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Model calculations of high-harmonic generation in molecular ions
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One electron bound by a three-dimensional two-center zero-range potential is embedded in an electric field
with sinusoidal time dependence and arbitrary polarization and orientation with respect to the axis of the
two-center potential. In the absence of the field, the model supports up to two bound states, which have a large
transition dipole moment. Hence, the physical systems best described by the model are molecular ions such as
H2

1 . Rates for high-harmonic emission are calculated analytically up to one final quadrature. In terms of the
rescattering picture, harmonic emission can be attributed to two different mechanisms: electrons recombine
either at the center they started from or at the other one. The latter case allows for three topologically different
classes of orbits, which lead to different spectral ranges of harmonics. Two of them are similar to atomic
~one-center! harmonic generation, but have different cutoff laws that are no longer proportional to the pon-
deromotive potential. In the third the electron moves directly from one center to the other. This leads to strong
harmonic emission at comparatively low frequencies similar to emission from a two-level atom with the cutoff
proportional to the field amplitude rather than the intensity. The molecular dipole phase in this case is almost
independent of the field intensity and, at constant intensity, the phases of neighboring harmonics are locked.
Different orientations of the two-center system with respect to the field with various polarization configurations
are investigated. Most of the observed features lend themselves to interpretation in terms of the simple man’s
model.@S1050-2947~98!09111-2#

PACS number~s!: 32.80.Rm
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I. INTRODUCTION

If a nonlinear bound system is irradiated by an inten
laser field it reradiates harmonics of the incident field. D
pending on the incident intensity the spectrum may ext
up to very high harmonics. In particular, there is an exten
range of harmonics~the so-called plateau! that are radiated
with comparable intensities. For the case where the bo
system is atomic these phenomena have been intens
studied over the past decade, both experimentally and t
retically, and are now well understood; for reviews see R
@1,2#. The harmonics have already been employed as l
sources for other experiments@3#. Ultimately, they may lead
to novel sources of light with very unprecedented proper
@4#.

The investigation of multiphoton phenomena in molecu
has been pioneered by the work of Fedorovet al. @5#, which
pointed out the significance of field-induced avoided cro
ings to molecules irradiated by intense laser fields and
dicted the existence of light-induced states. With the adv
of above-threshold ionization in atoms, interest picked
also in the interaction of intense lasers with molecules@6,7#.
In particular, the work of Bucksbaum, Muller, and collab
rators @8# reported the observation of a variety of fiel
induced effects in molecular systems, interpreted them
terms of field-dressed states, and coined terms such as
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softening and above-threshold dissociation. Owing to
structural simplicity, they concentrated on H2

1 , which be-
came the object of a large number of experimental and
oretical investigations; for a review see Ref.@9#. Several
intense-field molecular phenomena have been discovere
close contact between theory and experiment, such as p
lation trapping and the relevance of internal tunneling io
ization versus internal barrier suppression ionization. All
these mechanisms can be recovered in simulations base
solutions of the time-dependent Schro¨dinger equation.

Molecules as sources of high harmonics have been s
ied experimentally already several years ago and found
yield radiation patterns very similar to atoms@10#. Currently,
clusters of atoms are being investigated@11#. They offer
promising prospects as to raising the up to now disappo
ingly low conversion efficiency for harmonic generation.

Theoretical investigations of high-harmonic emission
molecular ions such as H2

1 were first presented in Refs.@12,
13#, which both drew attention to the relevance of charg
resonant states@14# to harmonic generation in these system
A pair of charge-resonant states consists of an even-pa
and an odd-parity state with a transition dipole moment t
for large internuclear separation grows proportionally to t
distance. They are characteristic of odd-charge molec
ions. These states strongly couple to an external field
produce harmonics efficiently. The corresponding harmo
generation is closely related to that calculated for the ide
zation of a quantum mechanical two-level system@15#.
Ivanov and Corkum@12# concentrate on the two-level as
pects inherent in the molecular ions while Zuo, Chelkows
d

4022 ©1998 The American Physical Society



-
b
re
d
ib
a
on

h
si

ro
i

ng

b
ar
r
an
e
n

o
st
o

tw
ga

te
-
ly
io

io
nt
1

e
o
ti

n
e

he
o
he
-
in
e

en
si
W

is
g
c
o

si
u
ar

in
cs in
ar-
el
con-

ase,
ly
in

s of
are

at
ov-
III,
cal

ar-
ith
nt

o-
-

tom
ys
-
lly
be-

not
on-
on-

dis-
nge
ich
ange
ield
ro-
rea-

a
n-

ted
the
t-
on-
re

PRA 58 4023MODEL CALCULATIONS OF HIGH-HARMONIC . . .
and Bandrauk @13# solve the three-dimensional time
dependent Schro¨dinger equation with a two-center Coulom
potential in the Born-Oppenheimer approximation and
cover both the two-level features and the aspects relate
the common rescattering mechanism, which is respons
for harmonic generation in atoms. Recent work by these
thors allows for self-consistently coupled nuclear moti
@16#.

