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Decay processes in an open Hamiltonian system
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A complex spectral decomposition is developed for the survival probability and spectral density of a simple
metastable state in an open quantum system. The time interval before exponential decay occurs is shown to be
dominated by the short-lived quasibound states of the system.@S1050-2947~98!05710-2#

PACS number~s!: 31.70.Hq, 02.90.1p, 03.65.Ge
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The detailed mechanisms by which metastable states f
and decay are of great interest for mesoscopic and ato
physics because they dominate the conductance and sc
ing properties of open quantum systems. In this paper
consider a model that can describe the process by whi
localized particle can tunnel out of a potential well and in
the continuum. The model we consider consists of a sin
particle in ad potential well in the presence of a consta
field. Ludviksson@1# showed that for this model the singu
larities of the energy Green’s function can be found fai
easily. We will obtain numerical values for the domina
poles~quasibound states! of the energy Green’s function fo
this system and show under what conditions these poles
be used to construct a spectral decomposition of the surv
probability and spectral density of initial states. As Mis
and Sudarshan@2# proved, the very short time decay of met
stable states cannot be exponential. In this paper we find
spectral features that give rise to early nonexponential de
of our metastable particle.

The spectral decomposition of the survival probabil
and spectral density makes use of generalized eigens
associated with complex eigenvalues that are found by a
lytic continuation of the energy Green’s function. A theore
ical framework for the complex spectral decomposition h
been developed by Grossmann@3# ~called nested Hilbert
spaces! and also by Bohmet al. @4# ~called rigged Hilbert
spaces!, based on mathematical concepts introduced
Gel’fand and Vilenkin@5#. The method has been used by
number of authors to discuss properties of open quan
systems@6,7,4# and it has been used in the study of chao
maps@8#.

In the present paper we use a complex spectral decom
sition to study the dynamical properties of Ludviksson
model. We will first derive complex spectral decompositio
of the survival probability and spectral density, respective
for a certain class of initially localized states. We then co
pute the survival probability and spectral density for a s
cific example and show the mechanism by which exponen
decay begins to emerge. We end with some concluding
marks.

We consider the motion of a particle of massm in one
space dimension moving in the presence of a constant f
F and an attractive d-function potential V(r )
52Vd(r ). The Hamiltonian operator is

Ĥ8~r !52
\2

2m S ]

]r D
2

2Vd~r !2Fr ~1!
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and has a continuum of energy eigenvaluesE8. If we intro-
duce a dimensionless lengthx5k0r , with k0
5(2mF/\2)1/3, and a dimensionless potential strengthV
5Vk0

2/F, the Hamiltonian becomes

Ĥ~x!52S ]

]xD 2

2Vd~x!2x, ~2!

with the eigenenergies changed toE5E8k0 /F.
Ludviksson@1# has computed the retarded and advanc

energy Green’s functionsGR(x,x8;E1 id)5^xu(E2Ĥ

1 id)21ux8& and GA(x,x8;E2 id)5^xu(E2Ĥ2 id)21ux8&,
respectively, for this system (E andd are real andd.0!. He
finds

GR/A~x,x8;z!5G0
R/A~x,x8;z!2

G0
R/A~x,0;z!G0

R/A~0,x8;z!

1

V
1G0

R/A~0,0;z!

,

~3!

where z5E6 id and G0
R(x,x8;z) and G0

A(x,x8;z) are the
retarded and advanced energy Green’s functions, res
tively, whenV50. They are given by

G0
R/A~x,x8;z!52p3H Ai ~2x2z!Ci6~2x82z!, x<x8

Ci6~2x2z!Ai ~2x82z!, x>x8,
~4!

where Ci6ªBi6 iAi and Ai and Bi are Airy functions@9#.
The Green’s functionsGR(x,x8;E1 id) and GA(x,x8;E
2 id) (d.0) have no singularities other than a cut along t
entire real axis. For x,x8→6` and E6 id fixed,
GR(x,x8;E1 id) and GA(x,x8;E2 id) are bounded, i.e.
they satisfy the same boundary conditions as do the solut
of the stationary Schro¨dinger equation.

