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The interaction between a polarizable particle and a reflecting wall is examined. A macroscopic approach is
adopted in which the averaged force is computed from the Maxwell stress tensor. The particular case of a
perfectly reflecting wall and a sphere with a dielectric function given by the Drude model is examined in detail.
It is found that the force can be expressed as the sum of a monotonically decaying function of position and of
an oscillatory piece. At large separations, the oscillatory piece is the dominant contribution and is much larger
than the Casimir-Polder interaction that arises in the limit that the sphere is a perfect conductor. It is argued
that this enhancement of the force can be interpreted in terms of the frequency spectrum of vacuum fluctua-
tions. In the limit of a perfectly conducting sphere, there are cancellations between different parts of the
spectrum that no longer occur as completely in the case of a sphere with frequency-dependent polarizability.
Estimates of the magnitude of the oscillatory component of the force suggest that it may be large enough to be
observable[S1050-294{@8)03412-X]

PACS numbd(s): 12.20.Ds, 03.76:k

[. INTRODUCTION tance limit, their result takes the particularly simple férm
. . : . 3ag
It was noted some time ago that if one wishes to assign a Vep~ — e (D)
frequency spectrum to the Casimir force between reflecting 87z

planar boundaries, the result is a wildly oscillating function
of freq'uency[l,Z]. The integral of thi§ function over all fre- izability of the atom. This asymptotic potential may be de-
guencies can only be performed with the aid of a swtablq,ived from the interaction Hamiltonian

convergence factor. The net Casimir energy is much smaller

than the contribution of each individual oscillation peak. The )

effect of integration over all frequencies is almost, but not Hint=— 5 aoE", (]
quite completely, to cancel the various frequency regions

against one another. This leads to the specul@8dthat one  where E is the quantized electric-field operator. If one ex-
might be able to upset this cancellation in some way angands this operator in terms of a complete set of the Maxwell
thereby greatly amplify the magnitude of the Casimir forceequations in the presence of the boundary, the asymptotic

wherez is the distance to the wall ang, is the static polar-

and possibly change its sign. Casimir-Polder may be written as
In the case of parallel plane boundaries, no natural way to
do this has been demonstrated. However, the Casimir-Polder I
: : : . : (Hiny= ——= | dwo(w), ()
interaction between a polarizable particle and a reflecting 4mz23J)o

plane offers similar possibilities. Casimir and Poldé
originally derived the potential between an atom in itswhere

ground state and a perfectly reflecting wall. In the large dis- () =[ (20222 1)sin 2wz+ 20z cos 2wz]. @

*Electronic address: ford@cosmos2.phy.tufts.edu 1Gaussian units witt=%=1 will be used in this paper.
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FIG. 1. Frequency spectrumr(w) for the
20 f ] Casimir-Polder potential. The oscillations almost
j exactly cancel, leaving a net area under the curve
0

o~ equal to that of the shaded region indicated by the
20t ] arrow.
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The integrandr(w) is an oscillatory function whose ampli- of the electric-dipole approximation: If the size of the sphere
tude increaseswith increasing frequency. Nonetheless, theis not small then one would in general have to include the
integral can be performed using a convergence fa@ay., contributions of higher multipoles. Just outside the particle,
insert a factor o™ #¢ and then lei3—0 after integration  the electric and magnetic fields due to the dipole take the
The result is the right-hand side of E@L). It is clear that near-zone forms

massive cancellations have occurfede Fig. 1 and that the L .

area under an oscillation peak can be much greater in mag- 3n(n-p—p) nxp

nitude than the final result. This again raises the possibility Eq~ r3 v BPdT T 2 ®)

of tampering with this delicate cancellation and dramatically

altering the magnitude and sign of the force.