The physical understanding of the process of hig
harmonic generation has been boosted by the semiclas
three-step model or simple man’s model@17,18#, which is
embedded into a fully quantum mechanical description@19–
21#. In this class of models, the classical action of an elect
in the laser field plays the dominant role while the atom
binding potential does little more than defining the bindi
energy and a source point~or region! where electrons are
first injected into the laser field and later again disappear
recombination emitting their acquired energy through h
monic radiation. In terms of such modeling, a molecule o
cluster mainly differs from an atom by providing more th
one center where the electron can appear on the scen
retire from it. This allows for a new feature: the electro
promoted into the continuum may travel from one center t
different one in the process of harmonic emission. Inve
gating the implications of this mechanism provides the m
tivation of the present work.

As the simplest case we explore an electron bound by
zero-range potentials. With total ionization rates of the ne
tive hydrogen molecular ion H2

2 in view, the two-center
zero-range potential has already been investigated ex
sively in Ref.@22#. In the context of high-harmonic genera
tion, it will turn out that the physical system most close
related to this model is the positive hydrogen molecular
H2

1 .
The features that are specific for high-harmonic radiat

by molecular ions have not been identified in experime
yet. They require internuclear separations of the order 5 to
Bohr radii in order to become significant. This realm b
comes accessible in highly excited vibrational states
would be passed during Coulomb explosion. For realis
predictions of the harmonic emission to be expected i
given situation, thecollectiveresponse of the sample must b
evaluated@1,2# with the single-molecule response being t
input. Even with current computing capabilities this is out
reach if the single-molecule input is calculated from t
three-dimensional Schro¨dinger equation. A sufficiently com
pact yet realistic model is needed for the former. Judg
from the comparison of our present results with thre
dimensional Schro¨dinger simulations@13,16#, the two-center
zero-range potential can serve as such a model.

In Sec. II, we introduce the two-center zero-range pot
tial and briefly review its properties and its relation to phy
cal systems, in particular to homonuclear molecular ions.
then go on to calculate theS matrix for emission of a har-
monic photon for arbitrary orientation of the molecular ax
with respect to the plane of the elliptically polarized drivin
laser field. The ease with which three-dimensional effe
can be treated is characteristic of zero-range potential m
els. As in the case of one zero-range potential the emis
rates can be evaluated analytically up to one final quadrat
which is left for numerical computation. We give particul
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consideration to a circularly polarized driving field since,
contrast to the case of an atom, it does generate harmoni
a molecule. However, the mechanism is different from h
monic emission in an atom, viz., related to the two-lev
system and the existence of charge-resonant states, and
sequently the typical plateau is absent. As in the atomic c
for linear polarization the simple man’s model very nice
illuminates the origin of most of the features encountered
the harmonic spectrum. For the various spectral range
harmonic emission, we can identify electronic orbits that
responsible for them. In particular, the intense emission
comparably low frequencies is generated by electrons m
ing directly from one charge center to the other. In Sec.
we present explicit results for harmonic spectra for typi
configurations of the various parameters~internuclear sepa-
ration, molecular binding energy, laser intensity, and pol
ization, and relative orientation of the molecular axis w
respect to the laser!. We investigate the intensity-depende
phase of the harmonic components of the field-induced m
lecular dipole element, which is known to be crucially im
portant for the collective harmonic response@2#. Not surpris-
ingly, this phase behaves much like in the case of an a
within the analog of the atomic plateau. However, it displa
a strikingly different behavior within the low-energy two
level-related part of the spectrum: in this range it is virtua
independent of the intensity. The consequences of this
havior for the propagation of the harmonic signal have
yet been explored. Also, in this regime neighboring harm
ics are locked in phase with respect to each other. In a c
cluding section we emphasize some of our findings and
cuss some deficiencies of the two-center zero-ra
potential. An Appendix discusses the question of wh
gauge to choose. As opposed to the one-center zero-r
potential where the length gauge and the velocity gauge y
identical results for harmonic emission, the two-center ze
range potential mandates using the velocity gauge. Some
sons are discussed in the Appendix.

