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Hydrodynamic modes and pulse propagation in a cylindrical Bose gas
above the Bose-Einstein transition

T. Nikuni
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152, Japan

A. Griffin
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 9 June 1998!

We study hydrodynamic oscillations of a cylindrical Bose gas above the Bose-Einstein transition tempera-
ture using the hydrodynamic equations derived by Griffin, Wu, and Stringari. This extends recent studies of a
cylindrical Bose-condensed gas atT50. Explicit normal mode solutions are obtained for non-propagating
solutions. In the classical limit, the sound velocity is shown to be the same as a uniform classical gas. We use
a variational formulation of the hydrodynamic equations to discuss the propagating modes in the degenerate
Bose-gas limit and show there is little difference from the classical results. We discuss the propagation of
sound pulses above and belowTBEC. @S1050-2947~98!02311-7#

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db
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I. INTRODUCTION

Recently Andrewset al. @1# reported a measurement of
sound pulse propagation of Bose-condensed cloud i
highly asymmetric cigar-shaped trap. They have measu
the sound velocity in a Bose condensate as a function of
density. Zaremba@2# gave a detailed analysis of the colle
tive excitations in a cylindrical Bose gas starting from t
T50 quantum hydrodynamic equation of Stringari@3#,
which is based on the Thomas-Fermi approximation. T
sound velocity of a condensate pulse obtained in Ref.@2# is
in good agreement with the experimental observations@1#.
More recently, several other theoretical studies have
cussed the excitations and pulse propagation in a ci
shaped trap atT50 @4–6#.

In this paper, we consider the analogous modes in a
drodynamic regime~where collisions ensure local therm
equilibrium! for a cylindrical Bose gas above the Bos
Einstein transition temperatureTBEC. We use the results to
discuss pulse propagation aboveTBEC. Below TBEC, one ex-
pects first and second sound pulses.

II. HYDRODYNAMIC NORMAL MODE EQUATIONS
FOR A CYLINDRICAL BOSE GAS

The linearized hydrodynamic equation for the veloc
fluctuationsv(r ,t) derived by Griffin, Wu, and Stringari is
@7,8#

m
]2v

]t2 5
5P0~r !

3n0~r !
“~“•v!2“@v•“U0~r !#

2
2

3
~¹•v!“U0~r !2

]

]t
“dU~r ,t !, ~1!

where U0(r ) is the static cylindrical trap potential an
dU(r ,t) is a small time-dependent external perturbation. T
equilibrium local densityn0(r ) and the equilibrium local ki-
netic pressureP0(r ) in Eq. ~1! are given by
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n0~r !5
1

L3 g3/2~z0!, P0~r !5
kBT

L3 g5/2~z0!, ~2!

where z0(r )[eb(m02U0) is the local equilibrium fugacity,
L[(2p\2/mkBT)1/2 is the thermal de Broglie wavelength
and gn(z)5( l 51

` zl / l n are the well-known Bose-Einstei
functions.

Throughout this paper, we shall limit our discussion to
purely cylindrical harmonic trap potential

U0~r !5 1
2 mv0

2~x21y2!. ~3!

Inserting this into Eq.~1!, we obtain coupled equations fo
the radialv' and axialvz velocity fluctuations

m
]2v'

]t2 5
5P0

3n0
“'~“'•v'!2mv0

2
“'~r'•v'!

2
2

3
mv0

2~“'•v'!r'

1S 5P0

3n0
“'2

2

3
mv0

2r'D ]vz

]z
, ~4a!

m
]2vz

]t2 5
5P0

3n0

]2vz

]z2 1S 5P0

3n0
“'2mv0

2r'D • ]v'

]z
, ~4b!

where we have setdU(r ,t)50 since we are interested i
normal mode solutions~driven solutions will be discussed i
Sec. VI!. We use the conventionv(r ,t)5vv(r )e2 ivt. Fi-
nally, we shall look for solutions of the kind

vv~r !5„x f~r'!,y f~r'!,h~r'!…eikz, ~5!

wherer'5Ax21y2. That is, we assume that the functionsf
andh do not depend on the radial azimuthal angle.