) . : S Herer is the radial distance from the dipole andis the
The purpose of this paper is to explore this question in th%utvvard directed unit normal vector

context of a specific model. The force between a dielectric The net force acting upon the particle can be calculated by

_srrr)]herelar_ld g_l_pzerf?gtlly COQducth?bpl?nlf W![” Ee e)]fam'tr.]edi'ntegrating the Maxwell stress tensor over a spherical surface
e polarizability of the sphere will be taken to be a func 'Onjust outside the particle,

of frequency, thereby introducing the possibility of modify-
ing the contributions of different parts of the spectrum. This _ B

or similar problems have been discussed before by several F'= % da T, (6)
authors. However, it will be examined here from a different

viewpoint. The force may be calculated from the Maxwell \here

stress tensor. In Sec. Il A, a formula for the force on a small

sphere in an arbitrary applied electromagnetic field will be 1 .

derived in an electric-dipole approximation and discussed. In T :E[EIEJ +B'BI -3 81 (E*+B?)]. (7)
Sec. I, this formula will be applied to the calculation of the

force on a dielectric particle near an interface in terms of thgs \\a insert the net field€E, + E; and B, + By into this ex-

Fr_esnel coefficients of_the in_terface. This result will be ap- ression, there will be three types of terms: those involving
plled to the case ofa d|electr!c sphere and a perfectly reflec 5nly the applied fields, those involving only the dipole fields,
ing boundary in Sec. IV. It will be shown that the force has 5 the cross terms. However, the pure dipole terms yield no
a component that is an oscillatory function of position andne contribution. Furthermore, any force due to the pure ap-
thqt itis pOSS|bIe for the sphere to be in stable equilibrium atjiag field terms is independent of the polarizability and
a finite distance from the boundary. The results are SUMMgence not of interest. Thus we consider only the cross terms
rized and discussed in Sec. V. in T between the applied and dipole fields:

1 - A "

Il. FORCE ?N A SMALL PA.\RTI.CLE Fe e é dal (A E,)Eq+ (P Eq) Eu+ (- B,)By
A. Electric-dipole approximation

In this section we will discuss the force that an applied —n(E,-Eg+B,-By)]. 8
electromagnetic field exerts on a small dielectric sphere. The
applied electric field will be taken to bE,(x,t) and the Note thatn-B4=0.
corresponding magnetic field to Bg(x,t). We assume that Because the particle is assumed to be small, we may ex-
the induced(scatteregl field is that of electric-dipole radia- pandE, andB, in a Taylor series aroun=X,, the location
tion from a time-varying dipole momemt. Laterp will be  of the particle. The leading nonzero contributions to the
taken to be linearly related t,, but for now it is unspeci- force come from the zeroth-order term By and the first-
fied. We further assume that the particle is small compared terder term inE,:
the characteristic spatial scale over whiéh(x,t) and
B.(x,t) vary. The latter assumption is not really independent Ba(X,t)~By,
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EL(X,t)~EL+rn-VEp+.- .. (9) I R T

We now insert these expansions and £5).into Eq.(8) and
perform the angular integration, using the relation

o 4mr?
fﬁ dann'= 3 oM (10
to find
2 1 9 FIG. 2. Propagating modes above an interface consist of inci-
= o pjaij+§pjgi EL+ §(bx Bo)i. (11 dentl and reflectedR waves or transmitted waves.

It is of interest to check the static limit of this expression where J is the current density and the integration is taken
S P . "over the volume of the particle. Because the electric field is
In this limit, p=0 and VX Ey=0. If we use these relations gpnroximately constant over this volume and because one

and sefp= aoEq, Wherea is the static polarizability of the  may show[5] from the continuity equation that
particle, the result is

. 1 J Jd®x=p, (19

'= aop;d'Eh=5 aod E3. (12)

o ) - ) ~we have that the time-averaged power absorbed by the par-
This is equivalent to the familiar result that the interactiontjcle is

energy of an induced dipole with a static electric field is

.1
1 W= - wA?|a|siny. (20)
Vz—zaoEg. (13 2 |afsiny

However, each photon carries energyand momentunk,
B. Interaction with a single plane wave so the right-hand side of Eq17) is just the rate at which
momentum is being absorbed by the particle due to the ab-
Here we apply the resulf11) to compute the force that @ ¢, ntion of photons. There is of course also some momentum

single, linearly polarized plane wave exerts on the particlepeiny transferred as a result of photon scattering. However,
The electric and magnetic fields of this wave are given by that effect is proportional te? and is being neglected here.

