PHYSICAL REVIEW A VOLUME 58, NUMBER 5 NOVEMBER 1998
Non-Markovian quantum fluctuations and superradiance near a photonic band edge

Nipun Vats and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
(Received 9 June 1998

We discuss a point model for the collective emission of light fidrwo-level atoms in a photonic band-gap
material, each with an atomic resonant frequency near the edge of the gap. In the limit of a low initial
occupation of the excited atomic state, our system is shown to possess atomic spectra and population statistics
that are radically different from free space. For a high initial excited-state population, mean-field theory
suggests a fractionalized inversion and a macroscopic polarization for the atoms in the steady state, both of
which can be controlled by an external dc field. This atomic steady state is accompanied by a nonzero
expectation value of the electric field operators for field modes located in the vicinity of the atoms. The nature
of homogeneous broadening near the band edge is shown to differ markedly from that in free space due to
non-Markovian memory effects in the radiation dynamics. Non-Markovian vacuum fluctuations are shown to
yield a partially coherent steady-state polarization with a random phase. In contrast with the steady state of a
conventional laser, near a photonic band edge this coherence occurs as a consequence of photon localization in
the absence of a conventional cavity mode. We also introduce a classical stochastic function with the same
temporal correlations as the electromagnetic reservoir, in order to stochastically simulate the effects of vacuum
fluctuations near a photonic band edff®@1050-294{@8)04511-9

PACS numbeps): 42.50.Fx, 42.50.Lc, 42.70.Qs

I. INTRODUCTION photonic band edgd14,15 have shown that this non-
Markovian system reservoir interaction gives rise to phe-
In recent years, photonic band-g@@BG) structures have nomena such as oscillatory behavior and a fractional steady
been shown to lead to the localization of lighf] through  state population for a single excited atomic state, as well as
the carefully engineered interplay between microscopic scatracuum Rabi splitting and a subnatural linewidth for atomic
tering resonances and the coherent interference of lighemission.
from many such scatterefg]. Since the initial proposal of We consider the Dicke mod¢ll6,17] for the collective
photonic band gapg3,4], PBG materials exhibiting photon emission of light, or superradiance, frohh identical two-
localization have been fabricated at microwave frequenciekevel atoms with a transition frequency near a photonic band
[5] and more recently, large-scale two-dimensional PBG sysedge. The study of superradiant emission is of interest not
tems have been produced in the near-infrd@d The ulti-  only in its own right, but also because it provides a valuable
mate goal for laser applications is a full three-dimensionalparadigm for understanding the self-organization and emis-
PBG at optical frequencief7—10. A PBG comprises a sion properties of a band-edge laser. Of late, there has been a
range of frequencies over which linear photon propagation isesurgence of interest in superradiance in the context of su-
prohibited. Therefore, atoms with transition frequenciesperradiant lasing actiofil8], and due to the experimental
within the gap do not experience the usual fluctuations in theealization of a true Dicke superradiant system using laser-
electromagnetic vacuum that are responsible for spontaneogsoled atoms[19]. A low threshold microlaser operating
decay. Instead, a photon-atom bound state is forfiddl near a photonic band edge may exhibit unusual dynamical,
Unlike the suppression of spontaneous emission from aspectral, and statistical properties. We will show that such
atom in a high®Q optical microcavity{12], the bound photon effects are already evident in band-edge collective spontane-
may tunnel many optical wavelengths away from the atonpus emission. A preliminary study of band-edge superradi-
before being reabsorbed. Near a photonic band edge, trance for atoms resonant with the band ef2@ has shown
photon density of states is rapidly varying, making it dra-that for an atomic system prepared initially with a small
matically different from thew? dependence found in free collective atomic polarization, a fraction of the superradiant
space. This implies that the nature of vacuum fluctuationemission remains in the vicinity of the atoms, and a macro-
and thus of spontaneous emission near a band edge is radicopic polarization emerges in the collective atomic steady
cally different from the exponential decay found in free state. In addition to this form of spontaneous symmetry
space[13]. More fundamentally, the correlation time of the breaking, it has been demonstrated that superradiant emis-
electromagnetic vacuum fluctuations near a band edge is neton can proceed more quickly and with greater intensity
negligibly small on the time scale of the evolution of an near a photonic band edge than in free space. In the absence
atomic system coupled to the electromagnetic field. In factpf an initial atomic polarization, the early stages of super-
the reservoir exhibits long-range temporal correlations, makradiance are governed by fluctuations in the electromag-
ing the temporal distinction between atomic system and elemetic vacuum near the band edge. These fluctuations affect
tromagnetic reservoir unclear. This renders the usual Bornthe dynamics of collective decay and will determine the
Markov approximation scheme invalid for band edgequantum limit of the linewidth of a laser operating near a
systems. Studies of single atom spontaneous emission neaphotonic band edge.
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The organization of the paper is as follows. In Sec. I, weThe J;; are collective atomic operators, defined by the rela-
present the quantum Langevin equations for collectivetion J;=3}_,|i)(jl; i,j=1,2, whereli), denotes théth
atomic dynamics in band-edge superradiance. In Sec. lll, wisvel of thekth atom. Using the Hamiltonia(2.1), we may
calculate an approximate, analytic solution for the equationgyrite the Heisenberg equations of motion for the operators of
that describe thél-atom system with low initial inversion of the field modesa, (t), the atomic inversionJ;(t)=J,,(t)
the atomic population. We show that the atoms can exhibit- Ji4(t), and the atomic system’s collective polarization,
novel emission spectra and a suppression of population flugt, t):
tuations near a band edge. Sections IV and V treat the case of
high initial inversion. In Sec. IV, the mean-field results of d _

Ref. [20] are extended to the case of atoms with resonant g (O=—1aa, (0 +0g)J1AV), (2.2
frequencies displaced from the band edge. It is shown that

the phase and amplitude of the collective atomic polarization d

can be controlled by an external field that Stark shifts the d—J3(t):—22 gyJo(t)a,(t)+H.c., 2.3
atomic transition relative to the band edge. The dissipative t A

effect of dipole dephasing is also included in the framework

of our non-Markovian system. Section V describes superra-

diant emission under the influence of vacuum fluctuations by giJd b= ; grJa(t)ay(t). (2.4
exploiting the temporal division of superradiance into quan-
tum and semiclassical regimes. We find that the system ex-
hibits a macroscopic steady-state polarization amplitude witrpn
a phase precession triggered by band-edge quantum ﬂucw@E}s.(Z.B) and(2.4). The equations of motion for the collec-
tions. In Sec. VI, we describe a method for generating ive atomic operators are then

classical stochastic function that simulates the effect of band-
edge vacuum fluctuations. We show that, for a sufficiently

We may adiabatically eliminate the field operators by for-
ally integrating Eq.(2.2) and substituting the result into

t
large number of atoms, this classical noise ansatz agrees well —J5(t)= —2f Joy(1) It G(t—t")dt’
with the more exact simulations of Sec. V, and may thus be dt 0
useful in the analysis of band-edge atom-field dynamics. In —2J,() p(t)+H.c (2.5

Appendix A, we give the details of the calculation of the

electromagnetic reservoir's temporal autocorrelation func- .

tion for different models of the photonic band edge. This _le(t):f J3(1)J(t)G(t—t")dt" + I5(1) n(1).
correlation function is central to determining the nature of dt 0

atomic decay. (2.6

Here, 7(t)=3,0,a,(0)e "\ is a quantum noise operator
that contains the influence of vacuum fluctuatio@(t

We consider a model consisting of two-level atoms —t’) is the time-delay Green function, or memory kernel,
with a transition frequency near the band edge coupled to thdescribing the electromagnetic reservoir's average effect on
multimode radiation field in a PBG material. For simplicity, the time evolution of the system operators. The Green func-
we assume a point interaction, that is, the spatial extent dfon is given by the temporal autocorrelation of the reservoir
the active region of the PBG material is less than the wavenoise operator,
length of the emitted radiation. This is often referred to as
the small sample limit of superradianiE7]. We neglect the L , LA eyt
spatially random resonance dipole-dipole interacti@BDI) G(t—t")=(n(t)7'(t )>:g gre MO (2.7
near the band edge, which may have a more important im-
pact on atomic dynamics when the atomic transition liesyq have made use of the fact tHai! (0)a, (0))=0, as we
deep within the PB.C{ZO’ZJJ' Neverthelgss, our simplified are dealing with atomic transition frequencies in the optical
model shou!d proy|d9 a good quamauve plcFure of band'domain[l?;]. In essenceG(t—t’) is a measure of the reser-
edge collective emission. For an excited atomic sfatand voir's memory of its previous state on the time scale for the

ground St"?‘téb’ the interaction Hamiltonian for our system evolution of the atomic system. In free space, the density of

can be written as field modes as a function of frequency is broad and slowly
varying, resulting in a Green function that exhibits Markov-

H=, i ala,+in Y, gy(aldi—Jxay), (2.1)  ianbehaviorG(t—t")=(y/2)5(t—t’), whereyis the usual
N N decay rate for spontaneous emiss[d3]. Near a photonic

band edge, the density of electromagnetic modes varies rap-

wherea, anda/ are the radiation field annihilation and cre- idly with frequency in a manner determined by the photon

ation operators, respectivel, = w, — w,; is the detuning dispersion relationw,. We show that this results in long-

of the radiation mode frequenay, from the atomic transi- range temporal correlations in the reservoir that affect the

tion frequencyw,;. gy =(wy1d,1/%)(Al2eqw, V)%, -uqg is  nature of the atom-field interaction.

the atom-field coupling constant, whedg;uy is the atomic In order to evaluat&s(t—t') near a band edge, we first

dipole moment vectorV is the sample volume, and, make the continuum approximation for the field mode sum in

