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Dynamical squeezing of photon-added coherent states
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We study the dynamical squeezing of the photon-added coherentRfs@S due to a time dependence of
the frequency of the electromagnetic field oscillator in a cavity or a vibrational frequency of an ion inside an
electromagnetic trap. Explicit expressions for the time dependence of various functions characterizing the
guantum state, such as the photon distribution, the Wigner function, the mean values and variances of the
guadrature components and of the photon number, show that the dynamically squeezed PACS possesses a
larger squeezing coefficient than the usual squeezed states. The dynamical squeezing is accompanied by a
change of the sub-Poissonian photon statistics to the super-Poissonid®btde0-29478)07410-1

PACS numbg(s): 42.50.Dv, 32.80.Pj, 33.80.Ps, 03.65v

[. INTRODUCTION ating photon-added and photon-subtracted states in a
traveling light beam by means of conditional measurements

Different types of nonclassical states in quantum opticoon a beam splitter was proposed[it,15-18.
were studied intensively during recent yedsge, e.gl1], Photon-added states possess many interesting properties.
and references therginThe most known examples include, In particular, if the basi¢pure state| ) is a superposition of
in particular, the Titulaer-Glauber generalized coherent statethe Fock states,
[2], squeezed statd8], even and odd coherent stafel,
displaced and squeezed number stdtgs and binomial
stateqd 6]. Wide new families of nonclassical states were dis- |l/j>:n§O Col ),
cussed recently if7].

An interesting class of nonclassical states consists of théhen the photon-added stat® can be written as
photon-addedstates

a'an)=n|n), 2

n!
(n—m)!

|, m) =N @™ ), ) |r.m) =Ny 2 Cnom In). @3)

where| ) may be an arbitrary quantum stasd,is the boson Consequently, the probab|lltyj(m) of detectingn quanta

creation operatorm is a positive integer—the number of (photons in the statg,m) can be expressed in terms of the

added quanta, and;, is a normalization constant. For the initial probabilities,p¥=|c,|?, as

first time these states were introduced by Agarwal and Tara

[8] as thephoton-added coherent stat€RBACS |a,m), i.e., pm=p2 T n! (0) @)

for the initial Glauber’'s coherent state) [9]. Taking the M(n—m)! (n—m)1 Pn=m>

initial state| ) in the form of a squeezed vacuum state, one

obtainsphoton-added squeezed stafé®,11]. These states SO that the probability of detecting quanta is exactly zero

possess the features of the Salinger-cat-like statefl1].  for n<<m, for all kinds of photon-added states. Besides, the

The even-odd photon-added statesre studied if12]. For ~PACS exhibits simultaneously a significant squeezing and

a mixed quantum state described by means of a statisticethe sub-Poissonian statistics of quaj8a The PACS can be

operatorp, one can define theixed photon-added states considered also as an eigenstate ofttheon inverse opera-
me tor [19]. However, all the above mentioned properties hold

Pm= Nma pa , where Ny, is a normalization constant. A

in a “static” case, when the frequency of the field mode
concrete example is thghoton-added thermal stafé 3,14 oscillator does not depend on tirr?e y

Replacing the Creati?n Opel’aE)T’ in the deflr"“on(l) by the In the present paper we Study tU¢namicsof the StateS,
annihilation operatoa one obtainghoton-subtracted states which originates from the PACS in the processes involving a
studied in detail if15—-17. It was shown irf{8] that photon- time dependence of the oscillator frequency. We demonstrate
added states can be produced in the processes of the fielatwofold influence of the frequency time dependence on the
atom interaction in a cavity. An effective method of gener-PACS. On the one hand, it transforms the sub-Poissonian
photon statistics of PACS into a strongly super-Poissonian
statistics, and leads to a nonzero probability of detecting

