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Hydrodynamic modes and pulse propagation in a cylindrical Bose gas
above the Bose-Einstein transition
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We study hydrodynamic oscillations of a cylindrical Bose gas above the Bose-Einstein transition tempera-
ture using the hydrodynamic equations derived by Griffin, Wu, and Stringari. This extends recent studies of a
cylindrical Bose-condensed gas Bt 0. Explicit normal mode solutions are obtained for non-propagating
solutions. In the classical limit, the sound velocity is shown to be the same as a uniform classical gas. We use
a variational formulation of the hydrodynamic equations to discuss the propagating modes in the degenerate
Bose-gas limit and show there is little difference from the classical results. We discuss the propagation of
sound pulses above and beldgc. [S1050-294708)02311-7

PACS numbeps): 03.75.Fi, 05.30.Jp, 67.40.Db

. INTRODUCTION 1 keT
No(r)= 33932420,  Po(r)= 75 9sZ0), 2
Recently Andrewst al. [1] reported a measurement of a
sound pulse propagation of Bose-condensed cloud in ghere z,(r)=ef(#0~Y0) is the local equilibrium fugacity,
highly asymmetric cigar-shaped trap. They have measured =(2+%2/mksT) 2 is the thermal de Broglie wavelength,
the sound velocity in a Bose condensate as a function of thgq Un(2)=37_,2/1" are the well-known Bose-Einstein
density. Zaremb§2] gave a detailed analysis of the collec- ¢,nctions.

tive excitations in a cylindrical Bose gas starting from the Throughout this paper, we shall limit our discussion to a

T=0 quantum hydrodynamic equation of Stringd8],  phyrely cylindrical harmonic trap potential
which is based on the Thomas-Fermi approximation. The
sound velocity of a condensate pulse obtained in RHfis Ug(r)= %mwé(x2+ y2). ®)
in good agreement with the experimental observatidds
More recently, several other theoretical studies have disiserting this into Eq(1), we obtain coupled equations for
cussed the excitations and pulse propagation in a cigathe radialv, and axialv, velocity fluctuations
shaped trap af =0 [4-6).
In this paper, we consider the analogous modes in a hy- A _ 9Py 2
drodynamic regimgwhere collisions ensure local thermal m gt 3n, V(YL V)= MagV o (ry-vy)
equilibrium) for a cylindrical Bose gas above the Bose-
Einstein transition temperatufBsgc. We use the results to S med(V, v )r
discuss pulse propagation abolggc. Below Tgec, One ex- 3 O T

pects first and second sound pulses.
5P, 2

- v _ - 2

Jdv,

+ _!
0z

(4a)

IIl. HYDRODYNAMIC NORMAL MODE EQUATIONS
FOR A CYLINDRICAL BOSE GAS

The linearized hydrodynamic equation for the velocity

v, 5Py d%v, <5Po
fluctuationsv(r,t) derived by Griffin, Wu, and Stringari is

v, —medr, |- 2L )
m—p=—-— — V, —mogr, |- —
A2 3ng 9z2 | 3ng L PO Tz

[7,8] where we have sefU(r,t)=0 since we are interested in
v 5Py(r) normal mode solution&riven solutions will be discussed in
_>-'o _ Sec. V). We use the convention(r,t)=v,(r)e '“t. Fi-
V(V-v)=V[v-VUq(r ®
gtz 3ng(r) (V-v)=vi ()] nally, we shall look for solutions of the kind
—g(VV)VUO(r)—%VéU(r,t), (1) V(1) =(xf(r,),yf(r ),h(r))e*? (5

wherer | = x?+y?. That is, we assume that the functidhs
where Ug(r) is the static cylindrical trap potential and andh do not depend on the radial azimuthal angle.
SU(r,t) is a small time-dependent external perturbation. The Using Eq.(5) in Eq. (4), one finds, after some algebra, a
equilibrium local densityng(r) and the equilibrium local ki- coupled set of equations for the radial functibrand the
netic pressuréy(r) in Eq. (1) are given by axial functionh:
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2 _ azf+3 ot |\ (10, 5 af)
=\ Gzt e 3
e L2, 3
i CO(rL)CE zwah|, (6a)

w?h=c3(r, )k?h—ik| ci(r,)

of
2f+er>—ng’ff .
(6b)

