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Dynamical squeezing of photon-added coherent states
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We study the dynamical squeezing of the photon-added coherent state~PACS! due to a time dependence of
the frequency of the electromagnetic field oscillator in a cavity or a vibrational frequency of an ion inside an
electromagnetic trap. Explicit expressions for the time dependence of various functions characterizing the
quantum state, such as the photon distribution, the Wigner function, the mean values and variances of the
quadrature components and of the photon number, show that the dynamically squeezed PACS possesses a
larger squeezing coefficient than the usual squeezed states. The dynamical squeezing is accompanied by a
change of the sub-Poissonian photon statistics to the super-Poissonian one.@S1050-2947~98!07410-1#

PACS number~s!: 42.50.Dv, 32.80.Pj, 33.80.Ps, 03.65.2w
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I. INTRODUCTION

Different types of nonclassical states in quantum op
were studied intensively during recent years~see, e.g.@1#,
and references therein!. The most known examples includ
in particular, the Titulaer-Glauber generalized coherent st
@2#, squeezed states@3#, even and odd coherent states@4#,
displaced and squeezed number states@5#, and binomial
states@6#. Wide new families of nonclassical states were d
cussed recently in@7#.

An interesting class of nonclassical states consists of
photon-addedstates

uc,m&5Nmâ†muc&, ~1!

whereuc& may be an arbitrary quantum state,â† is the boson
creation operator,m is a positive integer—the number o
added quanta, andNm is a normalization constant. For th
first time these states were introduced by Agarwal and T
@8# as thephoton-added coherent states~PACS! ua,m&, i.e.,
for the initial Glauber’s coherent stateua& @9#. Taking the
initial stateuc& in the form of a squeezed vacuum state, o
obtainsphoton-added squeezed states@10,11#. These states
possess the features of the Schro¨dinger-cat-like states@11#.
The even-odd photon-added stateswere studied in@12#. For
a mixed quantum state described by means of a statist
operatorr̂, one can define themixed photon-added stateas
r̂m5Ñmâ†mr̂âm, whereÑm is a normalization constant. A
concrete example is thephoton-added thermal state@13,14#.
Replacing the creation operatorâ† in the definition~1! by the
annihilation operatorâ one obtainsphoton-subtracted state
studied in detail in@15–17#. It was shown in@8# that photon-
added states can be produced in the processes of the
atom interaction in a cavity. An effective method of gene
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ating photon-added and photon-subtracted states in
traveling light beam by means of conditional measureme
on a beam splitter was proposed in@11,15–18#.

Photon-added states possess many interesting prope
In particular, if the basic~pure! stateuc& is a superposition of
the Fock states,

uc&5 (
n50

`

cnun&, â†âun&5nun&, ~2!

then the photon-added state~1! can be written as

uc,m&5Nm (
n5m

`

cn2mF n!

~n2m!! G
1/2

un&. ~3!

Consequently, the probabilitypn
(m) of detecting n quanta

~photons! in the stateuc,m& can be expressed in terms of th
initial probabilities,pn

(0)[ucnu2, as

pn
~m!5Nm

2 n!

~n2m!!
pn2m

~0! , ~4!

so that the probability of detectingn quanta is exactly zero
for n,m, for all kinds of photon-added states. Besides,
PACS exhibits simultaneously a significant squeezing a
the sub-Poissonian statistics of quanta@8#. The PACS can be
considered also as an eigenstate of theboson inverse opera
tor @19#. However, all the above mentioned properties ho
in a ‘‘static’’ case, when the frequency of the field mod
oscillator does not depend on time.

In the present paper we study thedynamicsof the states,
which originates from the PACS in the processes involvin
time dependence of the oscillator frequency. We demonst
a twofold influence of the frequency time dependence on
PACS. On the one hand, it transforms the sub-Poisson
photon statistics of PACS into a strongly super-Poisson
statistics, and leads to a nonzero probability of detectinn
,m photons; i.e., it deteriorates the properties of the p
PACS. On the other hand, thedynamical squeezingof PACS
enables one, under certain conditions, to achieve a stro
4087 ©1998 The American Physical Society



w

c
t e
nc
of
tu
i
n

rd
t
d

y

u
o

e
v

th

al

te

r

in

ys-
les,

etc.
e

-

nts
-

-

f
on-
rre-

4088 PRA 58V. V. DODONOV et al.
degree of squeezing than for the usual squeezed states
the same energy of quantum fluctuations.

