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Transition from antibunching to bunching for two dipole-interacting atoms

Almut Beige and Gerhard C. Hegerfeldt
Institut für Theoretische Physik, Universita¨t Göttingen, Bunsenstrasse 9, 37073 Go¨ttingen, Germany

~Received 27 April 1998; revised manuscript received 18 June 1998!

It is known that there is a transition from photon antibunching to bunching in the resonance fluorescence of
a driven system of two two-level atoms with dipole-dipole interaction when the atomic distance decreases and
the other parameters are kept fixed. We give a simple explanation for the underlying mechanism that in
principle can also be applied to other systems.@S1050-2947~98!01711-9#

PACS number~s!: 42.50.Ar, 42.50.Fx
te
an
ve

io
e
e
a

pr
e

le
r

io
an

to
t

ns
di

m

fo
ve
c-
f

a-
us

e
d
ti
f

a-
II
cit
nd
s-

h

. It
nti-
for

er,
ase

sid-
re-

he

-
s
in

ut
on
and
e we
or-
ec-
e-
gle
ble

ic

h

e

an
rix

a

I. INTRODUCTION

Bunching means that photons emitted by a driven sys
have a tendency to arrive in pairs or bunches, while for
tibunching photons repel each other. For a driven two-le
system it is known that one has antibunching@1–3#. This is
intuitively very simple to understand since after an emiss
the system is in its ground state and it requires some tim
acquire enough population of the excited state for a n
emission. For two independent, noninteracting, two-level
oms one also has antibunching, although not quite so
nounced as for a single atom. This was investigated exp
mentally in Ref.@4#.

For a system of two two-level atoms with dipole-dipo
interaction it has been shown by means of the quantum
gression theorem and the master or optical Bloch equat
that the properties of the resonance fluorescence may ch
considerably when compared to that for a single system@5–
26#. In particular there is a transition from antibunching
bunching when the atomic distance becomes small and
other parameters are kept fixed~see, e.g., Ref.@12#!. The
state space of the system is fourdimensional and the de
matrices have 16 components so that the correspon
Bloch equations require diagonalization of a 16316 matrix.
This makes an intuitive understanding of this transition fro
antibunching to bunching not obvious.

It is the aim of this paper to give a simple explanation
the appearance of bunching for small distances in a dri
system of two two-level atoms with dipole-dipole intera
tion. We show that by an emission the level populations o
system can change considerably—as described by the
called reset matrix@27#—and this can lead to a higher prob
blity density for the emission of a further photon. Analogo
considerations can be applied to quite general systems.

We consider a system of two two-level atoms at a fix
distancer , interacting with the quantized radiation field an
a classical laser field. Through photon exchange the radia
field mediates ther-dependent dipole-dipole interaction o
the atoms. The dipole and rotating-wave approximation
used throughout. Retardation effects are included.

In Sec. II we briefly review the photon-counting correl
tion functiong(t) and its connection to bunching. In Sec. I
we apply this to two two-level atoms and give an expli
expression forg(0) as a function of the atomic distance a
the driving field. Bunching is explicitly seen for atomic di
tances about a quarter of a wavelength or less.

In Sec. IV we discuss the results and the simple mec
PRA 581050-2947/98/58~5!/4133~7!/$15.00
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nism responsible for bunching for small atomic distances
is also made clear why an analogous argument yields a
bunching for two independent noninteracting atoms and
atoms sufficiently far away.

For simplicity we consider, in the main part of the pap
coinciding atomic dipole moments and the same laser ph
for each atom. In the Appendix the general case is con
ered, the corresponding Hamiltonian spelled out, and the
set matrix given. We also outline the connection with t
quantum jump approach@28,29,27,30#, which is equivalent
to the Monte Carlo wave-function approach@31# and to
quantum trajectories@32#. For a recent review of this ap
proach see Ref.@33#. For a system of two two-level atom
with dipole-dipole interaction we carry this approach over
a form convenient for simulations.