*Electronic mail: vdodonov@power.ufscar.br <m photons; i.e., it deteriorates the properties of the pure
TElectronic mail: pmar@iris.ufscar.br PACS. On the other hand, tldynamical squeezingf PACS
*Electronic mail: manko@na.infn.it enables one, under certain conditions, to achieve a stronger
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degree of squeezing than for the usual squeezed states willjt), Af(t), 1, is the same Heisenberg-Weyl algebra as in

the same energy of quantum fluctuations. the case of operatow, a', 1. The knowledge of the time-

th Tthe p?jper IS dorgtanrl]zid as(;(()jllc()jwsi. Itn Sec(.jll we 'ntr?.d.Lgcedependent integrals of motiafinvariant operatogsenables
€ ime-dependent photon-added states and give expliCit €5, 14 fing all the functions characterizing the quantum sys-

pressions for the quadrature distribution, the Wigner func-tem: the propagator, mean values of various observables,

:'r?n' and th_e pfhotton dlztrtlﬁuu?]n tfunctlonk.) Thet ?_\/?Iutlc_)n (t)f (gansition amplitudes between the initial and final states, etc.
€ squeezing factor and the photon number StaliStcs 1S Stugs, example, the stafer;t) can be easily obtained from the

ied in Sec. lll. The results of the paper are summarized irbigenvalue equation

Sec. IV. The details of calculations are given in the Appen-
dix. A(D)|a;t)=a|a;t), )

II. TIME-DEPENDENT PHOTON-ADDED STATES because the explicit form of the integral of motidiit) can
The photon-added coherent state can be defined accordifgg found independently from the equatiove assume here-

to Eq. (), if the basis statéy) coincides with the coherent a1tert=1)
state| ). The photon distribution in the PACS is a shifted

Poisson distribution, igA(t)/at=[A(1),A(1)]. ©
[ o[20—m) The detailed exposition of the method of quantum invariants
(M) _ pr2 NP NL | 5 [26] was given in25], for its applications to different physi-
Pn meXQ( |a| ) 5 (
[(n—m)!] cal problems see, e.d27-29.
The linear integral of motion of the quantum time-
where the normalization constant[8] dependent oscillator reafi24]
Nm:[m!Lm(_|a|2)]_1/2: (6) R i - A
, . , At)=—=[e()p—e(1)q], (10
with L,(z) being the Laguerre polynomif20]. V2

Assuming that the statier,m) was created in some way
in a cavity or in an ion trap at the moment of time 0, let us
suppose that the oscillatgthe field mode eigenfrequency .
begins to vary in time in accordance with a given 184t) &(1) +Q%()z(1)=0 (12)
at t>0. In the cavity case, such a time dependence coulgnd the normalization condition
arise either due to the variation of the dielectric function of
the medium filling the cavityf21], or due to the motion of
the cavity walls[22,23. In the trap case one could vary the

voltage applied between the electrodes of the trap. The evaf the frequency((t) assumes its initial valu€ =1 upon

lution of the quantum state of the oscillatortat0 is gov-  some timeT, then the solution to Eq11) for t>T reads
erned by the Schringer equation with the Hamiltonian

where thec-number functiore (t) satisfies the equation

ce* —ge*=2i. (12)

e(t)=C,e'+C_e™ ', (13
H(t) = 3[p°+0Q%(1)a%],
where the constant coefficients
where the dimensionless units are chosen in such a way that — .
Q(0)=1, and the quadrature component$“coordinate”) Co=ze" [e(M+ie(T)]
and p (“momentum”) are defined by means of the usual satisfy the constraint
relations,
|C.[2=[C_|?=1, (14

a=(q+ip)/y2, a'=(q-ip)/y2.
arip a-ip which is equivalent to Eq.12). Due to Eq.(14), it is conve-

The unitary evolution operatdd(t) transforms the state Nient to parametrize the coefficients. as
|@,m) into

C.=coshr)e?+, C_=—isinh(r)e'?-, (15
la,m;ty=0(t)]a,m)=N,[O()a™0(t)]0(t)| a) with real parameters and ¢. . The physical meaning of
B At such a parametrization becomes especially clear, if one con-
=Nl AT (O] a3t), (7) siders a specific time dependence of the frequency corre-

N , . sponding to the parametrically excited oscillator,
where |a;t)=U(t)|a) is a time-dependent coherent state