The paper is organized as follows. In Sec. II we introdu
the time-dependent photon-added states and give explici
pressions for the quadrature distribution, the Wigner fu
tion, and the photon distribution function. The evolution
the squeezing factor and the photon number statistics is s
ied in Sec. III. The results of the paper are summarized
Sec. IV. The details of calculations are given in the Appe
dix.

II. TIME-DEPENDENT PHOTON-ADDED STATES

The photon-added coherent state can be defined acco
to Eq. ~1!, if the basis stateuc& coincides with the coheren
stateua&. The photon distribution in the PACS is a shifte
Poisson distribution,

pn
~m!5Nm

2 exp~2uau2!
n! uau2~n2m!

@~n2m!! #2
, ~5!

where the normalization constant is@8#

Nm5@m!Lm~2uau2!#21/2, ~6!

with Lm(z) being the Laguerre polynomial@20#.
Assuming that the stateua,m& was created in some wa

in a cavity or in an ion trap at the moment of timet50, let us
suppose that the oscillator~the field mode! eigenfrequency
begins to vary in time in accordance with a given lawV(t)
at t.0. In the cavity case, such a time dependence co
arise either due to the variation of the dielectric function
the medium filling the cavity@21#, or due to the motion of
the cavity walls@22,23#. In the trap case one could vary th
voltage applied between the electrodes of the trap. The e
lution of the quantum state of the oscillator att.0 is gov-
erned by the Schro¨dinger equation with the Hamiltonian

Ĥ~ t !5 1
2 @ p̂21V2~ t !q̂2#,

where the dimensionless units are chosen in such a way
V(0)51, and the quadrature componentsq̂ ~‘‘coordinate’’!
and p̂ ~‘‘momentum’’! are defined by means of the usu
relations,

â5~ q̂1 i p̂ !/A2, â†5~ q̂2 i p̂ !/A2.

The unitary evolution operatorÛ(t) transforms the state
ua,m& into

ua,m;t&5Û~ t !ua,m&5Nm@Û~ t !â†mÛ†~ t !#Û~ t !ua&

5Nm@Â†~ t !#mua;t&, ~7!

where ua;t&[Û(t)ua& is a time-dependent coherent sta
@24,25#, andÂ†(t)5Û(t)â†Û†(t) is an integral of motion of
the parametric oscillator@26#, satisfying the initial condition
Â†(0)5â†. The operatorsÂ†(t) andÂ(t)5Û(t)âÛ†(t) sat-
isfy the same commutation relation asâ and â†,

@Â(t),Â†(t)#51̂. Thus the algebra defined by the operato
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Â(t), Â†(t), 1̂, is the same Heisenberg-Weyl algebra as
the case of operatorsâ, â†, 1̂. The knowledge of the time-
dependent integrals of motion~invariant operators! enables
one to find all the functions characterizing the quantum s
tem: the propagator, mean values of various observab
transition amplitudes between the initial and final states,
For example, the stateua;t& can be easily obtained from th
eigenvalue equation

Â~ t !ua;t&5aua;t&, ~8!

because the explicit form of the integral of motionÂ(t) can
be found independently from the equation~we assume here
after \[1)

i ]Â~ t !/]t5@Ĥ~ t !,Â~ t !#. ~9!

The detailed exposition of the method of quantum invaria
@26# was given in@25#, for its applications to different physi
cal problems see, e.g.,@27–29#.

The linear integral of motion of the quantum time
dependent oscillator reads@24#

Â~ t !5
i

A2
@«~ t ! p̂2 «̇~ t !q̂#, ~10!

where thec-number function«(t) satisfies the equation

«̈~ t !1V2~ t !«~ t !50 ~11!

and the normalization condition

«̇«* 2««̇* 52i . ~12!