If we are given an initial statec(x,0)5c i(x) at t50, its
time evolution towards the future(t.0) is determined by
the retarded Green’s function@10#

c~x;t !5
i

2p
lim
d→0

E
2`

`

dx8E
2`1 id

`1 id
dz e2 iztGR~x,x8;z!c i~x8!.

~5!

The contour for thez integration must be closed by a sem
circle in the lower half of the complex plane. Therefore, it
necessary to analytically continueGR(x,x8;z) into the lower
half plane because of the cut along the real axis. For comp
4210 ©1998 The American Physical Society
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z in the lower half plane,GR(x,x8;z) is not bounded for
x,x8→6`. Furthermore, it has simple poles at complex v
uesz5zn , determined by the condition

1

V
1G0

R~0,0;zn!50. ~6!

The integral on the semicircle part of the contour vanis
once its radius goes to infinity@1,11#. By the theorem of
residues one obtains

c~x;t !5E
2`

`

dx8(
n

Res
z5zn

@e2 iztGR~x,x8;z!#c i~x8!. ~7!

The sum goes over the poles ofGR(x,x8;z), all of which lie
in the lower half of the complexz plane (2p<argz<0).

Ludviksson found that the poles are simple and that
residues at these poles take the form

Res
z5zn

@e2 iztGR~x,x8;z!#5e2 izntcn~x!cn~x8!

[e2 izntcn~x!c̃n* ~x8!. ~8!

The explicit form ofcn(x) is

cn~x!5pS 2
]

]z
G0

R~0,0;z!U
z5zn

D 21/2

3H Ci1~2zn!Ai ~2x2zn!, x<0

Ai ~2zn!Ci1~2x2zn!, x>0.
~9!

In order to retain the usual form of the duality^ u & @cf. Eqs.
~16! and ~17! below#, we have defined

c̃n~x!5cn* ~x!, ~10!

where* denotes complex conjugation. Ludviksson@1# also
found that the functioncn satisfies the condition

Ĥ~x!cn~x!5zncn~x! @and henceĤ~x!c̃n* ~x!5znc̃n* ~x!#,
~11!

socn is the right eigenstate andc̃n is the left eigenstate ofĤ
with respect to the eigenvaluezn . The statescn and c̃n are
called generalized eigenstates because they do not belo
the Hilbert space of possible physical states. They are
square integrable (¹L (2)). They do, however, belong to
larger spaceFa8 . Using the asymptotic expressions for Air
functions@9#, one can prove that

cn ,c̃nPFa8 ªH c;E
2`

`

dxuc~x!u2e2uxua,`J ~12!

for any a.1/2.
The fact that the functionscn andc̃n are not square inte

grable implies that the integrals

I n5E
2`

`

dx cn~x!c i~x! ~13!
-

s

e

to
ot

do not necessarily exist for an arbitrary initial statec i even
though c i is square integrable. Therefore, we may not
ways exchange the infinite sum and the integral in Eq.~7!.
We may only do this if Eq.~13! exists for alln. This im-
poses restrictions on the set of initial statesc i(x) we can
work with if we want to perform the integration in the sp
cific way we are considering here.

Let us define another space

Fa ªH c;E
2`

`

dxuc~x!u2euxua,`J . ~14!

From the definitions~12! and ~14! it is obvious that
Fa,L (2),Fa8 . If wPFa andcPFa8 , then

E
2`

`

dx c* ~x!w~x! ~15!

exists and by such an integral one can denote the du
betweenFa and its dual spaceFa8 . The three spacesFa ,
L (2), andFa8 form a ‘‘Gel’fand triplet.’’

If the initial statec i belongs to the spaceFa , then the
integrals~13! exist and Eq.~7! can be written

c~x;t !5(
n

e2 izntcn~x!S E
2`

`

dx8c̃n* ~x8!c i~x8! D ~16!

or, more formally,

uc~ t !&5(
n

e2 izntucn&^c̃nuc i&. ~17!

Note that^c̃nuc i& is not the usual scalar product defined
Hilbert space sincecn¹L (2), but it is the duality between
the spacesFa8 andFa .

