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Transition from antibunching to bunching for two dipole-interacting atoms
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It is known that there is a transition from photon antibunching to bunching in the resonance fluorescence of
a driven system of two two-level atoms with dipole-dipole interaction when the atomic distance decreases and
the other parameters are kept fixed. We give a simple explanation for the underlying mechanism that in
principle can also be applied to other systep®1050-29478)01711-9

PACS numbds): 42.50.Ar, 42.50.Fx

I. INTRODUCTION nism responsible for bunching for small atomic distances. It
is also made clear why an analogous argument yields anti-
Bunching means that photons emitted by a driven systerhunching for two independent noninteracting atoms and for
have a tendency to arrive in pairs or bunches, while for anatoms sufficiently far away.
tibunching photons repel each other. For a driven two-level For simplicity we consider, in the main part of the paper,
system it is known that one has antibunchjig-3]. Thisis  coinciding atomic dipole moments and the same laser phase
intuitively very simple to understand since after an emissiorfor each atom. In the Appendix the general case is consid-
the system is in its ground state and it requires some time téred, the corresponding Hamiltonian spelled out, and the re-
acquire enough popu|ation of the excited state for a nexget matrix given. We also outline the connection with the
emission. For two independent, noninteracting, two-level atguantum jump approack28,29,27,30 which is equivalent
oms one also has antibunching, although not quite so prdo the Monte Carlo wave-function approa¢Bl] and to
nounced as for a single atom. This was investigated experfuantum trajectorie§32]. For a recent review of this ap-
mentally in Ref.[4]. proach see Ref.33]. For a system of two two-level atoms
For a system of two two-level atoms with dipole-dipole With dipole-dipole interaction we carry this approach over in
interaction it has been shown by means of the quantum rea form convenient for simulations.
gression theorem and the master or optical Bloch equations
that the properties of the resonance fluorescence may change
considerably when compared to that for a single sygem !l PHOTON-COUNTING CORRELATION FUNCTIONS

26]. In particular there is a transition from antibunching to  \y/e briefly review some well-known facts. As pointed out
bunching when the atomic dllstance becomes small and thg Ref. [34] there is a minor difference between correlation
other parameters are kept' flxeédeg, eg., Refl12]). The functions that are based on the electric field operator and
state space of the system is fourdimensional and the densify,qe that are based on the photon number operator. Here we
matrices have 16 components so that the correspondingnpioy the latter type of correlation functions of second or-
Bloch equations require diagonalization of ax1 matriX.  ger. For simplicity we consider broad-band photon detec-
This makes an intuitive understanding of this transition fromy;ons over all space. It is useful to distinguish clearly be-
antibunching to bunching not obvious. _ tween correlation functions for ensembles and for a single
Itis the aim of this paper to give a simple explanation for i aiectory. The latter involves a time rather than an ensemble

the appearance of bunching for small distances in a driveﬁverage.

system of two two-level atoms with dipole-dipole interac-  gnsemple Consider an ensemble of laser driven atomic
tion. We show that by an emission the level populations of &ystems in the statep at t=0 and denote by
system can change considerably—as described by the sgg ¢ - ;)dt,dt, the relative number of systems for which
called reset matr|{<27]—_an_d this can lead to a higher proba- " J4gition to a photon in t¢,t;+dt,) also a photon in
blity density for the emission of a further photon. Analogous(tz,tﬁdtz) is detected. If, for a particular trajectory, we

consideratio_ns can be applied to quite general systems.  qinote the number of photons detected tpt£At) by
We consider a system of two two-level atoms at a flxedNtraj(t t+ At)—for small At this number is either 0 or 1—

distancer, interacting with the quantized radiation field andt
a classical laser field. Through photon exchange the radiation
field mediates the-dependent dipole-dipole interaction of
the atoms. The dipole and rotating-wave approximation iSG(t,,t;;p)dt;dt;=(N"(t;,t; +dt)) N"(t,,ty+ dty) ens.
used throughout. Retardation effects are included. (1)
In Sec. Il we briefly review the photon-counting correla-
tion functiong(7) and its connection to bunching. In Sec. lll )
we apply this to two two-level atoms and give an explicit Let. us consider the subensemble of systems that had- an
expression fog(0) as a function of the atomic distance and emission at; and let us derjote its normalized density matrix
the driving field. Bunching is explicitly seen for atomic dis- right after the emission bf(p(t,)). This we call the nor-
tances about a quarter of a wavelength or less. malized reset matrix and it will be given explicitly for a
In Sec. IV we discuss the results and the simple mechaiwo-atom system in the next section. We denotel ftyp)
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the probability density for the emission of a photon at time
(not necessarily the first photon after 0) for initial density
matrix p. With this one has