=€ ,, 0=1,2 are the two transverse polarization vectors.Eq. (2.7):

Il. EQUATIONS OF MOTION
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w%ldgl g3 _ ) In both Eqgs.(2.10 and(2.11), §.= wy1— w. is the detun-
G(t—t')= 5 2 w—e_'“"k_“’ﬂ)(t_t ), ing of the atomic resonance frequency from the band edge,
0 k

2.9 and B, is a constant that depends on the dimension of the

band-edge singularity. In particular, for the isotropic model,

. . o 32_ 70242 o - -
In this paper, we use an effective-mass approximation to thé1 = w31d5,/12h egm¥c®, while in the anisotropic model,

full dispersion relation for a photonic crystal. Within this B3 °= w3,d5,/8% eqw (Am)%2.

approximation, we consider two models for the near-band-

edge dispersion. The details of the calculationGdt—t’) Ill. LOW ATOMIC EXCITATION: HARMONIC-

for each model and a discussion of its applicability is given OSCILLATOR MODEL

in Appendix A. In an anisotropic dispersion model, appro-

priate to fabricated PBG materials, we associate the band !N order to understand the effects of band-edge vacuum
edge with a specific point ik spacek=k,. By preserving quctu_atlons, we b_egln by presenting a s_|mpl|f|ed model thgt
the vector character of the dispersion expanded akguive permits an analytic solution, and is applicable to a system in

account for the fact that, dsmoves away fronk,, both the which only a small fraction of the two-level atoms are ini-
direction and magnitudé of the band-edge wa{ve vector arfally in their excited state. This discussion demonstrates how

modified. This gives a dispersion relation of the form light emission near a photonic band edge can give rise to
atomic dynamics, emission spectra, and photon-number sta-

o= o= A(k—Kg)?. (2.9 tistics that are very different from those expected in free
space. We write the atomic operators in the Schwinger boson

Here,A=2c*/ wgap, Wherewg,yis the frequency width of the representatiofi23]:

gap. The positive(negative sign indicates thatv, is ex-

panded about the uppépwer) edge of the PBG, and. is I —bI(t)by(t) 3.1)
the frequency of the corresponding band edge. This form of ! '
dispersion is valid for a gap width g, c|k—ko|, meaning I3(H—b(D)bs(t) — bl (H)bs (1), (3.2

that the effective-mass relation is most directly applicable to

large photonic gaps and for wave vectors near the band edgeubject to the constraint on the total number of atoms,
Furthermore, for a large gap and a collection of atoms thaBI(t)bl(t)+b;(t)bz(t)zN. The operator(t) and b;(t)

are nearly resonant with the upper band edge, it is a venfhen describe transitions of the system between the excited
good approximation to completely neglect the effects of the;iae (=2) and the ground staté<1). In the limit of low
lower photon bands. The band-edge density of states coregomic excitation, the statd) has a large population at all

. 1/2
sponding to Eq(2.9) takes the formp(w)~ (0~ )™, @  {imes, meaning that we can replace the inversion operator by
> w¢, characteristic of a three-dimensional phase space. Thge classical valugs(t)~—N, and thatb,(t) can be ap-

resulting Green function foi(t—t')>1 is proximated byb, (t)~/N. In this case, the initially excited
Bl/zei[w/4+5c(t7t’)] two-level atoms behave like a simple harmonic oscillator
Ga(t—t')= 3 3 , coupled to the non-Markovian electromagnetic reservoir. In
(t—t) our model, the Heisenberg equations of moti@®5) and

t>t’' (anisotropic gap (2.1 (2.6 reduce to
In addition to the anisotropic photon dispersion model, it d _ t , N g

is instructive to consider a simpler isotropic model. In this giP2(h= _NfobZ(t )G(t=t)dt' = N#(). (3.3

model, we extrapolate the dispersion relation for a one-

dimensional gap to all three spatial dimensions. We thus addsing the method of Laplace transforms, we can solve for

sume that the Bragg condition is satisfied for the same wavb,(t) and find

vector magnitude for all directions kispace. This yields an

effective-mass dispersion of the fornw,=w.+A(|K| b,(t)=B(t)b,(0)— VN> A,(t)a,(0), (3.4)

—|ko|)2, which associates the band-edge wave vector with a N

sphere ink space,|k|=k,. Strictly speaking, an isotropic | here

PBG at finite wave vectak,| does not occur in artificially

created, face centered cubic photonic crystals. However, a B(t)=£‘1{§(s)}, (3.5
nearly isotropic gap nedp=0 occurs in certain polar crys-
tals with polaritonic excitation§22]. A simple example of B(s)=[s+NG(s)] %, (3.6)

such a crystal is table sdlaCl), which has a polariton gap
in the infrared frequency regime. The band-edge density ofd

states in the isotropic model has the forp{w)~(w O ~

—w.) Y2, w>w,, the square-root singularity being charac- Ax(t)zﬁ_l[m B(S)]- 3.7
teristic of a one-dimensional phase space. For the Green A

function we obtain(see Appendix A £~ ! denotes the inverse Laplace transformation, @gs) is

the Laplace transform of the general memory keri@(t
B2 ilmla=oc(t=t")] _ . —t'). In this section, we consider the case of an isotropic
G(t—t")= t—tHz t>t" (isotropic gap.  pand edge in the effective-mass approximafin. (2.11)],
(2.1  for which G(s) is written as
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FIG. 1. Normalized population of the excited atomic state near FIG. 2. Collective atomic emission spectrufifw) (arbitrary
an isotropic photonic band edge for low initial atomic excitation. units) near an isotropic band edge for low initial atomic excitation.
Various values of the detuning,=w,,— w., of the atomic reso-  Various values of the detuning,=w,,— ., of the atomic reso-
nant frequencyw,; from a band edge at frequenay, are shown. Nnant frequencyw,; from an isotropic photonic band edge at fre-
Dashed line .= —0.5; solid line,8.,=0; dotted line,8.=0.5. &, quencyw. are shown. Dotted lineg.=—1; dashed lines.=0;

is measured in units 4233 . solid line, 5,=1. & is measured in units dfi?; .
3% i photonic band edge, resulting in dressed atomic states that
Gi(s)= e T— (3.9  straddle the band edge. Light emission from the dressed state
VS—ié, outside the gap results in highly non-Markovian decay of the

atomic population, while the dressed state shifted into the
For this isotropic Green function, we denote the inversegap is responsible for the fractional steady-state population
Laplace transform of Eq3.5) by B(t). B,(t) was computed of the excited state. The consequences of this strong atom-
in Ref.[15] in the context of single atom spontaneous emis+ield interaction are discussed in detail for single-atom spon-
sion, and a detailed mathematical derivation may be founganeous emission in Rdj]_S], and for superradiant emission
therein. Here, it describes the mean or drift evolution of ounin Secs. IV and V of this paper. We note that the degree of

Heisenberg operatdr,(t). The solution has the form steady-state localization is a sensitive function of the detun-
235 2t 235 2iiis ing, 6., of the atomic resonance from the band edge. The
B(t)=2a;x,eN" Pratio%l g,(xy+y,) e Aret ot decay rate scales 233t for the isotropic model. How-
3 ever, there is no evidence for the buildup of interatomic co-
24 herence, as very few of the atoms are initially excited
_ av.[1—d(VNP3B.x2t)1eN 81 tHiogt . y y .
jzl il ( v : Equation(3.4) also allows us to calculate the system’s

emission spectrum into the modesfor an atom with reso-

3.9 nant frequencyw,; using the relation
where .
) — —i(w—wy) 7/ T

xi= (A, +A_)ei™ (3.10 S(w) fo e 207(h,(7)by(0))d7+c.c.
X,=(A e ' m—A_gl6)eTim4 (3.11) ~ReB*[i(w—wy)]}, (3.15
X3=(A e~ A_e !"0)e37, (3.12  whereB(s) is defined in Eq.(3.6). The spectrum for the

isotropic model is then
1 1 4 & 1/2) 13
Si(w)= 3/ Vo— o,
yj:\/X—jz, j:1,2,3. (314) NBl N2B§+(w_w21)2(w_wc), 0> .

The error function®(x) = (2/\/;)foe’t2dt. (319

The probability of finding the atoms in the excited state isThis spectrum is shown in Fig. 2, and differs significantly
given by(bg(t)bz(t)>=|B,(t)|2, and is plotted in Fig. 1. We from the Lorentzian spectrum for light emission in free
find that the excited-state population exhibits decay and osspace. In fact, the emission spectrum is not centered about
cillatory behavior before reaching a nonzero steady-statéhe atomic resonant frequency, which is what one would ex-
value due to photon localization. These effects are due to thpect for an atom decaying to an unrestricted vacuum mode
strong dressing of the atoms by the radiation field near aensity. We see that for an arbitrary detunidy, of wy;
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from the band edge, the emission spectrum vanishes for fre- 2,
guencies at the band edge and within the gag,w.. This
is consistent with the localization of light near the atoms for
electromagnetic modes within the PBG. As; is detuned sl
further into the gap, spectral results confirm that a greater [EREEE T
fraction of the light is localized in the gap dressed state, as g
the total emission intensity out of the decaying dressed state
is reduced. Conversely, as,, is moved out of the gap,the § -~~~
emission profile becomes closer to a Lorentzian in form and
the total emitted intensity increases. The spectral linewidth
ratio between the isotropic band edge and free space is of the
order of B, /(yN¥3), while for an anisotropic band edge it is
~Np3/y. This corresponds to the fact that collective emis-
sion is much more rapid near an anisotropic band edge thar
in free space, whereas it is slower than in free space for the o ‘ :
isotropic model. ° 13”53 2

It is also instructive to evaluate the quantum fluctuations
in the atomic inversion in the context of the harmonic- FIG. 3. Fluctuations in the excited-state atomic population as
oscillator model. Variances in the atomic population can beneasured by the Mandel parameterQ(t)=[(n?(t))

written in terms of the MandeQ parametef24], —(n(t))?1/{n(t)), for low initial excitation for an atomic resonant
frequency tuned to an isotropic photonic band edje; 0. Dashed
(n%(1))—(n(t))? line, Q(0)=2; solid line, Q(0)=0. Double-dashed line denotes
Q(t)= (3.17 fluctuations for Poissonian population varian€g0)=1.

