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The much-studied energy-time uncertainty relation has well-known difficulties that are exacerbated for a
system with discrete energy levels. The difficulty in representing time in the abstract sense by an operator
raises the related question of whether or not there is some other quantity that is complementary to the
Hamiltonian of a quantum system. Such a quantity would have dimensions of time but would be a property of
the system itself. We examine this question for a system with discrete energy eigenstates for which the ratios
of the energy differences are rational. We find that such a quantity does exist and can be represented both by
a probability-operator measure and by an Hermitian operator, but in a state space larger than the minimal space
needed to include the states of the system. The uncertainty relation with the energy is slightly more compli-
cated than the momentum-position uncertainty relation, but is readily interpretable. To describe such a quantity
the name “age” is suggestefiS1050-294®8)03012-]

PACS numbds): 03.65.Bz

I. INTRODUCTION that for the uncertainty relation for the Hamiltonian with
discrete eigenvalues and its conjugate, or complement, a
One of the earliest issues in quantum mechanics has beeimilar complication should apply and E@) should be gen-
the question of an energy-time uncertainty principle. Fundaeralized. The question then arises as to whether or not there
mental to this problem is that in quantum mechanics thés some operator conjugate or complementary to the Hamil-
energy is a dynamical variable of the quantum system reprdonian in this more general sense.
sented by a Hermitian operator, but time in the normal sense In this paper we wish to explore the possibility of the
is a parameter, as it is classicallfzor a recent overview of existence of a quantity that can be regarded as the comple-
this, see Refl1] and the references thereinother impor-  ment of the Hamiltonian for a quantum system with discrete
tant difficulty is that, whereas the momentum-position uncerenergy levels, recognizing that if this quantity is represented
tainty relation can be derived from the commutation relationby an operator the appropriate commutator must be a gener-
alized form of Eq.(2). Although this quantity will have di-
[Px.X]=—i%, (1)  mensions of time, it will not be appropriate to refer to such
an operator as a time operator. As an operator it would rep-
there is apparently no operatérthat is canonically conju- resent an observable of the quantum system and not time in
gate to the Hamiltonian operatét in the sense of Eqil)  the abstract or coordinate sense or as a reading on an external
from which a corresponding uncertainty relation can be declock. Its eigenstates would represent a state of the quantum

rived. Indeed, a relation of the form system and some measurement on the system, at least in
principle, should tell us about the quantity involved. Al-
[E,7]=—ih (2)  though this quantity is not time, we would hope that for a

particular ideal system its expectation value may change lin-
simply cannot be correct for quantum systems with discret@arly with time, for example, so that a measurement of the
energy states. This is because if we find the expectatiofuantity would also give a measure of time. In this case, we
value of each side of Eq2) for an energy eigenstate, we would be using the system as a clock. Before seeking an
obtain zero on the left-hand side ard# on the right-hand operator for the complement of the Hamiltonian we first rep-
side. This is exactly the difficulty involved with early at- resent this quantity by a nonorthogonal probability-operator
tempts to find a phase operator canonically conjugate to theeasure, which is a more general condejt
excitation number operator of an harmonic oscilld@jr(for
recent reviews and bibliographies of the quantum phase || pISCRETE ENERGY AND THE a QUANTITY
problem, see Ref$3] and[4]). Commutators of canonically
conjugate operators in the forfi) and(2) can be regarded We consider a quantum system wiph-1 energy states
as special cases of a more general form of commuf&or |E;) with i=0,1,...p. To avoid unnecessary complica-
for conjugate, or complementary, operators. For momenturtions, for this paper we shall let the states be nondegenerate
and position this more general commutator reduces to Ecand we choose our zero of energy so that the lowest-energy
(1), but for phase and excitation number it contains an extraigenvalueE,=0 with the other energies increasing with,
term that removes the difficulty described above. Of coursdut not necessarily proportional tb,We assume that these
this means that the number-phase uncertainty relation imclude all the accessible, or essential, states of the system.
more complicated than the momentum-position uncertaintyAs an example of accessible states, we note that an effective
relation. As Eq(2) cannot be true, we might expect likewise two-level atom can be prepared from a multilevel atom for
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particular experiments. In this case not all the usual states afent thea quantity. Further, for unequally spaced energy
the atom are accessible from the initial state by means of thievels, we cannot even pick out a subsetpaf1 statesa)
particular interaction applied to the atom. By allowing morethat are orthogonal. We can, however, make progress for
interactions that couple more states, we can increase thenequally spaced levels if the rati&/E, are all rational
number of accessible states until eventually we include alhumbers or can be sufficiently closely approximated by ra-
physically accessible, or physical, states of the system, thaional numbers. FoE; /E; rational
is, states that are accessible from each other by some series
of physical interactions. Ei G
For now we shall keep finite, but it is possible to take a E, B’
limit at a later stage. We le¥, be the p+1)-dimensional
state space spanned by these orthogonal energy states. ThgereC; andB; are integers with no common factors. We
is the minimal space required for a description of the quanwrite the Iowest common multiple of the values Bf with
tum system. The Hamiltonian operator for the system is i>1 asr; and definer;=r,C;/B; for i>1 and as zero for
i=0. Thenr; is an integer for all=0 with ry=0. From Eq.
(10) we can write