The position-dependent local “sound velocitgy(r ) is de-
fined by

5Po(r,)  5kgT
3mng(r,) 3m

9s/2(Z0)

932Z0)
(7)

B(zp),

c3(r)= B(zo)=

One can show that the normal mode solutions of Efa).
and (6b) satisfy the following orthogonality:

fdr No(NVE,(r)-v,(r)=0, if oy#w,, (83

or, more explicitly,
[ g 0t R 10,

if n’”#n. (8b)
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— 5 S
w?h= £ B(z0)k*h~

k5B df

where we have introduced the operalor

5
§B(Zo) - S) fl,
(12b)

— 10
L[Tl=-

d’f T
B(zo)sdsz+[28(zo) s]d . (13

The rest of this paper is based on the equations in @38
and (12b), which determine the normal mode velocity fluc-
tuations using Eq(11) and(5). The associated density fluc-
tuationsén(r,t) can be found by using the number conser-
vation law

aon
TZ_V'(nOV)- (14)

II. NONPROPAGATING MODES

We first examine nonpropagating solutioks<0) of Egs.
(129 and(12b), in which case they reduce to the two inde-
pendent equations

w?h=0. (15)

There is a trivial zero frequency solutidn=0, h#0, corre-
sponding tov, =0, v,#0. In this case, the dependencehof
on s cannot be determined uniquely. Using Ed4), one
finds thatén=0 for this mode. The interesting solutions of

Here the labeh specifies the different normal mode solu- (15) with w#0 are given by

tions. We remark that, while it is not obvious, if we set the
trap frequencyw, to zero, Eqs(6a) and(6b) have solutions
involving Bessel functions](k r,) with the expected pho-

non dispersion relatiow —co(k2+ kZ)

=0, o’f=L[f]. (16)

These correspond to oscillations only in the radial direction,

It is convenient to introduce a dimensionless radial vari-which we shall now discuss.

able In the classicalgas limit, the operatok. in Eq. (13) sim-
plifies sinceB(zy) =1. In this case, we can obtain the com-
r2 2kgT\ 2 plete set of normal mode solutions of H46), namely,
s=gz. RE|—2] - C)
Mo d 10n
fO(s)= Lo(s), [00]?=—-, n=123,....
We also introduce a dimensionless frequency and wave vec- \/— ds 3
tor (17
S HerelL,(s) is the Laguerre polynomial defined by
= k=kR. (10
0 n

Ln(s)Ees@(S”e‘S). (18

We observe from Eq(2) that R denotes the ‘“size” of the
radial density profile produced by the harmonic potential . —70) ) )
trap. In these units, we note=ef“oeS and the classical and the orthogonal functlorﬁ are normalized according
density profileny(r,)~e~S. In terms of these new dimen- t0 [see Eq(8b)]

sionless variables, it is useful to introduce the new functions:

fo ds seSf(s)f(s)= S - (19)

f(s)=—iRf(r,), h(s)=h(r,). (11)

In ordinary variables, the dispersion relation of thése0

Using Eq.(6), the coupled equations férandh are given by solutions corresponds to

S —— dh 10 ,
W =L[f]-k| 3B(z0) <~ w’=n=wl, n=123,.., (20)

(12a 3

2y
§ )
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and the associated density fluctuation is given by —
f(9)=2 anf’(s). (25)

on(r,t)cLn(s=r2/R?)exp —r?/R¥)e e, (21)
This follows the approach of Zaremb&] for a Bose-

condensed gas dt=0 in a cigar-shaped trap. Substituting

— H 2_ 2 0 e

In the lowest 4=1) mode W|thw1—10wo/3,ﬂ (s) is in- Eq. (25) into Egs.(129 and (12b), we obtain the coupled
dependent ofs and Li(s)=1-—s. This is the two- linear equations for the coefficients :
dimensional radial breathing mode. We note that this particu- '
lar mode corresponds to one of the coupled monopole-
guadrupole modes found in R¢¥] for an anisotropic trap in _
the limit that the axial trap frequencyw() is set to zero. In w?
this same limit @,=0), the other mode has zero frequency
and a velocity fluctuation given by,= a(X,y,—52). This
kind of solution is not described by the for(d), which we 2 k?
are dealing with in this paper. + 32 512 Manan =0, (26)