II. PHOTON-COUNTING CORRELATION FUNCTIONS

We briefly review some well-known facts. As pointed o
in Ref. @34# there is a minor difference between correlati
functions that are based on the electric field operator
those that are based on the photon number operator. Her
employ the latter type of correlation functions of second
der. For simplicity we consider broad-band photon det
tions over all space. It is useful to distinguish clearly b
tween correlation functions for ensembles and for a sin
trajectory. The latter involves a time rather than an ensem
average.

Ensemble. Consider an ensemble of laser driven atom
systems in the stater at t50 and denote by
G(t2 ,t1 ;r)dt1dt2 the relative number of systems for whic
in addition to a photon in (t1 ,t11dt1) also a photon in
(t2 ,t21dt2) is detected. If, for a particular trajectory, w
denote the number of photons detected in (t,t1Dt) by
Ntraj(t,t1Dt)—for small Dt this number is either 0 or 1—
then

G~ t2 ,t1 ;r!dt1dt25^Ntraj~ t1 ,t11dt1!Ntraj~ t2 ,t21dt2!&ens.
~1!

Let us consider the subensemble of systems that had
emission att1 and let us denote its normalized density mat
right after the emission byR̂„r(t1)…. This we call the nor-
malized reset matrix and it will be given explicitly for
two-atom system in the next section. We denote byI (t;r)
4133 ©1998 The American Physical Society
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the probability density for the emission of a photon at timt
~not necessarily the first photon aftert50) for initial density
matrix r. With this one has

G~ t2 ,t1 ;r!dt1dt25I ~ t1 ;r!dt1I ~ t22t1 ;R̂„r~ t1!…!dt2 .
~2!

Letting t1→` and keepingt5t22t1 fixed the first factor on
the right-hand side~rhs! goes toI ss and r(t1) to rss, the
steady-state emission rate and density matrix, respectiv
Hence

G~t![ lim
t→`

G~ t1t,t;r!5I ssI „t;R̂~rss!…. ~3!

The photon correlation functiong(t) is now defined as

g~t![
G~t!

I ssI ss
5

I „t;R̂~rss!…

I ss
. ~4!

It compares, for the steady state, the probability density
emission of a photon at a timet after a preceding emissio
with that of a uniform distribution@35# of emission rateI ss.
Since I in Eq. ~4! can be obtained directly from the Bloc
equations@see Eq.~A7! of the Appendix#, the quantum re-
gression theorem is not needed for the photon-counting
relation function.

Single trajectory. We now consider a single system wi
its trajectory of photon emissions and defineNtraj as before.
At instancestm8 5mDt8 until time T5MDt8 one measures
whether or not a photon has been emitted in (tm8 ,tm118 ).
Then the relative frequency of cases in which both
(tm8 ,tm8 1Dt1) and (tm8 1t,tm8 1t1Dt2) a photon has been
found is given in the limitDt8→0 andT→`, using 1/M
5Dt8/T, by

Gtraj~t!Dt1Dt25 lim
T→`

lim
Dt8→0

Dt8

T (
m

Ntraj~ tm8 ,tm8 1Dt1!

3Ntraj~ tm8 1t,tm8 1t1Dt2!

5 lim
T→`

1

TE0

T

dt8Ntraj~ t8,t81Dt1!

3Ntraj~ t81t,t81t1Dt2!. ~5!

By ergodicity this should be the same for each trajectory,
therefore one can take the ensemble average of the rhs
out changing anything. Using Eqs.~1! and ~3! one then ob-
tains

Gtraj~t!5G~t! ~6!

so that both correlation functions coincide and simila
g traj(t)5g(t).

We also point out the well-known fact that if one observ
photons with a detector of efficiencyh less than 1 then in
Eq. ~4! both numerator and denominator are multiplied byh
and henceg(t) is not affected by the detector efficiency.

Bunching.There are two definitions of bunching in th
literature. In the first the relative number of cases, in wh
shortly after emission of a photon a further photon is emitt
ly.

r

r-

d
th-

s

h
,

exceeds those for a uniform distribution of frequencyI ss,
and this meansg(0).1 @36#. In the second, there are mor
pairs of photons close together than further apart, and
meansg(0).g(t) @34#, either for all t or for t less than
somet0 . Similarly for antibunching.