II. FORMAL FRAMEWORK

A. Two-center zero-range potential

An electron bound to the zero-range potential

V~r !5
2p\2

km
d~r !

]

]r
r ~1!

provides the simplest model of an atom that still retains
full-fledged continuum. It has a single bound state with e
ergy

E052\2k2/2m ~2!

and wave function

f0~r ,t !5A k

2p

e2kr

r
e2 iE0t/\. ~3!

The continuum wave functions are plane waves augmen
by an s-wave term such that completeness including
bound state~3! is warranted. Since in the interaction of a
oms and molecules with high-intensity laser fields the c
tinuum is of crucial importance while the detailed structu
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of the bound-state spectrum is not, the zero-range pote
has yielded a good description of intense-field phenome

In order to model the behavior of one electron in t
presence of a two-center binding potential we will conside
superposition of two zero-range potentials situated at p
tions R1 andR2

V~r !5
2p\2

m S 1

k1
d~r1!

]

]r 1
r 11

1

k2
d~r2!

]

]r 2
r 2D , ~4!

where r i5r2Ri and R5R12R2 , uRu5R. An exact solu-
tion of the corresponding Schro¨dinger equation can be foun
from an ansatz as a linear combination of atomic orbitals~3!
with centers atR1 andR2 ,

f~r ,t !5e2 iE0t/\S c1

e2kr 1

r 1
1c2

e2kr 2

r 2
D ~5!

with the binding energy~2! as given above. If inserted in th
Schrödinger equation the ansatz~5! yields a linear homoge
neous system for the coefficientsc1 andc2 ,

S k12k e2kR/R

e2kR/R k22k D S c1

c2
D50. ~6!

The condition that its determinant vanish,

~k12k!~k22k!5
e22kR

R2 , ~7!

determines the binding energy~2! as well as the ratio

c1

c2
5

e2kR

R~k2k1!
5

R~k2k2!

e2kR . ~8!

Normalization of the wave function~5! completely fixes the
coefficientsc1 andc2 via

k

2p
5c1

21c2
212c1c2e2kR. ~9!

The ~positive! solutionsk of the determinant equation~7!
fix the bound-state energy~2!. They are easily discussed i
graphical form. The result can be summarized as follows
both k1 and k2 are positive there are two solutions
k1k2R2>1 and one solution otherwise. If bothk1 and k2
are negative there is one solution ifk1k2R2<1 and no so-
lution otherwise. Ifk1 and k2 have opposite sign there i
always exactly one solution. Ifk15k2 there are two solu-
tions if k1R>1 ~the one with the lower energy symmetr
and the other one antisymmetric!, one solution if 1.k1R>
21 ~symmetric!, and no solution ifk1R,21.

In the limit whereR→`, the determinant equation~7!
yields k5k1 or k5k2 and, consequently~for k1Þk2), c2
50 or c150, respectively. That is, the limit of two separa
centers is realized, the electron stays near one center
does not notice the other. In contrast, the limit where the
centers coincide is tricky. One may expect that in this lim
the wave function~5! reduces to the one-center wave fun
tion ~3! with k given by 1/k51/k111/k2 , but this is not so.
Rather, the determinant condition~7! demands thatk→` in
the limit whereR→0 so that the binding energy would be
ial
.

a
i-

If

nd
o
t

come infinite. A comparable situation occurs in the line
combination-of-atomic-orbitals description of H2

1 with Cou-
lomb potentials; see, e.g., Ref.@24#. For R→0, the LCAO
approximation of the wave function fails to approach t
ground-state wave function of He1. Here we will not be
concerned with this limit and refer to Refs.@23,22# for a
discussion.

The two-center zero-range potential~4! has three param
eters, the distanceR between the two centers, and the resp
tive strengths related to the parametersk1 andk2 . There is,
in principle, a multitude of ways of how to adjust these p
rameters to the properties of a particular physical systemA
priori , it is not even clear whether the two-center zero-ran
potential is better suited to model, for example, H2, H2

1 , or
H2

2 ~after all, the one-center zero-range potential is kno
to make a very good model of H2). Let us concentrate on th
case of two equivalent centers. Fork15k2>1/R there are
two bound states. It is easy to see that they become de
erate forR→`; cf. Fig. 1. In this limit the solutions~5! have
the form

f~r ,t !s,a5f16f2 , ~10!

with identical values ofk. The transition dipole moment sim
ply becomes

das[^faur ufs&5R/2. ~11!