Using Eq.~5! in Eq. ~4!, one finds, after some algebra,
coupled set of equations for the radial functionf and the
axial functionh:
4044 ©1998 The American Physical Society
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v2f 52c0
2~r'!S ]2f

]r'
2 1

3

r'

] f

]r'
D 1v0

2S 10

3
f 1

5

3
r'

] f

]r'
D

2 ikFc0
2~r'!

1

r'

]h

]r'

2
2

3
v0

2hG , ~6a!

v2h5c0
2~r'!k2h2 ikFc0

2~r'!S 2 f 1r'

] f

]r'
D2v0

2r'
2 f G .

~6b!

The position-dependent local ‘‘sound velocity’’c0(r') is de-
fined by

c0
2~r'![

5P0~r'!

3mn0~r'!
5

5kBT

3m
B~z0!, B~z0![

g5/2~z0!

g3/2~z0!
.

~7!

One can show that the normal mode solutions of Eqs.~6a!
and ~6b! satisfy the following orthogonality:

E dr n0~r !vv8
* ~r !•vv~r !50, if vn8Þvn , ~8a!

or, more explicitly,

E
0

`

dr'r'n0~r'!@r'
2 f n8

* ~r'! f n~r'!1hn8
* ~r'!hn~r'!#50,

if n8Þn. ~8b!

Here the labeln specifies the different normal mode sol
tions. We remark that, while it is not obvious, if we set t
trap frequencyv0 to zero, Eqs.~6a! and~6b! have solutions
involving Bessel functionsJ(k'r') with the expected pho
non dispersion relationv25c0

2(k21k'
2 ).

It is convenient to introduce a dimensionless radial va
able

s[
r'

2

R2 , R[S 2kBT

mv0
2 D 1/2

. ~9!

We also introduce a dimensionless frequency and wave
tor

v̄[
v

v0
, k̄[kR. ~10!

We observe from Eq.~2! that R denotes the ‘‘size’’ of the
radial density profile produced by the harmonic poten
trap. In these units, we notez05ebm0e2s and the classica
density profilen0(r');e2s. In terms of these new dimen
sionless variables, it is useful to introduce the new functio

f̄ ~s![2 iR f~r'!, h̄~s![h~r'!. ~11!

Using Eq.~6!, the coupled equations forf̄ andh̄ are given by

v̄2 f̄ 5L̂@ f̄ #2 k̄S 5

3
B~z0!

dh̄

ds
2

2

3
h̄D , ~12a!
-

c-

l

s:

v̄2h̄5
5

6
B~z0!k̄2h̄2 k̄F5

3
B~z0!s

d f̄

ds
1S 5

3
B~z0!2sD f̄ G ,

~12b!

where we have introduced the operatorL̂:

L̂@ f̄ #[2
10

3
FB~z0!s

d2 f̄

ds2 1@2B~z0!2s#
d f̄

ds
2 f̄ G . ~13!

The rest of this paper is based on the equations in Eqs.~12a!
and ~12b!, which determine the normal mode velocity flu
tuations using Eq.~11! and ~5!. The associated density fluc
tuationsdn(r ,t) can be found by using the number conse
vation law

]dn

]t
52“•~n0v!. ~14!

III. NONPROPAGATING MODES

We first examine nonpropagating solutions (k50) of Eqs.
~12a! and ~12b!, in which case they reduce to the two ind
pendent equations

v̄2 f̄ 5L̂@ f̄ #, v̄2h̄50. ~15!