For a degenerate Bose gas, in whigfe,) is now weakly
dependent ors throughz,=ef#0S, one cannot solve Eq.
(16) analytically. We discuss variational solutions in Sec. V.where the matrix elementd,,, are defined by

However, one can check thg([s) = const is a solution, with

frequencyw®=Lw2. This is the analog of the=1 normal ” _
duencye™™ s o ) g —10) - Mnn,zf ds e st(s)f(s). (27)
mode in Eq.(17) for the classical gadve recall thatf}”’ is 0
independent o§).
For comparison with Eq(20), the analogous nonpropa- Using the identity for Laguerre polynomials
gating normal modes in a cigar trapat 0 have a spectrum
given by[2,9] o
f ds e 5L, (S)Ly/(S)=ny(N!)?, (29
w?=21(1+1)w?, 1=012,... . (22) °
we find
IV. PROPAGATING MODES
Mnnr=2n5nnr_\/nn,gnr’ntl. (29)

In this section, we discuss the more interesting propagat-

ing solution @é 0) of equationg12g and(12b). In the clas- — _ _ —,
sical limit [B(zo)=1], one immediately finds a phonon To lowest order ink®, one finds the eigenvalue~ of Eq.

mode solution (26) is given by M,,=2n)
_ — — 5 — 10 5 My\— 10 13—
— — 2_ " L2 2__ R nn 2_ 2
h=exp2s/5), =0, ® =5 k<. (23 3 n+ 6 Bn )k 3 n+—30k . (30)

This is a longitudinal sound wave with the dispersion rela-In ordinary units, the excitation spectrum is given by
tion w=cqk, where the sound velocitys=5kgT/3m is the

same as for a uniform classical gas. There is no radial oscil- ) 10 , 13kgT ,

lation (i.e., f=0) associated with this phonon mode in the on(K=nZwptz-—k% n=123... . @1
classical limit. Using Eq(14), the associated density fluctua-

tion is found to be
We note that the correction term in E&J) is of order kR)?

P ) ) relative to the first term, which is assumed to be large. Thus
on(r,t)cexp(—3ri/SR7)explikz—icokt).  (24)  his spectrum for propagating modes for a classical gas in a
cylindrical harmonic trap is only valid fdkR<1, whereR is
In the classical limit, one can show that the dispersion relathe radial size of the trapped gas density profile.
tion w=cyk is valid for any cylindrical trap potential
Uo(r,), i.e., it is not limited to parabolic potentials. In this
more general case, the solution of the hydrodynamic equa-
tion Corresponding to the phononlike mode in the classical For a Bose gas abov'BBEC’ one cannot eas”y solve the
limit is given by h=exp(2Jy/5kgT) and f=0, with the as-  coupled equations in Eq$12a and (12b) for k0. An al-
sociated density fluctuatiofinoexp(—3Uy/5kgT). ternative approach is to recast these equations into a varia-
In order to find how the nonpropagating normal modetional form, following recent wor§10] in solving the two-
solutions in Eq.(17) are modified wherk# 0, we expand fluid hydrodynamic equations for a trapped Bose-condensed
as follows: gas[11]. One finds that the functional

V. VARIATIONAL SOLUTIONS
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Re f dsgyxzo)[sF* L[ F]+ 2B(zo)|h|?k2— 25 * (§B(2z0)dh/ds — h)k]
[ 0

E[T,h]

- @
| dstzosifz+ A

has the property that conditio®E/ 5f =0, SE/ sh=0 yields Eqs(128 and(12b). Thus the normal mode eigenvalue are
given by the stationary value of this functiorﬁﬂrh].