Equation ~17! can lead to exponential decay of som
physical quantities including the survival probability. Th
survival amplitudeAi(t) for an initial statec i is defined
Ai(t)5^c i uc(t)&. If c iPFa , then the survival amplitude
can be written

Ai~ t !5^c i uc~ t !&5(
n

e2 iznt^c i ucn&^c̃nuc i& ~18!

and the survival probability can be written

Pi~ t !5uAi~ t !u25(
n8

(
n

ei ~z
n8
* 2zn!tgng̃n* gn8

* g̃n8 , ~19!

wheregn and g̃n are the overlap integrals

gn5^c i ucn&, g̃n5^c i uc̃n&. ~20!

If only a single termn5n85n0 contributes in Eq.~19!, then
the survival probability decays in a purely exponential ma
ner with a lifetime tn0

51/2uIm(zn0
)u. However, if two or

more terms contribute, the decay will be much more co
plex and generally will contain oscillations.

The complex spectral decomposition given in Eq.~17!
allows for anexplicit description of decay phenomena rath
than just an average lifetime estimate as it is usually obtai
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TABLE I. The most important poles and associated overlap integrals for the example from Sec. I

n Positionzn Overlap integralgn(5g̃n* ) Productgng̃n*

27 25.089482 i9.08886 0.00238121 i0.0058470 20.00002851 i0.0000278
26 24.592652 i8.22096 20.00193652 i0.0149192 20.00021881 i0.0000578
25 24.068892 i7.30278 20.02784651 i0.0106945 0.00066112 i0.0005956
24 23.511342 i6.31988 0.03087081 i0.0196142 0.00056831 i0.0012110
23 22.909492 i5.24829 20.01560322 i0.0895955 20.00778391 i0.0027959
22 22.245642 i4.04168 20.19951181 i0.0554497 0.03673032 i0.0221257
21 21.487702 i2.57804 0.09176291 i0.3441265 20.110003 1 i0.0631561

0 21.147642 i0.18960 1.03258112 i0.0264531 1.06552402 i0.0546300
1 2.654952 i0.20418 20.12591142 i0.0387222 0.01435431 i0.0097511
2 4.358972 i0.20322 20.00737002 i0.0075198 20.00000221 i0.0001108
3 5.766652 i0.20034 20.01183152 i0.0060227 0.00010371 i0.0001425
4 7.015972 i0.19733 20.00500122 i0.0034528 0.00001311 i0.0000345
5 8.160842 i0.19449 20.00407852 i0.0025945 0.00000991 i0.0000212
6 9.229432 i0.19186 20.00274522 i0.0019065 0.00000391 i0.0000104
7 10.238802 i0.18944 20.00217462 i0.0015086 0.00000251 i0.0000066
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from discussions of the energy-time uncertainty relation. I
important to note that the lifetimes are determined by
poles of the retarded energy Green’s function, which is in
pendent of the initial state. In this sense, the lifetimes
intrinsic to the physical system. The choice of a particu
initial state only ‘‘picks’’ those lifetimes that are most im
portant for it via the overlap integralsgn and g̃n .

The initial statec i is unstable. It will decay and therefor
it has associated with it a spectral width that is determined
the poles of the energy Green’s function.

In terms of the energy eigenstatesuE& of the Hamiltonian
(ĤuE&5EuE& with E real! the survival probability is

Ai~ t !5u~ t !^c i ue2 iĤ tuc i&5u~ t !E
2`

`

dE e2 iEt^c i uE&^Euc i&.

~21!

The spectral density of the statec i is proportional to the
discontinuity of the energy Green’s function across the
@10# and is defined

r i~E!5^c i uE&^Euc i&

5
i

2p
lim
d→0

@^c i uGR~E1 id!uc i&

2^c i uGA~E2 id!uc i&#. ~22!

However,

lim
d→0

^c i uGR~E1 id!uc i&

5 lim
d→0

E
2`

`

dE8
r i~E8!

E2E81 id

5 lim
d→0

lim
e→0

i

2p F E
2`

`

dE8
^c i uGR~E81 i e!uc i&

E2E81 id

2E
2`

`

dE8
^c i uGA~E82 i e!uc i&

E2E81 id G . ~23!
s
e
-
e
r

y

t

The second integral involving the advanced Green’s funct
in Eq. ~23! is zero. The first integral picks up the poles of th
retarded Green’s function and gives~for c iPFa!

lim
d→0

^c i uGR~E1 id!uc i&5(
n

gng̃n*

E2zn
. ~24!