There is a trivial zero frequency solutionf̄ 50, h̄Þ0, corre-
sponding tov'50, vzÞ0. In this case, the dependence ofh̄
on s cannot be determined uniquely. Using Eq.~14!, one
finds thatdn50 for this mode. The interesting solutions o
~15! with v̄Þ0 are given by

h̄50, v̄2 f̄ 5L̂@ f̄ #. ~16!

These correspond to oscillations only in the radial directi
which we shall now discuss.

In the classicalgas limit, the operatorL̂ in Eq. ~13! sim-
plifies sinceB(z0)51. In this case, we can obtain the com
plete set of normal mode solutions of Eq.~16!, namely,

f̄ n
~0!~s!5

1

n!An

d

ds
Ln~s!, @v̄n

~0!#25
10n

3
, n51,2,3,... .

~17!

HereLn(s) is the Laguerre polynomial defined by

Ln~s![es
dn

dsn ~sne2s!, ~18!

and the orthogonal functionsf̄ n
(0) are normalized according

to @see Eq.~8b!#

E
0

`

ds se2sf̄ n
~0!~s! f̄ n8

~0!
~s!5dnn8 . ~19!

In ordinary variables, the dispersion relation of thesek50
solutions corresponds to

vn
25n

10

3
v0

2 , n51,2,3,..., ~20!
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and the associated density fluctuation is given by

dn~r ,t !}Ln~s5r'
2 /R2!exp~2r'

2 /R2!e2 ivnt. ~21!

In the lowest (n51) mode withv1
2510v0

2/3, f̄ 1
(0)(s) is in-

dependent of s and L1(s)512s. This is the two-
dimensional radial breathing mode. We note that this part
lar mode corresponds to one of the coupled monop
quadrupole modes found in Ref.@7# for an anisotropic trap in
the limit that the axial trap frequency (vz) is set to zero. In
this same limit (vz50), the other mode has zero frequen
and a velocity fluctuation given byvv5a(x,y,25z). This
kind of solution is not described by the form~5!, which we
are dealing with in this paper.

For a degenerate Bose gas, in whichB(z0) is now weakly
dependent ons through z05ebm02s, one cannot solve Eq
~16! analytically. We discuss variational solutions in Sec.
However, one can check thatf̄ (s)5const is a solution, with
frequencyv25 10

3 v0
2. This is the analog of then51 normal

mode in Eq.~17! for the classical gas~we recall thatf̄ 1
(0) is

independent ofs!.
For comparison with Eq.~20!, the analogous nonpropa

gating normal modes in a cigar trap atT50 have a spectrum
given by @2,9#

v l
252l ~ l 11!v0

2 , l 50,1,2, . . . . ~22!

IV. PROPAGATING MODES

In this section, we discuss the more interesting propa
ing solution (k̄Þ0) of equations~12a! and~12b!. In the clas-
sical limit @B(z0)51#, one immediately finds a phono
mode solution

h̄5exp~2s/5!, f̄ 50, v̄25
5

6
k̄2. ~23!

This is a longitudinal sound wave with the dispersion re
tion v5c0k, where the sound velocityc0

255kBT/3m is the
same as for a uniform classical gas. There is no radial os
lation ~i.e., f̄ 50! associated with this phonon mode in th
classical limit. Using Eq.~14!, the associated density fluctua
tion is found to be

dn~r ,t !}exp~23r'
2 /5R2!exp~ ikz2 ic0kt!. ~24!

In the classical limit, one can show that the dispersion re
tion v5c0k is valid for any cylindrical trap potentia
U0(r'), i.e., it is not limited to parabolic potentials. In th
more general case, the solution of the hydrodynamic eq
tion corresponding to the phononlike mode in the class
limit is given by h5exp(2U0/5kBT) and f 50, with the as-
sociated density fluctuationdn}exp(23U0/5kBT).

In order to find how the nonpropagating normal mo
solutions in Eq.~17! are modified whenkÞ0, we expandf̄
as follows:
-
-

.

t-

-

il-

-

a-
l

f̄ ~s!5(
n

anf̄ n
~0!~s!. ~25!