G(tz,t1;p)dtidta=1(tg;p)dtyl (to— 1ty ;ﬁ(P(tl)))dtZ-(

Lettingt,;— and keepingr=t,—t; fixed the first factor on
the right-hand sid€rhs) goes tolg and p(t;) to p*5 the

steady-state emission rate and density matrix, respectively. q
Hence .
FIG. 1. Dicke states and decay rates.
— i . — . S
G(n tImG(HT’t’p) |4 (rR(p)). ® exceeds those for a uniform distribution of frequerigy,
and this meang(0)>1 [36]. In the second, there are more
The photon correlation functiog(7) is now defined as pairs of photons close together than further apart, and this

R meansg(0)>g(7) [34], either for all 7 or for 7 less than
o(7) G(7) WTR(p*) somer,. Similarly for antibunching.
T)= = .
ISJ SS

| 4
SS

IIl. BUNCHING FOR TWO ATOMS
It compares, for the steady state, the probability density for

emission of a photon at a timeafter a preceding emission . W€ now tum to two two-level atoms with dipole-dipole
with that of a uniform distributiori35] of emission rate . interaction, driven by a laser tuned to the atomic transition
Sincel in Eq. (4) can be obtained directly from the Bloch frequencyw,. The corresponding Hamiltonian is given in
equationgsee Eq.(A7) of the Appendi}, the quantum re- the Appendix. For simplicity we consider coinciding atomic

gression theorem is not needed for the photon-counting cofiPole moments forming an angte with the line connecting
relation function. the atoms and laser radiation normal to this line so that the

Single trajectory We now consider a single system with laser is in phase for both atoms. The Rabi frequency of the

its trajectory of photon emissions and defiN& as before. laser, denoted by, is then the same for both atoms. One
At instancest’.=mAt’ until time T=MAt’ one measures Ccan take() to be real and positive. The general case is indi-
m

cated in the Appendix.

It is convenient to use the Dicke sta{&¥] |g)=|1)|1),
le)=|2)|2), and|s) and|a) the symmetric and antisymmet-
ric combinations of1)|2) and|2)|1). These states play the
role of dressed states for the atofu§, e.g., Ref[24]), with

whether or not a photon has been emitted if,{;,.1)-
Then the relative frequency of cases in which both in
(t; t+Aty) and ¢, + 7,t;,+ 7+At,) a photon has been

found is given in the limitAt’—0 andT—~, using 1M

=At/T, by decay constantfA+ReC (see Fig. 1 where C is an r-
_ At _ dependent complex coupling constaBs|. It is given for the
GU(7) At At,= lim lim —>, Nt} .t/ +Aty) general case in EqA6) of the Appendix. From Fig. 2 it is

Tooaro - M seen thaC—0 for r—oo, |ImC|—« for r—0, while ReC
changes little withr. Retardation effects are included in the
sense tha€ goes to its value for a static dipole-dipole inter-
17T , action whenc— oo [22].
= lim ?J dt’ N’ t" + At,) The steady-state density matpx®can be found from the
T 10 Bloch equationg5] and is known in the literature; see, e.g.,
(5) Ref.[12]. One can also directly employ the Bloch equations
in Eq. (A13) of the Appendix and pup=p*=0. In the
By ergodicity this should be the same for each trajectory, andDicke basis one obtains for the diagonal elements
therefore one can take the ensemble average of the rhs with-

XNt + 7t + 7+ Aty)

XNt + 7t + 74 Aty).

out changing anything. Using Eqgl) and (3) one then ob- s (A’+0?)?+A?ReC(2A+ReC)+A?(ImC)?
tains Pog™ N
i (7)
th‘aj( T)ZG(T) (6) SS QZ(ZAZ_"_ QZ) « < 04
pss:Tv Paa= pee:W

so that both correlation functions coincide and similarly
9" () =g(7). with the normalization factor

We also point out the well-known fact that if one observes
photons with a detector of efficiency less than 1 then in N=(A2+202)2+ A2ReC(2A+ReC)+ A2 (Im C)2.
Eq. (4) both numerator and denominator are multipliedpy 8
and henceay(7) is not affected by the detector efficiency.

