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Complement of the Hamiltonian
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Faculty of Science, Griffith University, Nathan, Brisbane 4111, Australia

~Received 26 June 1998!

The much-studied energy-time uncertainty relation has well-known difficulties that are exacerbated for a
system with discrete energy levels. The difficulty in representing time in the abstract sense by an operator
raises the related question of whether or not there is some other quantity that is complementary to the
Hamiltonian of a quantum system. Such a quantity would have dimensions of time but would be a property of
the system itself. We examine this question for a system with discrete energy eigenstates for which the ratios
of the energy differences are rational. We find that such a quantity does exist and can be represented both by
a probability-operator measure and by an Hermitian operator, but in a state space larger than the minimal space
needed to include the states of the system. The uncertainty relation with the energy is slightly more compli-
cated than the momentum-position uncertainty relation, but is readily interpretable. To describe such a quantity
the name ‘‘age’’ is suggested.@S1050-2947~98!03012-1#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

One of the earliest issues in quantum mechanics has
the question of an energy-time uncertainty principle. Fun
mental to this problem is that in quantum mechanics
energy is a dynamical variable of the quantum system re
sented by a Hermitian operator, but time in the normal se
is a parameter, as it is classically.~For a recent overview o
this, see Ref.@1# and the references therein.! Another impor-
tant difficulty is that, whereas the momentum-position unc
tainty relation can be derived from the commutation relat

@ p̂x ,x̂#52 i\, ~1!

there is apparently no operatort̂ that is canonically conju-
gate to the Hamiltonian operatorÊ in the sense of Eq.~1!
from which a corresponding uncertainty relation can be
rived. Indeed, a relation of the form

@Ê,t̂ #52 i\ ~2!

simply cannot be correct for quantum systems with discr
energy states. This is because if we find the expecta
value of each side of Eq.~2! for an energy eigenstate, w
obtain zero on the left-hand side and2 i\ on the right-hand
side. This is exactly the difficulty involved with early a
tempts to find a phase operator canonically conjugate to
excitation number operator of an harmonic oscillator@2# ~for
recent reviews and bibliographies of the quantum ph
problem, see Refs.@3# and@4#!. Commutators of canonically
conjugate operators in the form~1! and ~2! can be regarded
as special cases of a more general form of commutator@5#
for conjugate, or complementary, operators. For momen
and position this more general commutator reduces to
~1!, but for phase and excitation number it contains an ex
term that removes the difficulty described above. Of cou
this means that the number-phase uncertainty relatio
more complicated than the momentum-position uncerta
relation. As Eq.~2! cannot be true, we might expect likewis
PRA 581050-2947/98/58~6!/4307~7!/$15.00
en
-
e
e-
se

r-
n

-

te
n

e

e

m
q.
a
e
is

ty

that for the uncertainty relation for the Hamiltonian wi
discrete eigenvalues and its conjugate, or complemen
similar complication should apply and Eq.~2! should be gen-
eralized. The question then arises as to whether or not t
is some operator conjugate or complementary to the Ha
tonian in this more general sense.

In this paper we wish to explore the possibility of th
existence of a quantity that can be regarded as the com
ment of the Hamiltonian for a quantum system with discr
energy levels, recognizing that if this quantity is represen
by an operator the appropriate commutator must be a ge
alized form of Eq.~2!. Although this quantity will have di-
mensions of time, it will not be appropriate to refer to su
an operator as a time operator. As an operator it would r
resent an observable of the quantum system and not tim
the abstract or coordinate sense or as a reading on an ext
clock. Its eigenstates would represent a state of the quan
system and some measurement on the system, at lea
principle, should tell us about the quantity involved. A
though this quantity is not time, we would hope that for
particular ideal system its expectation value may change
early with time, for example, so that a measurement of
quantity would also give a measure of time. In this case,
would be using the system as a clock. Before seeking
operator for the complement of the Hamiltonian we first re
resent this quantity by a nonorthogonal probability-opera
measure, which is a more general concept@6#.