This follows the approach of Zaremba@2# for a Bose-
condensed gas atT50 in a cigar-shaped trap. Substitutin
Eq. ~25! into Eqs. ~12a! and ~12b!, we obtain the coupled
linear equations for the coefficientsan :

S v̄22@v̄n
~0!#22

5

6

@v̄n
~0!#2

v̄22 5
6 k̄2

k̄2D an

1
2

3

k̄2

v̄22 5
6 k̄2

(
n8

Mnn8an850, ~26!

where the matrix elementsMnn8 are defined by

Mnn8[E
0

`

ds s2e2sf̄ n
~0!~s! f̄ n8

~0!
~s!. ~27!

Using the identity for Laguerre polynomials

E
0

`

ds e2sLn~s!Ln8~s!5dnn8~n! !2, ~28!

we find

Mnn852ndnn82Ann8dn8,n61 . ~29!

To lowest order ink̄2, one finds the eigenvaluev̄2 of Eq.
~26! is given by (Mnn52n)

v̄2.
10

3
n1S 5

6
2

Mnn

5n D k̄25
10

3
n1

13

30
k̄2. ~30!

In ordinary units, the excitation spectrum is given by

vn
2~k!5n

10

3
v0

21
13

15

kBT

m
k2, n51,2,3, . . . . ~31!

We note that the correction term in Eq.~31! is of order (kR)2

relative to the first term, which is assumed to be large. T
this spectrum for propagating modes for a classical gas
cylindrical harmonic trap is only valid forkR!1, whereR is
the radial size of the trapped gas density profile.

V. VARIATIONAL SOLUTIONS

For a Bose gas aboveTBEC, one cannot easily solve th
coupled equations in Eqs.~12a! and ~12b! for kÞ0. An al-
ternative approach is to recast these equations into a v
tional form, following recent work@10# in solving the two-
fluid hydrodynamic equations for a trapped Bose-conden
gas@11#. One finds that the functional
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E@ f̄ ,h̄#[

Re E
0

`

dsg3/2~z0!†s f̄* L̂@ f̄ #1 5
6 B~z0!uh̄u2k̄222s f̄* „5

3 B~z0!dh̄/ds2 2
3 h̄…k̄‡

E
0

`

dsg3/2~z0!~su f̄ u21uh̄u2!

. ~32!

has the property that conditionsdE/d f̄ 50, dE/dh̄50 yields Eqs.~12a! and~12b!. Thus the normal mode eigenvaluesv2 are
given by the stationary value of this functionalE@ f̄ ,h̄#.

For k̄50 with v̄Þ0, we can use Eq.~32! to estimate the normal mode frequencies using the classical solutions of Eq.~17!,
f̄ 5 f̄ n

(0) and h̄50, as trial functions. The frequency so determined is given by

v̄25

E
0

`

ds g3/2~z0!s f̄n
~0!L̂@ f̄ n

~0!#

E
0

`

dsg3/2~z0!s~ f̄ n
~0!!2

5
10

3
n1

10

3

E
0

`

ds@g3/2~z0!2g5/2~z0!# f̄ n
~0!@s2 ~d2 f̄ n

~0!/ds2 !12s ~d f̄n
~0!/ds!#

E
0

`

dsg3/2~z0!s~ f̄ n
~0!!2

. ~33!