III. BUNCHING FOR TWO ATOMS

We now turn to two two-level atoms with dipole-dipol
interaction, driven by a laser tuned to the atomic transit
frequencyv0 . The corresponding Hamiltonian is given i
the Appendix. For simplicity we consider coinciding atom
dipole moments forming an angleq with the line connecting
the atoms and laser radiation normal to this line so that
laser is in phase for both atoms. The Rabi frequency of
laser, denoted byV, is then the same for both atoms. On
can takeV to be real and positive. The general case is in
cated in the Appendix.

It is convenient to use the Dicke states@37# ug&5u1&u1&,
ue&5u2&u2&, andus& andua& the symmetric and antisymme
ric combinations ofu1&u2& and u2&u1&. These states play th
role of dressed states for the atoms~cf., e.g., Ref.@24#!, with
decay constantsA6ReC ~see Fig. 1! where C is an r-
dependent complex coupling constant@38#. It is given for the
general case in Eq.~A6! of the Appendix. From Fig. 2 it is
seen thatC→0 for r→`, uIm Cu→` for r→0, while ReC
changes little withr . Retardation effects are included in th
sense thatC goes to its value for a static dipole-dipole inte
action whenc→` @22#.

The steady-state density matrixrss can be found from the
Bloch equations@5# and is known in the literature; see, e.g
Ref. @12#. One can also directly employ the Bloch equatio
in Eq. ~A13! of the Appendix and putṙ5 ṙss50. In the
Dicke basis one obtains for the diagonal elements

rgg
ss 5

~A21V2!21A2 ReC~2A1ReC!1A2 ~ Im C!2

N
~7!

rss
ss5

V2~2A21V2!

N
, raa

ss 5ree
ss5

V4

N

with the normalization factor

N5~A212V2!21A2ReC~2A1ReC!1A2 ~ Im C!2.
~8!

We also need the diagonal elements of normalized re
matrix, the density matrix right after an emission. Due to
emission the populations of the excited states in the Di

FIG. 1. Dicke states and decay rates.
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FIG. 2. Dependence ofC on r .
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basis move down one step to lower levels in proportion
their decay constants and the previous ground-state pop
tion disappears since it does not contribute to an emiss
Normalization is then achieved by dividing by the trace, tr~ !.
This gives

^guR̂~rss!ug&5$~A1ReC!rss
ss1~A2ReC!raa

ss %/tr~ !,

^suR̂~rss!us&5~A1ReC!ree
ss/tr~ !, ~9!

^auR̂~rss!ua&5~A2ReC!ree
ss/tr~ !

and ^euR̂(rss)ue&50. The complete reset matrix is given
the Appendix.

One can immediately draw the following conclusio
from these expressions.

~i! For small atomic distance,k0r ,2, ImC andN become
very large. Hence, for both weak and stronger driving,
steady-state populationrgg

ss of the ground state become
much larger than that of the excited states, and thus
steady-state emission probability is small in this case.

~ii ! For strong driving,V;A, the ratios of steady-stat
populations of the three excited states are of equal orde
magnitude for all atomic distances~since ReC does not vary
much andN drops out!.

~iii ! Right after an emission, the~large! steady-state
ground-state population is discarded, the populations ofus&
and ua& are transferred toug& in the reset matrix and that o
ue& to us& andua&, all in proportion to their appropriate deca
constants. Hence, after an emission and forV;A, the
ground-state population and that of the first excited sta
have become of similar magnitude~see Fig. 3 for a qualita-
tive description!.

~iv! After an emission therefore, for small atomic distan
and forV;A, the population of the two first excited state
has increased in relation to the ground-state populat
Therefore the probability density for the next photon rig
after an emission is higher than the steady-state emis
rate. This meansg(0).1 bunching.

