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Casimir force between a dielectric sphere and a wall:
A model for amplification of vacuum fluctuations
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~Received 23 April 1998!

The interaction between a polarizable particle and a reflecting wall is examined. A macroscopic approach is
adopted in which the averaged force is computed from the Maxwell stress tensor. The particular case of a
perfectly reflecting wall and a sphere with a dielectric function given by the Drude model is examined in detail.
It is found that the force can be expressed as the sum of a monotonically decaying function of position and of
an oscillatory piece. At large separations, the oscillatory piece is the dominant contribution and is much larger
than the Casimir-Polder interaction that arises in the limit that the sphere is a perfect conductor. It is argued
that this enhancement of the force can be interpreted in terms of the frequency spectrum of vacuum fluctua-
tions. In the limit of a perfectly conducting sphere, there are cancellations between different parts of the
spectrum that no longer occur as completely in the case of a sphere with frequency-dependent polarizability.
Estimates of the magnitude of the oscillatory component of the force suggest that it may be large enough to be
observable.@S1050-2947~98!03412-X#

PACS number~s!: 12.20.Ds, 03.70.1k
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I. INTRODUCTION

It was noted some time ago that if one wishes to assig
frequency spectrum to the Casimir force between reflec
planar boundaries, the result is a wildly oscillating functi
of frequency@1,2#. The integral of this function over all fre
quencies can only be performed with the aid of a suita
convergence factor. The net Casimir energy is much sma
than the contribution of each individual oscillation peak. T
effect of integration over all frequencies is almost, but n
quite completely, to cancel the various frequency regio
against one another. This leads to the speculation@3# that one
might be able to upset this cancellation in some way a
thereby greatly amplify the magnitude of the Casimir for
and possibly change its sign.

In the case of parallel plane boundaries, no natural wa
do this has been demonstrated. However, the Casimir-Po
interaction between a polarizable particle and a reflec
plane offers similar possibilities. Casimir and Polder@4#
originally derived the potential between an atom in
ground state and a perfectly reflecting wall. In the large d
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tance limit, their result takes the particularly simple form1

VCP;2
3a0

8pz4
, ~1!

wherez is the distance to the wall anda0 is the static polar-
izability of the atom. This asymptotic potential may be d
rived from the interaction Hamiltonian

Hint52
1

2
a0E2, ~2!

whereE is the quantized electric-field operator. If one e
pands this operator in terms of a complete set of the Maxw
equations in the presence of the boundary, the asymp
Casimir-Polder may be written as

^Hint&5
a0

4pz3E0

`

dv s~v!, ~3!

where

s~v!5@~2v2z221!sin 2vz12vz cos 2vz#. ~4!

1Gaussian units withc5\51 will be used in this paper.
4279 © 1998 The American Physical Society
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FIG. 1. Frequency spectrums(v) for the
Casimir-Polder potential. The oscillations almo
exactly cancel, leaving a net area under the cu
equal to that of the shaded region indicated by t
arrow.
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The integrands(v) is an oscillatory function whose ampl
tude increaseswith increasing frequency. Nonetheless, t
integral can be performed using a convergence factor~e.g.,
insert a factor ofe2bv and then letb→0 after integration!.
The result is the right-hand side of Eq.~1!. It is clear that
massive cancellations have occurred~see Fig. 1! and that the
area under an oscillation peak can be much greater in m
nitude than the final result. This again raises the possib
of tampering with this delicate cancellation and dramatica
altering the magnitude and sign of the force.

The purpose of this paper is to explore this question in
context of a specific model. The force between a dielec
sphere and a perfectly conducting plane will be examin
The polarizability of the sphere will be taken to be a functi
of frequency, thereby introducing the possibility of modif
ing the contributions of different parts of the spectrum. T
or similar problems have been discussed before by sev
authors. However, it will be examined here from a differe
viewpoint. The force may be calculated from the Maxw
stress tensor. In Sec. II A, a formula for the force on a sm
sphere in an arbitrary applied electromagnetic field will
derived in an electric-dipole approximation and discussed
Sec. III, this formula will be applied to the calculation of th
force on a dielectric particle near an interface in terms of
Fresnel coefficients of the interface. This result will be a
plied to the case of a dielectric sphere and a perfectly refl
ing boundary in Sec. IV. It will be shown that the force h
a component that is an oscillatory function of position a
that it is possible for the sphere to be in stable equilibrium
a finite distance from the boundary. The results are sum
rized and discussed in Sec. V.