)y
wheren(t)Ebg(t)bz(t) is the number operator for the occu- tions to the high eXC|tat|or(superrad|ar)t regime. In th|s
ation of the excited state. Since both the free space angoo j[he two-level nature of the atomic operators will be-
b ' ome important and will modify the quantum statistics from

PBG solutions in our model can be written in the form of Eq. hat of the h . il . Thi lization i
(3.4), we can write theQ parameter in the general form that of the harmonic-oscillator picture. This generalization is
w7 considered in the next two sections.

Q(t)=|B(t)|?Q(0) + N; |AL(D)2. (3.18 IV. HIGH ATOMIC EXCITATION:
MEAN-FIELD SOLUTION

Again, [B(t)|? is the normalized probability of finding the  when the atomic system is initially fully or nearly fully
|n|t|a”y excited fraction of the atoms still in the excited state inverted, we expect interatomic CoherenceS, transmitted via
at time t. For an isotropic band edgd(t)=B(t) [Ed.  the atomic polarizations, to have a strong influence on emis-
(3.9)], whereas in free spacB(t) ~e~ """, representing the sion dynamics. For such high initial atomic excitation, the
exponential decay of the excited-state population. Using thguantum Langevin equatiori2.5 and(2.6), paired with the
identity N, |A, (t)|?=1—|B(t)|?, as derived in Appendix non-Markovian memory kernel@.10 or (2.11), do not pos-

B, we can write the population fluctuations as sess an obvious analytic solution. Moreover, conventional
5 perturbation theory applied to these equations fails to recap-
Q(1)=[B(1)[TQ(0)—1]+1. (319 ture the influence of the photon-atom bound sfad, which

. L L ) plays a crucial role in band-edge radiation dynamics. How-
For arbitrary initial statistics, atoms in free space decay tQyer, when the superradiant system is prepared with a non-
the vacuum state witl(t)=1; since the atoms decay fully, zerq initial polarizatiorf J;,(0)+# 0], the average dipole mo-
there are no meaningful atomic statistics in the long-timenent dominates the incoherent effect of the vacuum
limit. Q(t) is plotted in Fig. 3 for the isotropic band edge fjyctuations and the subsequent evolution is well described
(6,=0) for the caseQ(0)=0, 1, and 2. Near the band edge, py 5 semiclassical approximati¢h7]. In this case, it is pos-

photon localization prevents the atomic system from decaysiple to factorize the atomic operator equations:
ing to the ground state. We find instead that the steady-state

statistics are sensitive to the statistics of the initial state and g t
to the value ofs.. A system initially prepared with super- &<J3(t))=—4 R% (J21(t)>f (J1(t"))G(t—t")dt" },
Poissonian statistid€)(0)> 1] experiences auppressiorof 0 @.)
population fluctuations in the steady state. In a system that is )
initially sub-Poissonian[Q(0)< 1], the fluctuations in-

. . d t
crease, _but are held below the Poissonian level by photon _<‘]12(t)>:<‘]3(t)>f (JUNG(t—t)dt. (4.2
localization. In both cases, the steady-state value of the dt 0
atomic population fluctuations is controlled by. Our har-
monic oscillator model thus suggests that a PBG system mayhe bracket3O) denote the quantum-mechanical average of
exhibit atypical quantum statistics in the absence of a cavityhe Heisenberg operat@t over the Heisenberg picture atom-
or external fields. It is important to extend the analysis offield state vector|¥)=|vag®|y), where|vac represents
collective emission under the influence of vacuum fluctuathe electromagnetic vacuum state, aprepresents the ini-
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FIG. 4. Mean-field solution for the atomic inversidda(t))/N, ) . . o .
near an isotropic photonic band edge, starting with an infinitesimal FIG. 5. Mean-field solut_lon for_ the atom_lc polarization amp_ll-
initial polarization,r=10"5. Various values of the detuningj, tu_de, |<‘].12(F).>|/N’ near an |sotrqp|c_ photonlgsband _edge, starting
— wy;— @, of the atomic resonant frequenay, from a band edge with an infinitesimal initial polarizationf =10 >. Various values
at freque?lcya)c are shown(@) 8,=1: (b) 5,=0.5; () 5,=0; (d) of the detuning,5,=w,;— w., Of the atomic resonant frequency
5.=—0.5: (&) 8,=—1. 5, is measured in units 33, . w,, from a band edge at frequenay, are shown.(a) 6.=1; (b)

¢ ' ¢ ¢ ! 8.=0.5; (c) 6,=0; (d) 6.=—0.5; (e) 6,=—1. &, is measured in

H 213
tial state of the atomic system. Clearly in this mean-field""'s OfN""41.

approach, the quantum noise contribution is neglected, asity is proportional taN®3. This is to be compared with the
(n(t))=0. Recently, Bay, Lambropoulos, and/Mr [25]  yaluesN and N2 for the free space decay rate and peak
found that, for a simpler Fano profile gap model, the dynamragdiation intensity, respectively.

ics of superradiant emission are affected by the choice of As in single-atom spontaneous emission near an isotropic
factorization applied to the full quantum equations. How-pand edgd15], the dressing of the atoms by their own ra-
ever, the complete factorization used here retains the qualifiation field causes a splitting of the band of collective
tative features and evolution time scales of more elaboratatomic states Such that the C0||ective Spectra' density van-
factorization schemes. Equatios1) and(4.2) were solved  jshes at the band-edge frequency. The strongly dressed
numerically in Ref[20] for an atomic resonance frequency atomic states are repelled from the band edge, with some
coincident with the band edge5(=0) and a small initial  |evels being pulled into the gap and the remaining levels
collective polarization. The initial collective state was as-peing pushed into the electromagnetic continuum outside the

sumed to be of the form PBG. In the long-time(steady-statelimit, the energy con-
N tained in the dressed states outside the band gap decays
_ ra— whereas the energy in the states inside the gap remains in the
|l/f>—k1:[1 (Vr| 1+ N1=r[2)) 4.3 vicinity of the emitting atoms. It is the localized light asso-

ciated with the gap dressed states that sustains the fraction-

with r<1, so that initially the atoms are almost fully in- alized steady-state inversion and nonzero atomic polariza-
verted. In this paper, we extend the previous analysis tdion. For the isotropic model, this splitting and fractional
atomic frequencies detuned from the band edge. Despit®calization persist even whes,, lies just outside the gap
its neglect of vacuum fluctuations, mean-field theory illumi- (6.>0), and the fraction of localized light in the steady state
nates many of the interesting features of the system. Thimcreases aw,; moves towards and enters the gap. In the
relationship between mean-field theory and a more completdressed-state picture, the self-induced oscillations in both the
description including quantum fluctuations is discussed irinversion and the polarization that occur during radiative
Sec. V. emission can be interpreted as being due to interference be-

For clarity, we discuss separately the atomic dynamics inween the dressed states. The oscillation frequency is propor-
our isotropic and anisotropic dispersion models. Figures 4ional to the frequency splitting between the upper and lower
and 5 show the inversion per atom and the average polariza&ollective dressed states. This is the analog of the collective
tion amplitude per atom respectively for various valuegof Rabi oscillations ofN Rydberg atoms in a resonant high-
near an isotropic band edge. We see from Fig. 4 that a fraczavity [26]. From Fig. 4, we see that a dressed state outside
tion of the superradiant emission remains localized in thehe band gap decays more slowly for atomic resonant fre-
vicinity of the atoms in the steady state, due to the Braggjuencies deeper inside the gap, causing the collective oscil-
reflection of collective radiative emission back to the atomslations to persist over longer periods of time. Clearly, this
This localized light exhibits a nonzero expectation value fordecay is nonexponential and highly non-Markovian in na-
the field operator, which in turn leads to the emergence of @ure. Figure 5 confirms that, as required, the polarization am-
macroscopic polarization amplitude in the steady state. Welitude for large negative values & is constrained by the
further note that the decay rate for the upper atomic state isondition,(Jq,(t))/N<1/2.
proportional toN?3. Accordingly, the peak radiation inten- In Fig. 6, we plot the phase angle of the collective
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FIG. 6. Mean-field solution for the phase angie radians of FIG. 7. Mean-field solution for the atomic inversigdg(t))/N,

the atomic polarizationg(t), near an isotropic photonic band edge, Near an anisotropic photonic band edge, starting with an infinitesi-
starting with an infinitesimal initial polarizatiom=10"5. Various ~ mal initial polarization,r=10"°. Various values of the detuning,
values of the detunings,=w,;,— w., of the atomic resonant fre- 9c=®21~ wc, of the atomic resonant frequenay,, from a band
quencyw,, from a band edge at frequeney, are shown.(a) &, edge at frequencw, are shown. Dashed liné,=0.1; solid line,
=0.5; (b) 8,=0; (c) .= —0.75; (d) 5,=—1. 5, is measured in =0 dotted line,5.= —0.3. 5 is measured in units d{*B;.
units of N?3g; .