This situation is characteristic of charge resonant sta
@14,12,13# such as they exist in H2

1 , but not in H2 or H2
2 .

Hence, whenever we will make reference to a particu
physical system it will be H2

1 . The exact value of the tran
sition dipole moment calculated with the help of the wa
functions~5! for finite R is

das52pcacsRS 1

s
1

11s

s2D2 e2s~D coshD2sinh D! D ,

~12!

FIG. 1. Bound-state energies of the two-center zero-range
tential with two equivalent centers as a function of the separatioR
between the two centers. The parameterk15k2 of the model po-
tential ~4! has been adjusted so as to yield the known binding
ergy of H2

1 at some internuclear separationR0 . Examples are ex-
hibited for three different values ofR0 as indicated. In each case
the excited bound state ceases to be bound forR,1/k1 as discussed
below Eq.~9!.
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PRA 58 4025MODEL CALCULATIONS OF HIGH-HARMONIC . . .
wheres5R(ks1ka)/2 andD5R(ks2ka)/2 andks andka
are the wave numbers of the symmetric and the antisymm
ric bound state, respectively. For simplicity, two equivale
centers were assumed. The expression shows that fo
creasingR the limit ~11! is attained very quickly.

In order to adjust the parameters to the case of H2
1 for a

specified distanceR0 between the two protons, we solve E
~7! for k and adjustk15k2 such that the lower one of th
two eigenenergies~2! agrees with the (1ssg) ground-state
energy of H2

1 at the respective distanceR0 . The correspond-
ing ground-state energies have been calculated by acc
solution of the one-particle Schro¨dinger equation and ar
available in the literature@25#. If k1 is fixed as just described
the bound-state energies of the two-center zero-range po
tial are determined for allR. Simultaneously, the energy o
the 2psu excited bound state is fixed by the model~if it
exists, that is, ifk1R0>1). Figure 1 shows three example
where k15k2 has been adjusted to the binding energy
H2

1 at three different distances,R052 a.u., 8 a.u., and̀
corresponding to two separate protons. If in the spirit of
Born-Oppenheimer approximation the appropriate Coulo
repulsione2/R is added one obtains the nuclear energy s
faces produced by the model potential. No matter what
choose forR0 the ground-state potential surface has little
common with the actual 1ssg energy surface of H2

1 . In
particular, it is not bonding. Hence, if we actually attempt
model field-induced processes in H2

1 as a function of the
internuclear distance, as we do in Fig. 8 below, we enfo
the correct behavior by redeterminingk15k2 for each dis-
tanceR that we consider.

The model of H2
1 outlined in the preceding paragrap

may come across as a rough caricature of this molecular
However, we do not intend to model H2

1 per se, but rather
H2

1 generating harmonics owing to the presence of an
tense field. Like a good caricature, it is intended to highlig
the features of interest at the expense of obscuring othe

B. S-matrix element of harmonic emission

We decompose the total electromagnetic field into a c
sical partAL(t) that describes the laser field and a quantiz
part Aq that is related to the mode of a high harmonic em
ted by irradiating a bound system by the intense laser fi
AL . For reasons to be discussed in the Appendix we use
radiation gauge. The total Hamiltonian of the laser-ma
system reads

H total5H2
e

mc S p2
e

c
ALD •Aq1

e2

2mc2 Aq
2 , ~13!

with

H5
p2

2m
1V~r !2

e

mc
AL•S p2

e

2c
ALD ~14!

the Hamiltonian of the atom interacting with theclassical
laser fieldAL(t) while the terms that incorporate thequan-
tized field Aq cause emission and absorption of hig
harmonic photons. The term proportional toAq

2 does not con-
t-
t
in-

ate

n-

f

e
b
r-
e

e

n.

-

.

s-
d
-
ld
he
r

tribute to one-photon emission or absorption. Now, t
S-matrix element for the emission of one photon with pola
ization e and frequencyV is

M ~e,V!5 ieA 2p

V\V E
2`

`

dteiVte* •v~ t !, ~15!

where

v~ t !5^c f
~1 !~ t !u ṙ uc i

~2 !~ t !&

5
1

m
^c f

~1 !~ t !up2~e/c!AL~ t !uc i
~2 !~ t !&. ~16!

The wave functionsc i , f
(6)(t) satisfy boundary conditions

such that they agree with the initial and final bound st
f i , f(r ,t) in the absence of the laser field, respectively, in
limit of early and late times,

lim
t→2`

c i
~2 !~r ,t !5f i~r ,t ! and lim

t→`

c f
~1 !~r ,t !5f f~r ,t !.