II. FORCE ON A SMALL PARTICLE

A. Electric-dipole approximation

In this section we will discuss the force that an appli
electromagnetic field exerts on a small dielectric sphere.
applied electric field will be taken to beEa(x,t) and the
corresponding magnetic field to beBa(x,t). We assume tha
the induced~scattered! field is that of electric-dipole radia
tion from a time-varying dipole momentp. Later p will be
taken to be linearly related toEa , but for now it is unspeci-
fied. We further assume that the particle is small compare
the characteristic spatial scale over whichEa(x,t) and
Ba(x,t) vary. The latter assumption is not really independ
g-
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of the electric-dipole approximation: If the size of the sphe
is not small then one would in general have to include
contributions of higher multipoles. Just outside the partic
the electric and magnetic fields due to the dipole take
near-zone forms

Ed'
3n̂~ n̂•p2p!

r 3
, Bd'2

n̂3ṗ

r 2
. ~5!

Here r is the radial distance from the dipole andn̂ is the
outward directed unit normal vector.

The net force acting upon the particle can be calculated
integrating the Maxwell stress tensor over a spherical surf
just outside the particle,

Fi5 R dajT
i j , ~6!

where

Ti j 5
1

4p
@EiEj1BiBj2 1

2 d i j ~E21B2!#. ~7!

If we insert the net fieldsEa1Ed and Ba1Bd into this ex-
pression, there will be three types of terms: those involv
only the applied fields, those involving only the dipole field
and the cross terms. However, the pure dipole terms yield
net contribution. Furthermore, any force due to the pure
plied field terms is independent of the polarizability a
hence not of interest. Thus we consider only the cross te
in Ti j between the applied and dipole fields:

F5
1

4p R da@~ n̂•Ea!Ed1~ n̂•Ed!Ea1~ n̂•Ba!Bd

2n̂~Ea•Ed1Ba•Bd!#. ~8!

Note thatn̂•Bd50.
Because the particle is assumed to be small, we may

pandEa andBa in a Taylor series aroundx5x0 , the location
of the particle. The leading nonzero contributions to t
force come from the zeroth-order term inBa and the first-
order term inEa :

Ba~x,t !'B0 ,



n
s

on

a
cle
y

ov
-

il
re
te

en
is

one

par-

ab-
tum
ver,
.

ir
gle
rbi-
-
ized
t of
lu-

n
cted
e
ns-

om-
the
he

nci-

PRA 58 4281CASIMIR FORCE BETWEEN A DIELECTRIC SPHERE . . .
Ea
i ~x,t !'E0

i 1r n̂•¹E0
i 1•••. ~9!

We now insert these expansions and Eq.~5! into Eq. ~8! and
perform the angular integration, using the relation

R da ninj5
4pr 2

3
d i j ~10!

to find

Fi5
2

3
pj] jE0

i 1
1

3
pj]

iE0
j 1

2

3
~ ṗ3B0! i . ~11!

It is of interest to check the static limit of this expressio
In this limit, ṗ50 and ¹3E050. If we use these relation
and setp5a0E0 , wherea0 is the static polarizability of the
particle, the result is

Fi5a0pj]
iE0

j 5
1

2
a0] iE0

2 . ~12!

This is equivalent to the familiar result that the interacti
energy of an induced dipole with a static electric field is

V52
1

2
a0E0

2 . ~13!