in contrast with the isotropic model, we see that photon lo-
atomic polarization in the isotropic model,d(t) calization is lost for even a small detuning @%, into the
=tan YIm(J,»(t))/ReJ;5(t))}. Prior to atomic emission, continuum of field modes outside the band gap. Therefore,
this phase angle rotates at a constant rate, and in the vicinityhile we find a macroscopic steady-state polarization and
of the decay procesé(t) exhibits the effects of collective precessional dynamics of the Bloch vector &0 (Fig. 8),
Rabi oscillations. When the emission is complete, the rate ofor .>0 the polarization dies away after collective emission

change of phase anglé(t), attains a new steady-state value, has taken place. Photon localization from an atomic level

b(ts), that depends sensitively on the detuning l‘requencl.Ing just outside the gap ina three—dlmensmnaI.PBG mate-
ial may, however, be realized through quantum interference

dc. 0(ts) is a measure of the energy difference between thetfects if there is a third atomic level lying slightly inside the
bare atomic state and the localized dressed sta{@,1  gap[28]. These results point to the greater sensitivity of the
—wjoc). Such a polarization phase rotation implies that theatomic dynamics to the more realistic anisotropic band edge.
collective atomic Bloch vector of the system exhibits precesgecause the isotropic model overestimates the momentum

sional dynamics in the steady state. Unlike the conventionadyace for photons satisfying the Bragg condition, photon lo-
precession27] of atomic dipoles in an ordinary vacuum

driven by an external laser field, Bloch vector precessionina oz
PBG occurs in the absence of an external driving field. In-

stead, the precession is driven by the self-organized state 0 os |
light generated by superradiance, which remains localized
near the emitting atoms. We see in Fig. 6 that for values of o5}

S, such thatw,;— w,.<0, 6(ts) is negative, while forw,;
—wioc>0, 0(15) is positive, i.e., the phase is rotating in the £
opposite direction. At a detuning corresponding to a constant=

0.4

0.3 -

phase in the steady stafi@(t))=0], the dressed and bare Yo
states are of the same energy; this occurs for a detuninc
value of .= —0.644N?3B,. At this value of 5;, we also
find that(Js(ts)) =0, implying that there is no net absorption
of light by the atomic system. This is, in essence, a collective
transparent stat27].

Collective emission dynamics near an anisotropic band
edge are pictured in Figs. 7 and 8. Roj; coincident with

the band edge or slightly within the gap(0), we again FIG. 8. Mean-field solution for the atomic polarization ampli-
find a fractional atomic inversion in the steady std®. 7). tude,|(J1,(t))|/N, near an anisotropic photonic band edge, starting
Rabi oscillations in the atomic population are much less prowith an infinitesimal initial polarizationy = 10~°. Various values
nounced than in the isotropic model, even tog; detuned of the detuning,5,=w,— w., of the atomic resonant frequency
into the gap. This demonstrates that the dressed atomic stateg, from a band edge at frequenay, are shown. Dashed ling,
outside a physical photonic band gap decay much more rap=0.1; solid line,5.=0; dotted line,5,= —0.3. &, is measured in
idly than the isotropic model would suggest. Furthermoreunits of N23;.
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calization effects and vacuum Rabi splitting are exaggerated !
in the isotropic model relative to an engineered photonic
crystal. In the anisotropic model, the phase space available
for propagation vanishes as the optical frequency approache: o5 |
the band edge. As a result, vacuum Rabi splitting pushes the
collective atomic dressed state into a region with a Iargeri
density of electromagnetic modes. Consequently, the deca)gﬁ
rate of the atomic inversion is proportional N* near the =
anisotropic band edge, and the corresponding peak radiatior%
intensity is proportional tdN®. Clearly, superradiance near
an anisotropic PBG can proceed more quickly and can be -05f
more intense than in free space. As a result, PBG superradi
ance may enable the design of mirrorless, low-threshold mi-
crolasers exhibiting ultrafast modulation speeds. » ‘ ‘ ‘
From polarization phase and amplitude results, we con- 0 10 N1 20 30
clude that(i) unlike in free space, the atoms near a photonic '
band edge attain a fractionally inverted state with constant FIG. 9. Mean-field solution for the atomic inversi¢solid line)
polarization amplitude and rate of change of phase angleand polarization amplitudédashed lingunder the influence of col-
This corresponds to a macroscopic atomic coherence in thiion broadening for an atomic resonant frequency at an isotropic
steady state analogous to that experienced in a laser. In ophotonic band edged.=0. The system is given an infinitesimal
case, however, “lasing” occurs in the band-edge continuuninitial polarization,r =10"°. The simulated Stark shift is a Gauss-
rather than into a conventional cavity modi) By varying ian random distribution with zero mean and standard deviation
the value ofé,, one may control the direction and rate of 0.5N%%8; .
change of the steady-state polarization phase angle. This m%y ) .
be realized by applying a small external dc field to thederstood by noting that the random frequency shifts are sym-
sample that Stark shifts the atomic transition frequency ofnetrically distributed about the mean resonant frequency.
the atoms. This type of control over the collective atomicFrequency shifts into the gap promote photon localization,
Bloch vector may be of importance in the area of informa-While those away from the gap cause further decay of the
tion storage and optical memory devid@$9,30. atomic inversion. Over time, the net result is that the fre-
The above analysis makes it clear that collective spontaduency shifts away from the gap encourage the decay of the
neous emission dynamics in a PBG are significantly differenfitomic population. This is true even in atomic systems for
from those in free space. In a real PBG material, the dephadvhich the mean resonant frequency lies within the gap. From
ing of atomic dipoles due to interatomic collisions or the above considerations, it is clear that dephasing is a sig-
phonon-atom interactions may also have a significant effedtificant perturbqﬂon on photon Iocahzapon near a photonic
on the evo'ution of our System over a |arge range of temperé)and edge As in the Case.Of a Conventlona| Iaser, the effeCtS
tures. In the free space Markov approach, dipole dephasing & dephasing may be partially compensated for by external
described by a phenomenological polarization decay conPUmping. _ _
stant[31]. Since the Markov approximation does not apply ~Although a superradiant system can be prepared in a co-
near a band edge, one cannot account for dephasing by sifierent initial state of the type described by £4.3) [27],
ply adding a phenomenological decay term to E¢.2). coll'ect.|ve emission is typically initiated by spontaneous
However, we expect that the atomic resonant frequency wilfmission, a random, incoherent process. Over time, sponta-
experience random Stark shifts due to atom-atom or atomP€ous emission leads to the buildup of macroscopic coher-
phonon interactions_ Th|s effect can be inc'uded in the deence in the Sample. The effeCt Of vacuum ﬂuctuations iS then
scription of our system by adding a variatianto the detun- of c_onsiderable importance in the full d_escripti.on of super-
ing frequency 5, at each time step in a computational radlanpe, bo'gh from a fgndamental point of view, and for
simulation of Egs(4.1) and(4.2). A is chosen to be a Gauss- Potential device applications, such as the recently proposed
ian random number with zero mean. The width of the GaussSuperradiant lasef18]. In the next section, we present a
ian distribution is determined by the magnitude of the ran/more detailed description of PBG superradiance that takes
dom Stark effect. Such a simulation in free space wouldnto account the role of quantum fluctuations.
include a random\ only in the equation for the atomic po-
larization. This is because the slowly varying photon density V. BAND-EDGE SUPERRADIANCE
of states seen by the atoms at the frequangy+ A does not AND QUANTUM FLUCTUATIONS
phange significantly with typical homogeneous line broaden.- In order to describe the evolution of the superradiant sys-
ing effects. In contrast, we have seen that near a photonic

band edae. sliaht variations i mav drasticallv change the tém’s collective Bloch vector under the influence of quantum
_edge, sig oy Y caly 9 fluctuations, we consider atomic operator correlation func-
atomic inversion. Therefore we include in both system .
. . . . _tions of the form[32]
equations. In Fig. 9, we plot the evolution of the collective
inversion and polarization under the simulated collision gP9=((J12)P(J2) 9. (5.1
broadening described above. The random Stark shifts lead to
the loss of macroscopic polarization and the loss of atomidiere the operators are evaluated at equal times. As in free
inversion in the long-time limit. The latter effect can be un- space, we expect vacuum fluctuations to drive the system
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from its unstable initial state with all atoms inverted to a d t

new stable equilibrium state. Such fluctuations are particu- a(JlZ(t)>A:NJ'O<J12(t’)>AG(t—t’)dt’+N77(t)-
larly relevant prior to the buildup of macroscopic atomic 5.6
polarization. Indeed, they provide the trigger for superradiant '

emlSSlOﬂ In the early-time, inverted regime, we may Setrhjs is a linear equation that has lost its operator character
J3(t)=J3(0) in Egs.(2.5) and(2.6), giving over the atomic variables but not over the electromagnetic
q reservoir, as evidenced by the presence of the quantum noise
(., , , operator,z(t). Equation(5.6) can be solved by the method
aqrAD= fodt J3(0)3At) G(L= )+ J5(0) (1) of Laplace transforms. The solution has the form
(5.2
. : . . : =D +N :
The resulting equation remains nonlinear, and involves prod- (J1A1))a=D(1)(J12(0))a 2;‘ Cu(02,(0), (6.7
ucts of atomic and reservoir operators. We may simplify ex-
pressions containing operators in this inverted regime byhere
considering operator averages over only the atomic Hilbert

space. For an arbitrary Heisenberg operé?r), we denote D(t)=L "YD(s)}, (5.9
the atomic expectation value for an initial fully inverted state
[1) by (Oya=(1|O|l). We denote by the séfr)} a complete D(s)=[s—NG(s)] %, (5.9

set of 2V normalized basis vectors for the atomic Hilbert
space includingl), such that\[l)= 4, |, wheres, g is the  and
Kronecker delta function. CIearIy(I |33(0)[N)=NS§, 5.
SinceJ;(0) acts as a source term fay,(t) in Eq.(5.2), we
also have the propert{l|J,5(t)|\)=0 for X#1 in the in-
verted regime. This can be shown by considering the equa-
tion of motion for(1]J5(t)|\): Again, £~ denotes the inverse Laplace transform. The
Laplace transformation of the memory kernel for an isotropic