Bunching.There are two definitions of bunching in the  We also need the diagonal elements of normalized reset
literature. In the first the relative number of cases, in whichmatrix, the density matrix right after an emission. Due to an
shortly after emission of a photon a further photon is emittedemission the populations of the excited states in the Dicke
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FIG. 2. Dependence d€ onr.

basis move down one step to lower levels in proportion taability for emission of a photon. This leads to an initial de-
their decay constants and the previous ground-state popularease of the populations in time and thus to a decrease of the
tion disappears since it does not contribute to an emissioremission probability until the pumping could increase the
Normalization is then achieved by dividing by the tracé).tr populations again. This meag$0)>g(r) for 7<rg.

This gives This argument for bunching can be extended to weak
R driving and small distances as follows. From Eg.one sees
(9IR(p*d|g)={(A+ReC)pi+ (A—ReC)pt/tr(), that in the steady state only the numerator of the ground-state
population contains Ir®. Since the latter increases rapidly
(s|R(p>|s)=(A+ReC)pSYtr(), (99 for decreasing, as seen from Fig. 2, the ratios of the popu-

lations of the excited states with that of the ground state

approach 0, while the ratios among the excited states do not
change. After a photon emission the upper populations move
A L . downwards and the previous large ground-state population is
and(e|R(p>)|e)=0. The complete reset matrix is given in giscarded. Hence again, after a photon emission the ratios of

(a|R(p*Y|a)=(A—ReC)pStr()

the Appendix. _ _ . the populations of excited states and ground state have in-
One can immediately draw the following conclusions ¢reased compared to the steady state if the atomic distance is
from these expressions. sufficiently small, and this means a higher emission probabil-

(i) For small atomic distancé&yr <2, ImC andN become ity density, i.e.,g(0)>1 bunching.
very large. Hence, for both weak and stronger driving, the * These observations will now be made quantitative. Since

steady-state populatiopgy of the ground state becomes |_ js obtained from the level population multiplied by their
much larger than that of the excited states, and thus thgecay constantd+ReC, one has

steady-state emission probability is small in this case.

(ii) For strong driving,Q0~A, the ratios of steady-state
populations of the three excited states are of equal order of | = (A+ReC)pSS+(A— ReC)pSS+2ApSS. (10
magnitude for all atomic distancésince ReC does not vary
much andN drops ou}.

(i) Right after an emission, thelarge steady-stateé Hence the normalization constant)tin Eq. (9) is I . For
ground-state population is discarded, the populationspf small atomic distancé becomes very small, due to the
and|a) are transferred tfg) in the reset matrix and that of small population of the excited states. This can be attributed
le) to |s) and|a), all in proportion to their appropriate decay to the detuning due to the level shiftim C (see Fig. L

constants. Hence, after an emission and A, the Forg(0) in Eq.(4) one need$(0;ﬁ(p53), the probabil-

%roung-state pofpu_lat_:on and that of the firsft excitedl_stateﬁy density for a new emission right after an emission. This is
ave become of similar magnitudsee Fig. 3 for a qualita- obtained in a similar way ak,

tive description.
(iv) After an emission therefore, for small atomic distance

and forQ~A, the population of the two first excited states le) —o— —

has increased in relation to the ground-state population.

Therefore the probability density for the next photon right ¥ —&— —o— | - —O— —o—
after an emission is higher than the steady-state emissior

rate. This meang(0)>1 bunching. @ l9) =0

(v) Because after an emission the populationgspfand
|a) are large[see Eq.(9) and Fig. 3 there is a high prob- FIG. 3. Relative populations before and after an emission.
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FIG. 4. Photon correlatiog(0) as a function of. (a) =0.1 A, (b) Q=0.9 A.
1(0;R(p))=(A+ ReC)(s|7Q(p5'%|s)+(A—ReC) quency of the individual atoms. Retardation effects have
been included.
x(a|R(p%|a)+2A(e|R(p>d|e) For a single and for two two-level atoms antibunching in
) o ss the resonance fluorescence is well known and well under-
=2{A"+(ReC)%}pedlss 11 stood. For two interacting two-level atoms the emission sta-

tistics depends on the distance. For atoms far apart the inter-
by Egs.(9) and(10). One could also have used H&7) of  ction is negligible and one has antibunching as for two
the Appendix. From the behavior of Reit follows that  jyjependent atoms. For small atomic distances one has

|(_0i7A3(P53) is of the same order of magnitude for all atomic pynching. The main purpose of this paper was to get a better
distances. This fact is immediately understood by the obselynderstanding of this phenomenon.