[24,25, andAT(t)=0(t)a"0(t) is an integral of motion of Q(t)=1+2ycog2t), |[y|<1. (16)
the parametric oscillatdi26], satisfying the initial condition
AT(0)=a'. The operatoré&’(t) andA(t)=U(t)aUT(t) sat-
isfy the same commutation relation aa and a',

[A(t),AT(t)]=1. Thus the algebra defined by the operators =T, ¢.=¢_=0, 17

Then we have the following expressions foand ¢.. (up to
small oscillating corrections of an order ¢j [21,22:
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DYNAMICAL SQUEEZING OF PHOTON-ADDBD . . .

so thatr can be interpreted as a “slow time.” We shall use 0.07
the parametrizatiofil5) with the conditiong17) to illustrate ve,
the general formulas, referring to it as to the “resonance 006 | ’." Y @
parametrization.” 005 | ; x"‘
Solving Eq.(8) with operatorA given by Eq.(10) we ' . .
obtain the wave function of the time-dependent coherent £ g4 | * ‘%\
state in the coordinate representatj@d], § ; 3
2 003} ! \‘
N 14— 1 60’ \2aq a®e* |a|2) A ! .
(alasty=m""% 2exp( PR 5" o) 0.02 / \
(18 0.01 | ’,~’ \.
Then Eq.(7) yields the following explicit expression for the 0.00 staged’ L . \"““‘
time-dependent photon-added coherent stal@PACS in 0 10 20 30 40 50 60
the coordinate representation, :
0.30 -
g* |\ m2 q \/ST ,,,‘\\
<Q|a,m,t>=/\/m(z) Hm(m— 254 (qlest), 025 | iy (b)
(19 iy
0.20 t FE
whereH,,(z) is the Hermite polynomial20], and the nor- £ :" ".
malization factor is given by Eg6). The wave function of § 0.15 ! 4
the “static” PACS[16] is obtained from Eq(19) by means L ,,"
of the substitution the initial values(0)=1 ande(0)=i. 0.10 | b
The photon distribution functioPDF) of the field in the H |
state|a,m;t) is defined as 005 f [
(20 0.00 b=’ : e
0 5 10 15 20
n

Pa(a,m;t)=[(n]a,m;t)|?.
In the “resonance parametrization” the PDF can be written
FIG. 1. The photon distributions in the “resonance parametriza-
tion” at |@|=2, m=5, 7=0.5, for extremal phases of the complex

as (see Appendix
parameter: (a) ¢=—m/4 and(b) ¢=w/4.

2—(m+n)(tanhr)m+n
pn(a:m;T): 2
coshr min!L(—|al?) o
x exd —|a|?+Im(a?)tanhr] W(q,p;a,m;t)=fﬁw(q+r/2|a,m;t>(a,m;t|q—r/2)
min(m,n) ( 2i )k min! Xexp(—ipr)dr. (22
X -
k=o \sinhr/ k!(m—k)!(n—k)! In the case involved, the integrand is the product of two
imia i\ |2 Hermite polynomials of the same order, multiplied by the
< H at H ae Gaussian weight function. This integral can be expressed in
n—k Jsinh(27) m-k\ Scothr/ | terms of the Laguerre polynomial, and finally we obtain
(21) L 2 _ 2
W(q,p;a,m;t)=2(—1)”‘Mexp(—2|§—a|2),
Lm(_|a'| )
(23

Formula(21) clearly shows that the probability of discover-

ing n<m (for instance,n=0) photons in TDPACS is not
equal to zero wheg> 1. Besides, it shows that the photon where

distribution actually does not depend on the “fast timg”
Considering Eq(21) as the function of the phasg¢ of the
complex number=|a|expi¢), one can check that it is pe-
riodic with the period . Moreover, p,(¢#=0)=pn(¢  In the “resonance parametrization,” the actual argument of
= m/2). Nonetheless, the distribution is asymmetric with re-the wigner function i = (q+ip)e't, which is related to the

spect to the phase inversigh— — ¢. In particular, we have yariable¢ as
{=(pcoshr+ip* sinhr)/ 2.

quite different distributionsp,, for ¢=—x/4 and for ¢
= /4 (all other parameters being the samas shown in

The phase space distribution can be described in terms dfypical plots of the Wigner function are given in Figgap

{(aq,p,t)=i(sp—eq)/y2.