(*)N

CO=LT A,

D(s)] (5.10

d L, , band edgeG,(s), is given in Eq.(3.8). Despite the fact that
ﬁ<||‘]12(t)|)‘>: fodt 2#: (HI3(0)[ ) [ Inat)IN) (J15(0))a=0, we retain the first term in Eq5.7) for later
notational convenience.
XG(t—t")+(1]|I3(0)[\) n(t) The early-time quantum fluctuations in a superradiant sys-

. tem prevent us from predicting priori the evolution of any
=Nf At (1[It N)G(t—t') + NS, , (1),  Single experimental realization of the atoms. Instead, we can
0 ’ only determine the probability of a particular trajectory of
(5.3 the _cqllective atomic Bloch vector. In order to ob_tain the
statistics of a band-edge superradiant pulse, we first deter-
mine the statistics of the collective Bloch vector for a set of
identically prepared systems after each has passed through
the early-time regime governed by vacuum fluctuations. The
relevant time scale will be referred to as the quantum to
semiclassical evolutionrossover timgt=t,. Our approach
to calculate the phase and amplitude distributions of the
olarization at the crossover time quantum mechanically.
he subsequenttfty) evolution of the ensemble is then
obtained by solving the semiclassical equatigAsl) and
(4.2) using the polarization distribution function &§. In

where u labels a complete set of atomic states. This inte-
grodifferential equation satisfies the initial condition
(11312(0)|N)=0, sinced;,(0) acts as a raising operator on
the fully inverted bra vectofl|. For\ #1, the source term in
Eg. (5.3 is also absent, leading to the solutiinJ,,(t)|\)
=0. Using this property, we may replace the atomic averag
over products of atomic operators with products of atomi
averages, provided thag(t) =J5(0). Forexample,

<312)21>:2 (vad @ (131 w){u|Ipq 1) ®|vac other words, the distribution of values @¥,,5(t;)) obtained
2 from the early-time quantum fluctuations provide the initial
— (I Al Wr (5.4 conditions for subsequent, semiclassical evolution. In order

to implement this approach, we must first identifyfor our
system[17,33. One expects such a transition to occur in the
high atomic inversion regime(J;(t))=N. It is natural to
definety such that fort>t, the expectation value of the

Here,(O)g=(vaqd O|vag denotes an expectation value over
the reservoir variables. For an arbitrary momenft, we

have commutator of the system operatalg,(t) and J,,(t) be-
comes very small compared to the expectation value of their
PA— P q o "
979=({J12a(J20 Ar - (5.5 product[17]. This gives the condition
We note that such a factorization is valid only for an anti- (Ip(1)I(1))y>([Io1(1),d1()]), t>t5. (5.1D
normal ordering of the polarization operators, since
(11J21(t)|\) does not vanish in general. Evaluating the above commutator, we have

Taking the atomic expectation value of H§.2), we ob- ([ Joq(t),J1(t)])=(J5(t)), which is equal toN for full
tain atomic inversion. From Eq$5.5 and(5.7), we find that
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(J21(1)312(1)) = (J3(t) + J12(1) I2(1)) This expression has corrections of or#ét™*, meaning that
it is asymptotically valid for largeN. Equating Eqs(5.14)
and(5.16), we solve for the distributionB(«) andQ(¢) to
obtain the desired initial polarization distribution for the
(5.12 semiclassical superradiance equations. The early time distri-
' butions for free space and the band edge differ only in the
The last equality is obtained by use of the identityform of.th.e fl_JnctionD(t), as the apove analysis. makes no
N=,|C, (1)[2=|D(t)|?— 1, as derived in Appendix B. In free other distinction between the two cases. Thus in the band-

space, [D(t)|2=eN", giving the crossover time,tgee edge system, as in free space, the entire effect of the early

=1/Ny. One can solve for the crossover time near a bancﬁ
edge,t;5¢, computationally. In the isotropic model, fdk,
=0 we find thatt{®®=1.24N%38,. The crossover time
maintains this M%°B; dependence fow,, displaced from 27

the band edge. The corresponding time scale for the aniso- fo dpe' P V?Q(p) =5y 4. (5.17)
tropic gap is IN?B;. The buildup of a macroscopic polar-

ization then occurs more SIOWIy near an iSOtrOpiC band edgqms shows thaQ(¢) is uniform|y distributed between 0
and more quickly near an anisotropic band edge than in fregnd 27. The initial polarization amplitude distribution is

space. _ _ ) found from the relation
Using a semiclassical approach, we may write the value

of the polarization at any time=t, in terms of an amplitude o

k and a phase angle, (J;4(t))“'=J(k,¢,t). The super- JO dxP(x)x*=p![N|D(to)|*]". (5.18
script Cl refers to the fact that the expectation vajué' is

taken in the semiclassical reginiety. We defineP(«x)d«  The result is a Gaussian distribution of widthD (t,)|2 cen-
as the probability of finding the amplitude betweerand tered at zero,

k+dk, andQ(¢)d¢ as the probability of finding the phase

=N

1+NY ICA(t)|2}=N|D(t)|2-
A

ime atomic evolution can be recaptured using the distribu-
ion of initial conditions given at=t,. The phase of the
polarization is given by the relation

angle betweenp and ¢+d¢. We may then write the mo- B(x) 1 F{ —K? } (5.19
i izati istributi K)= ex . .
ments of the macroscopic polarization distribution as 7N[D(tg)]? N[D(to)[2
((15(1))P(I (1)) C'= f dKf ddP(x)Q(b) It has been shown via density matrix meth¢dig] that in
free space one may choose the crossover time anywhere in
X[I(x, ) TPLI* (1, .t ]°. the inverted regime, the simplest choice beipg 0. This is

due to the absence of temporal correlations of the reservoir
(5.13 for t#t’. Figure 10 shows the ensemble-averaged collective
o emission in free space and at an isotropic band ediye (
For t=t,, we assume that the polarization has the formzo) for N=100 atoms. Both the free space and band edge

J(x,$,t)=~xe'?, giving for the moments systems are shown for two choices of initial polarization dis-
D a\Cl tribution. The solid lines correspond to the choicé#0 in
(Q12(t0))P@21(to))) the amplitude distributiort5.19 for both free space and the
_ band edge. The dashed lines correspond to the chgice
ZJ dKf dpP(x)Q(¢) kP e/ P~ D¢, =t"®® and t,=t55C for the free-space and band-edge sys-

tems, respectively. As per E(p.17), the initial phase of the
(5.149 polarization in all cases is chosen from a uniform random
distribution. As expected, Fig. 10 demonstrates that the
choice ofty is unimportant in free space, so long as it is
chosen in the inverted regime. Near a photonic band edge,
we see that the choice ¢f affects the later evolution of the
system. In particular, it affects the onset time for collective
(Q12(t0))PQ2s(to) D e)r/nission. Itﬁs clear from these simulations that the details of

p R q the non-Markovian evolution in the quantum regime play a
=Np“‘< ; Cx(to)aA(O)} [2 CX (to)ay(0) >
R

The quantum analog, )?, of Eq.(5.14 can be written in the
form of Eq. (5.5 evaluated at=t,. Substituting Eq(5.7)
and its adjoint into Eq(5.5) yields

crucial role in the subsequent semiclassical evolution of the
band edge superradiance. The long-range temporal correla-
(5.15 tions of the reservoir require that we treat the vacuum fluc-
tuations explicitly throughout the quantum evolution of the
As the reservoir expectation value is taken over the the opsystem. A similar picture holds in the case of an anisotropic
eratorsa, , which satisfy a Gaussian probability distribution, PBG material. In our anisotropic model, memory of the ini-
Wick’s theorem[13] is applied in order to reduce the opera- tial state is expressed through the Green funct®a0. In
tor averages of products of field operators to averages ovéhis case, superradiance is also highly sensitive to early stage
products of pairs of field operators. We then have quantum fluctuations.
Since ensemble averages of atomic observables are ex-
((Q12(t0))P(A2(te)) )= 8,4NPp! |D(to)|?P. (5.16  perimentally measurable quantities, we consider these in
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FIG. 10. Atomic inversion for superradiance driven by vacuum fluctuations in free space and for an atomic resonant frequency tuned to

an isotropic photonic band edgé &0). Solid lines, result for initial polarization distribution &t 0 for each system; dashed lines, result
for initial polarization distribution at=t, for each system.

some detail. We use the notatioh)e,s t0o denote an (Js(t))ensfor a given atomic detuning is unchanged from the
ensemble-averaged quantum expectation value. For illustranean-field result{Js(ts)). Since the steady state is deter-
tion, we focus on the5,=0 and zero dephasing case for a mined by the atom-field coupling strength, and not by the
system of 100 atoms in the isotropic effective-mass modeldynamics of the system, it is insensitive to initial conditions.
The extension to non-zero detuning and finite dipole dephad~luctuations in the excited-state atomic population may be
ing follows from the discussion of Sec. IV. From Fig. 11, it expressed in terms of the delay time for the onset of super-
is evident that the ensemble exhibits a fractional populatiomadiant emission, defined as the time at which the system is
inversion in the steady state. The steady-state value axactly half excited, i.e{J3)=0. Vacuum fluctuations result

in a distribution of delay times for the ensemble, asymmetri-
1 : : : ‘ cally centered about a peak value, as pictured in Fig. 12. The
delay time distribution is qualitatively similar to that ob-
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FIG. 11. Ensemble-averaged atomic inversiddz(t))ens/N, 0 " "
and atomic polarization amplitudd{Jx(t))end/N (dot-dashed ’ ’ ’ ’ :

NZISB‘t
line), for a system oN =100 atoms near an isotropic photonic band

edge. The ensemble average is taken over 2000 initial polarization FIG. 12. Distribution of delay times for a system of 100 atoms

values. Inversion: long-dashed curvé,=—0.5; solid line, & at an isotropic band edge5{=0) for 4000 realizations of the su-
=0; short-dashed linaj,=0.5. &, in units of N33, . perradiant system.