(10

p

:Zo E|EXEl, 3
= 27h
. Ei =ry —, (11)
whereE; are the energy eigenvalues. A general state of the T
system can be written as
where
P
1fy=>, fi|E) (4) T=2mhr,/E;. (12
i=0

Let us now selecs+ 1 statega) for which the values ofr
are uniformly spread over the range That is, we choose
P values ofa denoted by

exp(—ih’@t)ﬁ)zZofiexp(—iﬁ’lEit)|Ei). (5)

and will evolve in time according to

T

s+1’ (13

am=agtm—
We are interested in a quantityof the system, which we

shall refer to simply as the: quantity, which will have di-  with m=0,1,...s. We find then that the stat¢a,,) have the
mensions of time and will be conjugate to the Hamiltonian ininteresting property that

the sense thdf is the generator of shifts i quantity. Thus

we seek a statgy) for which
i mzzolam><am|_p+1 2 2 |E|><E|
exp —ih lEda)|a)=|a+ da). (6)
S
Writing +2 2 extli(r—ri)am2m/T]
i#k m=
P
) =2 (@)]E. @ X|Ei><Ek|’ (14)
we find that we can ensure that H§) is true by setting and thus
ci(a)cexp—in 'Ea) (8) p s
and thus, with the appropriate normalization factor included, +1 7o |am)(erm| =1, (15

we have

. b where 1is the unit operator on the spade,, provided the
_ a1 second term on the right-hand side of Et{) is zero or at
| a)= Jp+1 ;o exp(—if " Eja)|Ej). ©  least negligible compared with the first term. F/E; ra-
tional and thus —r; an integer, this term will be zero and
If we replaceda on the left-hand side db) by 6t, we obtain  Eq. (15) true providedr,—r; is not a multiple ofs+ 1. This
a time translation expression, that is, the staté¢ da) isthe  follows from substituting Eq(13) into Eq. (14) and sum-
state to which|a) would evolve in a timest=é8a. Thus, ming the geometric progression involved. We can ensyre

although the quantity represented hyis not the time be- —r; is not a multiple ofs+1 by choosings+ 1>, which
cause it is a property of the system, it bears some relation tis the largest value af; .
time. If E;/E, is irrational but sufficiently well approximated

The statega) are not orthogonal and their number ex- by a rational number for the second term on the right-hand
ceeds the dimensions of the spakg spanned by th@+ 1 side of Eq.(14) to be negligible, then this rational number
energy state$E;), so these cannot be eigenstates of a Herwould in general have a large denominator, rsowill be
mitian operator on¥ , with which we might hope to repre- very large. This implies from Eq12) that T will be very
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much greater than the natural perio@d#/ E; associated with and thea quantity is represented by the probability-operator

the state with energ¥;. When E;/E; are exact rational measure generated by the infinitesimal operators

numbersT has a simple physical interpretation. From Egs.|a){a|da/T.

(5) and (11) T is equal to the smallest time taken for the  The probability density for the system in stdfeto be

system to return to its initial state. Thus the statewill be  found with a valuex for the a quantity is, from Eqs(4) and

the same as the state+T). It follows that restricting our  (18),

selection of stately) to those for which the values of are

uniformly spread over the rangg then prevents us from

including the same state twice. P(a)=
Expression(15) is a resolution of the identity. Thus, al-

though thea quantity is not an observable represented by a

Hermitian operator on the spade, of p+1 dimensions, it

can be represented by a nonorthogonal probability-operato

measure, which is a more general concgfft The s+1

nonorthogonal elements of this probability-operator measur

are p+1)(s+1) Y am){am. Expression15) can be used

to expand the general state given by E4). as

p 2

2 fXexp—ih 'Ea)| . (21)

