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Decay processes in an open Hamiltonian system
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A complex spectral decomposition is developed for the survival probability and spectral density of a simple
metastable state in an open quantum system. The time interval before exponential decay occurs is shown to be
dominated by the short-lived quasibound states of the sy$®h@50-29478)05710-3

PACS numbdss): 31.70.Hqg, 02.90+p, 03.65.Ge

The detailed mechanisms by which metastable states formnd has a continuum of energy eigenval&és If we intro-
and decay are of great interest for mesoscopic and atomiduce a dimensionless lengthx=kyr, with kg
physics because they dominate the conductance and scatter{2mF/#%?)%3, and a dimensionless potential strength
ing properties of open quantum systems. In this paper we- Qké/F, the Hamiltonian becomes
consider a model that can describe the process by which a
localized particle can tunnel out of a potential well and into N
the continuum. The model we consider consists of a single H(X) = -
particle in aé potential well in the presence of a constant
field. Ludviksson[1] showed that for this model the singu- with the eigenenergies changedBe-E 'k, /F.
larities of the energy Green’s function can be found fairly  Ludviksson[1] has computed the retarded and advanced
polesquasibound satesf the cnergy Green's function for °e1%Y, GTeeN'S _ functions GT(xx'iE +19)~(x|(E-#

s{quasibound s ay S funcu C =]y Aly v/ E_i ) — N o=y
this system and show under what conditions these poles caTq' 9) t'|X |> E}ndtﬁ. (X'Xt’ﬁg'5)d}<x|(E_T|_£)>O|X|_%’
be used to construct a spectral decomposition of the surviv#ﬁfc'jpsec ively, for this systent(and are real an )- He
probability and spectral density of initial states. As Misra
and Sudarsha2] proved, the very short time decay of meta- GRA(x,0:2)GRA0X:2)
stable states cannot be exponential. In this paper we find thesR/A(x,x’;z) = G A(x,x’;2) - o AmemE T T
spectral features that give rise to early nonexponential decay
of our metastable particle.

The spectral decomposition of the survival probability 3
and spectral density makes use of generalized eigenstates ] R A
associated with complex eigenvalues that are found by andvhere z=E=*ié and Gy(x,x';2) and Gy(x,x’;z) are the
lytic continuation of the energy Green’s function. A theoret-retarded and advanced energy Green’s functions, respec-
ical framework for the complex spectral decomposition hadively, whenV=0. They are given by
been developed by Grossmaf8] (called nested Hilbert ) - , ,
spacep and also by Bohnet al. [4] (called rigged Hilbert GRA(X.X2) = — X Al(=x=2)CiT(=x"=2), x=X
spacel based on mathematical concepts introduced by ~° ™7 ™ CiT(—x—2)Ai(—x'—2z), x=X',
Gel'fand and Vilenkin[5]. The method has been used by a (4)
number of authors to discuss properties of open quantum
systemg6,7,4 and it has been used in the study of chaoticwhere Ci:=BixiAi and Ai and Bi are Airy functiond9].
maps|[8]. The Green's functionsGR(x,x";E+i8) and GA(x,x’;E

In the present paper we use a complex spectral decompo=i ) (6>0) have no singularities other than a cut along the
sition to study the dynamical properties of Ludviksson’sentire real axis. Forx,x'—*o~ and Exié fixed,
model. We will first derive complex spectral decompositionsGR(x,x’;E+i8) and G*(x,x’;E—id) are bounded, i.e.,
of the survival probability and spectral density, respectively they satisfy the same boundary conditions as do the solutions
for a certain class of initially localized states. We then com-of the stationary Schrbinger equation.
pute the survival probability and spectral density for a spe- If we are given an initial state/(x,0)= ¢;(x) att=0, its
cific example and show the mechanism by which exponentidime evolutiontowards the futurgt>0) is determined by
decay begins to emerge. We end with some concluding rethe retarded Green’s functidiO]
marks.

We consider the motion of a particle of massin one i j* dx,f““?