PRA 58 NON-MARKOVIAN QUANTUM FLUCTUATIONS AND . .. 4179

0.6 ; ; 0.6 ; ; ;
(a

04 f . 0.4 - 8

02 | 1 02 .
A A,
v o0of ] 7 0o} |
E E

-02 t . -02 - .

-04 | . -0.4 8

-0.6 L i 1 t I -0.6 ( 1 1 L L

-06  -04  -02 0.0 0.2 0.4 0.6 -0.6 -04  -02 0.0 0.2 0.4 0.6
Re <J,> Re <J,>
0.6 : ; ; 0.6 , ; ; ;
(d)

04 - i 04 F //M"\\\ i

0.2 . 02 ]
A, A
v 00f 1 v 00r i
E E

02+ 4 -0.2 - B

-04 |- : 04 \\W/ l

06 . . 1 s . -0.6 ‘ ‘ ‘ : :

"-06 -0.4 -0.2 0.0 0.2 0.4 0.6 -06  -04 02 0.0 0.2 0.4 0.6
Re <J,> Re <J,>

FIG. 13. Atomic polarization distribution for a system of 100 atoms at an isotropic band égg®), subject to quantum fluctuations
at early times. 5000 realizations of the superradiant systam=t52®; (b) t=5; (c) t=11; (d) steady statet in units of 1N?°8;.

tained in free spacg33]. However, the width of the distri- random phase. This behavior is reminiscent of the fluctua-
bution scales with the relevant time scale for the isotropidions of the order parameter in the vicinity of a phase
and anisotropic gaps, showing that, near a photonic banttansition. In the steady state, the polarization amplitude col-
edge, atomic population fluctuations during light emissionlapses to a very well-defined nonzero value. This amplitude
can be reduced from their free space value. Because of the again accompanied by a random phase that is uniformly
variation in initial conditions, the Rabi oscillations §d(t)) distributed between 0 ands2 We may interpret our steady-
for the isotropic gap are much less pronounced than in mearstate result in the following manner: A fraction of the
field simulations. The differences in emission times due tgphotons emitted near the photonic band edge remain local-
fluctuations cause the ensemble average inversion to smei@ed in the vicinity of the atoms, causing both the atomic
out these oscillations. Therefore, one can no longer directlglipoles and the electromagnetic field to self-organize into a
relate the amplitude and period of the oscillations to the eneooperative steady state. However, vacuum fluctuations
ergies of the collective dressed states. cause this cooperative quantum state to have a random
More striking is the nature of the ensemble’s collectivephase, resulting in a zero ensemble average polarization am-
polarization under the influence of vacuum fluctuations. Fig-plitude, |(J1x(t))end =0, as shown in Fig. 11. Measurements
ures 13a)—13d) show the evolution of the polarization dis- of the degree of first- and second-order coherence of the
tribution from the initial distribution given by Eqg5.17  electromagnetic field in a band-edge superradiance experi-
and (5.19 to the steady-state distribution. Initially, the dis- ment would provide a probe of the nature of this self-
tribution is sharply peaked about zero. In the decay regiongrganized state of photons and atoms near a band edge. We
the polarization amplitude is broadly distributed and has durther note that this state—well defined in amplitude but
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with random phase—is similar to the steady state of a conwhere againo=1 and 3 for isotropic and anisotropic band
ventional lasef34] with a well-defined electric field ampli- edges, respectively. Problems in band-edge atom-field dy-

tude and random phase diffusion. namics, such as the present superradiant problem, often in-
volve nonlinear equations under the influence of colored
VI. SIMULATED QUANTUM NOISE NEAR A BAND quantum noise. It is interesting to note that nonlinear prob-
EDGE lems involving classical colored noise are of considerable

- : interest in classical statistical physic35]. In what follows,
We have shown that the statistical properti f n N
stical properties of a band > use the method first introduced by R{@&§] and elabo-

edge superradiant system can be determined because the Ok ) . :
lective behavior of the constituent atoms leads to a semiclad@ed on by Billah and Shinozuk@7] in order to generate

sical system evolution, triggered by early-time quantumcelored noise satisfying Ed6.1). For noise with a power
fluctuations. However, a seamless quantum description ciPeCtrumP(w), defined as the Fourier transform of the au-
band-edge quantum optical systems is extremely difficult tdocorrelation function(¢(t)&(t")), their algorithm gives
obtain, due to the non-Markovian nature of the atom-field
interaction. As a first step, we introduce a method by which
to simulate their evolution computationally and include the
effects of quantum fluctuations. Unlike the semiclassicalg(t)”:ZZ1 [P(op)Aw]cogwpt+®y), n=1.2,..N,
simulations of Sec. IV, which neglected the effect of the " 6.2
quantum noise operator, ag(t))=(7'(t))=0, we propose '

to replace(#(t)) in our semiclassical equations by a com-

plex classical stochastic function with the same mean ang|;, equality obtained forN—. Here, o ,=nAw, Aw
two-time correlation function as its quantum counterpart._ N ofd o is a cutoff frequenc;/ arit)ove WhiCh the
This noise function then simulates the quantum noise in our ™ ™ max :

system throughout the entire system evolution. We may tedtoWer sp_ectrum can be ne_:glected. Eabp is a random
the validity of our simulated noise ansatz for band-edge Suphase uniformly distributed in the ran{,2m]. By use of a

perradiance by comparing the results obtained to those Caparticular set of random phas¢®,} to generate the noise

culated in Sec. V. values at each time step, we obtain a single “experimental”
The classical noise function required to simulate quantunf€@lization of the quantum noise in our system. Since we

noise near a photonic band edge involves a real stochastf@nnot predica priori the specific form of the quantum fluc-
function £(t) possessing the underlying temporal autocorrefuations in a particular experiment, we again average over

N

lation of our non-Markovian quantum noise operatg(t). many realizations of the superradiant system, each governed
In the effective-mass approximation, this means tfsate by a different(t), in order to obtain distributions and en-
Egs.(2.10 and(2.1D)], semble averages of relevant quantities. We note that Eq.

(6.2) clearly gives(£(t))en= 0, as desired, since the random
I — @, cause the ensemble to average to zero. To show that Eq.
(&) (t—t’)“; ' 6. (6.2 also gives the correct autocorrelation function, we write

2| [P(wp)P(w))]Y2cog ot + D) cog wt’ + D))

<§(t)§(t’)>ens <4Aa)

>
k ens
=<2Aw2k 2| [P(wp)P(w))]Y¥cog wyt— wpt’ + By — D))+ co wyt + wt’ + P+ D))} (6.3

ens

<2Aw; P(w)cod wy(t—t)]) . (6.4)

ens

In Eq. (6.3), only thek=I components, in which the random tion of phases®, as input, rather than requiring the
phasesb, and ®, cancel each other, survive the ensemblecomputation of a Gaussian stochastic function as an interme-
average. AN—«, Eq. (6.4 becomes the Fourier transform diate step. This decreases the likelihood of spurious correla-
of P(w), which equals(&(t)£(t"))ens: Studies have shown tions between our random numbers. Figure 14 shows the
that for values oN as small as 1000, the desired autocorre-two-time correlation ofé(t) for =1, for an ensemble of
lation may be obtained with as little as 5% erf8i7], mak- 2000 realizations of the noise function generated by the al-
ing this a computationally feasible technique. Furthermoregorithm of Eq.(6.2). In this calculation and in the simula-
unlike other methods for the generation of stochastic functions described below, we chose a power spectiR{w)

tions (see Ref[35]), the present method computes the de-=\/7/2w, in order to mimic the colored vacuum near an
sired function,&(t), using only a uniform random distribu- isotropic band edge. We see good agreement with the corre-



PRA 58

25

-
o

<EMET)>,

-5

(1-7)

FIG. 14. Solid line: ensemble-averaged autocorrelation function, .

(&(7)€(7"))enss Of the classical colored noise functigir) corre-

sponding to vacuum fluctuations near an isotropic band edge. Th
dashed line is a plot of the exact autocorrelation function in the

effective-mass approximations€ ') "2

lation function(6.1). The agreement between our simulations
and the exact correlation function can be significantly im-

NON-MARKOVIAN QUANTUM FLUCTUATIONS AND.. ..

4181

1

05

-1
2/3,
N t

FIG. 15. Comparison of the ensemble averaged atomic inver-
sion,{J3(t))ens/ N, at an isotropic band edg&{=0) as calculated

the methods of Secs. V and VI. 2000 realizations of the super-
radiant system. Dashed line and double dashed line, inversion cal-
culated using the computed polarization distributiort at{®® as
initial conditions for a semiclassical evolutiofBec. V) for N
=1000 and 10 000 atoms, respectively. Solid line and dotted lines,
inversion calculated using the stochastic function of Sec. VINor
=1000 and 10 000 atoms, respectively.

proved by enlarging the size of the ensemble, at the expense

of increased computation time for atom-field simulations.