~17!

For reasons that will be discussed below we will, with t
help of an integration by parts, express theS-matrix element
~15! in dipole form. We employ the equation of motion

i\ ṙ5
i\

m S p2
e

c
ALD5@r ,H#, ~18!

whereH is the full Hamiltonian so thatH^c i , f u5 i\] t^c i , f u
and insert it in the velocity form~15!. This yields

M ~e,V!5 iee* •A 2p

V\V E
2`

`

dteiVt] t^c f
~1 !~ t !ur uc i

~2 !~ t !&

~19!

5ee* •A2pV

\V E
2`

`

dteiVt^c f
~1 !~ t !ur uc i

~2 !~ t !&.

~20!

The boundary terms occurring in the partial integration t
led from Eq.~19! to Eq.~20! do not contribute to a transition
rate and have been omitted.

The S-matrix element~20! is still in the radiation gauge
even though it contains the dipole matrix element. At th
point we approximate the wave functionsuc i , f

6 (t)& in the
spirit of the Keldysh approximation. We follow a procedu
introduced earlier@21#. In the matrix element

R~ t !5^c f
~1 !~ t !ur uc i

~2 !~ t !&

5 lim
t8→`,t9→2`

^f f~ t8!uU~ t8,t !rU~ t,t9uf i~ t9!&,

~21!

we employ the~Dyson-! integral equation for the exact tim
evolution operatorU(t,t8) in the radiation gauge. Then in
troducing the crucial approximation we replace the ex
time evolution operatorU by the Volkov time evolution op-
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eratorU (VR) and perform several integrations by parts@21#.
We end up with the compact form

R~ t !'2
1

\2 E
2`

t

dt9E
t

`

dt8

3^f f~ t8!uVU~VR!~ t8,t !rU ~VR!~ t,t9!Vuf i~ t9!&.

~22!

This expression simplifies considerably if one realizes@26#
that

^r 8uU ~VR!~ t8,t !rU ~VR!~ t,t9!ur 9&

5r class~ t;r 8t8,r 9t9!^r 8uU ~VR!~ t8,t9!ur 9&. ~23!

Here,

r class~ t;r 8t8,r 9t9![
1

t82t9 H ~ t2t9!S r 82
e

cm E
t8

t

dlA~l! D
2~ t2t8!S r 92

e

cm E
t9

t

dlA~l! D J ~24!

denotes the trajectory as a function of timet of a classical
particle from the initial positionr 9 at time t9 to the final
position r 8 at time t8 in the presence of a field given by th
vector potentialA(t). With the help of Eqs.~21!–~24!, the
matrix element~20! assumes the form

M ~e,V!52
ee*

\2 A2pV

\V E dteiVtE d3r 8d3r 9E
t

`

dt8

3E
2`

t

dt9f f* ~r 8,t8!V~r 8!U ~VR!~r 8,t8;r 9,t9!

3r class~ t;r 8,t8;r 9,t9!V~r 9!f i~r 9,t9!. ~25!

This will be the starting point for the explicit calculation
below.

Had we not performed the integration by parts in Eq.~19!
then we would have arrived at a form like Eq.~25! but with
vclass5 ṙ class in place ofr class. It turns out that the end point
of the classical trajectory~at t5t9 and t5t8) make particu-
larly important contributions to the matrix element. At the
end points, however,vclassis discontinuous: it jumps from an
ensemble average of zero, corresponding to a bound sta
a finite value. Moreover, near these end points the appr
mation of ignoring the binding potential is least justified. O
the other hand, after the integration by parts, the matrix e
ment containsr classwhose end points

r class~ t;r 8t8,r 9t9!5H r 8 for t5t8

r 9 for t5t9
~26!

are well defined and independent of any approximat
made. This is why we performed the integration by parts t
led from Eq.~19! to ~20!.

C. Explicit results for the S-matrix element

The computation of theS-matrix element can be carrie
out analytically all the way down to one final integratio
which is left for numerical evaluation. The calculation
fairly straightforward though lengthy and the procedure
similar to the case of just one center@20# where extensive
details are presented. We will therefore just give an outl
and essentially be content with writing down the final resu
Details for the present case can be found in Ref.@30#.