Figs. 1a) and 1b).
and 2b).

the Wigner function
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IIl. SQUEEZING AND STATISTICS OF QUANTA (a)

To study the squeezing properties and the photon statistic.
of TDPACS we must calculate the average values of quadra

tures q,p, the photon number operatdé=a'a, and their
powers and products. This problem is reduced to calculating

the average values of various products of the operdtamsd

AT in the statd a,m;t), due to the relationpwhich are im-
mediate consequences of E¢E0) and(12)],

n 1 . . " .

— * T

p ﬁ[A(t)s () +AN(e(t)], (29
= — A e* () +AT(De(t) (25)
q_ \/E[ &€ ( &€ ]1
a= 3[A(e* +ie*)+AT(e+ie)], (26)

ata=EAAT— L (E+1)+ [ATY 2+ +H.c]. (27)

In particular, we obtain the following formulas for the vari-
anceso,,= 1(ab+ba)—(a)(b) (see Appendix for the de-
tails of calculations

qu:%(|8|2£1_f2£2)1 (28
opp=3 (|e]2L1—2L,), (29)
0pq= 3 [Re(ee*) L1~ FTL,], (30)

wheref(t)=e*(t)a+e(t) a*, whereas the non-negative co-
efficients£, and L, are expressed in terms of the associated
Laguerre polynomials ((x):

LY (—a|?)
Lm(_|a|2)

1= 1, (31)

FIG. 2. The Wigner functiori23) in the “resonance parametri-
zation” at |a|=0.5, m=5, 7=0.25, for extremal phases of the
Linl)(_|a|2) 2 L(n?(_|a|2) complex pzirameteu: (a)_¢=—71-/4 and (b) ¢=m/4. The axes

_ (32) labels arex= Re(p) andy= Im(p).

Lm(—lal?) Len(—|al?)

=

the period normalized by the oscillator ground-state vari-

One can check that the combination ance 1/2. The explicit formula for this coefficient was found
in [31],
D=0pp0qq~ ‘lewq (33
— 2 1/2
_ _ S=0qqt Tpp—[(Tgqqt opp) —4D]- (35
depends neither on time nor on the concrete value of func-
tion g(t), Using Egs.(28), (29), and (34) we can write Eq.(35) as

follows:
D= 3L2—|al?L.L,. (34) , , ,
S=EL1—2|a|(F+E) Lo—{[ELL—2|a|*(F+E)Ly]
This is an example of thquantum universal invariants- _ B 2 12
troduced in[30] (see alsd25]). The specific feature of this La(Ly= 4 al*Lo)}5 (36
invariant in the case of TDPACS is its independence of th : :
phase of the complex number. For any stateD=1/4 (if %(N)r(]?)rii and F are the integrals of motion of Eq11) for
A =1), which is the generalized uncertainty relati@b]. '
Since the quadrature variancgeg, ando,, are periodical
functions of time fort>T, it is reasonable to introduce the
time-independentin the stationary cagesqueezing coeffi- o
cient, defined as the minimal value of each variadering F=1Rde 2%c?+¢?)]=—sin(2¢)sinh(27). (38)

&= 3 (le|*+|e|>)=cost27), (37)
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FIG. 3. The squeezing factor in the “resonance parametriza-

tion” vs the phasep for 7=0.25,|a| =2, andm=0 (the solid ling,
m=1 (the dashed curvem=5 (the dashed-dotted curyen=10
(the dotted curve

Note that&(t) is nothing but twice the energy of the quantum

oscillator, which was initially in the ground staf@5] [in

units A= (0)=1]. Due to Eq.(14) we have the inequality
| Fl<2|C.C_|=E?—1. The transition to the case of the

stationary PACS is achieved by puttidg-1 andF=0.