B. Interaction with a single plane wave

Here we apply the result,~11! to compute the force that
single, linearly polarized plane wave exerts on the parti
The electric and magnetic fields of this wave are given b

E05Re~ êAei ~k•x02vt !!5 êA cos~k•x02vt !,

B05 k̂3 êA cos~k•x02vt !, ~14!

whereA is the amplitude andê the polarization vector. The
dipole moment is given by

p5Re~aE0!5 êAuaucos~k•x02vt1g!, ~15!

where

a5uaueig5a11 ia2 . ~16!

We are interested in the time-averaged force, measured
time scales long compared to 1/v; so we henceforth under
standFi to be the time average of Eq.~11!. In the present
case this yields

F5
1

2
kA2uausing5

1

2
kA2a2 , ~17!

a force proportional to the imaginary part of the polarizab
ity a2 . This result may be given a simple physical interp
tation. The rate at which electromagnetic energy is dissipa
is given by the usual Joule heating term

Ẇ5E J•E d3x, ~18!
.

.

er

-
-
d

where J is the current density and the integration is tak
over the volume of the particle. Because the electric field
approximately constant over this volume and because
may show@5# from the continuity equation that

E J d3x5ṗ, ~19!

we have that the time-averaged power absorbed by the
ticle is

Ẇ5
1

2
vA2uausing. ~20!

However, each photon carries energyv and momentumk,
so the right-hand side of Eq.~17! is just the rate at which
momentum is being absorbed by the particle due to the
sorption of photons. There is of course also some momen
being transferred as a result of photon scattering. Howe
that effect is proportional toa2 and is being neglected here

III. FORCE ON A PARTICLE NEAR AN INTERFACE

In this section we will derive a formula for the Casim
force on a polarizable particle in the presence of a sin
plane interface. The interface will be assumed to have a
trary reflectivity. We will, however, work in an approxima
tion in which evanescent modes are neglected. The quant
electromagnetic field is to be expanded in a complete se
normalized solutions of the Maxwell equations. These so
tions fall into three classes:~i! modes that are in the regio
above the interface and consist of an incident and a refle
part, as illustrated in Fig. 2;~ii ! modes that originate on th
far side of the interface and are outwardly propagating tra
mitted waves in the region above the interface; and~iii ! eva-
nescent modes that are propagating inside the material c
prising the interface, but are exponentially decaying in
region above it. These last modes will be left out of t
present discussion.

Let us focus first on the reflected modes in class~i!. The
net electric field is

E5EI1ER , ~21!

where the incident wave is

EI5 êA cos~k•x02vt ! ~22!

and the reflected wave is

FIG. 2. Propagating modes above an interface consist of i
dent I and reflectedR waves or transmittedT waves.
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ER5 ê8ARcos~k8•x02vt1d!. ~23!

The associated magnetic fields areBI5 k̂3EI and BR5 k̂8
3ER , respectively. Here the complex reflection~Fresnel!
coefficient is

R5Reid, ~24!

whereR is the magnitude of the reflection coefficient andd
is the phase shift. This mode induces a dipole momenp
5Re(aE), wherea5uaueig is again the complex polariz
ability. The portions ofp arising from the incident and re
flected waves are, respectively,

pI5 êA cos~k8•x02vt1g! ~25!

and

pR5 êARuaucos~k•x02vt1d1g!. ~26!

The force that a particular mode exerts on the polariza
particle is obtained by inserting the above expressions for
fields and dipole moment into Eq.~11!. The resulting expres
sion should then be summed over all modes. However,
simpler first to combine it with the corresponding express
arising from the transmitted waves of class~ii !. In the region
above the interface, the electric field of these modes is of
form

ET5 êAT cos~k•x02vt !, ~27!

whereT is a transmission coefficient. Here we may think
the interface as being a slab of finite thickness. Below
slab, these modes have the same form as the incident w
above the slab@Eq. ~22!#. If the material in the slab is non
absorptive, then the transmission and reflection coefficie
satisfy

T21R251. ~28!