II. DISCRETE ENERGY AND THE a QUANTITY

We consider a quantum system withp11 energy states
uEi& with i 50,1, . . . ,p. To avoid unnecessary complica
tions, for this paper we shall let the states be nondegene
and we choose our zero of energy so that the lowest-en
eigenvalueE050 with the other energies increasing wit
but not necessarily proportional to,i. We assume that thes
include all the accessible, or essential, states of the sys
As an example of accessible states, we note that an effec
two-level atom can be prepared from a multilevel atom
4307 © 1998 The American Physical Society
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particular experiments. In this case not all the usual state
the atom are accessible from the initial state by means of
particular interaction applied to the atom. By allowing mo
interactions that couple more states, we can increase
number of accessible states until eventually we include
physically accessible, or physical, states of the system,
is, states that are accessible from each other by some s
of physical interactions.

For now we shall keepp finite, but it is possible to take a
limit at a later stage. We letCp be the (p11)-dimensional
state space spanned by these orthogonal energy states
is the minimal space required for a description of the qu
tum system. The Hamiltonian operator for the system is

Ê5(
i 50

p

Ei uEi&^Ei u, ~3!

whereEi are the energy eigenvalues. A general state of
system can be written as

u f &5(
i 50

p

f i uEi& ~4!

and will evolve in time according to

exp~2 i\21Êt !u f &5(
i 50

p

f iexp~2 i\21Eit !uEi&. ~5!

We are interested in a quantitya of the system, which we
shall refer to simply as thea quantity, which will have di-
mensions of time and will be conjugate to the Hamiltonian
the sense thatÊ is the generator of shifts ina quantity. Thus
we seek a stateua& for which

exp~2 i\21Êda!ua&5ua1da&. ~6!

Writing

ua&5(
i 50

p

ci~a!uEi&, ~7!

we find that we can ensure that Eq.~6! is true by setting

ci~a!}exp~2 i\21Eia! ~8!

and thus, with the appropriate normalization factor includ
we have

ua&5
1

Ap11
(
i 50

p

exp~2 i\21Eia!uEi&. ~9!

If we replaceda on the left-hand side of~6! by dt, we obtain
a time translation expression, that is, the stateua1da& is the
state to whichua& would evolve in a timedt5da. Thus,
although the quantity represented bya is not the time be-
cause it is a property of the system, it bears some relatio
time.

The statesua& are not orthogonal and their number e
ceeds the dimensions of the spaceCp spanned by thep11
energy statesuEi&, so these cannot be eigenstates of a H
mitian operator onCp with which we might hope to repre
of
e

he
ll
at
ries

his
-

e

,

to

r-

sent thea quantity. Further, for unequally spaced ener
levels, we cannot even pick out a subset ofp11 statesua&
that are orthogonal. We can, however, make progress
unequally spaced levels if the ratiosEi /E1 are all rational
numbers or can be sufficiently closely approximated by
tional numbers. ForEi /E1 rational

Ei

E1
5

Ci

Bi
, ~10!

whereCi and Bi are integers with no common factors. W
write the lowest common multiple of the values ofBi with
i .1 asr 1 and definer i5r 1Ci /Bi for i .1 and as zero for
i 50. Thenr i is an integer for alli>0 with r 050. From Eq.
~10! we can write

Ei5r i

2p\

T
, ~11!

where

T52p\r 1 /E1 . ~12!

Let us now selects11 statesua& for which the values ofa
are uniformly spread over the rangeT. That is, we choose
values ofa denoted by

am5a01m
T

s11
, ~13!

with m50,1,...,s. We find then that the statesuam& have the
interesting property that

(
m50

s

uam&^amu5
1

p11 H (
m50

s

(
i

uEi&^Ei u

1(
iÞk

(
m50

s

exp@ i ~r k2r i !am2p/T#

3uEi&^EkuJ ~14!

and thus

p11

s11 (
m50

s

uam&^amu51̂, ~15!

where 1̂is the unit operator on the spaceCp , provided the
second term on the right-hand side of Eq.~14! is zero or at
least negligible compared with the first term. ForEi /E1 ra-
tional and thusr k2r i an integer, this term will be zero an
Eq. ~15! true providedr k2r i is not a multiple ofs11. This
follows from substituting Eq.~13! into Eq. ~14! and sum-
ming the geometric progression involved. We can ensurer k
2r i is not a multiple ofs11 by choosings11.r p , which
is the largest value ofr i .