If the frequencyV(t) assumes its initial valueV51 upon
some timeT, then the solution to Eq.~11! for t.T reads

«~ t !5C1eit1C2e2 i t , ~13!

where the constant coefficients

C65 1
2 e7 iT@«~T!7 i «̇~T!#

satisfy the constraint

uC1u22uC2u251, ~14!

which is equivalent to Eq.~12!. Due to Eq.~14!, it is conve-
nient to parametrize the coefficientsC6 as

C15cosh~t!eif1, C252 isinh~t!eif2, ~15!

with real parameterst and f6 . The physical meaning o
such a parametrization becomes especially clear, if one c
siders a specific time dependence of the frequency co
sponding to the parametrically excited oscillator,

V~ t !5112gcos~2t !, ugu!1. ~16!

Then we have the following expressions fort andf6 ~up to
small oscillating corrections of an order ofg) @21,22#:

t5gT, f15f250, ~17!
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so thatt can be interpreted as a ‘‘slow time.’’ We shall us
the parametrization~15! with the conditions~17! to illustrate
the general formulas, referring to it as to the ‘‘resonan
parametrization.’’

Solving Eq. ~8! with operatorÂ given by Eq.~10! we
obtain the wave function of the time-dependent coher
state in the coordinate representation@24#,

^qua;t&5p21/4«21/2expS i «̇q2

2«
1

A2aq

«
2

a2«*

2«
2

uau2

2
D .

~18!

Then Eq.~7! yields the following explicit expression for th
time-dependent photon-added coherent state~TDPACS! in
the coordinate representation,

^qua,m;t&5NmS «*

2« D m/2

HmS q

u«u
2A«*

2«
a D ^qua;t&,

~19!

whereHm(z) is the Hermite polynomial@20#, and the nor-
malization factor is given by Eq.~6!. The wave function of
the ‘‘static’’ PACS @16# is obtained from Eq.~19! by means
of the substitution the initial values«(0)51 and«̇(0)5 i .

The photon distribution function~PDF! of the field in the
stateua,m;t& is defined as

pn~a,m;t !5u^nua,m;t&u2. ~20!

In the ‘‘resonance parametrization’’ the PDF can be writt
as ~see Appendix!

pn~a,m;t!5
22~m1n!~ tanht!m1n

cosht m!n!Lm~2uau2!

3exp@2uau21Im~a2!tanht#

3U (
k50

min~m,n! S 2i

sinht D k m!n!

k! ~m2k!! ~n2k!!

3Hn2kS ae2 ip/4

Asinh~2t!
D Hm2kS aeip/4

A2cotht
D U2

.

~21!

Formula~21! clearly shows that the probability of discove
ing n,m ~for instance,n50) photons in TDPACS is no
equal to zero whenE.1. Besides, it shows that the photo
distribution actually does not depend on the ‘‘fast time’’t.
Considering Eq.~21! as the function of the phasef of the
complex numbera5uauexp(if), one can check that it is pe
riodic with the period p. Moreover, pn(f50)5pn(f
5p/2). Nonetheless, the distribution is asymmetric with
spect to the phase inversionf→2f. In particular, we have
quite different distributionspn for f52p/4 and for f
5p/4 ~all other parameters being the same!, as shown in
Figs. 1~a! and 1~b!.

The phase space distribution can be described in term
the Wigner function
e

nt

-

of

W~q,p;a,m;t !5E
2`

`

^q1r /2ua,m;t&^a,m;tuq2r /2&

3exp~2 ipr !dr. ~22!

In the case involved, the integrand is the product of t
Hermite polynomials of the same order, multiplied by t
Gaussian weight function. This integral can be expresse
terms of the Laguerre polynomial, and finally we obtain

W~q,p;a,m;t !52~21!m
Lm~ u2z2au2!

Lm~2uau2!
exp~22uz2au2!,

~23!

where

z~q,p,t !5 i ~«p2 «̇q!/A2.

In the ‘‘resonance parametrization,’’ the actual argument
the Wigner function isr5(q1 ip)eit , which is related to the
variablez as

z5~rcosht1 ir* sinht!/A2.

Typical plots of the Wigner function are given in Figs. 2~a!
and 2~b!.