—|||—\

'l;h|s expression displays an essential feature of the comple-
mentary between energy and thegquantity: If the system is
an energy eigenstate then there is only one term, of modu-

us unity, in Eq.(21) andP(a)=T"1, that is, thea-quantity
distribution is constant across the whole period hus if the
energy can be determined exactly thequantity is com-

s pletely random. The probability densi21) is all that is
|f>_ 2 (ol )] et (16)  heeded to calculate the statistical properties ofdiupiantity

m=0 for any statef) of our quantum system.

and so, usingf|f)=1, we obtain
Ill. RATE OF CHANGE WITH TIME

S

p+
>
m=0

K| ) P=1. (17) To find the way in which the properties of thequantity
s+1 m

change with time we first calculate the rate of change of
P(a) in (18) from Schralinger's equation as

Thus each term in Eq17), all of which are positive, can
represent a probability with the total probability correctly

normalized. From quantum detection the®6y, this is the dP(e) = E o] [@) (@ f)+ (fla)(a] = | >
probability that the application of the probability-operator dt T\ dt

measure by means of a suitable measuring instrument yields i -

the resulta,,. Of course, this does not indicate immediately =77 (FI[E,[a)(a]]|f). (22

how to perform such a measurement, but that is not our
concern here, where we are interested merely in identifying
the quantity that can be regarded as the complement of thene rate of change of the mean of thequantity for a state
Hamiltonian and in studying some of its properties. If) is then

So far the choice o$ is arbitrary apart from the require-
ment thats=r,. In order for thea quantity to be applicable i
to all systems of the type considered here, however large the da) _ j‘”O”a dP(a) da=~ (FIEALD, (23
value ofr,,, and to be independent of an arbitrary choice of dt ag dt h ' '
s, we now define thex quantity as that represented by the
above probability-operator measure in the limitsasoe. In

this limit, the difference between successive valuemxgf  Where
tend to zero and the probability for a value @in the small
range betweem and a+ S« is P(«) 6(«), where the prob- 1 (ag+T
ability density is given by A= T f a|a)(alda. (24)
@Q
_ = 2
P(a)= T Kfla)l” (18) We can express E@24), from Egs.(11) and(19), as

where
" 1 ag+T
A:T . J' o eXn:|27T(r]_rl)a/T]da|E|><EJ|
]

@g

@= b T0=3 et EwE). 19

exd —ifn 1(E;—E;
ot T2t iny, ST ECE ol
By Ei—E;

|Ei)(Ejl.
The resolution of the identityl5) then becomes simply
(25

ag+T N
f" |a)(alda/T=1 (20
agy Thus
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Combining this with the variance of the quantity obtained

[E,A]=ih§j exp(— it Ejag)|E;)(E;|exp(E;ag) from Eq. (18) gives
agtT N
il S expoin B a)|E) (A€ 82 = [ " Kt (E () @) Pda
i “o
) ag+T 5 5
xS (ElexiE;ag) -, 29 <[ K@ o et
i
which can be written from E¢19) simply as 2‘ JQOH(H(E—(E})M)
[E,Al=i%(ag) (|~ 1). (27) 2
) a— da/T 30
Thus, from Eq.(23) X(alf)(a—(a))da (30
d(a) from Schwarz’s inequality. Thus the product of the mean
T 1—(flag){ag|f). (28)  square deviations is
AEAa=[(fI(E-(E)(A—(a))| ). (3D

From Eq.(18) the last term of Eq(28) is just TP(«y); thus,

if the probability distributionP(«) for the statelf) of the
system is sufficiently narrow for this last term to be negli-
gible, the expectation value of thequantity changes exactly
as the time parameter. If the system is in an eigenstate of o A

energy, however, it is clear from Eq4.9) and(28) that the AEAa=3(f|[E,A]lf)|= > |1—(flag)(aplf)]. (32
rate of change ofw) is zero. This must be true, of course, as