If Ei /E1 is irrational but sufficiently well approximated
by a rational number for the second term on the right-ha
side of Eq.~14! to be negligible, then this rational numbe
would in general have a large denominator, sor 1 will be
very large. This implies from Eq.~12! that T will be very
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PRA 58 4309COMPLEMENT OF THE HAMILTONIAN
much greater than the natural period 2p\/Ei associated with
the state with energyEi . When Ei /E1 are exact rationa
numbersT has a simple physical interpretation. From Eq
~5! and ~11! T is equal to the smallest time taken for th
system to return to its initial state. Thus the stateua& will be
the same as the stateua1T&. It follows that restricting our
selection of statesua& to those for which the values ofa are
uniformly spread over the rangeT then prevents us from
including the same state twice.

Expression~15! is a resolution of the identity. Thus, a
though thea quantity is not an observable represented b
Hermitian operator on the spaceCp of p11 dimensions, it
can be represented by a nonorthogonal probability-oper
measure, which is a more general concept@6#. The s11
nonorthogonal elements of this probability-operator meas
are (p11)(s11)21uam&^amu. Expression~15! can be used
to expand the general state given by Eq.~4! as

u f &5
p11

s11 (
m50

s

^amu f &uam& ~16!

and so, usinĝ f u f &51, we obtain

(
m50

s
p11

s11
z^ f uam& z251. ~17!

Thus each term in Eq.~17!, all of which are positive, can
represent a probability with the total probability correc
normalized. From quantum detection theory@6#, this is the
probability that the application of the probability-operat
measure by means of a suitable measuring instrument y
the resultam . Of course, this does not indicate immediate
how to perform such a measurement, but that is not
concern here, where we are interested merely in identify
the quantity that can be regarded as the complement of
Hamiltonian and in studying some of its properties.

So far the choice ofs is arbitrary apart from the require
ment thats>r p . In order for thea quantity to be applicable
to all systems of the type considered here, however large
value ofr p , and to be independent of an arbitrary choice
s, we now define thea quantity as that represented by th
above probability-operator measure in the limit ass→`. In
this limit, the difference between successive values ofam
tend to zero and the probability for a value ofa in the small
range betweena anda1da is P(a)d(a), where the prob-
ability density is given by

P~a!5
1

T
z^ f uā& z2, ~18!

where

uā&5Ap11ua&5(
i

exp~2 i\21Eia!uEi&. ~19!

The resolution of the identity~15! then becomes simply

E
a0

a01T

uā&^āuda/T51̂ ~20!
.

a

or

re

ds

r
g
he

he
f

and thea quantity is represented by the probability-opera
measure generated by the infinitesimal operat
uā&^āuda/T.

The probability density for the system in stateuf& to be
found with a valuea for thea quantity is, from Eqs.~4! and
~18!,

P~a!5
1

T U(
i 50

p

f i* exp~2 i\21Eia!U2

. ~21!

This expression displays an essential feature of the com
mentary between energy and thea quantity: If the system is
in an energy eigenstate then there is only one term, of mo
lus unity, in Eq.~21! andP(a)5T21, that is, thea-quantity
distribution is constant across the whole periodT. Thus if the
energy can be determined exactly thea quantity is com-
pletely random. The probability density~21! is all that is
needed to calculate the statistical properties of thea quantity
for any stateuf& of our quantum system.

III. RATE OF CHANGE WITH TIME

To find the way in which the properties of thea quantity
change with time we first calculate the rate of change
P(a) in ~18! from Schrödinger’s equation as

dP~a!

dt
5

1

T S d^ f u
dt

uā&^āu f &1^ f uā&^āu
du f &
dt D

5
i

\T
^ f u@Ē,uā&^āu#u f &. ~22!

The rate of change of the mean of thea quantity for a state
uf& is then

d^a&
dt

5E
a0

a01T

a
dP~a!

dt
da5

i

\
^ f u@Ê,Â#u f &, ~23!

where

Â5
1

T E
a0

a01T

auā&^āuda. ~24!