~v! Because after an emission the populations ofus& and
ua& are large@see Eq.~9! and Fig. 3# there is a high prob-
o
la-
n.

e

e

of

s

n.
t
on

ability for emission of a photon. This leads to an initial d
crease of the populations in time and thus to a decrease o
emission probability until the pumping could increase t
populations again. This meansg(0).g(t) for t,t0 .

This argument for bunching can be extended to we
driving and small distances as follows. From Eq.~7! one sees
that in the steady state only the numerator of the ground-s
population contains ImC. Since the latter increases rapid
for decreasingr , as seen from Fig. 2, the ratios of the pop
lations of the excited states with that of the ground st
approach 0, while the ratios among the excited states do
change. After a photon emission the upper populations m
downwards and the previous large ground-state populatio
discarded. Hence again, after a photon emission the ratio
the populations of excited states and ground state have
creased compared to the steady state if the atomic distan
sufficiently small, and this means a higher emission proba
ity density, i.e.,g(0).1 bunching.

These observations will now be made quantitative. Sin
I ss is obtained from the level population multiplied by the
decay constantsA6ReC, one has

I ss5~A1ReC!rss
ss1~A2 ReC!raa

s s12Aree
ss . ~10!

Hence the normalization constant tr~ ! in Eq. ~9! is I ss. For
small atomic distanceI ss becomes very small, due to th
small population of the excited states. This can be attribu
to the detuning due to the level shift\ Im C ~see Fig. 1!.

For g(0) in Eq. ~4! one needsI „0;R̂(rss)…, the probabil-
ity density for a new emission right after an emission. This
obtained in a similar way asI ss,

FIG. 3. Relative populations before and after an emission.
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FIG. 4. Photon correlationg(0) as a function ofr . ~a! V50.1 A, ~b! V50.9 A.
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I „0;R̂~rss!…5~A1ReC!^suR̂~rss!us&1~A2ReC!

3^auR̂~rss!ua&12A^euR̂~rss!ue&

52$A21~ReC!2%ree
ss/I ss ~11!

by Eqs.~9! and ~10!. One could also have used Eq.~A7! of
the Appendix. From the behavior of ReC it follows that
I „0;R̂(rss)… is of the same order of magnitude for all atom
distances. This fact is immediately understood by the ob
vations~ii ! and ~iii ! above. From Eqs.~4! and ~7!–~11! one
finally obtains

g~0!5
I „0;R̂~rss!…

I ss

5
A21~ReC!2

2A2

3F11
A2~ Im C!224V2AReC

~2V21A21AReC!2 G . ~12!

SinceI ss becomes small for smallr while I „0;R̂(rss)… does
not change much withr one hasg(0).1 for small atomic
distances. In the last expression the first factor approach
for small atomic distance since ReC goes toA, while the
second factor grows with ImC. In particular, for weak driv-
ing the terms involvingV can be neglected and one can re
off Fig. 2 that one has bunching below an atomic distanc
about a quarter of the optical wavelength. For strong driv
V;A, bunching sets in when the atoms are slightly clos
For large atomic distanceg(0) approaches 1/2 sinceC ap-
proaches 0. This recovers the result for two independen
oms. Ther dependence ofg(0) for various values of the
angleq between the dipole moment and the line connec
the atoms is plotted in Fig. 4.

IV. DISCUSSION

We have investigated bunching and antibunching in
resonance fluorescence of two atoms as a function of
distance and with their dipole-dipole interaction taken i
account. Each atom was treated as a two-level system
the position of the atoms was kept fixed. The two-atom s
tem was irradiated by a laser tuned to the transition
r-

1

f
,

r.

t-

g

e
ir

nd
-
-

quency of the individual atoms. Retardation effects ha
been included.

For a single and for two two-level atoms antibunching
the resonance fluorescence is well known and well und
stood. For two interacting two-level atoms the emission s
tistics depends on the distance. For atoms far apart the in
action is negligible and one has antibunching as for t
independent atoms. For small atomic distances one
bunching. The main purpose of this paper was to get a be
understanding of this phenomenon.