Fork=0 with w#0, we can use Ed32) to estimate the normal mode frequencies using the classical solutions @7&q.
f_=?f1°) andh=0, as trial functions. The frequency so determined is given by

fods wAZo)STLITT fods[gs/2<zo>—95/2<zo>]ﬂ°>[s2(dzf_a°>/ds2>+2s(dﬁ°)/ds>]
-2

w = =—n+—

* 3 3 . _(0) 2
JO dsgya(zo)s(fy") fo ds@ea(Zo)s(f”)

(33

The second term in Eq33) gives the quantum correction to the classical limit.
Fork+ 0, the most interesting propagating mode is the phonon modewwith For trial functions in Eq(32), we take[see
Eq. (23)]

f=KkA;, h=Aexp2s/5), (34)

where the constants; and A, areLeaI and independent &f To first order ink, we find a phononlike solutiom = ck, with
the (dimensionlesssound velocityc given by

w o 2 oo
( 5 f dsgy(20) €%~ %l f ds{g3/(2o) — 95/2(20)]5625/5] / J ds g Zo)S)
2_\ 70 0 ° : (395

f dsgya(20)e*®
0

The amplitudes in Eq34) that are associated with this pho- WhereEOE eﬁ#o and On is the Bose-Einstein function, as de-
non mode have the ratio fined below Eq.(2). It is useful to plot the temperature de-
pendence relative to th€gzec for an ideal gas in a cigar-
shaped trap described by ES). For a trap of length. with

N atoms, we havéusing Eq.(2)]

f:ds[gs/z( Zp) — 95/ zo)]se25/5

A - - ' '
= _ . (39 1k
n 5 f dsgg(Zg)S
0 /2120 08 I ]
<
N 0.6
One can see that in a degenerate Bose gas, where ~ 0.4 |
032(2Z0) # 95/2(2p), theradial oscillations @) are coupled to Sound Velocity
the axial oscillations @,,). 0.2 1
The normal mode frequencies given by the variational
expressions in Eqg33) and(35) can be numerically calcu- 0 ' ' ' '
lated. All the integrals can be evaluated analytically using 1 12 14 16 18 2

the useful identity y
T/Tgec

" FIG. 1. The sound velocitg as a function of temperature rela-
Jo ds &(zo)s"=m!gn:m+1(Zo), (37)  tive to Tgec. The values are normalized to the classical gas result

COZ \ 5kBT/3m
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4 ' ' ' _n=4
3F “=;-
n=
S 1
_ el ]
S
1 = i
O L L 1 1
1 12 14 16 18 2

FIG. 2. The normal mode frequencieg for k=0 as a function
of temperature, as given by E(B3). The frequencies are normal-
ized to the radial trap frequenayy .

2wl (=
= [[ar o= 25 | v, gantzo

mR2L [~ ~ s
= AT Odsgg,z(zoe )

Mmw kgT

o\ Y3 kg
=L| — -
(277?1) (ﬁwo

WhenT=Tgec, we haveu,=0 and hence,=1. Thus Eq.
(38) gives the Bose-Einstein transition temperature

s2
) Os/2Z0)- (39

KgTgec="rr wg| — (39

zth 1/2 1
b

25
{(5/2) }

m(l)o

for a cigar trap in the usual semiclassical approximation.

In Fig. 1, we show how the sound velocity given by Eq.

(35) varies with temperature down fBggc, relative to the
classical valuecy=+5kgT/3m. In Fig. 2, we show the

temperature-dependent results for the frequencies of the no

propagating modes based on Eg83). We recall that since
?(10’ is constant, the correction term in E®3) vanishes for

then=1 mode. The variational calculations shown in Figs. 1

T. NIKUNI AND A. GRIFFIN
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The equation of motiokil) with the external perturbatiofiU
can be solved?2] by introducing a Fourier representation of
the velocity fluctuationgcompare with Eq(5)] and the ex-
ternal perturbation

= dk
v(r,t)=f7 >

U= [ Lekasyi
(@)= S-e"ou(k).