The force due to the modes of class~i! can be expressed as
sum of three types of terms: those involving only the in
dent wave, those involving only the reflected wave, and cr
terms between the two.~See Fig. 3.! The first two types of
contributions are of the form discussed in Sec. II for a sin
plane wave, as are the contributions due to the class~ii !
transmitted waves. As a consequence of the relation~28!,
these three sets of contributions cancel one another, lea
only the incident-reflected-wave cross terms. The resul
force for a single mode is

FIG. 3. Force due to an incident waveI, canceled by the sum o
the forces due to a reflected waveR and a transmitted waveT.
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Fi5
2

3
~pI

j] jER
i 1pR

j ] jEI
i !1

1

3
~pI j ]

iER
j 1pR j]

iEI
j !

1
2

3
@~ ṗI3BR! i1~ ṗR3BI !

i #. ~29!

We next insert the explicit forms for the fields and dipo
moment and then average the resulting expression over t
The result is

Fi5
1

6
A2R$a1@~ki2k8 i !~ ê• ê8!12ê i~k• ê8!22ê8 i~k8• ê!

12v ê83~k3 ê!22v ê3~k83 ê8!#sinD

1a2@~ki1k8 i !~ ê• ê8!12ê i~k• ê8!12ê8 i~k8• ê!

12v ê83~k3 ê!12v ê3~k83 ê8!#cosD%. ~30!

HereD5(k82k)•x01d is the phase difference between th
incident and reflected waves at the location of the particl

Let us further evaluate this expression. Let thez direction
be perpendicular to the interface and letu be the angle of
incidence. Then

kz852kz5vc, ~31!

wherec5cosu. Furthermore,

D52kz8z1d52vzc1d. ~32!

We must now specify the polarization state. We adopt a
ear polarization basis, using the usualS ( ê perpendicular to
the plane of incidence! and P ( ê parallel to the plane of
incidence! states. ForS polarization~Fig. 4! we have

ê85 ê ~33!

and

ê3~k3 ê!5k. ~34!

Only thez component of the force will remain after summ
tion over all modes; so we need only consider that com
nent. ForS polarization we find

FS
z52A2RSa1c sinD. ~35!

For P polarization~Fig. 5! we have

FIG. 4. Wave vectorsk andk8 and polarization vectorsê andê8
for the incident and reflected parts of anS-polarized wave.
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ê• ê85cos 2u, ~36!

ê• k̂85 ê8• k̂5sin 2u, ~37!

ê3~k83 ê8!52k, ~38!

ê83~k3 ê!52k8, ~39!

and

ez52ez85sinu. ~40!

With the aid of these relations, Eq.~30! can be written for the
case ofP polarization as

FP
z 5A2RPa1c~122c2!sinD. ~41!

Note that the force produced by the interference of incid
and reflected waves depends upona1 , the real part of the
polarizability, rather than on the imaginary part as in E
~17!.

The net force is obtained by integration ofFS
z1FP

z over
all modes for whichkz<0:

F5E d3k~FS
z1FP

z !52pE
0

`

dv v2E
0

1

dc~FS
z1FP

z !.

~42!

The modes are correctly normalized if we set

A25
4pv

~2p!3
. ~43!

This leads to our final result for the force in the directi
away from the interface:

F5
1

pE0

`

dv v4a1~v!E
0

1

dc c

3@2RS sin~2vzc1dS!1RP~122c2!sin~2vzc1dP!#.

~44!

It is of interest to note that this result may also be deriv
from an effective interaction Hamiltonian of the form of E
~2!, except with the static polarizabilitya0 replaced by the
real part of the dynamic polarizabilitya1(v). The interac-
tion potential is given by first-order perturbation theory@6,7#
to be

FIG. 5. Wave vectors and polarization vectors for aP-polarized
wave.
t

.

d

V5^Hint&5
1

2pE0

`

dv v3a1~v!

3E
0

1

dc@2RScos~2vzc1dS!

1RP~122c2!cos~2vzc1dP!#, ~45!

so that

F52¹V. ~46!