vations(ii) and iii) above. From Eqsi4) and (7)—(11) one For small distances and strong driving the steady-state
finally obtains populations of the excited states are of small but similar
R magnitude, as indicated in Fig. 3. The reason for the small

1(0;R(p%) population, which leads to a small stationary emission rate, is

9(0)= Tl easily understood through the level shift of the symmetric

and antisymmetric statds) and|a) due to the dipole force
A%+ (ReC)? (see Fig. 1 The reason for the similar magnitude of the
=T 2 population of|s) and|a) with |e)=|2)|2) has been attrib-

2
2A uted to two-photon processg22]. For a two-atom system
A2(Im C)2— 402AReC that has emitted a photon the populations move downwards,
. (120  in proportion to the respective decay constants and with en-
(202+ A%+ AReC)? suing normalization. The previous population|g§ has dis-

A appeared since it does not contribute to the emission. Thus
Sincel ¢ becomes small for smatl while 1(0;R(p%)) does  right after an emission the populations |gfy, |s), and|a)
not change much with one hasg(0)>1 for small atomic are suddenly of similar magnitude. Hence right after an
distances. In the last expression the first factor approacheseinission the probability density for finding another photon
for small atomic distance since Regoes toA, while the has increased when compared to that preceding the emission.
second factor grows with 11@. In particular, for weak driv- This means bunching for small distances and strong driving.
ing the terms involving) can be neglected and one can readFor weak driving the mechanism is in principle the same.
off Fig. 2 that one has bunching below an atomic distance of We have shown that when decreasing the atomic distance
about a quarter of the optical wavelength. For strong drivingthe transition from antibunching to bunching sets in at a
Q~A, bunching sets in when the atoms are slightly closerdistance of about a quarter of the optical wavelength, for
For large atomic distancg(0) approaches 1/2 sind@ ap-  weak driving slightly sooner than for strong driving.
proaches 0. This recovers the result for two independent at- It is instructive to see why the same argument gives anti-
oms. Ther dependence ofj(0) for various values of the bunching for two independent, noninteracting atoms. First,

angled between the dipole moment and the line connectingor strong driving, the two levels of each individual atom are
the atoms is plotted in Fig. 4. populated by approximately 1/2 so that the population of
lg),|s),|a), and|e) are 1/4 each. Then, after an emission,
the ratios of the populations dfy),|s), |a), and|e) are
V. DISCUSSION 3:7:%:0, as inherited from those ¢§),|a),|e), prior to the
We have investigated bunching and antibunching in theemission and in proportion to the decay rates. Thus the prob-
resonance fluorescence of two atoms as a function of theability density for a next emission is only one half of that in
distance and with their dipole-dipole interaction taken intothe steady state. On the other hand, for weak driving the
account. Each atom was treated as a two-level system armgtound-state population is much larger than that of the ex-
the position of the atoms was kept fixed. The two-atom syseited states. Is this situation not similar to that of interacting

tem was irradiated by a laser tuned to the transition freatoms? Not quite, since although the populationgspfand
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|a) are small and of similar magnitude, that|e) is of the  cally). If at time t+At a photon is detectebut not ab-

order of the product of the latter and therefore an order oborbed the combined system is in the state

magnitude smaller. Thus after an emission the ground-state

population is still much larger than that of the excited states, P_U, (t+A6D)[ 0, p(Op U (t+ALD P, (A3)

and there is no increase in the emission probability. ‘ . .
The analysis can be carried over to the more general cadé€"€l>=1-[0py 1x(0 i is the projector onto the one or

where the dipole moments are not parallel and where th§°re photon spacesinceAt is small one could directly take
laser is detuned and its phase is different for the two atomd€ Projector onto the one-photon spache probability for

The necessary tools are given in the Appendix. Also the casiiS €vent is the trace over EGA3). For the state of the

of degenerate upper level can be treated. The ref@sisare atomic system it is irrelevant whether the detected photon is
similar to those obtained above. absorbed or notintuitively the photon travels away and no

