15A2r sin
l

2
, a25A2r cos

l

2
. ~86!

The projectionur ,l& i , deduced by restricting Eq.~80! to
integer values ofI and K, verifies Eqs.~81!–~83! only ap-
proximately. However, ifr is large enough, these equation
are obtained in a very good approximation. The time evo
tion of the wave packetur ,l& i will be studied in Sec. VII for
a rigid-body symmetric rotor.



or

ed

,

d
m

, in
ir,

m-

Eq.
the

4326 PRA 58P. ROZMEJ AND R. ARVIEU
VII. TIME EVOLUTION OF JANSSEN’S COHERENT
STATE

The energy spectrum of the axially symmetric rigid rot
is written as

EIK5\v0 @ I ~ I 11!1dK2# . ~87!

We will study the time evolution of a wave packet deduc
from Eq. ~80! with v05\/(2Jx), and with average values

^rluLZurl&5K̄52r cosl, ~88!

^rluLzurl&5 Ī 52r . ~89!

The energyEIK is written by takingK̄ and Ī as references
and definingk1 andk2 as

k15I 2 Ī , k25K2K̄ , ~90!

Ek1k2
5\v0 @ Ī ~ Ī 11!1dK̄2#1\v0 ~2 Ī 11!k1

1\v0 d~2K̄ !k21\v0 k1
21\v0 d k2

2 . ~91!

We now follow the lines drawn by Bluhm, Kostelecky, an
Tudose@10#, who considered the time evolution of a syste
e

qs
d

o

o

rs
d

which depends quadratically on two quantum numbers
our caseI andK. There are four time constants: the first pa
defined as

Tcl
I 5

2p

v0~2 Ī 11!
, Trev

I 5
2p

v0
5~2 Ī 11! Tcl

I , ~92!

is related to the motion around theOz axis ~laboratory axis!,
i.e., it is connected to the Euler anglea. The second pair
plays a parallel role; it concerns the motion around the sy
metric OZ axis and the Euler angleg:

Tcl
K5

2p

v0d2K̄
5

1

d

2 Ī 11

2K̄
Tcl

I , Trev
K 5

2p

dv0
5

1

d
Trev

I .

~93!

The system of coordinates and the parametrization in
~80! enable one to profit by the separation of variables in
stateuI 2IK &, since

^abguI 2IK &5eiaI d2IK
I ~b! e2 igK5D2IK

I ~a,b,g! .
~94!

The wave packet@Eq. ~80!# at time t, under conditions
~88! and~89! with integersI andK, will be denoted asu Ī K̄&
and written as
^abgu Ī K̄& t5(
IK

CIK~r ,l! d2IK
I ~b!exp$ i [aI 22pI ~ I 11! t/Trev

I ] % exp@2 i ~gK12pK2 t/Trev
K !# ~95!

5exp$2 i @ Ī ~ Ī 11!1dK̄2# t/Trev
I % (

k1k2

Ck1k2
~r ,l! dk1k2

I ~b!exp$ i @ak122p~k1 /Tcl
I 1k1

2/Trev
I !t#%

3exp$2 i @gk212p~k2 /Tcl
K1k2

2/Trev
K !t#%. ~96!
re-

and

e

e
en-
The summation onI andK has been changed to a sum ov
k1 andk2 , and the coefficientCIK d2IK

I has been given the
new indexes. The discussion of the time evolution of E
~95! and ~96! follows that given by Bluhm, Kostelecky, an
Tudose@10# in a straightforward manner. The crucial param
eter isd. If Trev

K andTrev
I are not commensurate there is n

cloning; however, fort5(m/n)Trev
I there are partial revivals

in the variablea: i.e., the wave packet is a superposition
q fractional wave packets peaked regularly along theOz
axis. @q5(n/2) if n is even andn in other cases.# For t
5(m8/n8)Trev

K the same scenario of partial revival occu
but this time there areq8 fractional wave packets peake
around theOZ axis. @q85(n8/2) if n8 is even, andn8 oth-
erwise.#

The interesting situation of commensurability ofTrev
I and

Trev
K allows, on the contrary, the construction ofq2 clones for

all time such that

t5
m

n
Trev

I ,K . ~97!

The revival timeTrev
I ,K is the least common multiple ofTrev

I

andTrev
K :
r

.

-

f

,

p Trev
I 5r T rev

K 5Trev
I ,K . ~98!

The time evolution of the rotational wave packets is p
sented in Figs. 10 and 11.

The particular choiceK̄50 leads toTcl
K5`, but Trev

K is
finite as well asTcl

I and Trev
I . For a smaller value oft, the

behavior of the wave packet aroundOz andOZ is different,
as seen from Fig. 11. There is indeed a classical rotation
spreading aroundOz, while no rotation occurs aroundOZ;
only spreading is observed around this axis.