FIG. 1. The photon distributions in the ‘‘resonance parametri
tion’’ at uau52, m55, t50.5, for extremal phases of the comple
parametera: ~a! f52p/4 and~b! f5p/4.
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III. SQUEEZING AND STATISTICS OF QUANTA

To study the squeezing properties and the photon stati
of TDPACS we must calculate the average values of qua
tures q̂,p̂, the photon number operatorN̂5â†â, and their
powers and products. This problem is reduced to calcula
the average values of various products of the operatorsÂ and
Â† in the stateua,m;t&, due to the relations@which are im-
mediate consequences of Eqs.~10! and ~12!#,

p̂5
1

A2
@Â~ t !«̇* ~ t !1Â†~ t !«̇~ t !#, ~24!

q̂5
1

A2
@Â~ t !«* ~ t !1Â†~ t !«~ t !#, ~25!

â5 1
2 @Â~«* 1 i «̇* !1Â†~«1 i «̇ !#, ~26!

â†â5EÂÂ†2 1
2 ~E11!1 1

4 @Â†2~«21 «̇2!1H.c.#. ~27!

In particular, we obtain the following formulas for the var
ancessab[

1
2 ^âb̂1b̂â&2^â&^b̂& ~see Appendix for the de

tails of calculations!:

sqq5 1
2 ~ u«u2L12 f 2L2!, ~28!

spp5 1
2 ~ u«̇u2L12 ḟ 2L2!, ~29!

spq5 1
2 @Re~««̇* !L12 f ḟL2#, ~30!

wheref (t)[«* (t)a1«(t)a* , whereas the non-negative co
efficientsL1 andL2 are expressed in terms of the associa
Laguerre polynomialsLm

(b)(x):

L1[2
Lm

~1!~2uau2!

Lm~2uau2!
21, ~31!

L2[FLm
~1!~2uau2!

Lm~2uau2!
G 2

2
Lm

~2!~2uau2!

Lm~2uau2!
. ~32!

One can check that the combination

D[sppsqq2spq
2 ~33!

depends neither on time nor on the concrete value of fu
tion «(t),

D5 1
4L 1

22uau2L1L2 . ~34!

This is an example of thequantum universal invariantsin-
troduced in@30# ~see also@25#!. The specific feature of this
invariant in the case of TDPACS is its independence of
phase of the complex numbera. For any state,D>1/4 ~if
\51), which is the generalized uncertainty relation@25#.

Since the quadrature variancessqq andspp are periodical
functions of time fort.T, it is reasonable to introduce th
time-independent~in the stationary case! squeezing coeffi
cient, defined as the minimal value of each variance~during
cs
a-

g

d

c-

e

the period! normalized by the oscillator ground-state va
ance 1/2. The explicit formula for this coefficient was foun
in @31#,

s5sqq1spp2@~sqq1spp!
224D#1/2. ~35!

Using Eqs.~28!, ~29!, and ~34! we can write Eq.~35! as
follows:

s5EL122uau2~F1E!L22$@EL122uau2~F1E!L2#2

2L1~L124uau2L2!%1/2, ~36!

whereE andF are the integrals of motion of Eq.~11! for
V(t)[1,

E5 1
2 ~ u«u21u«̇u2!5cosh~2t!, ~37!

F5 1
2 Re@e22if~ «̇21«2!#52sin~2f!sinh~2t!. ~38!

FIG. 2. The Wigner function~23! in the ‘‘resonance parametri
zation’’ at uau50.5, m55, t50.25, for extremal phases of th
complex parametera: ~a! f52p/4 and ~b! f5p/4. The axes
labels arex[ Re(r) andy[ Im(r).
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Note thatE(t) is nothing but twice the energy of the quantu
oscillator, which was initially in the ground state@25# @in
units \5V(0)51]. Due to Eq.~14! we have the inequality
uFu<2uC1C2u5AE 221. The transition to the case of th
stationary PACS is achieved by puttingE51 andF50.

The squeezing coefficient~36! in the stationary PACS
reads

s* 5L124uau2L2 . ~39!

In the ‘‘resonance parametrization,’’ the squeezing factor
periodic function off with the periodp, which has a maxi-
mum at f52p/4 and a minimum atf5p/4. Figure 3
shows the dependences(f) for fixed values of other param
eters. The horizontal line (m50) corresponds to the usua
squeezed state originating from the initial coherent stateua&
due to the parametric excitation. For this state, the squee
coefficient does not depend ona,

s05@E1AE 221#215e22t. ~40!