The ensembld£(t)} is used to simulate the effect of

vacuum fluctuations in Eq$2.5) and(2.6). Written in terms
of the dimensionless time variable= N?3g;t, these equa-
tions for the isotropic band edge become

d
a_<33(7')>
o Jaa(m) [ (Jaal 7)) )
=—4R e—|7T/4 elﬁc('r—-r)d ’
\/; JO Vr—1' i
<J21( 7_)>efi(ﬂ'/87 8o7)
&) ¢, (6.9

N

’ Iz 7)) e“w/4<‘]3(7)> fruzl(r'»
Qs
dr 12 \/; O \/:

<J3( 7.)>efi(77/87 [2%0)

Ny

ei (7= T/)dT/

&(7), (6.6

averaged polarization and the delay time distribution calcu-
lated by the present method also agree well with the quantum
calculations of the previous section. This suggests that our
stochastic approach may be a valuable tool in the analysis of
band-edge atom-field dynamics.

VII. CONCLUSIONS

In this paper, we have treated the collective spontaneous
emission of two-level atoms near a photonic band edge. An
analytic calculation of the atomic operator dynamics in the
case of low atomic excitation was given. The results demon-
strate highly atypical atomic emission spectra and show the
possibility of reducing atomic population fluctuations. This
in turn suggests that fluctuations in photon number are like-
wise suppressed for light localized near the atoms. This
raises the interesting question of whether squeezed|B#ht
antibunched photong39], and other forms of nonclassical
light may be generated in a simple manner from band edge
atom-field systems. For an initially inverted system prepared
with a small macroscopic polarization, a mean field factor-
ization was applied to the atomic quantum Langevin equa-
tions, giving a semiclassical system evolution. We found that
the atoms exhibit fractional population trapping and a mac-
roscopic polarization in the steady state. Collective Rabi o0s-

with similar equations for the anisotropic gap. For both mod-cillations of the atomic population were found, and were

els, the noise term scales as/W; this is the same depen- attributed to the interference of strongly dressed atom-photon
dence of the noise term on particle number exhibited in freestates that are repelled from the band edge, both into and out
spacd 32]. In Fig. 15, we show the average inversion for anof the gap. The degree of photon localization, the polariza-
ensemble containing 2000 realizations f) for N=1000 tion amplitude, and the phase angle of the polarization in the
andN=10 000 atoms. We find that our stochastic simulationsteady state are all sensitive functions of the detuning of the
scheme gives physical results only for systems Nf atomic resonant frequency from the band edge. The steady-
>500 atoms. The stochastic simulations show good agreestate atomic properties can thus be controlled by applying a
ment with the atomic inversion obtained by the method ofdc Stark shift to the atomic resonant frequency. In Sec. IV,
Sec. V. Other system properties, such as the ensemblewe discussed the effect on band-edge superradiance of inter-
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atomic and atom-phonon interactioitatomic dephasing states encountered at a photonic band edge, nor are they all
We showed that such linewidth broadening effects cannot bdirectly applicable to externally driven atomic systems.
treated by a phenomenological decay constant as in free Finally, we note that the steady state atom-field properties
space, and that near the band edge they will lead to the decgjgscribed here are a result of the effect of radiation localized
of atomic polarization and inversion. Therefore, the steadyin the vicinity of the active two-level atoms. This leads to the
state properties of the superradiant system described in thf#iestion of how to pump energy into and extract energy out
paper will be limited by the time scale of the atomic dephas©f these states, which lie within the forbidden photonic gap.
ing effects. The effect of dephasing mechanisms is importarfP€ Possibility is to couple energy into and/or out of the
to the description of almost all band edge atom-field systemsYStem through a third atomic level whose transition energy
As a particular example, dephasing determines the thresholﬂES oqu!de t.he galﬁ15]. There is also the pQSS|b|I|Fy of
external pumping required to achieve atomic inversion in g'ansmitting light into the gap through high intensity ul-

laser operating near a photonic band edge. It also facilitate§@Short pulses that locally distort the nonlinear dielectric
the emission of laser light from a photonic crystal constant of the material and thus allow the propagation of

The effect of quantum fluctuations for high initial excita- light in the form of solitary waves within the forbidden fre-

tion of the atoms was included by distinguishing regimes ofduency ra‘?9@44]- SUCh. issues ”.“‘.?t. be addressed in order to
. ; : Jully exploit the very rich possibilities of quantum optical

found that the early time quantum evolution must be treate®’©ceSSes near a photonic band edge.

in detail, due to the non-Markovian electromagnetic reser-

voir correlations near a banq edge. This is in.con_tra}st With ACKNOWLEDGMENTS
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tons back to the atoms; there is neither external pumping nor

a laser cavity in our system. The time scales for all dynami-

cal processes, such as collective emission and the buildup of APPENDIX A: CALCULATION

collective atomic polarization are strongly modified from OF THE MEMORY KERNEL

their free space values due to the singular photon density of \yg first present the calculation of the memory kernel for
states near a phOtOZ'/‘g'C band edge. For an isotropic band edgge isotropic model in the effective-mass approximation,
the time scales aN“°B,, while in the more realistic aniso- G,(t—t'). Starting from Eq(2.8) and the isotropic disper-

tropic model, time scales ad?B;. As a result, collective  gjon relation near the upper band edge,= w.+A(|K|
emission phenomena can occur more rapidly near a band|k0|)2 G,(t—t') can be expressed as

edge than in free space. Throughout our calculations, we
have employed an effective-mass approximation to the band-

edge dispersion. For materials with a very small PBG, it may , w3,d3, 5. (t—t) A g iAk—kgHt-t)
be important to include the effects of both band edges. Thesé&i(t—t')= 4ﬁ€0,n-e ¢ f da K dk wetAk—kg)?
issues are raised in Appendix A. 0 ¢ O(Al)

We have demonstrated that band-edge superradiance pos-
sesses many of the self-organization and coherence proper-
ties of a conventional laser. Furthermore, we have shown thAgain, .= w»;— w. is the detuning of the atomic resonant
possibility for the generation of unusual emission spectra anfrequency from the band edgA.=md# is a cutoff in the
photon statistics. These results suggest that a laser operatipfjoton wave vector above the electron rest mass. Photons of
near a photonic band edge may possess unusual spectral atergy higher than the electron rest mass probe the relativ-
statistical properties, as well as a low input power lasingstic structure of the electron wave packets of our resonant
threshold due to the fractional inversion of the atoms in theatoms[45]. Because the isotropic model associates the band
steady state. It may further be possible to produce a PB@dge with a sphere ik space, there is no angular depen-
laser in a bulk material without recourse to a defect-inducedlence in the expansion a@fy, about the band edge. We may
cavity mode. Lending credence to this hypothesis, recent olthus separate out the angular integration over solid afigle
servationd40] and theoretical studiggtl] of lasing from a  in Eq. (A1l). We may also make a stationary phase approxi-
multiply scattering random medium with gain have demon-mation to the integral, as the nonexponential part of the in-
strated that one may obtain light with the properties of a lasetegrand will only contribute significantly to the integral for
field in the absence of a cavity. A full description of the k=Kk,. The resulting integral is
statistics of a band-edge laser field will require a treatment of

the non-Markovian nature of the electromagnetic reservoir. 2 42 N
Current techniques for treating the atom-field interaction in (t—t')= @w21Y21 ﬁeiéc(tft’) dke IAk=kp(t-t")
the absence of the Born and Markov approximatigt43 ! Ah€em wc ko '

cannot account for the van Hove singularity in the density of (A2)
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As A is a large number, we extend the range of integration to For an anisotropic band-gap model, we must account for
infinity in order to obtain a simple analytic expression for the variation in the magnitude of the band-edge wave vector

G,(t—t") [46]: ask is rotated throughout the Brillouin zone. We associate
) , , the gap with a specific point ik space that satisfies the
,y @210V Ogaflsg g Ilmla=d:(t=t1] Bragg condition,k=Kky. In the effective-mass approxima-
Gi(t-t)= 12% €323 Y tion, the dispersion relation is expanded to second ordkr in
0 Vi—t . ; 5 . .
about this pointw,=w.=A(k—kg)*. Making the substitu-
' e~ ilmA=5,(t=1")] tion g=k—Kky and performing the angular integraticB,(t
=3 Z—I—t’ : (A3)  —t') is expressed as
Because the relevant frequencies in E&g3) are roughly of » 2 At
the same order of magnitude near a band edge, we may re- Ga(t—t')= w1dy; eiﬁc(t,tr)JAd qe "™
write the prefactor a®s/?= w5i2d3,/12k eom%c, in agree- A Afegm? 0 Y9 o AR
ment with the value given in Sec. Il. We emphasize that the (A4)

stationary phase method yields the correct asymptotic behav-

ior for the memory kernel for largg—t’|. At short times,

the integral must be evaluated more precisely using the fulExtending the wave-vector integration to infinity, the Green
photon dispersion relation, as discussed below. function is[46]

|
2 42
i — w102, iog(t—t") T T 9 biedt-tp i —t'
Ga(t t)—8h60772e Viwc(t—t’) 5 \/A e [1-D(Wiw(t—1"))]. (A5)