Eo=Re(eAd X0~ @V) = gA cog k- Xo— wt),
I1l. FORCE ON A PARTICLE NEAR AN INTERFACE

Bo=kXx €A cogk-Xo— wt), (14 In this section we will derive a formula for the Casimir
A force on a polarizable particle in the presence of a single
whereA is the amplitude and the polarization vector. The plane interface. The interface will be assumed to have arbi-
dipole moment is given by trary reflectivity. We will, however, work in an approxima-
tion in which evanescent modes are neglected. The quantized
p=Re aEy) = €A|a|cog k- Xo— wt+ ), (15  electromagnetic field is to be expanded in a complete set of
normalized solutions of the Maxwell equations. These solu-
where tions fall into three classesi) modes that are in the region
, above the interface and consist of an incident and a reflected
a=|ale?=a tia,. (16)  part, as illustrated in Fig. 2ji) modes that originate on the
far side of the interface and are outwardly propagating trans-
We are interested in the time'averaged force, measured OV@iitted waves in the region above the interface; amm eva-
time scales long compared toad/so we henceforth under- nescent modes that are propagating inside the material com-
standF' to be the time average of E@L1). In the present prising the interface, but are exponentially decaying in the

case this yields region above it. These last modes will be left out of the
1 1 present discussion.
E— ZKkA2l alsinv= = KkA2 1 Let us focus first on the reflected modes in clégsThe
2 |alsiny 2 @2 (17) net electric field is

a force proportional to the imaginary part of the polarizabil- E=E,+Eg, (21
ity a,. This result may be given a simple physical interpre-
tation. The rate at which electromagnetic energy is dissipatedhere the incident wave is
is given by the usual Joule heating term
E,= €A cogk- Xo— wt) (22)

N — 3
W_f J-EdX, (18 and the reflected wave is
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FIG. 3. Force due to an incident waliecanceled by the sum of

the forces due to a reflected waReand a transmitted waveé. , o A -,
FIG. 4. Wave vectork andk’ and polarization vectors ande

for the incident and reflected parts of &polarized wave.

Er=€ARcogk’ - Xo— wt+ &). (23)
~ A 2 . 1 . .
The associated magnetic fields @e=kXx E, and Bg=k’ F'=§(p{ﬁjE'R+ PRIE|) + §(p,j(9'EJR+ Prjd'E})
X Eg, respectively. Here the complex reflectigRresnel
coefficient is 2 . o .
‘ +3[(PXBr)"+ (PrXB))']. (29
R=Ré€?, (24)

We next insert the explicit forms for the fields and dipole

whereR Is the magnitude of the reflection coefficient afd moment and then average the resulting expression over time.

is the phase shift. This mode induces a dipole momgent

. . ~ " The result is
=Re(aE), wherea=|a|e'” is again the complex polariz-
ability. The portions ofp arising from the incident and re- 1 o o o A
flected waves are, respectively, F'=6A2R{a1[(k'—k")(e- €)+2€(k-€)—2€" (k' e
p=€Acogk’-xo— wt+7) (25) +20e X (kX &) — 2wex (k' X &)]sinA
and +a[(K+k' (e €)+2€(k-€)+2€ (k- €
Pr=€AR|a|cogk-Xg— wt+ 5+ y). (26) +2we X (kX €)+2weX (k' X €)]cosA}. (30)