We can express Eq.~24!, from Eqs.~11! and ~19!, as

Â5
1

T (
i , j

E
a0

a01T

a exp@ i2p~r j2r i !a/T#dauEi&^Ej u

5a01T/21 i\(
iÞ j

exp@2 i\21~Ei2Ej !a0#

Ei2Ej
uEi&^Ej u.

~25!

Thus
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@Ê,Â#5 i\(
iÞ j

exp(2 i\21Eia0)uEi&^Ej uexp(iE ja0)

5 i\S (
i

exp(2 i\21Eia0)uEi&

3(
j

^Ej uexp~ iE ja0!21̂D , ~26!

which can be written from Eq.~19! simply as

@Ê,Â#5 i\~ uā0&^ā0u21̂!. ~27!

Thus, from Eq.~23!

d^a&
dt

512^ f uā0&^ā0u f &. ~28!

From Eq.~18! the last term of Eq.~28! is justTP(a0); thus,
if the probability distributionP(a) for the stateuf & of the
system is sufficiently narrow for this last term to be neg
gible, the expectation value of thea quantity changes exactl
as the time parameter. If the system is in an eigenstat
energy, however, it is clear from Eqs.~19! and ~28! that the
rate of change of̂a& is zero. This must be true, of course,
an energy eigenstate is a stationary state. Since no obser
quantity of a stationary state varies with time itsa quantity
should not vary. This is a good example displaying the d
ference between thea quantity and the time parameter.
also shows the need for the second term in Eq.~28! and the
inadequacy of a commutator similar to Eq.~2! that would
predictd^a&/dt51 for all states. A particular example of
system for whichd^a&/dt'1 is a harmonic oscillator in a
truncated phase state@7# where the truncation is at a ver
large excitation number. For such a stater i5 i andp is very
large. The meana quantity of this system changes directly
the time for most of the time and so the harmonic oscilla
makes a useful quantum clock. We note that even for
system, this direct variation with time cannot always app
When the state eventually evolves to have a large ove
with the stateua0&, d^a&/dt suddenly becomes very larg
and negative and̂a& quickly reverts to the value it had on
period of the oscillator earlier. This is just equivalent to t
seconds reading on a digital clock jumping from 59 back
00. On the other hand,^a& of a hydrogen atom in a superpo
sition of some of its lower energy states will not be so
rectly related to the time during one period and the variat
of ^a& with time will be more complicated.

IV. UNCERTAINTY RELATION

As thea quantity is represented by a probability-opera
measure and its variance is found from the associated p
ability distribution, its uncertainty relation with energy ca
not be written down immediately as is the case for obse
ables represented by Hermitian operators. Using Eq.~20! we
can, however, write the variance of energy as

^DE2&5E
a0

a01T

^ f u~Ê2^E&!uā&^āu~Ê2^E&!u f &da/T.

~29!
of

ble

-

r
is
.
p

o

-
n

r
b-

-

Combining this with the variance of thea quantity obtained
from Eq. ~18! gives

^DE2&^Da2&5E
a0

a01T

z^ f u~Ê2^E&!uā& z2da

3E
a0

a01T

z^āu f &~a2^a&!z2da/T2

>U E
a0

a01T

^ f u~Ê2^E&!uā&

3^āu f &~a2^a&!da/TU2

~30!

from Schwarz’s inequality. Thus the product of the me
square deviations is

DEDa> z^ f u~Ê2^E&!~Â2^a&!u f & z. ~31!

As a is real, operatorÂ defined by Eq.~24! will be Hermit-
ian and we can use the usual inequality@8# to obtain

DEDa> 1
2 z^ f u@Ê,Â#u f & z5

\

2
z12^ f uā0&^ā0u f & z. ~32!

When the system is in an energy eigenstate the uncertain
energy must be zero, even for a finiteDa. In this case the
right-hand side of Eq.~32! vanishes, ensuring consistenc
Thus the energy is exactly measurable in principle and d
not suffer from the difficulty discussed in Ref.@1# associated
with an uncertainty relation based on Eq.~2!. As with Eq.
~28!, ^ f uā0&^ā0u f & is justTP(a0) and so ifuf & is orthogonal
to ua0& or at least if the probability distributionP(a) for the
stateuf & of the system is sufficiently narrow for this last ter
to be negligible, the uncertainty product takes the more us
form. This is the same condition for the rate of change of^a&
with time to be unity as discussed earlier. Only under th
special circumstances could a commutation relation as g
by Eq. ~2! be used.