To conclude, we have traced the appearance of bunchinlgnger interacts with the atomic systgrience after a pho-
in the resonance fluorescence of a driven system of two twd®" detection at timé+ At the non-normalized state of the
level atoms with dipole-dipole interaction and at small dis-t0mic system alone, denoted B(p)At, is given by a par-
tances to two causes, one the level populations of the stead{j@! trace over the photon space,

state density matrix, the other the change in the state right _ ‘ t

after the en{ission of a photon. A simil%r analysis can ?n Rip)At=tron(P> U, (t+ AL 0pip{ Op U

principle also be applied to other systems, e.g., to a single X (t+At,H)P.). (A4)
atom in a three-level cascade configuration.

We call R(p) the non-normalized reset stdi&7]. Proceed-
ing as in Refs[27,3(Q and using perturbation theory one

APPENDIX -
obtains[39]
We consider two atoms fixed at positionsand each with R I e
two levels, |1); and |2);, i=1,2, with energy difference R(p)=3(Cipt Ca)S; pS; +2(C12t C5)S; pS,
fhwy. We define operatorS;™ in the two-atom Hilbert space +A(S pS; +S5pS) (A5)

by S"=|2);i(1] andS  =]1);;(2|. The dipole moment of the
ith atom isD{=(1|X|2);. For the laser we take zero de- with the r-dependent constants
tuning andE, (r,t)=ReEye'(kt "~ @)} Making the usual

rotating-wave approximation and going over to the interac- 3A |1 ) A Ay A n A
tion picture the interaction Hamiltonian becomes i~ ol ikor (D12,D12) = (D12,1)(r,D13))
: 1 1
Hi=2 X A0} ka0 e st + Hel+HL, + - ((B32,DY)—3(D3.1)
=1 ks ST (Kor)® i(kor)®
(A1)
with the coupling constants x(r,0H))|. (A6)
/ . . .
g“) —ie Wk )lZ(D(i) €. (A2) Here the caret denotes vectors normalized tA B the Ein-
ki 2e0hL® 12:%k,s stein coefficient, and=r,—r;. In the case of equal dipole

moments one ha8€,=C,,=C, which was depicted in Fig.
laser parH, = (#/2)S2_,{Q;S"+ QS } and Rabi frequen- 2, with ¢ defined by co&=|(D;,,r)|%/r?D%,. The normal-
cies Q= (e/%)D{)- Eqe’*t "i. The operatoH, contains the ized reset state i®(p)=R(p)/trR(p).
dipole-dipole interaction of the two atoms as seen from the By Eq. (A3) the normalization ofR(p) is such that
Bloch equations or from the conditional Hamiltonian be-tr,R(p)At is the probability for a photon detection at time
tween emissions, as explained further below. In the above+ At if the (normalized state of the atomic system at tirhe
Power-Zienau formulation this interaction is due to photonis p. Hence one has for the probability densitpf Sec. Il
exchangd5].

Reset matrixThe reset operation gives the state or density I(t;p(0))=trR(p(1)). (A7)
matrix right after a photon detection. In a basis in which the The laser field does not appear in the reset state. iust as in
atomic damping is diagonal, as for the Dicke states, the difhe case of a single atofa7 gg since its effect duri}lj the
agonal states immediately can be written down, as in(8q. short time At is ?19 licibl ’B' imol lculati 9
For a generaN-level system the reset matrix has been de- gligiole. By a simple caiculation one
rived in Refs.[27,3(. For a system consisting of two or checks that Eq(A5) can be written as

more atoms the derivation has to slightly modified since in R(p)=(A+1|Cyp+ C§1|)R+pRT
this case the field operat& appears with different position -
arguments. +(A—2|Cq,+C5)R_pRT, (A8)

Let at timet the state of the combined system, atoms plus _
quantized radiation field, be given B9, p(0y, i.e., the whereR. = (S] +€'¢S;)/\2 ande is the argument o€,
atomic system is described by the density matriand there  +CJ,. From Eg. (A6) one can check thath=3|C;,
are no photongrecall that the laser field is treated classi- +C3,|. If p is a pure statey=|4)(y| say, therR.pR! are
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also pure states. This decomposition B{p) is advanta-
geous for simulations of trajectories.