Figure 10 illustrates the case of an irrational value ofd,
where there are partial revivals for timest5(m/n) Trev

I

aroundOz, and for timest5(m8/n8) Trev
K where the revivals

are aroundOZ. Note that the concentration of the wav
packet for some definite values ofa ~or g) has no influence
on the other variableg ~or a).

Figure 11 illustrates the case of a rational value ofd, for
which there areq2 clones. The proof that there areq2 clones
if condition ~98! holds is rather simple, one applies twice th
method of Averbukh and Perelman to linearize the expon
tial containingk1

2 andk2
2 in Eqs.~95! and ~96!.
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Finally we want to stress that the variableb does not play
a role in the time evolution. Obviously this is due to o
particular choice of axis in Eq.~80!. The role played byb for
the axial rotor is similar to the role played byu in the di-
atomic molecule.

VIII. CONCLUSIONS

We have discussed the time evolution of angul
momentum coherent states that are built from intelligent s
states, but which, as pointed in the Appendix, can be c
structed by a simple, purely geometric, generating proced
The basic ingredients are the three-dimensional Gaus
wave packets of the harmonic oscillator. We have used
of the parameters of the Gaussian to derive an ensemb
coherent states which depends finally on two parameteN
and h. The angular distribution of the probability densi
depends only onN, while the momentum distribution de
pends both onN andh. The uncertainty relation@Eq. ~2!# is
valid for all N andh. Such a variety of wave packets do
not arise from the previous works on angular-moment
coherent states with bosons. It is, for example, simple
show @36# that there is no place in the work of Atkins an
Dobson or Mihailov for wave packets@Eqs. ~40! and ~41!#
which correspond toh50. Also, the coefficienta jm defined
by Eq. ~45! in terms ofa1 anda2 cannot generally be pu
into the form of Eq.~44!, which ensures thatbIM is zero if I
andM have opposite parities.

In the framework of the scenario of Ref.@1#, we have

FIG. 10. Time evolution of Janssen’s coherent state for an
ally symmetric top~95-96! for irrational d51/A3 implying Trev

I

51/A3 Trev
K .0.577Trev

K . Shown is the probability density

z^abgu Ī K̄& z2 for b5p/2, Ī 54, andK̄50. Notice that the vertical
scale is not the same in all figures.
-
in
n-
e.
an
o
of

o

shown that for h51 the wave packets spread att
5(m/n) Trev into clones. However, the difference betwe
the symmetries forh50 andh51 necessitates a change
the topology of the fractional wave packets. This change
such that these wave packets can be called mutants due
certain amount of deformation in their shape. Aronstein a
Stroud@2# showed that ‘‘the infinite square well is an ide
system for fractional revivals since all wave functions e
hibit fractional revivals of all orders.’’ The same stateme
applies to the case of the diatomic molecule, but is limited
circular wave packets, i.e., to those which contain onlyM
5I partial waves in a convenient axis system. The gene
tion mechanism used in this paper can be extended to sh
different from Gaussian distribution. Clones will always r
sult in this particular condition. For wave packets which co
tain populations of sublevelsMÞI , mutants will appear. All
these results hold independently of the realization of the
certainty condition@Eq. ~2!#. For systems where the energy
quadratic in one quantum number, we have shown that
time evolution can exhibit a rich structure of cloning an
mutation of fractional revivals. It is a challenging question
find a proper way to excite such wave packets in a rotatio
band of a molecule or of a deformed nucleus. Let us brie
describe the efforts made under this perspective.

Wave packets withh50 or M50 have already been con
sidered several times. In a reference work on Coulomb e
tation of nuclei with heavy ions, Broglia and Winther@37#
showed that such wave packets are generated in back
scattering. Their population of the excited states of a ro
tional band withK50 does not coincide with the very sim

i- FIG. 11. The same as in Fig. 10 but for rationald51/2 implying
Trev

I ,K5Trev
K 52 Trev

I . Clones for times 1/6, 1/3, and 1/2Trev
I ,K are

clearly visible as well as full revivals. Notice that the vertical sca
is not the same in all figures.



s
o

th

n

ri
t
o

le
-
d

d
t

ue
.
d

n

a
at

-
o

e
m
is
a

or
at
pe
h

lli
t

is

p
al
pe
e

n
gn
a
v

hi

eral

oses

q.

ed

s
s-

is
ner
rom

s,

4328 PRA 58P. ROZMEJ AND R. ARVIEU
plified expressions~40! and~41!. Indeed, interference effect
during the excitation process modulate this population t
large extent~Fig. 8; p. 82 of Ref.@37#!. However, we have
studied the time evolution of such a wave packet, and
will be the subject of a future publication@38#.