V. THE SPACE Cs

In this section we examine the possible existence of
Hermitian operator to represent thea quantity. In performing
the preceding calculations we have found it convenient
define a Hermitian operatorÂ by Eq. ~24! with a more ex-
plicit form given by Eq.~25!. It follows immediately from
Eqs.~24! and ~18! that

^a&5^ f uÂu f & ~33!

and the rate of change of^ f uÂu f & will be the same as that o
^a&. From Eq.~27! the uncertainty relation for the observab
represented byÂ and the energy will be the same as Eq.~32!.
Furthermore,Â is well defined by Eqs.~24! and~19! even for
quantum systems whose energy eigenvaluesEi are not ratio-
nal multiples ofE1 . In view of these properties, why do w
not simply take the observable represented byÂ as the
complement of the Hamiltonian? The essential reason is
the eigenstates ofÂ are not the statesua& and the Hamil-
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tonian does not generate shifts from one eigenstate ofÂ to
another in a manner similar to Eq.~6!. We note that while
Eq. ~33! is true, in general̂ f uÂ2u f &Þ^a2& as the statesuā&
are not orthogonal and so, although the variance ofÂ satis-
fies the same uncertainty inequality asDa2, these two vari-
ances are not in general equal. Thus, althoughÂ is interest-
ing in its own right, at best it can only be regarded
conjugate toÊ in a weak sense of satisfying the commutati
relation~27!. Its expectation value is equal to the expectat
value of thea quantity, so it might provide a way of mea
suring this value, but it can be regarded only as the oper
acting onCp that is nearest to an operator conjugate toÊ.

We may, on the other hand, be able to identify the act
Hermitian operator representing thea quantity if we are
guided by the work of Naimark@6#, which indicates that a
general resolution of the identity such as Eq.~15! can be
extended to an orthogonal resolution of the identity in
larger spaceCs of which Cp is a subspace. Returning to E
~15!, we note thatam hass11 values, wheres11.r p , the
largest of the integersr i . We thus expect the state spaceCs
that we seek to haves11 dimensions spanned bys11
eigenstates of the Hermitian operator of this space that
resents thea quantity. The energy basis ofCs will therefore
also include extra states. AsCp includes all the accessibl
states of the system, the extra states ofCs will not be acces-
sible, perhaps not even physically accessible. For examp
the matrix elements of any physical interaction Hamilton
between the states ofCp and the states ofCs orthogonal to
Cp are all zero, the system can never evolve from the su
position~4! to include any of the extra states as compone
Thus we still use the superposition~4! to describe a genera
physical state of the system.

We seek orthogonal statesuum& in the spaceCs such that

Ap11

s11
uam&51̂uum&, ~34!

where 1̂is the unit operator for the spaceCp as used in Eq.
~15!, and such that

(
m50

s

uum&^umu5 Î , ~35!

whereÎ is the unit operator for the spaceCs . Then operating
on Eq.~35! from the left and from the right with 1ˆ will yield
Eq. ~15!. We can write the states we seek as

uum&5
1

As11
(
n50

s

exp~2 i2pnam /T!un&, ~36!

whereun&5uEi& for n5r i . It can be shown that these stat
are orthogonal and satisfy Eq.~35! and, from Eqs.~9! and
~11!, also Eq.~34!. To check Eq.~34! use can be made of th
property that all states ofCp are eigenstates of 1ˆ with eigen-
value unity and states orthogonal toCp are eigenstates of 1ˆ
with eigenvalue zero. To check Eq.~35! it is useful to write
the states as
s

n

or

l

p-

, if

r-
s.

uum&5
1

As11
(
n50

s

exp~2 inum!un&, ~37!

where

um52pam /T, ~38!

which lie in a 2p range betweenu0 and u012p, with um
5u01m2p/(s11).

