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Bures fidelity of displaced squeezed thermal states
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Fidelity has always been an important concept in quantum optics. Recently, it was found that fidelity can
also play a key role in quantum information and communication theory. Fidelity can be interpreted as the
probability that a decoded message possesses the same information content as the message prior to coding and
transmission. In this paper, we give a formula of Bures fidelity for displaced squeezed thermal states directly
by the displacement and squeezing parameters and briefly discuss how the results can apply to quantum
information theory.@S1050-2947~98!05711-4#

PACS number~s!: 42.50.Dv, 03.67.Hk, 03.65.Fd
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Bures fidelity has been an important concept in the fi
of quantum optics~see, for example, Ref.@1#!. Recently, its
importance has also been demonstrated in quantum info
tion and communication theory. An important tenet in cla
sical information theory is the rigorous establishment of
Shannon noiseless coding theorem, in which one shows
the Shannon entropy can be interpreted as the average
ber of bits needed to code the output of a message so
under ideal conditions. The analogous quantum version
the Shannon coding theorem is the Schumacher quan
coding theorem@2#. In the quantum version, one introduc
the idea of fidelity, which can be interpreted as the proba
ity that a decoded message carries the same informatio
the message prior to coding. More specifically, one c
prove the Schumacher noiseless coding theorem, w
states that ifM is a quantum signal source with signal e
semble described by the density operatorr then ; d,e
.0:

~i! If S(r)1d qubits are available perM signal, then, for
sufficiently largeN, groups ofN signals from the signa
sourceM can be transposed through the available qubits w
fidelity F.(12e).

~ii ! If S(r)2d qubits are available perM signal, then, for
sufficiently largeN, groups ofN signals from the signa
sourceM can be transposed through the available qubits w
fidelity F,e. S(r) denotes the von Neumann entropy f
the signal.

Suppose a quantum signal sourceM generates a signa
stateu i A& with probability p(a) and the density operatorr is
described by the equation

r5(
a

p~a!uaM&^aMu, ~1!

one can define the Schumacher fidelityF as the overall prob-
ability that a signal from an ensembleM can be transmitted
to M 8 using the relation@2,3#
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F5(
a

p~a!Tr~para8!, ~2!

wherepa[uaM&^aMu andra8 denotes the density operator o
the final signal inM 8. This definition applies strictly to pure
states and it is generally not clear how it can be applied
mixed states.

Closely related to the problem of coding is the process
entanglement purification protocol~EPP! and quantum error-
correction codes~QECC! @4,5#. These protocols essentiall
shield quantum states from the environment. In EPP, m
mally entangled states are extracted~or purified! from a
mixed states while in QECC, an arbitrary quantum state
transmitted at some rate through a noisy channel with m
mal degradation. Central to the idea of entanglement is
need to define a measure of entanglement. Bennett and
ers have proposed a measure of entanglement using the
Neumann entropy. However, it is sometimes difficult
compute and obtain a closed form using their definition. R
cently, Vedral and others have studied a wide class of m
sures suitable for entanglement and they have proposed
Bures metric as an example of a possible means of quan
ing entanglement or fidelity@6#.

It is well known that experimentally a squeezed elect
magnetic field@7# provides a means of overcoming the sta
dard quantum limit for noise imposed by vacuum fluctu
tions. Furthermore, although the number-state channel is
optimal channel for quantum communication theory, it is o
ten more realistic to consider the quadrature-squeezed c
nel @8# experimentally for several reasons. Firstly, one ca
not faithfully reproduce the number eigenstates easily
secondly amplification of a quadrature-squeezed channel
be realized experimentally using a phase-sensitive ampli
Clearly, one should therefore investigate the plausibility
applying squeezed or displaced squeezed thermal state
quantum information and communication theory.