The force that a particular mode exerts on the polarizablélere A= (k' —k)-Xo+ & is the phase difference between the
particle is obtained by inserting the above expressions for th#icident and reflected waves at the location of the particle.
fields and dipole moment into E¢L1). The resulting expres- Let us further evaluate this expression. Let #rdirection
sion should then be summed over all modes. However, it i§€ perpendicular to the interface and tebe the angle of
simpler first to combine it with the corresponding expressiorincidence. Then
arising from the transmitted waves of cldgs. In the region
above the interface, the electric field of these modes is of the k;=—k;=wc, (32)

form
wherec=cosé. Furthermore,

Er=eATcogk-xo—ot), @7 A=2K!z+ 5=2wzc+ S (32)
: :

whereT is a transmission coefficient. Here we may think of We must now specify the polarization state. We adont a lin-
the interface as being a slab of finite thickness. Below the pecify P ' P

slab, these modes have the same form as the incident wav@ar polarization basis, using th? us@(e perpendicular to
above the slapEqg. (22)]. If the material in the slab is non- the plane of incidengeand P (e parallel to the plane of
absorptive, then the transmission and reflection coefficienticidence states. FolS polarization(Fig. 4) we have
satisfy

€=€ (33)
T?+R%2=1. (29
and
The force due to the modes of clagscan be expressed as a
sum of three types of terms: those involving only the inci- ex (kX e) =Kk. (34)

dent wave, those involving only the reflected wave, and cross

terms between the tw@See Fig. 3. The first two types of  Only thez component of the force will remain after summa-
contributions are of the form discussed in Sec. |l for a singletion over all modes; so we need only consider that compo-
plane wave, as are the contributions due to the cl@$s nent. ForS polarization we find

transmitted waves. As a consequence of the relat&8),

these three sets of contributions cancel one another, leaving FZ=—A%Rga;CSinA. (35
only the incident-reflected-wave cross terms. The resulting

force for a single mode is For P polarization(Fig. 5 we have
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1 (= 3
V=(Hin)= Efo dw 0 ay(w)

1
xf dc[ —RgCOq2wzC+ bs)
0

+Rp(1—2c¢?)cog2wzc+ 8p)], (45)
so that
FIG. 5. Wave vectors and polarization vectors fd?P-polarized F=—VV. (46)
wave.
aa IV. THE FORCE BETWEEN A DIELECTRIC SPHERE
€ € =Cos, (36) AND A PERFECTLY CONDUCTING PLANE
e k'=¢-k=sin26, (37) Let us consider the limit of Eq44) in which the interface
is a perfect conductor. In this limit we have
ex(k'x€e)=—Kk, (38) Rs=Rp=1 (47)
€ X(kxe)=—k', (39 and
and Os=6p=r. (48
. . . . 2 [ 1
With the aid of_the_se relations, EGRO) can be written for the Fe _j do w4a1(w)j dc & sin(20z0)
case ofP polarization as 7)o 0
FZ=ARpa;c(1—2c?)sinA. (41) 1 (=
=— 4[ dw aq(w)[3 sin 2wz—6zw c0S 2wz
47z7Jo

Note that the force produced by the interference of incident
and reflected waves depends upep, the real part of the — 62202 sin 2wz+ 47%w® cos 20Z]. (49)
polarizability, rather than on the imaginary part as in Eq.

(17). Note that there are no evanescent modes in this case, so the

The net force is obtained by integration B§+F5 over  previous approximation of ignoring such modes is not
all modes for whichk,<0: needed here.

Now consider a sphere of radiaxomposed of a uniform
material with dielectric functiorz(w). The complex polar-

% 1
— 3 z FA. 2 z z
F—J' d°k(Fs+ FP)—ZWJO do o fo dc(F&+Fp). izability is given by

(42

_ 3s(a))—l

The modes are correctly normalized if we set a(w)=a (@) +2 (50)
) A7w We will take the dielectric function to be that of the Drude
A= 3" (43 model,
(2m)
2

This leads to our final result for the force in the direction e(w)=1— L (51)
away from the interface: o(w+iy)

1 (= 1 where w, is the plasma frequency ang is the damping
F= ;f dw w4a1(w)f dcc parameter. From Eq$50) and(51) we find that the real part
0 0 of the polarizability is given by
X[ —RgSiN(2wzc+ 8s) + Rp(1—2¢?)sin(2wzc+ p)].