The authors of Ref.@36# wrote an important analysis o
coherent rotational states, completing the work of Ref.@37#.
They used the waveuk, 1

2 & i of Sec. III, derived from Ref.
@26#, and considered an extension toward other symmet
like Sp(2,R), Sp(4,R). Time evolution was studied, bu
only for average values of operators like quadrupole m
ments. The physical systems considered were the nuc
238U and the molecule CS2. The time evolution of expecta
tion values of more general operators for wave packets
to quadratic dependence was studied in Ref.@39#. The opera-
tors studied in Ref.@36# have very strict selection rules, an
the time evolution reflected there is much poorer than wha
exhibited by the full wave packet and by the average val
of the more complex observables@39# related to the position
It is, however, clear that all the wave packets considere
Ref. @36# must evolve according to the scenario of Ref.@1#,
with a very rich sequence of changes of shapes.

Our work comes very near to the spirit of two rece
publications devoted to molecular physics. In Ref.@40#, the
population of a set of rotational states of a molecule by
intense laser was calculated. However, the number of st
excited in this way is rather small (l ,4), the symmetry
implies only states withM50, and therefore the WP pro
duced is not concentrated on the sphere as sharply as
with N520 or 50. In Ref.@41#. Ortigoso studied how to
tailor microwave pulses in order to create rotational coher
states for an asymmetric-top molecule, which is built fro
Radcliffe’s intelligent spin states discussed in Sec. II. It
gratifying that such a mechanism, which involves optim
control theory, is possible. However, our demand is m
ambitious, since one needs to combine intelligent spin st
of different angular momenta in order to achieve a pro
angular concentration. In addition, one has to find a mec
nism that allows one to change our variableh continuously,
i.e., the relative uncertainties inLx and Ly , in order to ex-
plore the total variety of our states as well as of the inte
gent spin states. It is indeed interesting that Radcliffe’s sta
were used quite thoroughly, for example, in Refs.@42,43#,
but our paper points out the fact that a richer structure ex
nearby in accordance with older works@19–21#. As stated in
the text, we have not used the larger class of intelligent s
states in the case of the diatomic molecule, and we are
conscious that our work on the symmetric top leaves o
possibilities of coherent states that have not yet been
plored.

It is worth mentioning a very recent paper by Chen a
Yeazell @44# concerning an analytical wave-packet desi
scheme that is able to create the desired Rydberg wave p
ets and control their dynamics. We believe that we ha
enriched the examples given in Ref.@10# by pointing out
how different the fractional revivals may be.

APPENDIX: CONNECTION BETWEEN THE
EXPONENTIAL COHERENT WP AND COHERENT

STATES OF THE HARMONIC OSCILLATOR

The exponential WP defined by Eq.~23! can be manufac-
tured from Gaussian wave packets in three dimensions w
a
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are coherent states of the harmonic oscillator. Such a gen
WP, with an average positionrW0 and momentumpW 0, is writ-
ten as

CG~r ,u,f!5
1

~2p!3/4s3/2
expF2

~rW2rW0!2

2s2
1 i

pW 0•rW

\ G .

~A1!

One gets rid of three unecessary parameters if one cho
the axis in such a way that

p0z50, rW05 x̂ r 0 . ~A2!

With such choices the probability density is

uCGu25F 1

~2p!3/2s3
expS 2

r 21r 0
2

s2 D G
3expS 2r r 0

s2
sinu cosf D . ~A3!

Apart from a normalization factor, this coincides with E
~24! if r and r 0 are both chosen as

r 5r 05s AN. ~A4!

The solid angleV54p/(4N11) is thus the angle at which
the widths of the density of the Gaussian WP is observ
from the center of the sphere of the radius given by Eq.~A4!.
This choice still leaves two parametersp0x andp0y free. The
choices which lead to Eq.~23! are

p0x50 , r 0 p0y5h N \. ~A5!

If one takes the width of the harmonic oscillators
5A\/m v, the value ofp0y given in Eq.~A5! leads forh
51 to

p0y5m r0 v. ~A6!

The coherent state~A1! associated with this value evolve
around a circular trajectory in the field of the harmonic o
cillator. In the same manner the valueh50 is associated
with a linear trajectory, and the other values ofh correspond
to elliptic trajectories. In the second case the initial point
either the apogee or perigee of the ellipsis. In this man
more general WP’s can also be constructed which start f
arbitrary points according to a nonzero value given topx0 .
Let us define a parametere by

r 0 p0x5eN\. ~A7!

The exponential WP@Eq. ~23!# becomes, in these condition

Ch,e~u,f!5A N

2p sinh 2N
exp$Nsinu@~11 i e! cosf

1 ih sinf#% ~A8!

and verifies the condition
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@~11 ie!Lx1 ihLy# Ch,e50. ~A9!

The probability density is again given by Eq.~24!. However,
these more general states do not fulfill condition~2!. Indeed,
for those states which obey this equation there exists a v
of h given by Eq.~7!, such that Eq.~6! is obeyed and Eq
m

L.

ev

s.

s.

A

ue

~A9! is not. It was then consistent to consider only tho
WP’s with e50. This result is in accordance with an old
result by Rashid@21#, and marks a difference between s
calledquasi-intelligent spin stateswhich solve Eq.~A8! but
do not satisfy Eq.~2!, and the intelligent spin statesfor
which e50.
.
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