From the structure of the wave function~5! it is clear that
the matrix element~25! has the form

M ~e,V!5 (
j ,k51

2

cj
fck

i M jk~e,V!, ~27!

wherecn
i , f is the coefficient in the wave function~5! of the

initial and final state, respectively, that determines the pr
ability of the electron being near centern. The decomposi-
tion ~27! allows for the identification of the contribution
where the electron departs from the centerk in the initial
state and returns to the centerj in the final state. For the
evaluation we assume a monochromatic elliptically polariz
laser field specified by the vector potential

AL~ t !5AL@ex cos~vt !1eyj sin~vt !#. ~28!

The lengthy calculation yields
M jk~e,V!528p2eA iV

mvV
e* •(

n51

`

d~V2nv!E
0

` dt

nt3/2ei @~E0 /\v!t1 is0~Rj 2Rk ,t!#H F2 i cosS nt

2 D Rj2Rk

2

1sinS nt

2 D S i
Rj2Rk

nt
1

Rj1Rk

2 D GSn~s1~t!,sjk~t!,q jk!

1
eAL

2vmc
@~ iex1jey!g1~n,t!Sn11~s1~t!,sjk~t!,q jk!

1~ iex2jey!g2~n,t!Sn21~s1~t!,sjk~t!,q jk!#J . ~29!
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The integration variablet/v can be interpreted as the tim
that the electron having started from thekth center spends in
the continuum until it reaches thej th center and recombines
The abbreviations used here originate from the Volk
propagator, which has the form

U ~VR!~r 8,t8;r 9,t9!5S m

2p i\~ t82t9! D
3/2

exp
i

\
S~r 8,t8;r 9,t9!

~30!

with the action

1

\
S~r 8,t8;r 9,t9!5s0@r 82r 9,v~ t82t9!#

1cosv~ t81t9!s1@v~ t82t9!# ~31!

1cos
v

2
~ t81t9!s2@r 8,r 9,v~ t82t9!#

2sin
v

2
~ t81t9!s3@r 8,r 9,v~ t82t9!#.

~32!

Its ingredients are the functions

s0~r ,t!5
mvr2

2t\
2htS 12

4 sin2 t/2

t2 D , ~33!

s1~t!5hzS 2sin t1
4 sin2 t/2

t D , ~34!

where

h5
Up

\v
5

e2AL
2~11j2!

4m\vc2 , z5
12j2

11j2 ~35!
on
v

are commonly used parameters related to the intensity
polarization, respectively, of the laser field~28!. The two
functionss0 ands1 have the same form in any gauge whi

s2~r 8,r 9,t!5
eAL

\c
~x82x9!

2

t
sin

t

2
, ~36!

s3~r 8,r 9,t!52
eAL

\c
j~y82y9!

2

t
sin

t

2
~37!

are gauge specific. The form given here is for the radiat
gauge, which is used in this paper. The functionssjk andq jk
that enter the matrix elementM jk @Eq. ~29!# have to be de-
termined from

s2~Rj ,Rk ,t!5sjk~t!sin~q jk!,

s3~Rj ,Rk ,t!5sjk~t!cos~q jk!. ~38!

They all depend onRj andRk . Generalized Bessel function
are used as defined by

Sn~a,b,c!5 (
l 52`

`

i lJl~a!Jn22l~b!ei ~n22l !c. ~39!

Finally, we have defined the functions

g6~n,t!52
1

n61
sin~n61!

t

2
1

2

nt
sin

nt

2
sin

t

2
.

~40!

We now restrict ourselves to the case where the initial a
the final states are identical so thatcf5ci and the molecule is
in the end, after the laser pulses has passed through, in
same state as before. We place the origin half-way betw
the two centers so thatR152R25R/2. The final form of the
matrix element~29! is different for odd and even harmonic
In the first case the matrix element reads
M ~e,V!58p2ieA iv

mVV
e* •(

n51

`

d„V2~2n21!v…E
0

` dt

t3/2ei«0tF ~c1
21c2

2!eis0~0,t!i n$~ex2 i jey!g1~2n21,t!Jn„s1~t!…

2 i ~ex1 i jey!g2~2n21,t!Jn21„s1~t!…%1c1c2eis0~R,t!H RS 2

~2n21!t
sin~2n21!

t

2

2cos~2n21!
t

2DS2n21„s1~t!,s12~t!,q12…1a~ex2 i jey!g1~2n21,t!S2n„s1~t!,s12~t!,q12…

1a~ex1 i jey!g2~2n21,t!S2n22„s1~t!,s12~t!,q12…J G . ~41!
es-
en
A much simpler expression is obtained for the even harm
ics

M ~e,V!54p2~c1
22c2

2!eA iv

mVV
e* •R(

n51

`

d~V22nv!