Recently, Twamley@9# has calculated the Bures fidelit
for squeezed thermal states. Due to some technical diffi
ties, the displaced squeezed states was not considered i
article. Very recently, Scutaru@10# proposed an approach t
calculate the Bures fidelity for systems with a quadra
Hamiltonian. Unfortunately, a closed form for the matrix e
4186 ©1998 The American Physical Society
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ements of the density operator is not explicitly given and
final result does not relate fidelity directly with the squeez
and displacement parameters. In fact, Paraoanu and Sc
have obtained, in a more recent paper@11#, an explicit form
for the Bures fidelity for two displaced thermal states. In t
article, we show an alternative method in which we can
tually calculate the fidelity of displaced squeezed therm
states by simply using the Baker-Campbell-Hausdorff~BCH!
formula. We have also calculated a closed-form result for
Bures fidelity. This fidelity is expressed directly in terms
the parameters found in the density operator for two d
placed squeezed thermal states.

Squeezed states occur in a myriad of nonlinear opt
phenomena such as optical parametric oscillation and f
wave mixing@12#. The single-mode squeezed states can
generated from the vacuum by the action of the squee
operatorS,

S~z!5exp@ 1
2 ~z* a22za†2!#, ~3!

where z5reif is a complex number with modulusr and
argumentf, representing the squeezing parameter andz* is
e

tu
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the complex conjugate ofz. The density operator of dis
placed squeezed thermal states can be defined as

r5Z~b!DSLS†D†, ~4!

whereD5exp@(a†,a)(2k*
k )# andS5exp@ 1

2r(a
22a†2)# are uni-

tary operators. Furthermore, in Eq.~4!, the operatorL and
the normalization factorZ(b) are given respectively by
exp@2(b/2)(aa†1a†a)# and (trL)21 where b is the in-
verse temperature.@The dagger symbol in Eq.~4! denotes
Hermitian conjugate.# Note that we have considered th
squeezing parameter to be real since the most importan
rameter of a squeezed state is the squeezed factorr and not
its argumentf @13#. The general case in which the argume
f is nonzero can be treated similarly. We next recall that
Bures fidelityF can be defined by the relation

F5~ trAr1
1/2r2r1

1/2!2. ~5!

For two displaced squeezed thermal states, the Bures fid
can be expressed as
F5Z~b1!Z~b2!@ tr A~D1S1L1
1/2S1

†D1
†!~D2S2L2S2

†D2
†!~D1S1L1

1/2S1
†D1

†!#2 ~6a!

5Z~b1!Z~b2!~ tr AL1
1/2S1

†D1
†D2S2L2S2

†D2
†D1S1L1

1/2!2. ~6b!
H

tor
r

To simplify Eq. ~6!, we need to rewriteD1
†D2 as

D1
†D25D05expF ~a†,a!S g

2g* D G , ~7!

where

S g

2g* D 5S k22k1*

2~k22k1* !* D .

Thus, the formula for Bures fidelity of displaced squeez
thermal states becomes

F5Z~b1!Z~b2!~ trAL1
1/2S1

†D0S2L2S2
†D0

†S1L1
1/2!2.

~8!

Equation~8! needs some simplification before we can ac
ally proceed with the detailed calculations. Before we
this, we need to invoke the BCH relation@12,14#,

S~a†,a!S†5~a†,a!M ; S†~a†,a!S5~a†,a!M 21, ~9!

where

M5S coshr 2sinhr

2sinhr coshr D
and

L~a†,a!L215~a†,a!B. ~10!
d

-
o

Note that in Eq.~10!, we have introduced the matrix

B[S exp~2b! 0

0 exp~b!
D .

Let us define the matrixV as L1
1/2S1

†D0S2L2S2
†D0

†S1L1
1/2

in Eq. ~8!. It is instructive to note that, by using the BC
formula, we can readily express the matrixV in a more
convenient form as

V5L1
1/2S1

†S2L2
1/2expF ~a†,a!B2

21/2M2
21S g

2g* D G
3expF2~a†,a!B2

1/2M2
21S g

2g* D GL2
1/2S2

†S1L1
1/2,

~11!

whereBi andMi @according to the notation in Eq.~10!# are
the matrices

S exp~2b i ! 0

0 exp~b i !
D , S coshr i 2sinhr i

2sinhr i coshr i
D , i 51,2,

respectively. The linear terms within the exponential fac
in the above formula~11! can be collapsed into a simple
term by using the following results~see Appendix for a de-
tailed proof!:
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expF ~a†,a!N1S z1

z2
D GexpF ~a†,a!N2S z3

z4
D G

5expF2
1

2
~z1 ,z2!Ñ1SN2S z3

z4
D GexpF ~a†,a!N1S z1

z2
D

1~a†,a!N2S z3

z4
D G ~12!

whereN1 ,N2 are arbitrary 232 complex matrices,S is the
matrix (21

0
0
1) andz is an arbitrary complex number.@In Eq.