DYNAMICAL SQUEEZING OF PHOTON-ADDBD . . .
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LA (LPx))\?
on=|a|*F? L0 _( L0 +2|a|26F
x{ (m+1 L1000  Loaa(OLR'0 | LiP(x)
(m ) Lm(x) [Lm(x)]z Lm(X)
+““+1><m+2><352—1>Lsz—z((xx))
Lm+1(X)
—(m+1)(252—1)m
2
—(m+1)252 Llr_n;—(l)((;() +;(82_1)
Lin (%)
- 1_X2ml' (43

Putting€=1 and F=0 we recover the results ¢8].

A distinctive feature of PACS is the sub-Poissonian pho-
ton statisticg8], i.e., the inequalityry<(N). However, this
inequality does not hold, in general, for TDPACS. This is

The squeezing coefficiert@6) in the stationary PACS clearly seen in Fig. @), which shows the dependence of the

reads

S*:£1_4|CY|2£2. (39)

Mandel paramet€er32]

R=on/(N) (44)

In the “resonance parametrization,” the squeezing factor is &n the “slow time” 7 in the “resonance parametrization.”

periodic function of¢ with the periods, which has a maxi-
mum at ¢=—=m/4 and a minimum at$= /4. Figure 3

The initial sub-Poissonian statisticR& 1) is rapidly trans-
formed into the super-Poissonian oriR*%1). Figure 4b)

shows the dependenség) for fixed values of other param- shows the dependence of the Mandel parameter on the phase
eters. The horizontal linenf=0) corresponds to the usual Of @. Although the positions of the minimum and maximum

squeezed state originating from the initial coherent siaje

of the squeezing coefficientp= = 7/4, correspond to the

due to the parametric excitation. For this state, the squeezirigcal extrema ofR(¢), there is no correlatiofor anticorre-

coefficient does not depend aen
So=[E+VEZ-1]1=e"2", (40)
For 7>1, the squeezing factor is confined in the interval
s,e ?’<s<[ e %7

(41)

and it can be both greater and less tegndepending on the
phase ofa.

lation) between the absolute extrema of the functidt(sp)
ands(¢) in a generic case.

IV. CONCLUSION

Let us summarize the main results of the paper. We have
obtained explicit analytical expressions for various functions
characterizing the evolution of the photon-added coherent
states in the case of a time-dependent frequency of the oscil-
lator. The formulas are written in terms of some universal
parameters, which have a clear physical meaning in the case
of a parametric resonance. It appears that under certain con-

The explicit expression for the average number of photonélitions  the time-dependent photon-added coherent states

in TDPACS readghereafterx= —|a|?),

. Lme(x) 1 L2 (x)
(N)=(m+1)€m—§(€+1)+|a|2]-'|_m(x) .
(42

The variance of the photon numbergy=((a'a)?)
—(a'a)?, can be represented as

yield more strong squeezing than the usual squeezed states.
In the process of the evolution, the initial sub-Poissonian
statistics of quanta is transformed into a highly super-
Poissonian one. One could use the results obtained to evalu-
ate deteriorating effects due to time variations of the system
parameters during an experiment. Or, on the contrary, one
could deliberately introduce some time dependence of the
parameters in order to achieve optimal values of certain
quantities characterizing the quantum system, e.g., the
squeezing coefficient.
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1 - ajay =R
ex —EaRa+az =n§;0 WHnm(zl,zz). (A1)

Here R is a 2x2 symmetrical matrix, whereas=(z,,2,)
anda=(a;,a,) are two-dimensional vectors. After some al-
gebra we obtain the formula

2 mﬁi(zpzzﬂz
e+l L(=la®

xexp{—|a|2

where the elements of the matfik and vectorz read

Pn(a,m;t)=

f'
1+ ——

1) B

(b) .
_— " " =< " " lete .
7 ~, - . —
7 N\ / \\ Ry;=——=itanhre 2!,
/ le—¢&
1.8 // \\ / \\
\ / /'
\ / \ Pk *
\ / \ / ig*—g*
\ II \ I} R,,=———=itanhr,
1.7 \ / \ / ie—¢
o \ ! \ !
\ / \ /
\ ! \ / —it
\ 7/ \ / 2 e
1.6 </ N/ Rij=——— = — —
: 12— .- - ’
ie—e coshr
. W 21:_QR12: 22:_aR22-
0 1 2 3 4 5 6 ) . , .
o (The expressions containing the parametere given in the