The second term in Eq.~22! is just the complex conjugate o
the first, so we finally obtain

r i~E!5
i

2p (
n

F gng̃n*

E2zn
2

gn* g̃n

E2zn*
G . ~25!

After some algebra the spectral density of the initial st
takes the form

r i~E!5(
n F S 1

2tn
D 2

~E2En!21S 1

2tn
D 2G

3F ~2tn!2

p S 1

2tn
Re~gng̃n* !2~E2En!Im~gng̃n* ! D G .

~26!

The first term in square brackets is a ‘‘Lorentzian’’ center
at energyEn5Re(zn) and of width 1/tn . The second term in
square brackets is not quite a constant, so thatr(E) is not
simply a sum of Lorentzians. However, close to the peak
the LorentzianuE2Enu becomes very small, so each term
well approximated by a Lorentzian forE'En .

The positions of the peaks as well as their widths
determined by the positions of the poles of the ene
Green’s function and the choice of an initial state only pic
those poles that are most relevant for it. It is important
remember that the spectral decomposition derived here h
only for those initial states that are elements ofFa and not
for all possible initial physical statesc iPL (2).
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In order to illustrate the techniques described above,
consider the following example. For the Hamiltonian in E
~2! we have chosenV52 and we have computed numer
cally the positionszn of the poles in the energy range26
<Re(zn)<6 ~see Table I!. We take c i(x)5AV/2e2(V/2)uxu

PFa as our initial state. This is the bound eigenstate of
d potential alone, in the absence of the constant field. W
the constant field ‘‘turned on’’c i is unstable. We have com
puted the ‘‘overlap integrals’’gn for the poles in Table I and
have listed them in Table I.

The Lorentzians that are peaked in the range26<E<6
are those corresponding to polesz27 , . . . ,z3 . The lifetimes
tn51/2uIm(zn)u and the values of the overlap integral pro
ucts gng̃n

* can be found in Table I. These indicate that t
polesz0 andz1 give the most important contributions to th
spectral densityr i(E). In Fig. 1 we plot the spectral densit
using only the contributions from the polesz0 andz1 . These
results agree qualitatively with the results of Cocke a
Reichl @12#, who computed the short-time behavior of th
open system using a discrete set of energy eigenstates
finite model~a wall was placed far down the hill from thed
potential!.

We might expect that the survival probabilityPi(t) is also
dominated byz0 andz1 at least for not too short times an
z2 ,z3 ,... canagain be left out. However, we have found th
for short times,z21 , . . . ,z25 must be taken into account t
obtain the correct short-time behavior of the survival pro
ability. The overlap integral products corresponding toz26
andz27 make these negligible forall times. After an initial

FIG. 1. Spectral density ofc i5AV/2e2(V/2)uxu for V52 taking
into account only the contributions from the poles atz0 andz1 ~in
dimensionless units!.
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time interval, the survival probability has an exponential d
cay, superposed by oscillations due to interference of
terms fromz0 andz1 . The time interval before exponentia
decay sets in is determined by poles with a short lifeti
~Fig. 2!. ~It is useful to note that the long-time decay of th
system is dominated by exponential decay because the
no lower bound to the energy spectrum. For systems wit
lower bound, the long-time decay is dominated by pow
law behavior@13#.!

We have used the Gel’fand triplet of spac
Fa,L (2),Fa8 to describe decay processes in this sim
open quantum system. The idea of using extended spac
describe quantum mechanical systems is not new. The m
ematical justification@14# of the Dirac formalism uses ex
actly this pattern. Eigenstates of the position operator~i.e., d
functions in the position representation! or the momentum
operator~plane waves in the position representation! are al-
lowed, although they are not at all elements ofL (2), but
rather they belong to the Schwartz spaceS8 of tempered
distributions@15#. Such non-normalizable eigenstates are
tremely useful for the description of physical processes.
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FIG. 2. Survival probabilityPi(t). Curvea showsPi(t) when
only the polesz0 and z1 are taken into account~in dimensionless
units!. Curveb showsPi(t) when polesz25 , . . . ,z1 are included.
Already for t.1.5, the two graphs can hardly be distinguished fro
each other.
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