For t@1, the squeezing factor is confined in the interval

s* e22t<s<L 1e22t, ~41!

and it can be both greater and less thans0 , depending on the
phase ofa.

The explicit expression for the average number of phot
in TDPACS reads~hereafterx[2uau2),

^N̂&5~m11!E
Lm11~x!

Lm~x!
2

1

2
~E11!1uau2F

Lm
~2!~x!

Lm~x!
.

~42!

The variance of the photon number,sN[^(â†â)2&
2^â†â&2, can be represented as

FIG. 3. The squeezing factor in the ‘‘resonance parametr
tion’’ vs the phasef for t50.25, uau52, andm50 ~the solid line!,
m51 ~the dashed curve!, m55 ~the dashed-dotted curve!, m510
~the dotted curve!.
a

ng

s

sN5uau4F 2FLm
~4!~x!

Lm~x!
2S Lm

~2!~x!

Lm~x! D 2G12uau2EF

3H ~m11!FLm11
~2! ~x!

Lm~x!
2

Lm11~x!Lm
~2!~x!

@Lm~x!#2 G2
Lm

~2!~x!

Lm~x! J
1~m11!~m12!~3E 221!

Lm12~x!

2Lm~x!

2~m11!~2E 221!
Lm11~x!

Lm~x!

2~m11!2E 2FLm11~x!

Lm~x! G 2

1
1

2
~E 221!

3F12x2
Lm

~4!~x!

Lm~x! G . ~43!

PuttingE51 andF50 we recover the results of@8#.
A distinctive feature of PACS is the sub-Poissonian ph

ton statistics@8#, i.e., the inequalitysN,^N̂&. However, this
inequality does not hold, in general, for TDPACS. This
clearly seen in Fig. 4~a!, which shows the dependence of th
Mandel parameter@32#

R[sN /^N̂& ~44!

on the ‘‘slow time’’ t in the ‘‘resonance parametrization.
The initial sub-Poissonian statistics (R,1) is rapidly trans-
formed into the super-Poissonian one (R.1). Figure 4~b!
shows the dependence of the Mandel parameter on the p
of a. Although the positions of the minimum and maximu
of the squeezing coefficient,f56p/4, correspond to the
local extrema ofR(f), there is no correlation~or anticorre-
lation! between the absolute extrema of the functionsR(f)
ands(f) in a generic case.

IV. CONCLUSION

Let us summarize the main results of the paper. We h
obtained explicit analytical expressions for various functio
characterizing the evolution of the photon-added coher
states in the case of a time-dependent frequency of the o
lator. The formulas are written in terms of some univer
parameters, which have a clear physical meaning in the c
of a parametric resonance. It appears that under certain
ditions the time-dependent photon-added coherent st
yield more strong squeezing than the usual squeezed st
In the process of the evolution, the initial sub-Poisson
statistics of quanta is transformed into a highly sup
Poissonian one. One could use the results obtained to ev
ate deteriorating effects due to time variations of the sys
parameters during an experiment. Or, on the contrary,
could deliberately introduce some time dependence of
parameters in order to achieve optimal values of cert
quantities characterizing the quantum system, e.g.,
squeezing coefficient.

-
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APPENDIX A: DETAILS OF CALCULATIONS

To calculate the scalar product between the Fock state
the TDPACS in Eq.~20!, we notice that the stateua,m;t& is
proportional to the coefficient at the termbm in the Taylor

expansion of the stateub&5exp(bâ†)ua;t& @see Eq. ~7!#,
whereas the stateun& coincides~up to a constant! with the
coefficient at the termgn in the expansion of the stateug&
5exp(gâ†)u0&. Consequently, the calculation of the sca
product^nua,m;t& is equivalent to finding the coefficient a
the term g* nbm in the power expansion of the functio
^gub&. But this function is obviously an exponential of som
quadratic form with respect tog* andb, so the coefficients
of the expansion can be expressed in terms of the t
dimensional Hermite polynomials defined via the generat
function ~we have slightly changed the definition given
@20#!