ek 2 (xf(k,r, ,bt),yf(k,r, ,t),h(kr, 1)),
(41)

Taking the Fourier transform of E¢41) and using the radial
variable s defined in Eq.(9), we obtain a coupled set of
equationg compare with Eqs(12a and (12b)]

gh 2
2] E( B(zo) ¢ §h”
5
§B<Z°>‘SHJ

(42b

5

=0, (429

#h |5 o 5 af
W‘f’wo EB(ZO) - §B(ZO)S£+

k
=—i a&U(k)é(t).
Here we have used notation analogous to that in(Ef, but
now f and h also depend ont and are for a particulak
component.
In order to solve these coupled equations, we exp’_and
andh as follows:

f(k,s,0) =2, bp(k,t)frm(k,S),

h(k,s,t)= >, by(k,t)hy(k,s), (43

where the basis functionk, andh,, are the normal mode

solutions of Eg.(12). These have eigenvaluegﬁ](k) and
F5rm an orthonormal sdsee Eq.(8b)],

hih,]= (44

mn

f ds 93/2(20)[

and 2 indicate that there is little change in the normal mode
frequencies given by the classical limit for temperature dowrsubstituting the expressidad) into (42) and using(44), we

to T=Tgec. As noted at the end of Rdf7], these results are

obtain

to be expected since the only place where the Bose nature of

the gas enters is in the first term of Ed). This involves the
ratio B(zg) = 9s/2(20)/93/5(20), Which is remarkably close to
the classical value of unity, even at the center of the trap.

VI. PROPAGATION OF SOUND PULSES

In this section, following the approach of ZareniB4 we

2

by
— + wX(K)b,=F

i (9 3(1), (45)

where (k)= w,(k) 0, and

6U (k)

Fn(k)__”(—J ds Gz} (k,s).  (46)

discuss the propagation of sound pulses induced by a small

external perturbatiodU (r,t). We assume thadU(r,t) has
no radial dependence and is switched ort-ap, i.e., the
external perturbation is of the form

oU(r,t)=48U(z)6(t). (40

The solution of Eq.(45) with the boundary conditio,,(t

<0)=0 is given by

Fn(k)

b,(k,t)=6(t) o (K)

sinl wn(kK)t], (47
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where the quantum number refers to the radial degree of the T=0 analysis, which works with a single equation for

freedom.

the density fluctuations, we have to work with coupled equa-

In order to analyze the time evolution of the associatedions for the velocity fluctuations. For simplicity, we have
density fluctuations, it is convenient to work with the radially considered the limit of a uniform gas along the axial direc-

averaged density

%(z,t)zf dr, on(r,t). (49)

tion. We note that Stringaf#] has discussed the condensate
modes aff =0 in the limit of a very weak trap in the axial
direction (w,<wy).

As in Ref.[7], we have ignored the Hartree-Fock mean

field contribution to the hydrodynamic equations. Such terms
are given in Eq.(6) of Ref. [11]. In place of Eq.(1), we
obtain the linearized velocity equation

Using Eq.(14), one finds

0 — v,
(9_ fder (ngv)=— fdhnoE
2 dk 7V _ SPy(1) V(V-v)—V[v-VU(r)] 2(v )V U(r)
®© o . m = -V)— V- rN|—= -V r
=—iA%Tf rldrlgg,z(zo)J F—kekh(kor, ,b) a2 3ng(r) 3
0 — o