®(x) is the probability integral®(x)= (2/\/F)fge‘t2dt. The (_jouble—valued nature afy atky is made explicit by the
For we(t—t')>1, a condition satisfied for all but té—t  function sgnk—ko)=1 for k>k,, and sgrk—ky)=—1 for k
limit (as w.~10°s! for optical transitiony taking the <Ko. This gives a gap of widtlwg,,=27yc, centered about

asymptotic expansion ob(x) to second order gives the midgap frequencwy=c k§+ ¥2. Note that Eq.(A8)
gives the correct linear dependencekiffor both large posi-
w3,d2, il mla+ 5e(t=t")] tive and negativek, and gives the effective-mass dispersion
Galt=t") = g7 (A P, (1=t for k~ky. Like the effective-mass model, E¢A8) gives a
0 ¢ singular density of states at the band edgess wy*cCvy.
w(t—1")>1. (A6)  The full dispersion relation allows us to evaluate the influ-
ence of both band edges for arbitrary gap width and atomic
Ast—t'—0,, Eq. (A5) reduces to resonant frequency. Preliminary numerical calculations show

a stronger reservoir memory effect than demonstrated in the
w3,d3; \/T effective mass model for the isotropic band edge. This may
8 ﬁeoﬂ'z A3 (Tt w\/w—c , have a S|g.n|f|c.ant effe_ct on theor_et_lc_al predictions regarding
¢ the atom-field interaction in the vicinity of a PBG. A further
t—t'—0, . (A7) simplification has been made in the anisotropic model, in
that we have not included the dependencepbn the sym-
Ga(t—t') possesses a wedkquare root singularity att ~ metry of a specific photonic crystal. In a real three-
=t’. This is an integrable singularity and can thus be treatedimensional PBG material, the Bragg condition is satisfied
numerically[47]. for different values ok as the wave vector changes direction
The effective-mass dispersion relation used in the evalull k space. This directional dependence may lead to a much
ation of G(t—t’) is, strictly speaking, valid only near the Stronger dependence of the localization of light on the detun-
photonic band edge, as it fails to give the required lineaind of w,; away from the band edge. The impact on the
photon dispersion relation for |argk_ko| (far away from a.tom'ﬁeld interaction in a PBG Ofboth the fU” ISOtrOpIC
the gap. Therefore, the integration of the effective-mass dis-dispersion model and more realistic dispersions for three-
persion for large wave vector in Eq&A1) and (Ad) intro-  dimensional photonic crystals will be treated elsewhere.
duces a spurious contribution B(t—t’). This difficulty
may be overcome for an isotropic gap model by using a _ )
dispersion relation that has the correct wave-vector depen- APPENDIX B: EVALUATION OF  Z,|A\(1)]
dence forlallk. The simplest model dispersion with the cor-  we outline the evaluation of,|A,(t)|?, used to obtain
rect form is the low excitation population fluctuations in Sec. I, Eq.

5 (3.19. A similar procedure is used to arrive at £§.12) in
o= kgt y*+sgnk—ko) V(k—ko)*+»°. (A8)  Sec. V. Starting from the Laplace transforfy (s) [Eq.

GA(t_t,):
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(3.7], we may use the properties of a convolution of Laplace t t .
transforms in order to write l,= fodt"Jo dt'B(t")B*(t")G(t'—t")=I17. (B4)
t
A(t)= dt’B(t")e "4 B1 :
A g)‘fo ) BD Therefore, =, |A,(1)|?=2 R€l,}, and we need only explic-

itly evaluatel,. The Laplace transform dB(t), B(s) [Eq.

Therefore, we have (3.6)], is equivalent to the Laplace transform of the equation
t t
2 A= f dt’ f dt"B(t")B* (t')G(t' ~t"), q t
A 0 0 _ ’ Y ’
(B2) dtB(t)— Nfodt G(t—t")B(t"). (B5)
with G(t—t’) defined as in Eq(2.7). We may rewrite this
double integral in the form Substituting Eq(B5) into |; and its complex conjugate, we
t obtain
D |A)\(t)|2=f olt’ft dvB(t")B* (1) G(t' —t")
Y 0 0 1 [t d
2l =— = | dt’ —|B(t")[?
t t 1 N Jo  dt
+f dt’f dt"B(t")B*(t")G(t' —t")
0 t 1
- 2_ 21— 2
. (83 =NLBOIE=[BOP=2 [AWMF  (B6)

wherel; andl, are the first and second double integrals,
respectively. By changing the order of the integrationk,in ~ as |, is real. Substituting the initial conditiofB(0)|2=1
we obtain into Eqg. (B6) gives the result quoted in Sec. Ill.

[1] S. John, Phys. Rev. Leth3, 2169(1984). [17] M. Gross and S. Haroche, Phys. R, 301(1982.
[2] S. John, inPhotonic Bandgap Materiajsedited by C. M.  [18] F. Haake, M. I. Kolobov, C. Fabre, E. Giacobino, and S. Rey-
Soukoulis, Vol. 315 ofNATO Advanced Studies Institute Se- naud, Phys. Rev. Let1, 995(1993.
ries E (Kluwer Academic, Dordrecht, 1996 [19] R. G. DeVoe and R. G. Brewer, Phys. Rev. Lét6, 2049
[3] E. Yablonovich, Phys. Rev. Let68, 2059(1987). (1996.
[4] S. John, Phys. Rev. Lef8, 2486(1987). [20] S. John and T. Quang, Phys. Rev. L&, 3419(1995.

g ] [21] S. John and T. Quang, Phys. Rev. L&, 1320(1996.
[5] E't:(ago;(z);g(hl’ggﬁ) J. Gmitter, and K. M. Leung, Phys. ReV. 1551 5 51 and V. Rupasov, Phys. Rev. Lg8, 821 (1997).
ett. 67, }

i [23] J. Schwinger, iMQuantum Theory of Angular Momentued-

(6] U. Grining, V. Lehman, S. Ottow, and K. Busch, Appl. Phys. © " jted by L. C. BiedenhariAcademic Press, New York, 1965
Lett. 68, 747 (1996. [24] L. Mandel, Opt. Lett4, 205(1979.

[7]W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. La- [25] S. Bay, P. Lambropoulos, and K. Noer, Phys. Rev. A57,
gendijk, and G. H. Wegdam, Phys. Rev5B, 16 231(1996. 3065(1998.

[8] V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. [26] Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S.
Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, Haroche, Phys. Rev. Letbl, 1175(1983.
A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, [27] L. Allen and J. H. EberlyOptical Resonance and Two-Level
Phys. Rev. E55, 7619(1997. Atoms(Dover, New York, 198Y.

[9] H. Miguez, C. Lpez, F. Meseguer, A. Bianco, L.'Yauez, R.  [28] M. Woldeyohannes and S. Jokunpublisheg
Mayoral, M. Oca, V. Forns, and A. Mifsud, Appl. Phys. [29] D. Deutsch, Proc. R. Soc. London, Ser480, 96 (1985; A.

Lett. 71, 1148(1997. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett.
[10] Yu. A. Vlasov, K. Luterova, |. Pelant, B. Herlage, and V. N. 74, 4083 (1999; T. Sleator and H. Weinfurter, Phys. Rev.

Astratov, Appl. Phys. Lett71, 1616(1997). Lett. 74, 4087(1995; J. I. Cirac and P. Zolleribid. 74, 4091
[11] S. John and J. Wang, Phys. Rev. Lé#, 2418(1990; Phys. (1995.

Rev. B43, 12 772(199). [30] T. Quang, M. Woldeyohannes, S. John, and G. Agarwal, Phys.
[12] Y. Yamamoto and R. E. Slusher, Phys. Tod4§ (6), 66 Rev. Lett.79, 5238(1997).

(1993. [31] P. Meystre and M. Sargenglements of Quantum Optics
[13] W. H. Louisell, Quantum Statistical Properties of Radiation (Springer-Verlag, New York, 1991

(Wiley, New York, 1973. [32] D. Polder, M. F. H. Schurmans, and Q. H. F. Vrehen, Phys.
[14] R. F. Nabiev, P. Yeh, and J. J. Sanchez Mondragon, Phys. Rev. A19, 1192(1979.

Rev. A 47, 3380(1993. [33] F. Haake, H. King, G. Schder, J. Haus, and R. Glauber,
[15] S. John and T. Quang, Phys. Rev58, 1764(1994). Phys. Rev. A20, 2047(1979.

[16] R. Dicke, Phys. Rew3, 493(1954. [34] M. Sargent, M. O. Scully, and W. E. Lamhaser Physics



PRA 58 NON-MARKOVIAN QUANTUM FLUCTUATIONS AND.. .. 4185

(Addison-Wesley, New York, 1974 [40] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E.
[35] A. BarabasiFractal Concepts in Surface GrowfiCambridge Sauvain, Natur¢London 368 436 (1994).

University Press, New York, 1995E. Medina, T. Hwa, M.  [41] S. John and G. Pang, Phys. Rev5A 3642(1996.

Kardar, and Y. Zhang, Phys. Rev.39, 3053(1989; C. Peng,  [42] A. Imamoglu, Phys. Rev. /&0, 3650(1994).

S. Havlin, M. Schwartz, and H. E. Stanley, Phys. Rev44 [43] B. M. Garraway, Phys. Rev. A5, 2290(1997.

R2239(1991. [44] S. John and N. Akzbek, Phys. Rev. Let71, 1168(1993; N.
[36] S. O. Rice, inSelected Papers on Noise and Stochastic Pro- Akdzbek and S. John, Phys. Rev5g 2287(1998.
cessesedited by N. WaxDover, New York, 1954 [45] H. A. Bethe, Phys. Revz2, 339 (1947).
[37] K. Y. R. Billah and M. Shinozuka, Phys. Rev. 42, 7492

: [46] I. S. Gradshteyn and I. M. RyzhiK;able of Integrals, Series
(1990, and references therein. and ProductsAcademic Press, New York, 1980

38] D. F. Walls, NaturglLondon 306, 141(1983. . . . .
£39% R Loud?)nS,Th: L(Jgri(ar?tr:m?@Thegr of (Li hznd ed. (Oxford [47] P. J. Davis and P. Rabinowitkjethods of Numerical Integra-
) ’ y 9 ' tion, 2nd ed.(Academic Press, New York, 1984

University Press, Oxford, 1983