Conditional Hamiltonian and waiting times$n the quan-
tum jump approach28,29,27,33 the time development of
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d

n (A12)

Wy (t| ) = Po(t;[4)).

For an initial density matrix instead ¢f/) the expressions

an atomic system is described by a conditional nonare analogous, with a trace instead of a norm squared in Eq.

Hermitian HamiltoniarH ;,,4, Which gives the time develop-

(A11). Fort=0 one must havev,(0)=1(0) since for short

which gives the state or density matrix right after an emis-checked by means of EqgA11), (A7), and(AS5).

sion. For a generadl-level system these have been derived in

Refs.[27,30. The derivation of the former is adapted here to
a system of two atoms.

As explained in Refs[28,27,30,38 H,nqis of the gen-
eral formH,,.=Ha+H_+T wherel is an atomic damping
operator. In a basis in whidh is diagonal the diagonal terms
are just the decay constants of the corresponding states.
these(dressedl states are knowt .,,q can immediately be
written down. In this way one can obtalt.,,q for parallel

For equal dipole moments and without laser the condi-
tional Hamiltonian is diagonal in the Dicke bask+ReC
describes the decay rates (f) and |a) to |g), while
+7# ImC can be viewed as a level shift. The st can
decay to both|s) and |a), with respective decay rates
+ReC. This also follows from the Bloch equations and is
indicated in Fig. 1. From this the well-known fact follows
that two atoms with dipole interaction can decay faster or
slower than two independent atortsiperradiance and sub-
radiance[25]). Whenr—0, ReC approaches so that|a)

dipole moments in the Dicke basis. In the general case it igan no longer decay whiles) decays with 2.

obtained(in the interaction pictunefrom the short-time de-

Trajectories and Bloch equationStarting att =0 with a

velopment under the condition of no emission, i.e., from thepyre state, the state develops according tg,quntil the first

relation

1 FHend = (OIU (80000, (A9

where the rhs is evaluated in second-order perturbatio
theory forAt intermediate between inverse optical frequen
cies and atomic decay times. In a similar way as for a singl
atom[28,27,3Q one obtains for two two-level atoni89]

h _ _ _ _
HconfE[A(stl +85,5,)+C1581 S, +C0S; Sy 1+ HL
(A10)
with the r-dependent constar@;; given by Eq.(A6). Be-

tween emissions the time development is given
Ucondt,0)=exp{—iHcond/f} which is nonunitary since

Hcong IS NON-Hermitian. The corresponding decrease in thdS

norm of a vector is connected to the waiting tifat0] for
emission of gnexy photon. If att=0 the initial atomic state
is | ) then the probabilityPy(t) to observeno photon until
time t by a broadband countdpver all spackis given by
[28,27,3Q

Po(t:[4)) =[Ucond t,0)| )%, (A11)

and the probability density, of finding the first photon at
timetis

byt

emission at some timig , determined fronw; in Eq. (A12).
Then the state is reset according to E&b) to a new density
matrix (which has to be normaliz¢dand so on.

The decomposition dR(p) in Eq. (A8) allows one, how-
ever, to work solely with pure states, which is numerically
much more efficient. One can start with a pure statg,
Hevelop it with U,yng until t; to the (non-normalizey
#(t1)), reset to one of the pure statBs |y (tq))/||-| with

‘%elative probabilities given by the factors+ 3|C,,+C5|

appearing in Eq(A8), and so on. The waiting time distribu-
tions are not changed by this procedure.

Quite generally the ensemble of such trajectories yields
the Bloch equationg27]. With the reset matrix this is easily
seen as follows. If an ensemble of systems of two two-level
atoms has a density matrix(t) at timet then at timet
+ At one has two subensembles, one with a photon emission,
he other with none. The former has relative size
tr R(p(t))At, by the remark after EqA5), while the latter
obtained by means of U.,{t+At,t)=1,

— (i/h)HondAt. This immediately gives

) i
P:_%[Hconcp_pHZond—J"'R(P)- (A13)
Inserting from Eqgs(A10) and (A5) one obtains the Bloch
equations for two two-level atoms. They agree with those
derived by Agarwal5]. From this expression it is evident
thatH ,,qOr the reset matrix can be immediately determined
if the Bloch equations and the reset matrix or, respectively,
H cong @re explicitly known.
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