J
- mR? s Jm dk 1 K28U(K) o) +2gV(V~nov)—E VuU(r,t). (52)
A < | 27 Mo, (K)
oo - 2 . . . .
X sin wn(k)tU ds gylZo)h,(K,S) (49) This now involves the effective trap potential
0
, . U(r)=Uq(r)+2gne(r), (53
Integrating Eq.(49) overt, one finds
which also appears in the equilibrium fugacity,
_ k25U (K) =ef(ro~Y) in the expressions fony(r) and Py(r). The
on(z,t)=— A3 2 f "‘Z—k) o(t) usual s-wave scattering interaction ig=4ma#?/m. The
- on analysis given in this paper can be generalig&#] to in-
2 clude the effects of this HF mean field but it is much more

complicated. We simply quote some final results for the clas-

X[1—cos wp(K)t fmds zo)hn(k,S
[ @n(k) ]‘ 0 G2 20) (k. 5) sical limit. Then=1 nonpropagating mode has a frequency

given by
(50)
One can see that a low frequency phonon mode makes a , 10 gng(r=0)
large contribution to Eq(50). To illustrate the contribution w1=§wo( - T) (54)
B

to Eqg. (50), which is associated with the phonon density
fluctuations w,=ck in the classical limit, we use

Fn(k,s)=Ahexp(25/5) [see Eq.(23)] where the normaliza- wherengy(r=0) is the density at the center of the cylindrical

tion condition(44) givesA2=1/5z,. The contribution to Eq. trap. The sound velocity corresponding to E23) is given
(50) of this classical sound wave is given bywe useN/L by

=wR?/A3%(z,) appropriate to the classical linit

5kgT ng(r=0
B +9 ol ).

2_
¢ 3m 3m

— 5N 6(t) (55
on(z,t)=— 9L ma {5U(z)— 2[8U(z—ct)

The two-fluid hydrodynamic equations for a trapped
Bose-condensed ga$ € Tgec) have been recently discussed
by Zarembaet al. [11]. These equations have been used to
which has the form of a propagating pulse moving with astudy first and second sound modes in a dilute uniform Bose
speed=c. gas[13] at finite temperatures. It is found that first sound
corresponds mainly to an oscillation of the noncondensate,
with a velocity given by

+6U(z+ct)]}, (51)

VIl. CONCLUDING REMARKS

In this paper, we have given a detailed analysis of the 5
hydrodynamic normal modes of a Bose gas in a cigar-shaped , 5 kBT g5,2(zo) 2gng
trap aboveTgec. We have discussed the nonpropagating and U=3 1 93/2(20) m
propagating modes, both in the classical limit as well as in
the degenerate Bose limit just aboviggc. Our results
complement the analogous studj@s4—6| of such modes in
the quantum hydrodynamic limit &=0. In contrast with

(56)

In contrast, the second sound mode mainly corresponds to an
oscillation of the condensate, with a velocity given by
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, 9Ngo most of the weight would be in the second sound pulse if
U= (570 u2<u?. This mode, given by Eq57), is the natural hydro-
dynamic analogue of the Bogoliubov mode exhibited in the
Hereno(no) is the equilibrium condensateoncondensate quantum hydrodynamic region a=0 [1,2]. At tempera-
density. As discussed in RdfL3], to a good approximation, tures close tdlgec, the first sound pulse has a much faster
one can use speed and thus its intensity will be very weak. The observa-
tion of distinct first and second sound pulses in cigar-shaped
(58) traps would be very dramatic evidence for superfluid behav-
ior in dilute Bose gases. The experiment would best be done
. o _ggn at intermediate or lower temperatures, whageandu, are
where the equilibrium fugacity igy=e" "%, more comparable in magnitude. Observation of the first

In principle, we could use the equations in REf1] to  g5nd pulse would be a way of measuring the noncondensate
extend the analysis of the present paper and discuss “b%nsity “underneath” the condensate.

propagating first and second sound modes in a cigar-shaped
trap. Here we limit ourselves to some qualitative remarks.
One expects to find an expression similar to &4) for the
propagation of a pulse, and there should be distinct first and
second sound pulses moving with velocities quite closg to T.N. was supported by the Japan Society for the Promo-
andu, as given above. However, as the expression in Edtion of Science(JSP3, and A.G. was supported by a re-
(51) shows, the relative amplitude of these two modes isearch grant from NSERC of Canada. A.G. would also like
proportional to 1|Ai2. We conclude that if pulse experiments to thank the Institute for Theoretical Physics at Santa Bar-
such as in Ref[1] were done in the hydrodynamic region, bara for support during the final stages of work on this paper.
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