FIG. 4. Mandel’s parameter in the ‘‘resonance parametri
tion.’’ ~a! R(t) for uau50.5 and different values ofm and f: m
51,f5p/4 ~lower solid curve!, m51,f52p/4 ~upper solid
curve!, m55,f5p/4 ~lower dashed curve!, andm55,f52p/4
~upper dashed curve!. ~b! R(f) for m51 ~solid curve! andm55
~dashed curve!, at t50.25,uau52.
nd

r

o-
g

expS 2
1

2
aRa1azD5 (

n,m50

` a1
na2

m

An!m!
H̃nm

$R%~z1 ,z2!. ~A1!

Here R is a 232 symmetrical matrix, whereasz5(z1 ,z2)
anda5(a1 ,a2) are two-dimensional vectors. After some a
gebra we obtain the formula

pn~a,m;t !5A 2

E11

uH̃nm
$R%~z1 ,z2!u2

Lm~2uau2!

3expF2uau2S 11
F
E11D G , ~A2!

where the elements of the matrixR and vectorz read

R115
i «̇1«

i «̇2«
5 i tanhte22i t ,

R225
i «̇* 2«*

i «̇2«
5 i tanht,

R125
2

i «̇2«
52

e2 i t

cosht
,

z152aR12, z252aR22.

~The expressions containing the parametert are given in the
‘‘resonance parametrization.’’! Using the relation between
the two-dimensional Hermite polynomial and its on
dimensional counterpart@33,34# we can represent Eq.~A2!
as a sum over products of the usual Hermite polynomial

pn~a,m;t !5A 2

E11

22~m1n!

m!n!Lm~2uau2!
S E21

E11D ~m1n!/2

3expF2uau2S 11
F
E11D G

3U (
k50

min~m,n! S 22iA 2

E21D k

3
m!n!

k! ~n2k!! ~m2k!!

3Hn2kS iA 2

«21 «̇2
a D

3Hm2kSA E21

«21 «̇2
a D U2

.

This formula is equivalent to Eq.~21!.
To calculate average values of different operators,

need an explicit formula for the matrix elements

^a,m;tuÂk~ t !Â†l~ t !ua,m;t&[^a,muâkâ†l ua,m&.

Firstly, we notice that due to the relation

-
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ua&[exp~2uau2/2!exp~aâ†!u0&,

we may write the PACSua,m& as

ua,m&5Nmexp~2uau2/2!
]m

]am
@exp~ uau2/2!ua&].

~A3!

Then the scalar product between different PACS can be w
ten as

^b,nua,m&5Nn~ ubu!Nm~ uau!exp@2 1
2 ~ uau21ubu2!#

3
]n1m

]b* n]am H expF1

2
~ uau21ubu2!G^bua&J

5Nn~ ubu!Nm~ uau!exp@2 1
2 ~ uau21ubu2!#

3
]n1m

]b* n]am
eb* a.

The right-hand side of the last expression, being a mult
derivative of the exponential function of a quadratic form
b* anda, can be written in terms of the Hermite polynom
als of two variables@20#. However, in the specific case con
cerned~when the defining symmetric 232 matrixR has two
e
ua
d

it-

le
f

zero diagonal elements! these polynomials are reduced to th
associated Laguerre polynomials@25,34#, so the final result
reads

^b,nua,m&expF1

2
~ uau21ubu2!2b* a G

Nn~ ubu!Nm~ uau!

5H m!an2mLm
~n2m!~2b* a!, n>m

n!b* m2nLn
~m2n!~2b* a!, m>n.

~A4!

In particular, takinga5b andm5n we obtain the normal-
ization factor~6!, whereLm(z)[Lm

(0)(z). An immediate con-
sequence of Eq.~A4! is the formula sought for:

^a,muâkâ†l ua,m&

5
Nm

2 ~ uau!^a,k1mua,l 1m&
Nk1m~ uau!Nl 1m~ uau!

55
~m1k!!

m!

Lm1k
~ l 2k!~2uau2!

Lm~2uau2!
a* l 2k, l>k

~m1 l !!

m!

Lm1 l
~k2 l !~2uau2!

Lm~2uau2!
ak2 l , k> l .

~A5!
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@16# M. Dakna, L. Knöll, and D.-G. Welsch, Opt. Commun.145,

309 ~1998!.
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