3E
0

` dtei«0t

t3/2 eis0~0,t! sin~nt!i nJn„s1~t!…. ~42!
-However, for reasons detailed in the Appendix this expr
sion may not yield a reliable estimate of the emission of ev
harmonics. The quantity

a5
eAL

mvc
~43!

denotes the excursion amplitude~for linear polarization! of
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an electron oscillating in the continuum subject to the la
field ~28!.

It is instructive to inspect the dependence of the
S-matrix elements on the internuclear separationR. The co-
efficients c1 and c2 of the wave function~5! specify the
probability that the electron is found at the first or the seco
center. The matrix element~41! for the emission of odd har
monics consists of two terms, one being proportional toc1

2

1c2
2 and the other toc1c2 . The first term contains thos

contributions to harmonic emission where the electron
turns to the center from which it started. In contrast, in
second it moves from one center to the other. We will re
to these two terms as the ‘‘return term’’ and the ‘‘exchan
term,’’ respectively. The return term is independent of t
distance between the two centers. It is the sum of one c
tribution from each center and, correspondingly, its fo
agrees with theS matrix for harmonic emission by just on
zero-range atom@20#. Also, this term goes to zero as
should in the limit of circular polarization wheres1(t) van-
ishes. In contrast, the exchange term does depend oR
through the functionss0(t), s12(t), and q12. The overall
factor exp@is0(R,t)# ensures that it does not grow forever
R increases. For circular polarization, the exchange term
vives in simplified form: the generalized Bessel function~39!
reduces to an ordinary one. The resulting expression is
cussed below.

For two equivalent centers (k15k2) parity invariance
holds and, as a consequence, even harmonics cannot be
ted. Indeed, theS-matrix element~42! vanishes in this case
owing to uc1u5uc2u. Parity also mandates that theS-matrix
element~41! for the odd harmonics does not depend on
sign of R, which indeed it does not.

The expression~42!, which we calculated for even har
monics is problematic. It does vanish for equivalent cent
~where uc1u5uc2u) as it should, but it does so for circula
polarization, too, even for nonequivalent centers. Howev
there is no general conservation law that prohibits emiss
of even harmonics for two inequivalent centers irradiated
a circularly polarized field. Moreover, the matrix element
just proportional toR with no damping for increasing dis
tance. In order to get a reliable expression for the emissio
even harmonics, the approximation that led to Eq.~25! must
be improved. Some dressing of the ground state is requ
This can be achieved by further iteration of the Dyson eq
tion for the exact time-evolution operatorU(t,t8), but will
not be attempted in this paper.

D. Circular polarization of the driving field

There is a pronounced difference between harmonic g
eration by an atom and by a molecule: the latter allows
general, for the emission of harmonics of acircularly polar-
ized driving field. The origin of this difference can be unde
stood by attempting to construct the nonlinear susceptib
tensorx i ,i 1 ,i 2 , . . . ,i n

(n) of the atom on the one hand or the mo

ecule on the other. The polarization of the atom or molec
~viz., its time-dependent dipole moment! is

Pi~ t !5 (
n51

`

(
i 1 ,i 2 , . . . ,i n

E
0

`

dt1¯dtn

3x i ,i 1 , . . . ,i n
~n! ~t1 , . . . ,tn!Ei 1

~ t2t1!¯Ei n
~ t2tn!.

~44!
r

e
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-
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All of the properties of the respective atom or molecule~in
the absence of the field! are contained in the tensorsx (n). For
a monochromatic driving field,

E;e exp~2 ivt !1e* exp~ ivt !, ~45!

a term with fixed value ofn generates harmonics up to th
nth order.

First, let us recall the case of an atom. If the bindi
potential as well as the relevant initial and final state ob
spherical symmetry, the susceptibility tensor has to be c
structed out of Kronecker tensorsd i j as these are the onl
ones available in view of the spatial isotropy of the ato
@27#. This only allows for the construction ofx (n) with an
even number of indices, that isx (3), x (5), etc. Moreover,
when calculating the polarization~44! of the atom one con-
tracts the susceptibility tensor with the driving field~45!. In
order to generate thenth harmonic we need at leastn terms
e exp(2ivt) from the field~45!. For circular polarization, the
polarization vectore5(ex6 iey)/& satisfiese•e50 while
e* •e51. Since the susceptibility tensor consists of produ
of Kronecker tensors, the polarization vectorse will have to
be contracted with themselves. As a consequence, all
monic components of the polarizationP are identically zero.