For small distances and strong driving the steady-s
populations of the excited states are of small but sim
magnitude, as indicated in Fig. 3. The reason for the sm
population, which leads to a small stationary emission rate
easily understood through the level shift of the symme
and antisymmetric statesus& and ua& due to the dipole force
~see Fig. 1!. The reason for the similar magnitude of th
population ofus& and ua& with ue&[u2&u2& has been attrib-
uted to two-photon processes@22#. For a two-atom system
that has emitted a photon the populations move downwa
in proportion to the respective decay constants and with
suing normalization. The previous population ofug& has dis-
appeared since it does not contribute to the emission. T
right after an emission the populations ofug&, us&, and ua&
are suddenly of similar magnitude. Hence right after
emission the probability density for finding another phot
has increased when compared to that preceding the emis
This means bunching for small distances and strong driv
For weak driving the mechanism is in principle the same

We have shown that when decreasing the atomic dista
the transition from antibunching to bunching sets in a
distance of about a quarter of the optical wavelength,
weak driving slightly sooner than for strong driving.

It is instructive to see why the same argument gives a
bunching for two independent, noninteracting atoms. Fi
for strong driving, the two levels of each individual atom a
populated by approximately 1/2 so that the population
ug&,us&,ua&, and ue& are 1/4 each. Then, after an emissio
the ratios of the populations ofug&,us&, ua&, and ue& are
1
2 : 1

4 : 1
4 :0, as inherited from those ofus&,ua&,ue&, prior to the

emission and in proportion to the decay rates. Thus the p
ability density for a next emission is only one half of that
the steady state. On the other hand, for weak driving
ground-state population is much larger than that of the
cited states. Is this situation not similar to that of interacti
atoms? Not quite, since although the populations ofus& and
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ua& are small and of similar magnitude, that ofue& is of the
order of the product of the latter and therefore an order
magnitude smaller. Thus after an emission the ground-s
population is still much larger than that of the excited stat
and there is no increase in the emission probability.

The analysis can be carried over to the more general
where the dipole moments are not parallel and where
laser is detuned and its phase is different for the two ato
The necessary tools are given in the Appendix. Also the c
of degenerate upper level can be treated. The results@39# are
similar to those obtained above.

To conclude, we have traced the appearance of bunc
in the resonance fluorescence of a driven system of two t
level atoms with dipole-dipole interaction and at small d
tances to two causes, one the level populations of the ste
state density matrix, the other the change in the state r
after the emission of a photon. A similar analysis can
principle also be applied to other systems, e.g., to a sin
atom in a three-level cascade configuration.

APPENDIX

We consider two atoms fixed at positionsr i and each with
two levels, u1& i and u2& i , i 51,2, with energy difference
\v0 . We define operatorsSi

6 in the two-atom Hilbert space
by Si

15u2& i i ^1u andSi
25u1& i i ^2u. The dipole moment of the

i th atom isD12
( i )5 i^1uXu2& i . For the laser we take zero de

tuning andEL(r ,t)5Re$E0ei (kL•r2v0t)%. Making the usual
rotating-wave approximation and going over to the inter
tion picture the interaction Hamiltonian becomes

HI5(
i 51

2

(
k,s

\@gk,s
~ i ! ak,se

i ~v02vk!teik•r iSi
11H.c.#1HL ,

~A1!

with the coupling constants

gk,s
~ i ! 5 ieS vk

2e0\L3D 1/2

~D12
~ i ! ,ek,s!, ~A2!

laser partHL5(\/2)( i 51
2 $V iSi

11V i
!Si

2% and Rabi frequen-
cies V i5(e/\)D12

( i )
•E0eikL•r i. The operatorHI contains the

dipole-dipole interaction of the two atoms as seen from
Bloch equations or from the conditional Hamiltonian b
tween emissions, as explained further below. In the ab
Power-Zienau formulation this interaction is due to phot
exchange@5#.

Reset matrix. The reset operation gives the state or dens
matrix right after a photon detection. In a basis in which t
atomic damping is diagonal, as for the Dicke states, the
agonal states immediately can be written down, as in Eq.~9!.
For a generalN-level system the reset matrix has been d
rived in Refs. @27,30#. For a system consisting of two o
more atoms the derivation has to slightly modified since
this case the field operatorE appears with different position
arguments.