The statesuum& form a complete orthonormal basis for th
spaceCs . The spaceCs is mathematically equivalent to th
finite (s11)-dimensional space used to examine the h
monic oscillator, or quantized electromagnetic field mode
Ref. @7# with angular frequencyv given by 2p/T. Apart
from an unimportant change in the sign ofi, these states can
be seen to be the same as the phase states ofCs @7# and are
the eigenstates of the operator

ŵu5 (
m50

s

umuum&^umu, ~39!

with eigenvaluesum , and the eigenstates of the associa
Hermitian operator

t̂5ŵuT/2p, ~40!

with eigenvaluesam . With the valuesam given by Eq.~13!,
these are now seen to be the eigenvalues oft̂, which acts on
the spaceCs . Each term of Eq.~17!, that is, z^ f uam& z2(p
11)/(s11), is seen to be the probability of projecting th
stateuf & onto the stateuum&, that is, it is the probability of
obtaining the resultam by a measurement of the Hermitia
operator t̂ given by Eq. ~40!. This is in accord with the
previous interpretation we gave for the terms of Eq.~17!, but
we can now link the measurement to the Hermitian opera
t̂.

The conjugate of Eq.~39! is the number operator@5#

N̂5 (
n50

s

nun&^nu, ~41!

from which we can define an operator

Ĥs5N̂2p\/T, ~42!

for which 1̂Ĥs1̂5Ê. Cs will also be spanned by thes
11 eigenstatesun& of Ĥs with n50,1,...,s, with a uniform
energy difference of 2p\/T between successive state
Statesun& for which n5r i will be the same as the statesuEi&
of Cp . It is not difficult to show thatt̂ is the conjugate, or
complement, ofĤs in the strict sense of Ref.@5#, that is,Ĥs
is the generator of shifts in the values ofam and t̂ is the
generator of energy shifts. The first property follows fro
Eq. ~36!,

exp$2 i\21Ĥs@T/~s11!#%uum&5uum11&, ~43!

and the second follows from the relation

exp@ i\21t̂~2p\/T!#5exp~ i ŵu!. ~44!
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4312 PRA 58D. T. PEGG
Because the right-hand side of Eq.~44! shifts a number state
un& to a neighboring number state@7#, the left-hand side shifts
an eigenstate ofĤ to a neighboring eigenstate. In Eq.~43!,
T/(s11) is the difference ina between successivet states
and, from Eq.~42!, 2p\/T in Eq. ~44! is the energy step
size.

From Eqs.~42!, ~41!, and ~40! and with Eq.~36! substi-
tuted into Eq.~39!, we find eventually

@ t̂,Ĥs#5
2p\

s11

3 (
nÞn8

~n2n8!exp@ i ~n2n8!2pa0 /T#un8&^nu
exp@ i ~n2n8!2p/~s11!#21

,

~45!

which, apart from the sign ofi, is just\ times the expression
for @ŵu ,N̂# given in @7#.

For consistency with our previous definition of thea
quantity, we must definet̂ to represent thea quantity in the
limiting sense ofs11 being extremely large, that is,s11
@r p . Then the difference between successive values of
a quantity becomes vanishingly small. As with the pha
problem@7#, we must be careful how we take the infinites
limit however. We can ensure consistency with the proba
ity distribution derived from Eq.~18! by taking the limit of
expectation values of functions of the operator rather t
the limit of the operator itself.

The uncertainty relation derived from the commuta
~45! is

DHsDt> 1
2 z^ f u@ t̂,Ĥs#u f & z, ~46!

whereDHs and Dt are the uncertainties in the observab
represented byĤs and t̂. The rate of change of the expect
tion value is

d^t&
dt

52
i

\
^ f u@ t̂,Ĥs#u f &. ~47!