2
—V4é(x)—X, (2)

oX

1
v+G§’A(o,o;z)

space dimension moving in the presence of a constant forclg(x;t)zﬁ ll;ino —oc+i5dz & T2 (X",

F and an attractive &function potential V(r) (5)
=—Q4(r). The Hamiltonian operator is

The contour for thez integration must be closed by a semi-
circle in the lower half of the complex plane. Therefore, it is
necessary to analytically contin@®(x,x’;z) into the lower

. 2 J 2
H'(r)= (_) —Qa(r)=Fr @D part plane because of the cut along the real axis. For complex

~2m\ar
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z in the lower half planeGR(x,x’;z) is not bounded for do not necessarily exist for an arbitrary initial stateeven

x,X"— *+oo. Furthermore, it has simple poles at complex val-though ¢; is square integrable. Therefore, we may not al-

uesz=1z,, determined by the condition ways exchange the infinite sum and the integral in &g.
We may only do this if Eq(13) exists for alln. This im-

poses restrictions on the set of initial statgg¢x) we can

1
vV +Go(0.0:Z,) =0. work with if we want to perform the integration in the spe-

(6)

cific way we are considering here.

The integral on the semicircle part of the contour vanishes Let us define another space

once its radius goes to infinityl,11]. By the theorem of
residues one obtains

soc0= | ax'S Rege MG 12 x). ()

N z=z,

The sum goes over the poles@R(x,x’;z), all of which lie
in the lower half of the complex plane (— w<argz<0).

Ludviksson found that the poles are simple and that the

residues at these poles take the form

Rege "Z'GR(x,x";2)]=e" 'y (X) hn(X')

=e "0 (X). (8
The explicit form of ,,(x) is
d a ~12
wn<x>=w( ~ 52 00002 )
Cif(—z)Ai(—x—2z,), x=0
><rAi(—zn)Ci+(—x—zn), x=0. O

In order to retain the usual form of the duality) [cf. Egs.
(16) and(17) below], we have defined

Pn(¥) = (%), (10)

where* denotes complex conjugation. Ludvikssg also
found that the functiony,, satisfies the condition

H(X) n(X) = Zothn(x) [and henceH ()P (X) =2z, (X)],
(11)

so i, is the right eigenstate ang, is the left eigenstate df
with respect to the eigenvalug . The states),, andy,, are

called generalized eigenstates because they do not belong to
the Hilbert space of possible physical states. They are not

square integrable 4 L(?)). They do, however, belong to a
larger spaceb/,. Using the asymptotic expressions for Airy

functions[9], one can prove that

12

lﬂn:ﬂne@; ==[ ¢;Jxmdx| lp(x)|2@—|x|“<OO

for any a>1/2.

The fact that the functiong, and, are not square inte-
grable implies that the integrals

o= [ ax va0wi0 a3

D, ==[ v, f:dXI Y(x)| 2 <o f (14)

From the definitions(12) and (14) it is obvious that
&, CLODCP! . If ped, andyed,, then

|” axwr 0600 a9

exists and by such an integral one can denote the duality
between®d , and its dual spac®/,. The three space®,,
L®), and®! form a “Gel'fand triplet.”

If the initial statey; belongs to the spac®,, then the
integrals(13) exist and Eq(7) can be written

D=2 e”nth)( fmdx'lf:(x'wi(x') (16
or, more formally,
|90} =2 e o) (il o). (17)

Note that(y,|¢;) is not the usual scalar product defined in
Hilbert space sinces, ¢ L), but it is the duality between
the space®/, and®,,.

Equation (17) can lead to exponential decay of some
physical quantities including the survival probability. The
survival amplitudeA;(t) for an initial statey; is defined
Ai(t) = (il w(t)). If e P,, then the survival amplitude
can be written

Ai<t>=<¢i|w<t>>=§e*iznt<wi|wn><’&nlwi> (18)

and the survival probability can be written
Pi(D=IAD[P=2 X et =8yt yl s (19
n!

wherey, andy, are the overlap integrals

'}’n:<¢i|¢n>y ;n:<¢i|~'zn>- (20)

If only a single terrm=n’=n, contributes in Eq(19), then

the survival probability decays in a purely exponential man-
ner with a lifetime 7, = 1/2[Im(z,)|. However, if two or

more terms contribute, the decay will be much more com-
plex and generally will contain oscillations.