(44) a,=alw? .
! p(3w2—w§)2+9w272

2_n. 2
wy 3w

(52

It is of interest to note that this result may also be derived
from an effective interaction Hamiltonian of the form of Eq. Note that althoughy(w) has poles only in the lower hal
(2), except with the static polarizability, replaced by the plane, its real party;(w) has poles in both the upper and
real part of the dynamic polarizabilitg,(w). The interac- lower half planes.
tion potential is given by first-order perturbation thepdy7] If we insert Eq.(52) into Eq. (49), we must evaluate the
to be set of integrals
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'n'aswf)
P,=- 60 e "*cos A)z. (61

These results may be combined to obtain our final expres-
sion for the force between the sphere and the plate, which
may be written as

F=J+P, (62)

where J is the net contribution from integrals along the
imaginary axis and® is that from the pole atb=Q+3ivy.

IThe explicit forms of these two contributions are

a%ﬁFd (38%+ w}) (4233 + 622£2+ 62¢ + 3)

J=
47z*)o (3¢82+ wp)?—9&%y?
Xe722§ (63)
and
alw?
P=— m‘:e* "[202(40%2°—3v?Z>—6yz—6)sin 20z
z

+ (1290223 — v323+ 120222 — 3v?7— 6yz
—6)cos 227]. (64)

(Here and at other points in this paper the calculations were
performed with the aid of the symbolic algebra program
MACSYMA.)

In the case thay=0, the integral forJ may be evaluated
in terms of sine and cosine integral functions. In the limit of

In terms of these integrals, the force between the sphere arginall separations, one finds for this case that

(53
- dll—fxd 2 54
=39z J, w ai(w)w Ccos 2wz, (54)
1d|2 o 5
|3:_§E=J dw a1(w)w* sin 2wz, (55
0
and

| —1d'3—f°d % Cos 2w 56
=347 o a1(w)w® cos 2wz. (56)

the plate is
F=-— (31,—621,—62%3+42%1 ). (57)

4z

The second integral in E¢53) may be evaluated by rotating
the contour of integration to the positive imaginary akg.
6). However, in this process we will also acquire a contribu-

tion from the residue of the pole af;(») at w=Q+3%ivy,
where

1
0= g\/12wf,— 9472, (58
The result may be written as
|1:‘]l+ Pl' (59)

Here integrating over imaginary frequency yields

3= f “dé an(ig)e 2
0

3¢+ w}

~a%} [ "a e %%, (60
p 0 §(3§2+wg)2_9§;2,y2

and the residue of the pole is

V3w .
J~a3wp(—@+6ﬂ_‘;3+0(z 1 (65)
and
V3
PNaSwp<Q+O(ZO) . (66)

Thus the leading terms cancel and we find a repulsive force
in this limit:

a3w

F~

2
P+0(z7Y), a<z<w,’. (67)

67z

It is of particular interest tha® contributes an oscillatory
term to the force. In the large separation limit 1/w, we
have that

KES

J~— )
27z°

(68)

This is just the attractive force due to the asymptotic
Casimir-Polder potentiall), whereay=a® is the static po-
larizability of the sphere. The oscillatory term becomes, in
the large distance limit,
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0.04 prrr T T T T T T T T Table | values of, for various alkali metals are given, along

14' with appropriate input parameters.
0.03 The maximum elevatior, at which a sphere could levi-