Let at timet the state of the combined system, atoms p
quantized radiation field, be given byu0ph&r^0phu, i.e., the
atomic system is described by the density matrixr and there
are no photons~recall that the laser field is treated clas
f
te

s,

se
e
s.
se

ng
o-
-
y-

ht

le

-

e

e

y
e
i-

-

n

s

cally!. If at time t1Dt a photon is detected~but not ab-
sorbed! the combined system is in the state

P.UI~ t1Dt,t !u0ph&r^0phuUI
†~ t1Dt,t !P. , ~A3!

whereP.512u0ph&1A^0 phu is the projector onto the one o
more photon space~sinceDt is small one could directly take
the projector onto the one-photon space!. The probability for
this event is the trace over Eq.~A3!. For the state of the
atomic system it is irrelevant whether the detected photo
absorbed or not~intuitively the photon travels away and n
longer interacts with the atomic system!. Hence after a pho-
ton detection at timet1Dt the non-normalized state of th
atomic system alone, denoted byR(r)Dt, is given by a par-
tial trace over the photon space,

R~r!Dt5trph„P.UI~ t1Dt,t !u0ph&r^0phuUI
†

3~ t1Dt,t !P.…. ~A4!

We callR(r) the non-normalized reset state@27#. Proceed-
ing as in Refs.@27,30# and using perturbation theory on
obtains@39#

R~r!5 1
2 ~C12* 1C21!S1

2rS2
11 1

2 ~C121C21* !S2
2rS1

1

1A~S1
2rS1

11S2
2rS2

1! ~A5!

with the r-dependent constants

Ci j 5
3A

2
eik0rF 1

ik0r
„~D̂12

~ i ! ,D̂12
~ j !!2~D̂12

~ i ! , r̂ !~ r̂ ,D̂12
~ j !!…

1S 1

~k0r !2 2
1

i~k0r !3D „~D̂12
~ i ! ,D̂12

~ j !!23~D̂12
~ i ! , r̂ !

3~ r̂ ,D̂12
~ j !!…G . ~A6!

Here the caret denotes vectors normalized to 1,A is the Ein-
stein coefficient, andr5r22r1 . In the case of equal dipole
moments one hasC125C21[C, which was depicted in Fig
2, with q defined by cos2q5u(D12,r )u2/r 2D12

2 . The normal-

ized reset state isR̂(r)[R(r)/trR(r).
By Eq. ~A3! the normalization ofR(r) is such that

trAR(r)Dt is the probability for a photon detection at tim
t1Dt if the ~normalized! state of the atomic system at timet
is r. Hence one has for the probability densityI of Sec. II

I „t;r~0!…5trR„r~ t !…. ~A7!

The laser field does not appear in the reset state, just a
the case of a single atom@27,30#, since its effect during the
short time Dt is negligible. By a simple calculation on
checks that Eq.~A5! can be written as

R~r!5~A1 1
2 uC121C21

! u!R1rR1
†

1~A2 1
2 uC121C21

! u!R2rR2
† , ~A8!

whereR65(S1
26eiwS2

2)/A2 andw is the argument ofC12

1C12
! . From Eq. ~A6! one can check thatA> 1

2 uC12

1C21
! u. If r is a pure state,r5uc&^cu say, thenR6rR6

† are
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also pure states. This decomposition ofR(r) is advanta-
geous for simulations of trajectories.

Conditional Hamiltonian and waiting times. In the quan-
tum jump approach@28,29,27,33#, the time development o
an atomic system is described by a conditional n
Hermitian HamiltonianHcond, which gives the time develop
ment between photon emissions, and by a reset opera
which gives the state or density matrix right after an em
sion. For a generalN-level system these have been derived
Refs.@27,30#. The derivation of the former is adapted here
a system of two atoms.