The complex spectral decomposition given in Ef7)
allows for anexplicit description of decay phenomena rather
than just an average lifetime estimate as it is usually obtained
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TABLE |I. The most important poles and associated overlap integrals for the example from Sec. IV.

n Positionz, Overlap integraly,(=7%) Producty, yX
-7 —5.08948-i9.08886 0.0023812i0.0058470 —0.0000285-10.0000278
-6 —4.59265-i8.22096 —0.0019365-10.0149192 —0.0002188-10.0000578
-5 —4.06889-i7.30278 —0.0278465-10.0106945 0.0006611i0.0005956
-4 —3.51134-i16.31988 0.0308708i0.0196142 0.0005683i0.0012110
-3 —2.90949-15.24829 —0.0156032-10.0895955 —0.0077839-10.0027959
-2 —2.24564-14.04168 —0.1995118-10.0554497 0.0367303i0.0221257
-1 —1.48770-12.57804 0.0917620i0.3441265 —0.110003 +i0.0631561
0 —1.14764-i0.18960 1.0325811i0.0264531 1.0655240i0.0546300
1 2.65495-10.20418 —0.1259114-i10.0387222 0.01435483i0.0097511
2 4.35897i0.20322 —0.0073706-i0.0075198 —0.0000022-10.0001108
3 5.76665-10.20034 —0.0118315-i0.0060227 0.000103710.0001425
4 7.01597i0.19733 —0.0050012-i10.0034528 0.0000131i0.0000345
5 8.16084-10.19449 —0.0040785-10.0025945 0.0000099i0.0000212
6 9.22943-10.19186 —0.0027452-10.0019065 0.0000039i0.0000104
7 10.23886-10.18944 —0.0021746-10.0015086 0.0000025i0.0000066

from discussions of the energy-time uncertainty relation. It isThe second integral involving the advanced Green’s function
important to note that the lifetimes are determined by thdn Eq.(23) is zero. The first integral picks up the poles of the
poles of the retarded energy Green'’s function, which is inderetarded Green'’s function and givéer ;€ ®,)
pendent of the initial state. In this sense, the lifetimes are
intrinsic to the physical system. The choice of a particular '}’n;’:
initial state only “picks” those lifetimes that are most im- |im<lfli|GR(E+i5)|{lli>=2 £
L . ~ 5—0 n —Zy

portant for it via the overlap integralg, and y,,.

The initial statey; is unstable. It will decay and therefore
it has associated with it a spectral width that is determined b
the poles of the energy Green’s function.

In terms of the energy eigenstaie&sy of the Hamiltonian

(H|E)=E|E) with E real the survival probability is pi(E)= 2I_7r ;

(24)

he second term in Eq22) is just the complex conjugate of
he first, so we finally obtain

*

')’n‘;’: Yn¥n

E-z, E-Z|

n

(25

() — Ja—iAt o\ ” —iEt/ :
A= 01 Cuile™ ™ i) e(t)f_wdE e Kyl EXEl ). After some algebra the spectral density of the initial state
(21) takes the form

The spectral density of the state is proportional to the 1\2
discontinuity of the energy Green’s function across the cut (F
[10] and is defined Pi(E):; n WE
—E 24+ —
pi(E)=(s|EXE]us) (E-Eqp)™+ zTn)
_ P ; 2m)% [ 1 ~ ~
= 27 IMICHIGTE+I DY) < E | 2 Re ) (- Epim(% 7% ||
5—0 T 27,
—(i|GAE—i18)| )] (22) (26)
However, The first term in square brackets is a “Lorentzian” centered
. R . at energyE,=Re(z,) and of width 1#,,. The second term in
LlslTo< YilGR(E+i0)[¢) square brackets is not quite a constant, so i{&) is not
simply a sum of Lorentzians. However, close to the peak of
o pi(E) the LorentziarlE—E,| becomes very small, so each term is
= lim f dE’ ECE+is well approximated by a Lorentzian f&~E,,.
6-07 7% ' The positions of the peaks as well as their widths are
i " (G| GRE" +ie)| ) determined by the positions of the poles of the energy
= lim lim _{f de’ - - ! Green'’s function and the choice of an initial state only picks
5060 2T | J—= E-E'+i4 those poles that are most relevant for it. It is important to

A remember that the spectral decomposition derived here holds
_ fw dE’ (| GH(E' —Te)|¢) 23) only for those initial states that are elementsdgf and not
® E-E'+id ' for all possible initial physical stateg; e L(?).
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FIG. 1. Spectral density of;=V/2e~ V2 for v=2 taking _ N
into account only the contributions from the poleszgtandz, (in FIG. 2. Survival probabilityP;(t). Curvea showsP;(t) when
dimensionless uniis only the poleszy and z; are taken into accour{in dimensionless

units). Curveb showsP;(t) when polesz_s, . .. ,z; are included.

. . . Already fort>1.5, the twi h hardly be distinguished f
In order to illustrate the techniques described above, w%;(fr?o)t/hg: © lwo grapns can hardly be distinguished from

consider the following example. For the Hamiltonian in Eq.