an energy eigenstate is a stationary state. Since no observalgen the system is in an energy eigenstate the uncertainty in
quantity of a statioqary state varies with time &ts;uantity _energy must be zero, even for a finiter. In this case the
should not vary. This is a good example displaying the dif-ight hand side of Eq(32) vanishes, ensuring consistency.
ference between the quantity and the time parameter. It s the energy is exactly measurable in principle and does
also shows the need for the second term in @§) and the ¢ syffer from the difficulty discussed in R§L] associated
inadequacy of a commutator similar to E@) that would \yith an uncertainty relation based on E@). As with Eq.
predlctd<a)/dt_= 1 for all states. A particular example of a (28), {f|ao)(@olf) is just TP(ag) and so iflf) is orthogonal
system for whichd(a)/dt~1 is a harmonic oscillator in a 5|4 or at least if the probability distributioR(a) for the
truncated phase staf@] where the truncation is at a Very giateff) of the system is sufficiently narrow for this last term
large excitation number. For such a statei andpis very (g pe negligible, the uncertainty product takes the more usual
large. The meawm quantity of this system changes directly as tqm. This is the same condition for the rate of changéaf

the time for most of the time and so the harmonic oscillatoryith time to be unity as discussed earlier. Only under these

makes a useful quantum clock. We note that even for thigpecial circumstances could a commutation relation as given
system, this direct variation with time cannot always apply.by Eq. (2) be used.

When the state eventually evolves to have a large overlap
with the state|a), d{a)/dt suddenly becomes very large
and negative an¢w) quickly reverts to the value it had one
period of the oscillator earlier. This is just equivalent to the In this section we examine the possible existence of an
seconds reading on a digital clock jumping from 59 back toHermitian operator to represent thequantity. In performing
00. On the other handg) of a hydrogen atom in a superpo- the preceding calculations we have found it convenient to

sition of some of its lower energy states will not be so di-define a Hermitian operatdk by Eq. (24) with a more ex-

rectly related to the time during one period and the variatior‘pncit form given by Eq.(25). It follows immediately from
of () with time will be more complicated. Egs.(24) and(18) that

As « is real, operatoA defined by Eq(24) will be Hermit-
ian and we can use the usual inequal®y to obtain

V. THE SPACE ¥

IV. UNCERTAINTY RELATION (a)y=(f|A|f) (33

As the a quantity is represented by a probability-operator

measure and its variance is found from the associated probz, £rom Eq.(27) the uncertainty relation for the observable
ability distribution, its uncertainty relation with energy can-

not be written down immediately as is the case for Observ_represented b and the energy will be the same as E2p).

ables represented by Hermitian operators. Using(#0). we FurthermoreA is well defined by Eqs(24) and(19) even for
can, however, write the variance of energy as quantum systems whose energy eigenvaktjesre not ratio-
nal multiples ofE; . In view of these properties, why do we
o [*FT o _ - not simply take the observable represented lzbyas the
(AE)= LO (FI(E=(ENla)(al(E—(E))|f)dalT, complement of the Hamiltonian? The essential reason is that

(29 the eigenstates ok are not the statefy) and the Hamil-

and the rate of change 6f|A|f) will be the same as that of
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tonian does not generate shifts from one eigenstat& tof
another in a manner similar to E(). We note that while

Eq. (33 is true, in genera{f|A?|f)+(a?) as the statefa)

are not orthogonal and so, although the varianca ftis-
fies the same uncertainty inequality As?, these two vari-
ances are not in general equal. Thus, althoAgh interest-

ing in its own right, at best it can only be regarded as

conjugate tcE in a weak sense of satisfying the commutation

relation(27). Its expectation value is equal to the expectation

value of thea quantity, so it might provide a way of mea-

suring this value, but it can be regarded only as the operatg;

acting onV, that is nearest to an operator conjugatéto

COMPLEMENT OF THE HAMILTONIAN
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S

— nZO exp(—in6y)|n),

| Om) = (37

where

Om=2man,lT, (39
which lie in a 27 range betweerd, and 6+ 2, with 4,
=0yt m2m/(s+1).

The state$6,,,) form a complete orthonormal basis for the
aceV . The spacel, is mathematically equivalent to the
nite (s+1)-dimensional space used to examine the har-
monic oscillator, or quantized electromagnetic field mode, in

S

We may, on the other hand, be able to identify the actuaRef. [7] with angular frequencyw given by 2x/T. Apart

Hermitian operator representing the quantity if we are
guided by the work of Naimark6], which indicates that a
general resolution of the identity such as Ef5 can be

from an unimportant change in the signipthese states can
be seen to be the same as the phase statés ff] and are
the eigenstates of the operator

extended to an orthogonal resolution of the identity in a

larger spaceW¥ s of which W, is a subspace. Returning to Eq.
(15), we note thaty,, hass+1 values, whers+1>r,, the
largest of the integens . We thus expect the state spakeg
that we seek to have+1 dimensions spanned bs+1
eigenstates of the Hermitian operator of this space that re
resents thexr quantity. The energy basis 8f¢ will therefore
also include extra states. AE, includes all the accessible
states of the system, the extra state¥qfwill not be acces-
sible, perhaps not even physically accessible. For example,