[l tate is in the range of 4649 um. This is larger than the
0.02 IT distance at which Casimir forces are usually expected to

have a noticeable effect. Recall that all of the discussion in
this paper is at zero temperature. Thermal effects at finite
temperature can mask this vacuum energy effect. For ex-
U AR WA W A ample, for a sodium sphere of radias=50 nm near the
maximum levitation height, the difference in potential en-
ergy between successive equilibrium points corresponds to a
temperature of approximately 0.1 K, and would be observ-
PP AP IS T N R able only at low temperatures. On the other hand, the corre-
5 10 15 20 25 sponding energy difference near the minimum levitation
z height is about 2000 K. Thus the first several equilibrium
points should be observable at room temperature. The use of
a perfectly reflecting wall should be a reasonable approxima-
; tion as long as the plasma frequency of the material in the

where the slope is negative. Hefe>0 corresponds to repulsion. wall is large ComPared to that in the SPhere- Thus a wall
The dotted line is the contribution af the imaginary frequency Composed of aluminumef,=14.8 eV)[9] is a good reflec-

integral (63), and the dashed line is that Bf the pole contribution ~ tor at frequencies of the order of the plasma frequencies of
(64). the alkali metals.

R 0.01

0.00

-0.01

lI_I_I.I_I_I.llllllll

FIG. 7. Forcer between a sphere and a perfectly reflecting wall
for the case wherg=0.0050,. (HereF is in units ofwf,a3 andz
in units of w; 1) The stable equilibrium points are the zerosFof

QO 2,3
P~— I)sza e (20 sin20z+3ycosA)z). (69 V. DISCUSSION
In the preceding sections we have seen that a polarizable
Although this term is exponentially decaying, it is possibleSPhere with a dispersive polarizability in the vicinity of a
for it still to be significant in the asymptotic region if, as is Pe'fectly reflecting boundary can experience a Casimir force
typically the casey<w, . In this case, the oscillatory terfh that is ”?UCh larger than would be expe_rlenced_ by a perfectly
will dominate the Casimir-Polder terthand lead to a series conducting sphere at the same separation. This can be under-

of stable equilibrium points at finite distance from the bound-StOOd in terms of the oscillatory frequency SPeC”“m of
ary, separated from one another by a distance of approx¥acuum energy effects. Cancellations between different parts

mately/ = 7/Q. A plot of the force at various separations is ©f té Spectrum that occur in the perfectly conducting limit
given in Fig. 7 seem to be upset by the dispersive properties of the sphere’s

One might imagine trying to levitate the spheres in thematerial. A perfectly reﬂec_ting_ _sphe_re [Vog"d have a
Earth's gravitational field by this means. This will occur if freguency-independent polarizability af=ap=a" and the

Fma=Fg, whereF . is F evaluated at a peak value and force e>_<erted by the_ _waII W(.)UId be given by HGS) at all
separations. In addition to its amplification, the force now

Fg is the force of gravity. The ratio of these two forces may . ) . .
becomes an approximately oscillatory function of position,
be expressed as : . ) .
leading to the possibility of trapping the sphere in stable

F 4 1 1 / rr? equilibrium. ) ) . )
max_ oo P ) ( Mm)( gre )e5<7/1 eV)(Z/1 pm) Note that this type of oscillatory force does not arise in
Fq 1ev z p the case of a pair of half spaces of dielectric material sepa-

(70) rated by a gap. If the material in the half spaces is a homo-

h is th densitv of th h We h neous dielectric, whose dielectric function satisfies the
Wherep 1S the mass density 0 e_sp ere. Yve have assum ramers-Kronig relations, then the Lifshitz theddQ] pre-
that y<w,, so 1~ \/§")P/_3' Let z=z; be the distance at ijcts 4 force of attraction that is always less than that in the
which this ratio of forces is unity and hence the maximumeage of two perfectly conducting planes. Apparently, the ef-
distance above the interface at which levitation can occur. Ifact of the infinite spatial volume of the half spaces is to

, average over the spatial oscillations. A similar result was
TABLE I. Parameters for some alkali metals. The Drude modelsy ,nq recently by Lambrechet al. [11] for the case of mir-
parameterso, andy, taken from Ref[8], are in eV. The maximum rors for a scalar field in one spatial dimension.