The second term in Eq.~33! gives the quantum correction to the classical limit.
For kÞ0, the most interesting propagating mode is the phonon mode withv}k. For trial functions in Eq.~32!, we take@see

Eq. ~23!#

f̄ 5 k̄Af , h̄5Ahexp~2s/5!, ~34!

where the constantsAf andAh are real and independent ofs. To first order ink̄, we find a phononlike solutionv̄5 c̄k̄, with
the ~dimensionless! sound velocityc̄ given by

c̄25

S 5
6 E

0

`

dsg5/2~z0!e4s/52 2
15 H E

0

`

ds@g3/2~z0!2g5/2~z0!#se2s/5J 2Y E
0

`

dsg3/2~z0!sD
E

0

`

dsg3/2~z0!e4s/5

. ~35!
-

he

na
-
in

-
-

-

-
sult
The amplitudes in Eq.~34! that are associated with this pho
non mode have the ratio

Af

Ah
52

E
0

`

ds@g3/2~z0!2g5/2~z0!#se2s/5

5E
0

`

dsg3/2~z0!s

. ~36!

One can see that in a degenerate Bose gas, w
g3/2(z0)Þg5/2(z0), theradial oscillations (Af) are coupled to
the axial oscillations (Ah).

The normal mode frequencies given by the variatio
expressions in Eqs.~33! and ~35! can be numerically calcu
lated. All the integrals can be evaluated analytically us
the useful identity

E
0

`

ds gn~z0!sm5m!gn1m11~ z̃0!, ~37!
re

l

g

wherez̃0[ebm0 andgn is the Bose-Einstein function, as de
fined below Eq.~2!. It is useful to plot the temperature de
pendence relative to theTBEC for an ideal gas in a cigar
shaped trap described by Eq.~3!. For a trap of lengthL with
N atoms, we have@using Eq.~2!#

FIG. 1. The sound velocityc as a function of temperature rela
tive to TBEC. The values are normalized to the classical gas re
c05A5kBT/3m.
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N5E dr n0~r !5
2pL

L3 E
0

`

dr'r'g3/2~z0!

5
pR2L

L3 E
0

`

dsg3/2~ z̃0e2s!

5LS mv0

2p\ D 1/2S kBT

\v0
D 5/2

g5/2~ z̃0!. ~38!

WhenT5TBEC, we havem050 and hencez̃051. Thus Eq.
~38! gives the Bose-Einstein transition temperature

kBTBEC5\v0FN

L S 2p\2

mv0
D 1/2 1

z~5/2!G
2/5

~39!

for a cigar trap in the usual semiclassical approximation.
In Fig. 1, we show how the sound velocity given by E

~35! varies with temperature down toTBEC, relative to the
classical valuec05A5kBT/3m. In Fig. 2, we show the
temperature-dependent results for the frequencies of the
propagating modes based on Eq.~33!. We recall that since

f̄ 1
(0) is constant, the correction term in Eq.~33! vanishes for

then51 mode. The variational calculations shown in Figs
and 2 indicate that there is little change in the normal mo
frequencies given by the classical limit for temperature do
to T5TBEC. As noted at the end of Ref.@7#, these results are
to be expected since the only place where the Bose natu
the gas enters is in the first term of Eq.~1!. This involves the
ratio B(z0)5g5/2(z0)/g3/2(z0), which is remarkably close to
the classical value of unity, even at the center of the trap

VI. PROPAGATION OF SOUND PULSES

In this section, following the approach of Zaremba@2#, we
discuss the propagation of sound pulses induced by a s
external perturbationdU(r ,t). We assume thatdU(r ,t) has
no radial dependence and is switched on att50, i.e., the
external perturbation is of the form

dU~r ,t !5dU~z!u~ t !. ~40!

FIG. 2. The normal mode frequenciesvn for k50 as a function
of temperature, as given by Eq.~33!. The frequencies are norma
ized to the radial trap frequencyv0 .
.

n-

e
n

of

all

The equation of motion~1! with the external perturbationdU
can be solved@2# by introducing a Fourier representation
the velocity fluctuations@compare with Eq.~5!# and the ex-
ternal perturbation

v~r ,t !5E
2`

` dk

2p
eikz

„x f~k,r' ,t !,y f~k,r' ,t !,h~k,r' ,t !…,

~41!

dU~z!5E
2`

` dk

2p
eikzdU~k!.