As explained in Refs.@28,27,30,33#, Hcond is of the gen-
eral formHcond5HA1HL1G whereG is an atomic damping
operator. In a basis in whichG is diagonal the diagonal term
are just the decay constants of the corresponding state
these~dressed! states are knownHcond can immediately be
written down. In this way one can obtainHcond for parallel
dipole moments in the Dicke basis. In the general case
obtained~in the interaction picture! from the short-time de-
velopment under the condition of no emission, i.e., from
relation

12
i

\
HcondDt5^0phuUI~Dt,0!u0ph&, ~A9!

where the rhs is evaluated in second-order perturba
theory forDt intermediate between inverse optical freque
cies and atomic decay times. In a similar way as for a sin
atom @28,27,30# one obtains for two two-level atoms@39#

Hcond5
\

2i
@A~S1

1S1
21S2

1S2
2!1C12S1

1S2
21C21S2

1S1
2#1HL

~A10!

with the r-dependent constantCi j given by Eq.~A6!. Be-
tween emissions the time development is given
Ucond(t,0)5exp$2iHcondt/\% which is nonunitary since
Hcond is non-Hermitian. The corresponding decrease in
norm of a vector is connected to the waiting time@40# for
emission of a~next! photon. If att50 the initial atomic state
is uc& then the probabilityP0(t) to observeno photon until
time t by a broadband counter~over all space! is given by
@28,27,30#

P0~ t;uc&)5iUcond~ t,0!uc&i2, ~A11!

and the probability densityw1 of finding the first photon at
time t is
tt

. A
-

n,
-

If

is

e

n
-
le

y

e

w1~ t;uc&)52
d

dt
P0~ t;uc&). ~A12!

For an initial density matrix instead ofuc& the expressions
are analogous, with a trace instead of a norm squared in
~A11!. For t50 one must havew1(0)5I (0) since for short
times any photon must be the first. This identity is eas
checked by means of Eqs.~A11!, ~A7!, and~A5!.

For equal dipole moments and without laser the con
tional Hamiltonian is diagonal in the Dicke basis.A6ReC
describes the decay rates ofus& and ua& to ug&, while
6\ Im C can be viewed as a level shift. The stateue& can
decay to bothus& and ua&, with respective decay ratesA
6ReC. This also follows from the Bloch equations and
indicated in Fig. 1. From this the well-known fact follow
that two atoms with dipole interaction can decay faster
slower than two independent atoms~superradiance and sub
radiance@25#!. When r→0, ReC approachesA so thatua&
can no longer decay whileus& decays with 2A.

Trajectories and Bloch equations. Starting att50 with a
pure state, the state develops according toUconduntil the first
emission at some timet1 , determined fromw1 in Eq. ~A12!.
Then the state is reset according to Eq.~A5! to a new density
matrix ~which has to be normalized!, and so on.

The decomposition ofR(r) in Eq. ~A8! allows one, how-
ever, to work solely with pure states, which is numerica
much more efficient. One can start with a pure stateuc&,
develop it with Ucond until t1 to the ~non-normalized!
uc(t1)&, reset to one of the pure statesR6uc(t1)&/i•i with
relative probabilities given by the factorsA6 1

2 uC121C21
! u

appearing in Eq.~A8!, and so on. The waiting time distribu
tions are not changed by this procedure.

Quite generally the ensemble of such trajectories yie
the Bloch equations@27#. With the reset matrix this is easily
seen as follows. If an ensemble of systems of two two-le
atoms has a density matrixr(t) at time t then at timet
1Dt one has two subensembles, one with a photon emiss
the other with none. The former has relative si
trR„r(t)…Dt, by the remark after Eq.~A5!, while the latter
is obtained by means of Ucond(t1Dt,t)51A
2( i /\)HcondDt. This immediately gives

ṙ52
i

\
@Hcondr2rHcond

† #1R~r!. ~A13!

Inserting from Eqs.~A10! and ~A5! one obtains the Bloch
equations for two two-level atoms. They agree with tho
derived by Agarwal@5#. From this expression it is eviden
thatHcond or the reset matrix can be immediately determin
if the Bloch equations and the reset matrix or, respective
Hcond are explicitly known.
i,
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