levitation heightz, and the separation between equilibrium poifits It is of interest to compare the macroscopic sphere prob-

are inpum. lem discussed in this paper with the problem of an atom near
Alkali a perfect mirror. The case where the atom is in the ground
state was discussed in the original Casimir-Polder ppgler
metal p wp v / z; . - . .
where a monotonically decreasing expression was obtained
Li 0.53 6.6 0.031 0.16 49 that reduces to EqJ) in the largez limit. This result is of
Na 0.97 5.6 0.028 0.19 46 the same form as the contributidrto the net force found in
K 0.86 3.8 0.021 0.28 47 Sec. Il coming from the integration over imaginary frequen-

cies. Various authorf6,7,12 have treated the problem of a
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polarizable particle near an interface. However, these authoia the analysis of this paper. The general formula for the
were primarily interested in the case where the polarizabldéorce[Eq. (44)] was derived in Sec. Ill by assuming that the
particle is an atom in its ground state and hence includegcattered wave is dipolar and there are no evanescent modes.
only the imaginary frequency contribution. The case of anThe dipole approximation should be valid as long as the size
atom in an excited state was treated by Baftt#] and other ~ Of the particle is small compared to the wavelength of any
authors[14—16, who found that the potential now has an Mmodes that contribute significantly to E@4). The assump-
oscillatory component. Furthermore, this oscillatory term atfion of no evanescent modes places some restrictions on the
large distances has a form similar to E§9), with the mag- material of the interface. In particular, a perfectly conducting
nitude of the oscillatory part decreasing as. Ihus at large interface will have no evanescent modes. More generally, in

separations, the net potential is dominated by this oscillatorf equency ranges in which the_ real part of the index of.refrg-
term. In the case of the atom in an excited state, the oscillag'o" 1S 1€sS than unity, there will be no such modes. This wil
: ' e the case for all frequencies if the interface is composed of

ing potential can be given a classical interpretation. Thea metal for which the collisionless Drude modelg. (51)

atom behaves like a radiating antenna in the presence Of\ﬁith y=0] is a good approximation. In Sec. IV, we made

mirror. Such an antenna will experience an oscillatory back- R . ;
P y some further approximations. These included the assumption

reaction force whose sign depends upon whether the "Shat the particle is a small sphere whose dielectric function

flected wave interferes constructively or destructively with . :
the original radiated wave. The oscillatory force found in thehas thg form given by the Drude quém' Herg fhe d!pole
proximation is expected to be valid whe o~ . A final

present problem does not seem to have such an interpretatiglﬁ) imati de i ing that the interf .
because the dielectric sphere is not radiating. Nonetheless,3PProximation was mace in assuming that the interface is
rfectly conducting. This is expected to be valid when the

is plausible that there should be some parallels between ar . .
erface is composed of a metal whose plasma frequency is

atom in an excited state and a macroscopic system such d to that of th h Then the dominant
the sphere with a continuum of quantum states just above t grge compared fo mnat of In€ sphere. Then the gominan
ground state contributions to Eq(44), those for whicha;# 0, come from

' odes for which Eqs47) and(48) are approximately valid.

The oscillatory force can be understood in this case a h tensi t th its of thi © th h
arising from a position dependence of the cancellation of th € extension of the results of this paper 1o the case where
e interface is an imperfect reflector is currently under in-

different parts of the frequency spectrum. One can see fro S
Fig. 1 that a particle whose polarizability is nonzero only in Vestigation.
a narrow band of frequency will experience an oscillatory
force. (See Ref[3] for further discussion of this pointThe
delicate cancellation is perhaps one reason that it is difficult | would like to thank G. Barton, T. Jacobson, P. W.
to predict the sign of a Casimir force in advance of an ex-Milonni, V. Sopova, and L. Spruch for useful conversations.
plicit calculation. This work was supported in part by the National Science
Finally, let us recall the assumptions that were employed-oundation(Grant No. PHY-9507351
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