~12!, the tilde above the matrixN1 denotes the transpose o
the matrix.# In this manner, we see that

V5G1r1expF ~a†,a!~B2
21/22B2

1/2!M2
21S g

2g* D Gr2

~13!

and

G15expF1

2
~g,2g* !M̃2

21B2
21/2SB2

1/2M2
21S g

2g* D G ,
~14!

r15L1
1/2S1

†S2L2
1/2, r25L2

1/2S2
†S1L1

1/2. ~15!

Let us now consider another operator

V85Ur1r2U†, ~16!

where U5exp@(a†,a)(2l*
l )#. If we apply the BCH formula

again, we see that

V85r1expF ~a†,a!B2
21/2M2

21M1B1
21/2S l

2 l * D G
3expF2~a†,a!B2

1/2M2
21M1B1

1/2S l

2 l * D Gr2

~17!

⇒V85G2r1expF ~a†,a!~B2
21/2M2

21M1B1
21/2

2B2
1/2M2

21M1B1
1/2!S l

2 l * D Gr2 ~18!

and

G25expF1

2
~ l ,2 l * !B1

21/2M̃1M̃2
21B2

21/2S

3B2
1/2M2

21M1B1
1/2S l

2 l * D G . ~19!

Setting
~B2
21/2M2

21M1B1
21/22B2

1/2M2
21M1B1

1/2!S l

2 l * D
5~B2

21/22B2
1/2!M2

21S g

2g* D ~20!

we get

V5
G1

G2
V8, ~21!

~ trAV!25
G1

G2
~ trAUr1r2U1!25

G1

G2
~ trAr1r2!2,

~22a!

F5
G1

G2
Z~b1!Z~b2!~ trAr1r2!2. ~22b!

Since Z(b1)Z(b2)(trAr1r2)2 has already been compute
in Ref @9#, we can solve the whole problem by consideri
the reduced calculation ofG1 /G2 . Following the Twamley
paper, the quantityZ(b1)Z(b2)(trAr1r2)2 in Eq. ~22! can
be written as

Z~b1!Z~b2!~ trAr1r2!25
2sinh~b1/4!sinhb2/4

AY21
, ~23!

where

Y5cosh2~r 12r 2!cosh2~b11b2!/4

2sinh2~r 12r 2!cosh2~b12b2!/4.

From Eqs.~19! and ~20!, it follows that

G25expH 1

2
~ l ,2 l * !B1

21/2M̃1M̃2
21B2

21/2
•S•

3FB2
21/2M2

21M1B1
21/2S l

2 l * D
2~B2

21/22B2
1/2!M2

21S g

2g* D G J . ~24!

It is instructive to note that the matricesB and M are all
symplectic matrices, so that we have

~ l ,2 l * !B1
21/2M̃1M̃2

21B2
21/2SB2

21/2M2
21M1B1

21/2S l

2 l * D
5~ l ,2 l * !SS l

2 l * D 50. ~25!

With this observation, it is straightforward to see that E
~19! can be simplified as
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G25expF2
1

2
~ l ,2 l * !B1

21/2M̃1M̃2
21B2

21/2

3S~B2
21/22B2

1/2!M2
21S g

2g* D G . ~26!

To obtain the final explicit form ofG2 , we have from Eq.
~20!