“resonance parametrization).”Using the relation between

FIG. 4. Mandel's parameter in the “resonance parametrizathe two-dimensional Hermite polynomial and its one-
tion.” (a) R(7) for |a|=0.5 and different values ah and¢: m  dimensional counterpafB3,34 we can represent E4A2)
=1,¢4=m/4 (lower solid curve, m=1,¢$=—=/4 (upper solid as a sum over products of the usual Hermite polynomials,
curve, m=5, ¢==/4 (lower dashed curyeandm=5, p=— /4

(upper dashed curye(b) R(¢) for m=1 (solid curvé andm=5 [ 2 2~ (m+n) g—1\(m+m2
(dashed curveg at 7=0.25,|a|=2. Pn(a,m;t)= 5+1m!n!Lm(—|a|2) 1
ACKNOWLEDGMENT 2 F
xXexp — | Cl/| 1+ m
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| S| 2
k=0 &-1
APPENDIX A: DETAILS OF CALCULATIONS minl
To calculate the scalar product between the Fock state and X KI(n—K)!(m—K)!
the TDPACS in Eq(20), we notice that the stafer,m;t) is
proportional to the coefficient at the tergi" in the Taylor . 2
expansion of the stat¢g)=exp(Ba’)|«t) [see Eq.(7)], XHn—i| | V 82+;32“
whereas the stat) coincides(up to a constantwith the )
coefficient at the termy" in the expansion of the state) [ -1
=exp(3éT)|0). Consequently, the calculation of the scalar XHm—k 82+éza

product(n|a,m;t) is equivalent to finding the coefficient at

the term »*"B™ in the power expansion of the function This formula is equivalent to Eq21).

(7| B). But this function is obviously an exponential of some  To calculate average values of different operators, we
quadratic form with respect tp* andg, so the coefficients need an explicit formula for the matrix elements

of the expansion can be expressed in terms of the two-

dimensional Hermite polynomials defined via the generating (a,m;t| AX AT (1) a,m;t)=(a,m|aka"|a,m).

function (we have slightly changed the definition given in

[20]) Firstly, we notice that due to the relation



PRA 58

|a)=exp(—|a|?/2)exp aa")|0),

we may write the PAC$a,m) as

)= Nt | a?12) - [exp(|af72) )]
o
(A3)

Then the scalar product between different PACS can be writ-

ten as

(B.nla,m)=Ny(| BDNw(laDexd — 3 (|al*+]83)]

x——lffl—[ex%f(hﬂ2+|ﬂvﬂ<ﬁhw}
(9'3* oM 2
— N (1B Nl yexsd — £ a2+ 1]
T e
9B*"gam

The right-hand side of the last expression, being a multiple —
derivative of the exponential function of a quadratic form of
B* anda, can be written in terms of the Hermite polynomi-
als of two variable$20]. However, in the specific case con-

cerned(when the defining symmetric22 matrixR has two

DYNAMICAL SQUEEZING OF PHOTON-ADDBD . . .
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zero diagonal elementthese polynomials are reduced to the
associated Laguerre polynomid5,34], so the final result

reads

1
(B.nlemyerg 5 al?+ 12 -
Nall BNl al)
mla" "L (- B* ),
= n!’B*m*nLE]mfn)(_’B*a), m=n.

n=m

(A4)

In particular, takinge= 8 andm=n we obtain the normal-
ization factor(6), whereL ,(z)=L{?)(z). An immediate con-
sequence of EqA4) is the formula sought for:

(a,m|a*a"|a,m)

_ Nia(lal){ak+m|a,l+m)
Nk+m(|a|)-/vl+m(|a|)

(m+K)! L (= af®)

*1—k =k
m! L(—|a|?)
(m+1)! Lﬁ'q(l||)(_|a|2)ak—| k=1,
m! Lm(_|a|2)
(A5)
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