Taking the Fourier transform of Eq.~41! and using the radia
variable s defined in Eq.~9!, we obtain a coupled set o
equations@compare with Eqs.~12a! and ~12b!#

]2 f̄

]t2 1v0
2F L̂@ f̄ #2 k̄S 5

3
B~z0!

]h̄

]s
2

2

3
h̄D G50, ~42a!

]2h̄

]t2 1v0
2H 5

6
B~z0!k̄2h̄2 k̄F5

3
B~z0!s

] f̄

]s
1S 5

3
B~z0!2sD f̄ G J

52 i
k

m
dU~k!d~ t !. ~42b!

Here we have used notation analogous to that in Eq.~11!, but
now f̄ and h̄ also depend ont and are for a particulark
component.

In order to solve these coupled equations, we expanf̄

and h̄ as follows:

f̄ ~k,s,t !5(
m

bm~k,t ! f̄ m~k,s!,

h̄~k,s,t !5(
m

bm~k,t !h̄m~k,s!, ~43!

where the basis functionsf̄ m and h̄m are the normal mode
solutions of Eq.~12!. These have eigenvaluesv̄m

2 (k) and
form an orthonormal set@see Eq.~8b!#,

E
0

`

ds g3/2~z0!@s f̄m* f̄ n1h̄m* h̄n#5dmn . ~44!

Substituting the expression~43! into ~42! and using~44!, we
obtain

]2bn

]t2 1vn
2~k!bn5Fn~k!d~ t !, ~45!

wherevn(k)[v̄n(k)v0 and

Fn~k![2 ik
dU~k!

m E
0

`

ds g3/2~z0!h̄n* ~k,s!. ~46!

The solution of Eq.~45! with the boundary conditionbn(t
,0)50 is given by

bn~k,t !5u~ t !
Fn~k!

vn~k!
sin@vn~k!t#, ~47!
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where the quantum numbern refers to the radial degree o
freedom.

In order to analyze the time evolution of the associa
density fluctuations, it is convenient to work with the radia
averaged density

dn~z,t ![E dr'dn~r ,t !. ~48!

Using Eq.~14!, one finds

]

]t
dn52E dr'“•~n0v!52E dr'n0

]vz

]z

52 i
2p

L3 E
0

`

r'dr'g3/2~z0!E
2`

` dk

2p
keikzh~k,r' ,t !

52
pR2

L3 (
n
E

2`

` dk

2p
eikz

k2dU~k!

mvn~k!
u~ t !

3sin vn~k!tU E
0

`

ds g3/2~z0!h̄n~k,s!U2

. ~49!

Integrating Eq.~49! over t, one finds

dn~z,t !52
pR2

L3 (
n
E

2`

` dk

2p
eikz

k2dU~k!

mvn
2~k!

u~ t !

3@12cosvn~k!t#U E
0

`

ds g3/2~z0!h̄n~k,s!U2

.

~50!

One can see that a low frequency phonon mode mak
large contribution to Eq.~50!. To illustrate the contribution
to Eq. ~50!, which is associated with the phonon dens
fluctuations vn5ck in the classical limit, we use
h̄n(k,s)5Ahexp(2s/5) @see Eq.~23!# where the normaliza-
tion condition~44! givesAh

251/5z̃0 . The contribution to Eq.
~50! of this classical sound wave is given by@we useN/L
5pR2/L3( z̃0) appropriate to the classical limit#

dn~z,t !52
5

9

N

L

u~ t !

mc2 $dU~z!2 1
2 @dU~z2ct!

1dU~z1ct!#%, ~51!

which has the form of a propagating pulse moving with
speed6c.