S

(790:mzzo 0m| 0m><0m|v (39

with eigenvaluesd,,,, and the eigenstates of the associated
Rermitian operator

5=, T2, (40)

Vlith eigenvaluesy,,. With the valuesy,, given by Eq.(13),

the matrix elements of any physical interaction Hamiltonianthese are now seen to be the eigenvalues afhich acts on

between the states df , and the states o’ orthogonal to

the space¥. Each term of Eq(17), that is, |(f|am)|?(p

W, are all zero, the system can never evolve from the super+ 1)/(s+1), is seen to be the probability of projecting the
position(4) to include any of the extra states as componentsstate|f) onto the statg6,,), that is, it is the probability of

Thus we still use the superpositiéd) to describe a general
physical state of the system.
We seek orthogonal statgg,,) in the spacel s such that

pt+1 A
o1 lam=1l0m),

(34)
where Lis the unit operator for the spad, as used in Eq.
(15), and such that

mzo | 0m>< 6m| = T, (39

wherel is the unit operator for the spade,. Then operating

on Eq.(35) from the left and from the right with will yield
Eqg. (15). We can write the states we seek as

S

> exp(—i2mhay/T)|n),

1
Oy = ——
[6m)= =7 &,

(36)

where|n)=|E;) for n=r;. It can be shown that these states
are orthogonal and satisfy E(B5) and, from Egs(9) and
(11), also Eq«(34). To check Eq(34) use can be made of the
property that all states oF , are eigenstates of with eigen-

value unity and states orthogonal{o, are eigenstates of 1
with eigenvalue zero. To check E@5) it is useful to write
the states as

obtaining the resulty,, by a measurement of the Hermitian
operator7 given by Eg.(40). This is in accord with the
previous interpretation we gave for the terms of Bg), but

we can now link the measurement to the Hermitian operator

T.
The conjugate of Eq.39) is the number operatgb]

S
N= >, n|n\(n|, (41)
n=0
from which we can define an operator
H=N27#/T, (42)

for which 1H,1=E. W will also be spanned by the
+1 eigenstatesn) of Hg with n=0,1,...s, with a uniform
energy difference of 2A4/T between successive states.
Stategn) for which n=r; will be the same as the statf)

of W,,. Itis not difficult to show that is the conjugate, or

complement, ofi in the strict sense of Ref5], that is,H

is the generator of shifts in the values @f, and 7 is the
generator of energy shifts. The first property follows from
Eq. (39),

exp{—ih L T/(s+ D]} 0m)=|0mir), (43
and the second follows from the relation
exdit Y7 27hIT)]=exp(idy). (44)
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Because the right-hand side of E44) shifts a number state <f|¢r2|f>:<a2>' (50)
|n) to a neighboring number stdté], the left-hand side shifts

an eigenstate ofi to a neighboring eigenstate. In E@3), where(a?) is the value derived from Eq18). It then fol-
T/(s+1) is the difference i between successivestates lows that from Eqs(46)—(48) we regain the previous expres-
and, from Eq.(42), 2#A/T in Eq. (44 is the energy step sions(28) and (32) for the rate of change and uncertainty

size. relation for thea quantity. In general, expressigh0) is true
From Egs.(42), (41), and(40) and with Eq.(36) substi-  upon replacing the square with any power so the Hermitian
tuted into Eq.(39), we find eventually operator7 is indeed a good representation of daguantity.
We can now understand more clearly the role of the Her-
[%,I:IS]= @ mitian operatorA. From Egs.(25), (40), and (39) we find
s+1 thatA is the operator acting on spade, that has the same
(n—n"Yexdi(n—n")2maq/T]|n'}n| matrix elements a$ for the states of¥", in the infinites

x 2

n#n’

limit. This is analogous to finding the weak limit of the phase
operator on the space of physical std@s For example, the
(45)  difference between the mean squaxd$A?|f) and (a?)
noted earlier, and hence betweghA?|f) and(f|7?|f), has

a parallel in the case of phase arising because the weak limit

for [&,,N] given in[7]. _ o of the square of the operator is not equal to the square of the
For consistency with our previous definition of the \yeak limit of the operator.