IV. THE FORCE BETWEEN A DIELECTRIC SPHERE
AND A PERFECTLY CONDUCTING PLANE

Let us consider the limit of Eq.~44! in which the interface
is a perfect conductor. In this limit we have

RS5RP51 ~47!

and

dS5dP5p. ~48!

This leads to

F5
2

pE0

`

dv v4a1~v!E
0

1

dc c3 sin~2vzc!

52
1

4pz4E0

`

dv a1~v!@3 sin 2vz26zv cos 2vz

26z2v2 sin 2vz14z3v3 cos 2vz#. ~49!

Note that there are no evanescent modes in this case, s
previous approximation of ignoring such modes is n
needed here.

Now consider a sphere of radiusa composed of a uniform
material with dielectric function«(v). The complex polar-
izability is given by

a~v!5a3
«~v!21

«~v!12
. ~50!

We will take the dielectric function to be that of the Drud
model,

«~v!512
vp

2

v~v1 ig!
, ~51!

where vp is the plasma frequency andg is the damping
parameter. From Eqs.~50! and~51! we find that the real par
of the polarizability is given by

a15a3vp
2

vp
223v2

~3v22vp
2!219v2g2

. ~52!

Note that althougha(v) has poles only in the lower halfv
plane, its real parta1(v) has poles in both the upper an
lower half planes.

If we insert Eq.~52! into Eq. ~49!, we must evaluate the
set of integrals
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I 15E
0

`

dv a1~v! sin~2vz!5ImE
0

`

dv a1~v!e2ivz,

~53!

I 25
1

2

dI1

dz
5E

0

`

dv a1~v!v cos 2vz, ~54!

I 352
1

2

dI2

dz
5E

0

`

dv a1~v!v2 sin 2vz, ~55!

and

I 45
1

2

dI3

dz
5E

0

`

dv a1~v!v3 cos 2vz. ~56!

In terms of these integrals, the force between the sphere
the plate is

F52
1

4pz4
~3I 126zI226z2I 314z3I 4!. ~57!

The second integral in Eq.~53! may be evaluated by rotatin
the contour of integration to the positive imaginary axis~Fig.
6!. However, in this process we will also acquire a contrib
tion from the residue of the pole ofa1(v) at v5V1 1

2 ig,
where

V5
1

6
A12vp

229g2. ~58!

The result may be written as

I 15J11P1 . ~59!

Here integrating over imaginary frequency yields

J15E
0

`

dj a1~ i j!e22jz

5a3vp
2E

0

`

dj
3j21vp

2

~3j21vp
2!229j2g2

e22zj, ~60!

and the residue of the pole is

FIG. 6. Contours of integration for integrals of the form of E
~53!. The integral on realv can be expressed as a sum of an integ
on imaginaryv plus a contributionC coming from the pole atv
5V1

1
2 ig.
nd

-

P152
pa3vp

2

6V
e2gz cos 2Vz. ~61!

These results may be combined to obtain our final exp
sion for the force between the sphere and the plate, wh
may be written as

F5J1P, ~62!

where J is the net contribution from integrals along th
imaginary axis andP is that from the pole atv5V1 1

2 ig.
The explicit forms of these two contributions are

J52
a3vp

2

4pz4E0

`

dj
~3j21vp

2!~4z3j316z2j216zj13!

~3j21vp
2!229j2g2

3e22zj ~63!

and

P52
a3vp

2

48Vz4
e2gz@2Vz~4V2z223g2z226gz26!sin 2Vz

1~12gV2z32g3z3112V2z223g2z226gz

26!cos 2Vz#. ~64!

~Here and at other points in this paper the calculations w
performed with the aid of the symbolic algebra progra
MACSYMA.!

In the case thatg50, the integral forJ may be evaluated
in terms of sine and cosine integral functions. In the limit
small separations, one finds for this case that

J;a3vpS 2
A3

8z4
1

vp

6pz3
1O~z21!D ~65!

and

P;a3vpS A3

8z4
1O~z0!D . ~66!