(2) we have choseW=2 and we have computed numeri-

Ca”y the positionszn of the po|es in the energy rangeG time interval, the survival probablllty has an eXponential de-

<Re(z,)<6 (see Table )l We take y;(x)=V/2e~ (VX cay, superposed by oscillations due to interference of the

e ®,, as our initial state. This is the bound eigenstate of thd€ms fromzy andz,. The time interval before exponential

S potential alone, in the absence of the constant field. Witflécay sets in is determined by poles with a short lifetime

the constant field “turned on'iy; is unstable. We have com- (Fig. 2). (Itis useful to note that the long-time decay of this

puted the “overlap integrals’,, for the poles in Table | and system is dominated by exponential decay because th(_are is

have listed them in Table I. no lower bound to the energy spectrum. For systems with a
The Lorentzians that are peaked in the rang@<E<6 lower bound, the long-time decay is dominated by power-

are those corresponding to poles;, . . . z;. The lifetimes 12w behavior{13].) , _

7,=1/2|Im(z,)| and the values of the overlap integral prod- W€ (z)have, used the Gelfand triplet of spaces

ucts 7,5/:: can be found in Table I. These indicate that theq)aCL co, to descn_?ﬁ d_zcay ?roqesses |ndthés simple

poleszy andz; give the most important contributions to the gpen _(guantumt system.h el Iea Ot using ex:en e Tshpacestr':o

spectral density;(E). In Fig. 1 we plot the spectral density escribe quantum mecnanical Systems IS not new. fhe math-

using only the contributions from the polesandz,. These emat|ca}l Just|f|cat|or[14] of the Dirac for.mahsm uses ex-

results agree qualitatively with the results of Cocke an ctly this pattern. Eigenstates of the position operéter, &

Reichl [12], who computed the short-time behavior of this unctions in the position represgr_ﬂat)oor the momentum
. . . erator(plane waves in the position representatiare al-
open system using a discrete set of energy eigenstates of R

)
finite model(a wall was placed far down the hill from th& loiwed, although they are not at all elementsLP), but
potentia), rather they belong to the Schwartz spae of tempered

We might execthat the sl provail( s SSTOTSAS, Sueh b e sosrees e
dominated byz, andz, at least for not too short times and y P phy P '

z,,Z3,... canagain be left out. However, we have found that L.E.R. wishes to acknowledge the Welch Foundation
for short timesz_,, ... ,z_5 must be taken into account to Grant No. F-1051 and DOE Contract No. DE-FGO03-
obtain the correct short-time behavior of the survival prob-94ER14405 for partial support of this work. J.C.N. wishes to
ability. The overlap integral products correspondingztg;, ~ thank the Fulbright Commission and the Federation of
andz_, make these negligible fall times. After an initial German-American Clubs for partial support.

[1] A. Ludviksson, J. Phys. &0, 4733(1987. [9] Handbook of Mathematical Functionatl. Bur. Stand. Appl.

[2] B. Misra and E. C. G. Sudarshan, J. Math. Phy8, 756 Math. Ser. No. 55, edited by M. Abramowitz and I. A. Stegun
(1977. (U.S. GPO Washington, DC, 1958

[3] A. Grossmann, J. Math. PhyS, 1025 (1964); 6, 54 (1969; [10] E. N. Economou,Green’s Functions in Quantum Physics
Commun. Math. Phy2, 1 (1966. (Springer-Verlag, Berlin, 1983

[4] A. Bohm, S. Maxson, M. Loewe, and M. Gadella, Physica A[11] J. C. Nickel, Master's thesis, University of Texas at Austin,
236, 485(1997). 1997 (unpublishegl

[5] I. M. Gel'fand and N. Ya. Vilenkin,Generalized Functions [12] S. Cocke and L. E. Reichl, Phys. Rev.5%, 4515(1995.
(Academic, New York, 1964 [13] S. Stenholm and A. Paloviita, J. Mod. Og#, 2533(1997.

[6] B. Simon, Ann. Math97, 247 (1973. [14] J. E. Roberts, J. Math. Phyg, 1097 (1966; Commun. Math.

[7] J. E. Avron and |. W. Herbst, Commun. Math. Ph$&, 239 Phys.3, 98 (1966; A. Bohm, International Center for Theo-
(1977); 1. W. Herbst,ibid. 64, 279 (1979. retical Physics Report No. 4, 1966npublishegl

[8] H. H. Hasegawa and D. J. Driebe, Phys. Rev5® 1781 [15] L. Schwartz, Theorie des Distributions (Hermann, Paris,
(1994. 1957).