guantity, we must defin& to represent ther quantity in the
limiting sense ofs+1 being extremely large, that is;+ 1
>r,. Then the difference between successive values of the

a quantity becomes vanishingly small. As with the phase The question we have addressed here is basically that if
problem[7], we must be careful how we take the infine- time is not complementary to energy, particularly for a sys-
limit however. We can ensure consistency with the probabiltem with discrete energy levels, then what is? Does such a
ity distribution derived from Eq(18) by taking the limit of  quantity exist? A sensible quantity that is complementary to
expectation values of functions of the operator rather thafhe energy of a quantum system would have dimensions of

exdi(n—n")2x/(s+1)]—-1 '

which, apart from the sign df is just/ times the expression

VI. CONCLUSION

the limit of the operator itself. time, but would be a property of the system. It would not
The uncertainty relation derived from the commutatorrepresem time in the abstrddi] or universal sensgl0]. We
(45) is would expect in some special cases the expectation value of
. A this quantity to vary directly with the time, but not in gen-
AHA7=3[(f[[7.HS][ )], (490 eral. For stationary states the expectation value of this quan-

here AH dA th tainties in the ob bl tity should not vary with time at all.
whereans andar are the uncertainties in the observables “\ye pave seen that for a quantum system with discrete

represented biis and7. The rate of change of the expecta- energy eigenvalue; such thatE; /E; is rational or can be

tion value is approximated sufficiently closely by a rational number, the
q . complement of the Hamiltonian is thequantity that can be
%:_ ! (F][7,A|f) (47)  Tepresented by the probability-operator measure generated
t h ' '

by the operatora)(@|da. In the (p+ 1)-dimensional mini-

mal state spac# ,, which would usually be used to describe
the quantum system with+ 1 accessible energy states, we
cannot construct an operator that is the complement of the
energy operatoE in the strict sense. The quantity can,
however, be represented by a Hermitian operator in a larger
spaceW¥ with s+1 dimensions in the infinite-limit, pro-

The statdf), given by Eq.(4), contains only the statd€;)
of ¥, so, when Eq.(45) is substituted, all terms on the
right-hand sides of Eq$46) and (47) will be zero forn,n’
>r,. Inour limiting case whers+1>r,, we find

(f|[“r,|3|s]|f)=—iﬁz exgi(re—ri)2magy/T] vided care is taken in finding this limit in that the limit of
17k expectation values and not the operator itself is found.
X (FIEWE ) We have been dealing with a quantum system with a finite
numberp+1 of energy levels. We can maket1 as large
=ifi—ih|(f|ao)? (48)  as we please, provided we are careful how we take limits to

) ) ensure thats>r, in expressions involving both of these
from Egs.(9), (13), (11), and(19). It is straightforward to  quantities. We have already used the infirsfemit to derive
show for the statef) that AH;=AE and in the infinites  expression21) which, of course, is independent s&o we
limit that (7)=(a). By using the orthogonality of the states can use Eq(21) if we wish to examine the properties of the
|6m) to write from Egs.(39) and (40) « quantity for, for example, the state of a system involving a

s COH'[I[I)’IUUFT; of_fenerlgy valuedslapplroxmated by a very large
ao 2 number of uniformly spaced levels.
T _mE:o | Om) (B (49) In this paper we have limited our considerations to a
guantum system for which the rati&/E; are rational or at
we can show that in the infinitedimit least are represented by rational numbers to a sufficiently
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good approximation. In this cadeis the recurrence period. Finally, there is the question of a suitable name for the
The general case for a system with irrational energy ratios iguantity that we have referred to so far as simply the

not as straightforward. For example, if we apply E2fl), we  quantity. This quantity has dimensions of time, but is not
have the problem of identifying what value ®fto use. We time. Rather it is a property of the quantum system and de-
shall not explore this general case in this paper, but we notpends on the state of the system. For particular states the rate
that for any nonzerd, —E; the left-hand side of Eqi20)  of change of its mean value can approach unity, but for an
will approach the unit operator for any value bfs long as  energy eigenstate, its mean value does not change with time,
T is made sufficiently large. This suggests that a limitingprecisely as expected for a stationary state. To describe such
approach may be useful. A further modification will be nec-a quantity the name “age” suggests itself. We could then
essary in the event of a degeneracy, but again this is outsiday, for example, that a system in a stationary state would
the scope of this paper. not age as time goes on.
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