Thus the leading terms cancel and we find a repulsive fo
in this limit:

F;
a3vp

2

6pz3
1O~z21!, a!z!vp

21 . ~67!

It is of particular interest thatP contributes an oscillatory
term to the force. In the large separation limitz@1/vp we
have that

J;2
3a3

2pz5
. ~68!

This is just the attractive force due to the asympto
Casimir-Polder potential~1!, wherea05a3 is the static po-
larizability of the sphere. The oscillatory term becomes,
the large distance limit,

l
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P;2
Vvp

2a3

12z
e2gz~2V sin 2Vz13g cos 2Vz!. ~69!

Although this term is exponentially decaying, it is possib
for it still to be significant in the asymptotic region if, as
typically the case,g!vp . In this case, the oscillatory termP
will dominate the Casimir-Polder termJ and lead to a serie
of stable equilibrium points at finite distance from the boun
ary, separated from one another by a distance of appr
matelyl 5p/V. A plot of the force at various separations
given in Fig. 7.

One might imagine trying to levitate the spheres in t
Earth’s gravitational field by this means. This will occur
Fmax>Fg , whereFmax is F evaluated at a peak value an
Fg is the force of gravity. The ratio of these two forces m
be expressed as

Fmax

Fg
'27S vp

1 eVD4 S 1 mm

z D S 1 g/cm3

r De25~g/1 eV!~z/1 mm!,

~70!

wherer is the mass density of the sphere. We have assu
that g!vp , so V'A3vp/3. Let z5zc be the distance a
which this ratio of forces is unity and hence the maximu
distance above the interface at which levitation can occur

FIG. 7. ForceF between a sphere and a perfectly reflecting w
for the case whereg50.005vp . ~HereF is in units ofvp

5a3 andz
in units of vp

21.) The stable equilibrium points are the zeros ofF
where the slope is negative. HereF.0 corresponds to repulsion
The dotted line is the contribution ofJ, the imaginary frequency
integral~63!, and the dashed line is that ofP, the pole contribution
~64!.

TABLE I. Parameters for some alkali metals. The Drude mo
parametersvp andg, taken from Ref.@8#, are in eV. The maximum
levitation heightzc and the separation between equilibrium pointsl

are inmm.

Alkali
metal r vp g l zc

Li 0.53 6.6 0.031 0.16 49
Na 0.97 5.6 0.028 0.19 46
K 0.86 3.8 0.021 0.28 47
-
i-

ed

In

Table I values ofzc for various alkali metals are given, alon
with appropriate input parameters.

The maximum elevationzc at which a sphere could levi
tate is in the range of 46249 mm. This is larger than the
distance at which Casimir forces are usually expected
have a noticeable effect. Recall that all of the discussion
this paper is at zero temperature. Thermal effects at fi
temperature can mask this vacuum energy effect. For
ample, for a sodium sphere of radiusa550 nm near the
maximum levitation height, the difference in potential e
ergy between successive equilibrium points corresponds
temperature of approximately 0.1 K, and would be obse
able only at low temperatures. On the other hand, the co
sponding energy difference near the minimum levitati
height is about 2000 K. Thus the first several equilibriu
points should be observable at room temperature. The us
a perfectly reflecting wall should be a reasonable approxim
tion as long as the plasma frequency of the material in
wall is large compared to that in the sphere. Thus a w
composed of aluminum (vp514.8 eV) @9# is a good reflec-
tor at frequencies of the order of the plasma frequencies
the alkali metals.

V. DISCUSSION

In the preceding sections we have seen that a polariz
sphere with a dispersive polarizability in the vicinity of
perfectly reflecting boundary can experience a Casimir fo
that is much larger than would be experienced by a perfe
conducting sphere at the same separation. This can be un
stood in terms of the oscillatory frequency spectrum
vacuum energy effects. Cancellations between different p
of the spectrum that occur in the perfectly conducting lim
seem to be upset by the dispersive properties of the sphe
material. A perfectly reflecting sphere would have
frequency-independent polarizability ofa5a05a3 and the
force exerted by the wall would be given by Eq.~68! at all
separations. In addition to its amplification, the force no
becomes an approximately oscillatory function of positio
leading to the possibility of trapping the sphere in sta
equilibrium.