~ l ,2 l * !5~g,2g* !M̃2
21~B2

21/22B2
1/2!P̃21, ~27!

where the matrix P[(B2
21/2M2

21M1B1

2B2
1/2M2

21M1B1
1/2). If we plug Eq.~27! into Eq. ~26!, we

arrive at the following formula for calculation ofG2 :
o
ed
G25expF2
1

2
~g,2g* !M̃2

21~B2
21/22B2

1/2!P̃21B1
21/2

3M̃1M̃2
21B2

21/2S~B2
21/22B2

1/2!M2
21S g

2g* D G .
~28!

In our case, it is not difficult to evaluate the expression
G1 andG2 explicitly. To do this, we note that if we denote

G15expF1

2
~g,2g* !Q1S g

2g* D G , ~29!

then the matrixQ1 is simply
Q15S sinhb2sinh~2r 2! coshb21sinhb2cosh~2r 2!

2coshb21sinhb2cosh~2r 2! sinhb2sinh~2r 2!
D . ~30!

For G2 , a straightforward computation for the matrixP yields

P5
1

DS sinh
b21b1

2
cosh~r 12r 2! sinh

b22b1

2
sinh~r 12r 2!

2sinh
b22b1

2
sinh~r 12r 2! 2sinh

b21b1

2
cosh~r 12r 2!

D ~31!

with D5coshb1coshb21sinhb1sinhb2cosh 2(r12r2)21, so that if we denote

G1

G2
5expH 1

2
~g,2g* !RS g

2g* D J , ~32!

then a straightforward, albeit tedious, calculation yields

R5S 0 1

21 0D 1
2

D
sinhb1sinh2

b2

2 S sinh~2r 1! cosh~2r 1!

cosh~2r 1! sinh~2r 1!
D 1

2

D
sinh2

b1

2
sinhb2S sinh~2r 2! cosh~2r 2!

cosh~2r 2! sinh~2r 2!
D ~33!
s
by

r

so that the factorG1 /G2 works out explicitly into

expH 1

D
~e11e2!J , ~34!

where

e15sinhb1sinh2
b2

2
@~g21g* 2!sinh 2r 122ugu2cosh 2r 1#,

~35a!

e25sinh2
b1

2
sinhb2@~g21g* 2!sinh 2r 222ugu2cosh 2r 2#.

~35b!

We can easily show that thatG1 /G2,1 as it should be
and that in the limitg5g* 50, the ratio reduces to unity s
that we obtain the Bures fidelity for the undisplac
squeezed states as shown in Ref.@9#. Further, we should also
note that in the limit whenr 50, we get the Bures fidelity for
the displacedunsqueezedthermal coherent states. This Bure
fidelity is the same as the result previously obtained
Paraoanu and Scutaru@11#.

APPENDIX

In this appendix, we shall explicitly show the proof fo
Eq. ~12!. For simplicity and convenience, we defineV i as
the expression

V i5~a†,a!Ni S z2i 21

z2i
D for i 51,2. ~A1!

To show Eq.~12!, we need to computeeV1eV2. SinceN1
andN2 are simply two arbitrary 232 matrices, in all gener-
ality they can be written as

N15S a d

b cD , N25S e h

f gD . ~A2!

We next compute the commutator forV1 andV2 .
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@V1 ,V2#52~az11dz2!~ f z31gz4!

1~bz11cz2!~ez31hz4!. ~A3!

On the other hand, we should note that

~z1 ,z2!Ñ1SN2S z3

z4
D

5~z1 ,z2!S a b

d cD S 0 1

21 0D S e h

f gD S z3

z4
D

5~az11dz2 ,bz11cz2!S 0 1

21 0D S ez31hz4

f z31gz4
D

5~2bz12cz2 ,az11dz2!S ez31hz4

f z31gz4
D ~A4a!
hy

K.

J.

.

R.
52~bz11cz2!~ez31hz4!1~az11dz2!~ f z3

1gz4!. ~A4b!

Consequently, using Baker-Campbell-Hausdorff formu
one gets

eV1eV25e1/2[V1 ,V2]eV11V2 ~A5a!

5expF2
1

2
~z1 ,z2!Ñ1SN2S z3

z4
D GexpF ~a†,a!N1S z1

z2
D

1~a†,a!N1S z3

z4
D G . ~A5b!
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