VII. CONCLUDING REMARKS

In this paper, we have given a detailed analysis of
hydrodynamic normal modes of a Bose gas in a cigar-sha
trap aboveTBEC. We have discussed the nonpropagating a
propagating modes, both in the classical limit as well as
the degenerate Bose limit just aboveTBEC. Our results
complement the analogous studies@2,4–6# of such modes in
the quantum hydrodynamic limit atT50. In contrast with
d

a

e
ed
d
n

the T50 analysis, which works with a single equation f
the density fluctuations, we have to work with coupled eq
tions for the velocity fluctuations. For simplicity, we hav
considered the limit of a uniform gas along the axial dire
tion. We note that Stringari@4# has discussed the condensa
modes atT50 in the limit of a very weak trap in the axia
direction (vz!v0).

As in Ref. @7#, we have ignored the Hartree-Fock me
field contribution to the hydrodynamic equations. Such ter
are given in Eq.~6! of Ref. @11#. In place of Eq.~1!, we
obtain the linearized velocity equation

m
]2v

]t2 5
5P0~r !

3n0~r !
“~“•v!2“@v•“U~r !#2

2

3
~“•v!“U~r !

12g“~“•n0v!2
]

]t
“dU~r ,t !. ~52!

This now involves the effective trap potential

U~r !5U0~r !12gn0~r !, ~53!

which also appears in the equilibrium fugacityz0

5eb(m02U) in the expressions forn0(r ) and P0(r ). The
usual s-wave scattering interaction isg54pa\2/m. The
analysis given in this paper can be generalized@12# to in-
clude the effects of this HF mean field but it is much mo
complicated. We simply quote some final results for the cl
sical limit. Then51 nonpropagating mode has a frequen
given by

v1
25

10

3
v0

2S 12
gn0~r50!

2kBT D , ~54!

wheren0(r50) is the density at the center of the cylindric
trap. The sound velocity corresponding to Eq.~23! is given
by

c25
5kBT

3m
1

gn0~r50!

3m
. ~55!

The two-fluid hydrodynamic equations for a trapp
Bose-condensed gas (T,TBEC) have been recently discusse
by Zarembaet al. @11#. These equations have been used
study first and second sound modes in a dilute uniform B
gas @13# at finite temperatures. It is found that first soun
corresponds mainly to an oscillation of the noncondens
with a velocity given by

u1
25

5

3

kBT

m

g5/2~z0!

g3/2~z0!
1

2gñ0

m
. ~56!

In contrast, the second sound mode mainly corresponds t
oscillation of the condensate, with a velocity given by
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u2
25

gnc0

m
. ~57!

Herenc0(ñ0) is the equilibrium condensate~noncondensate!
density. As discussed in Ref.@13#, to a good approximation
one can use

ñ05
1

L3 g3/2~z0!, ~58!

where the equilibrium fugacity isz05e2bgnc0.
In principle, we could use the equations in Ref.@11# to

extend the analysis of the present paper and discuss
propagating first and second sound modes in a cigar-sh
trap. Here we limit ourselves to some qualitative remar
One expects to find an expression similar to Eq.~51! for the
propagation of a pulse, and there should be distinct first
second sound pulses moving with velocities quite close tou1
and u2 as given above. However, as the expression in
~51! shows, the relative amplitude of these two modes
proportional to 1/ui

2 . We conclude that if pulse experimen
such as in Ref.@1# were done in the hydrodynamic regio
.

he
ed
.

d

q.
s

most of the weight would be in the second sound pulse
u2

2!u1
2. This mode, given by Eq.~57!, is the natural hydro-

dynamic analogue of the Bogoliubov mode exhibited in t
quantum hydrodynamic region atT50 @1,2#. At tempera-
tures close toTBEC, the first sound pulse has a much fas
speed and thus its intensity will be very weak. The obser
tion of distinct first and second sound pulses in cigar-sha
traps would be very dramatic evidence for superfluid beh
ior in dilute Bose gases. The experiment would best be d
at intermediate or lower temperatures, whereu1 and u2 are
more comparable in magnitude. Observation of the fi
sound pulse would be a way of measuring the nonconden
density ‘‘underneath’’ the condensate.
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