The stateuf &, given by Eq.~4!, contains only the statesuEi&
of Cp so, when Eq.~45! is substituted, all terms on th
right-hand sides of Eqs.~46! and ~47! will be zero forn,n8
.r p . In our limiting case wheres11@r p , we find

^ f u@ t̂,Ĥs#u f &52 i\(
iÞk

exp@ i ~r k2r i !2pa0 /T#

3^ f uEi&^Eku f &

5 i\2 i\ z^ f uā0& z2 ~48!

from Eqs. ~9!, ~13!, ~11!, and ~19!. It is straightforward to
show for the stateuf & that DHs5DE and in the infinite-s
limit that ^t&5^a&. By using the orthogonality of the state
uum& to write from Eqs.~39! and ~40!

t̂25 (
m50

s

am
2 uum&^umu, ~49!

we can show that in the infinite-s limit
e
e

l-

n

r

^ f u t̂2u f &5^a2&, ~50!

where^a2& is the value derived from Eq.~18!. It then fol-
lows that from Eqs.~46!–~48! we regain the previous expres
sions ~28! and ~32! for the rate of change and uncertain
relation for thea quantity. In general, expression~50! is true
upon replacing the square with any power so the Hermit
operatort̂ is indeed a good representation of thea quantity.

We can now understand more clearly the role of the H
mitian operatorÂ. From Eqs.~25!, ~40!, and ~39! we find
that Â is the operator acting on spaceCp that has the same
matrix elements ast̂ for the states ofCp in the infinite-s
limit. This is analogous to finding the weak limit of the pha
operator on the space of physical states@9#. For example, the
difference between the mean squares^ f uÂ2u f & and ^a2&
noted earlier, and hence between^ f uÂ2u f & and^ f u t̂2u f &, has
a parallel in the case of phase arising because the weak
of the square of the operator is not equal to the square of
weak limit of the operator.

VI. CONCLUSION

The question we have addressed here is basically th
time is not complementary to energy, particularly for a sy
tem with discrete energy levels, then what is? Does suc
quantity exist? A sensible quantity that is complementary
the energy of a quantum system would have dimension
time, but would be a property of the system. It would n
represent time in the abstract@1# or universal sense@10#. We
would expect in some special cases the expectation valu
this quantity to vary directly with the time, but not in gen
eral. For stationary states the expectation value of this qu
tity should not vary with time at all.

We have seen that for a quantum system with discr
energy eigenvaluesEi such thatEi /E1 is rational or can be
approximated sufficiently closely by a rational number, t
complement of the Hamiltonian is thea quantity that can be
represented by the probability-operator measure gener
by the operatorsuā&^āuda. In the (p11)-dimensional mini-
mal state spaceCp , which would usually be used to describ
the quantum system withp11 accessible energy states, w
cannot construct an operator that is the complement of
energy operatorÊ in the strict sense. Thea quantity can,
however, be represented by a Hermitian operator in a la
spaceCs with s11 dimensions in the infinite-s limit, pro-
vided care is taken in finding this limit in that the limit o
expectation values and not the operator itself is found.

We have been dealing with a quantum system with a fin
numberp11 of energy levels. We can makep11 as large
as we please, provided we are careful how we take limits
ensure thats@r p in expressions involving both of thes
quantities. We have already used the infinite-s limit to derive
expression~21! which, of course, is independent ofs so we
can use Eq.~21! if we wish to examine the properties of th
a quantity for, for example, the state of a system involving
continuum of energy values approximated by a very la
number of uniformly spaced levels.

In this paper we have limited our considerations to
quantum system for which the ratiosEi /E1 are rational or at
least are represented by rational numbers to a sufficie
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good approximation. In this caseT is the recurrence period
The general case for a system with irrational energy ratio
not as straightforward. For example, if we apply Eq.~21!, we
have the problem of identifying what value ofT to use. We
shall not explore this general case in this paper, but we n
that for any nonzeroEk2Ei the left-hand side of Eq.~20!
will approach the unit operator for any value ofT as long as
T is made sufficiently large. This suggests that a limiti
approach may be useful. A further modification will be ne
essary in the event of a degeneracy, but again this is out
the scope of this paper.
is

te

-
de

Finally, there is the question of a suitable name for t
quantity that we have referred to so far as simply thea
quantity. This quantity has dimensions of time, but is n
time. Rather it is a property of the quantum system and
pends on the state of the system. For particular states the
of change of its mean value can approach unity, but for
energy eigenstate, its mean value does not change with t
precisely as expected for a stationary state. To describe
a quantity the name ‘‘age’’ suggests itself. We could th
say, for example, that a system in a stationary state wo
not age as time goes on.
ry
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