Note that this type of oscillatory force does not arise
the case of a pair of half spaces of dielectric material se
rated by a gap. If the material in the half spaces is a hom
geneous dielectric, whose dielectric function satisfies
Kramers-Kronig relations, then the Lifshitz theory@10# pre-
dicts a force of attraction that is always less than that in
case of two perfectly conducting planes. Apparently, the
fect of the infinite spatial volume of the half spaces is
average over the spatial oscillations. A similar result w
found recently by Lambrechtet al. @11# for the case of mir-
rors for a scalar field in one spatial dimension.

It is of interest to compare the macroscopic sphere pr
lem discussed in this paper with the problem of an atom n
a perfect mirror. The case where the atom is in the grou
state was discussed in the original Casimir-Polder paper@4#,
where a monotonically decreasing expression was obta
that reduces to Eq.~1! in the large-z limit. This result is of
the same form as the contributionJ to the net force found in
Sec. III coming from the integration over imaginary freque
cies. Various authors@6,7,12# have treated the problem of
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polarizable particle near an interface. However, these aut
were primarily interested in the case where the polariza
particle is an atom in its ground state and hence inclu
only the imaginary frequency contribution. The case of
atom in an excited state was treated by Barton@13# and other
authors@14–16#, who found that the potential now has a
oscillatory component. Furthermore, this oscillatory term
large distances has a form similar to Eq.~69!, with the mag-
nitude of the oscillatory part decreasing as 1/z. Thus at large
separations, the net potential is dominated by this oscilla
term. In the case of the atom in an excited state, the osci
ing potential can be given a classical interpretation. T
atom behaves like a radiating antenna in the presence
mirror. Such an antenna will experience an oscillatory ba
reaction force whose sign depends upon whether the
flected wave interferes constructively or destructively w
the original radiated wave. The oscillatory force found in t
present problem does not seem to have such an interpret
because the dielectric sphere is not radiating. Nonetheles
is plausible that there should be some parallels betwee
atom in an excited state and a macroscopic system suc
the sphere with a continuum of quantum states just above
ground state.

The oscillatory force can be understood in this case
arising from a position dependence of the cancellation of
different parts of the frequency spectrum. One can see f
Fig. 1 that a particle whose polarizability is nonzero only
a narrow band of frequency will experience an oscillato
force. ~See Ref.@3# for further discussion of this point.! The
delicate cancellation is perhaps one reason that it is diffi
to predict the sign of a Casimir force in advance of an
plicit calculation.

Finally, let us recall the assumptions that were employ
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in the analysis of this paper. The general formula for t
force @Eq. ~44!# was derived in Sec. III by assuming that th
scattered wave is dipolar and there are no evanescent mo
The dipole approximation should be valid as long as the s
of the particle is small compared to the wavelength of a
modes that contribute significantly to Eq.~44!. The assump-
tion of no evanescent modes places some restrictions on
material of the interface. In particular, a perfectly conducti
interface will have no evanescent modes. More generally
frequency ranges in which the real part of the index of ref
cion is less than unity, there will be no such modes. This w
be the case for all frequencies if the interface is compose
a metal for which the collisionless Drude model@Eq. ~51!
with g50# is a good approximation. In Sec. IV, we mad
some further approximations. These included the assump
that the particle is a small sphere whose dielectric funct
has the form given by the Drude model~51!. Here the dipole
approximation is expected to be valid whena!vp

21 . A final
approximation was made in assuming that the interface
perfectly conducting. This is expected to be valid when
interface is composed of a metal whose plasma frequenc
large compared to that of the sphere. Then the domin
contributions to Eq.~44!, those for whicha1Þ0, come from
modes for which Eqs.~47! and~48! are approximately valid.
The extension of the results of this paper to the case wh
the interface is an imperfect reflector is currently under
vestigation.
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