For a two-center binding potential the situation is co
pletely different. The spatial isotropy is violated by the ex
tence of the vectorR, which specifies the orientation of th
molecule. This vector can be employed in the construction
the susceptibility tensor so that the aforementioned cont
tions of the polarization vector with itself can be avoide
Hence, arbitrary harmonic components result that are n

FIG. 2. Graphical determination of the return~or recombination!
time t1 according to Eq.~49!. Four qualitatively different scenario
are depicted. CaseA is analogous to the single-atom situation.
caseB andC the electron starts at one center and recombines a
other bypassing along its way either the center it started from~case
C) or the other one@at which it is going to recombine~caseB)]. In
caseD the electron starts at one center and moves directly to
other. The parameters used in the figure are those from Fig. 4
R512 a.u., which shows explicit calculations. The trajectories
picted correspond to maximal classical recombination ener
which along with the timest0 and t1 were calculated from Eqs
~52!–~54!. Notice that the assignments in terms of multiples ofUp

are specific for the parameters used~with the exception of 3.17Up ,
which holds universally!.
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zero provided only thate•RÞ0. Also, owing to the exis-
tence of the vectorR, we can now construct tensorsx (n) with
evenn. For two equivalent centers, however, the sign ofR
must not play any role, sox’s with evenn vanish as before
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These considerations are borne out by the explicit ma
element. For circular polarization (j51, say! we have
s1(t)[0, and the generalS-matrix element~41! for the odd
harmonics reduces to (V.v)
M ~e,V!58p2ieA iv

mVV
e* •(

n52

`

d„V2~2n21!v…E
0

` dt

t3/2ei«0t

3c1c2eis0~2R,t!ei ~2n21!q12FRS 2

~2n21!t
sin~2n21!

t

2
2cos~2n21!

t

2D J2n21„s12~t!…

1a~ex2 iey!g1~2n21,t!J2n„s12~t!…eiq121a~ex1 iey!g2~2n21,t!J2n22„s12~t!…e2 iq12G . ~46!
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As it should be, it is exclusively due to the exchange term
the orientation of the molecule is perpendicular to the pla
of the polarization so that (ex6 iey)•R50, thens12(t)[0
@cf. the definition of this function in Eqs.~36!–~38!#, and
there is no harmonic emission.

The polarization of the emitted harmonics can be cal
lated from the matrix element~46!. It is, in general, elliptic
and there are no simple rules regarding the orientation of
plane of polarization. If, however, the molecular axis lies
the plane of polarization of the driving field then the harmo
ics are polarized in this plane as well.

III. THE SIMPLE MAN’S MODEL

The simple classical model where an electron starts
orbit at the center of the binding potential with zero veloci
thereafter follows a classical trajectory in the presence
merely the laser, and depending on its time of departure
turns to its site of release to recombine into the atom
ground state emitting its acquired kinetic energy plus
binding energy in the form of one harmonic photon—th
model has contributed to the understanding of high-harmo
generation more than anything else@17,18#. It is also embed-
ded in realistic quantum models@19,20#. The extension to
two-center binding potentials is straightforward and has b
discussed before@28#. We briefly summarize the relevan
formulas.

The trajectory verbally depicted above is

r ~ t !5r01
e

mc S ~ t2t0!A~ t0!2E
t0

t

dtA~t! D ~47!

with t0 the departure time at positionr0 andA(t) the vector
potential of the laser field, in this paper specified by Eq.~28!.
We are interested in those timest1 , viz. the recombination
times, when the electron either returns to its starting poin
arrives at the other center of the binding potential. Th
times are defined by

r ~ t1!2r05R12R2 or 0. ~48!

For general elliptic polarization, this vector equation on
has solutions for particular pairs oft1 and t0 . For linear
f
e

-

e

-

ts
,
f

e-
c
e

ic

n

r
e

polarization, there is just one equation to be solved and th
are solutionst1[t1(t0) for whole regions oft0 . A common
procedure for elliptic polarization~provided the ellipticityj
is not too large! is to solve only the component of the retu
condition~48! that corresponds to the large component of
field and to ignore the other. The physical reasoning beh
this procedure is the rapid spreading of the wave packet
sociated with such a classical trajectory, which implies tha
does not matter whether the electron returns exactly t
particular point or just into some vicinity; see, e.g.,@29#.

For our elliptically polarized field~28!, the x component
is the large component. So the applicable return conditio

sin vt15sin vt01v~ t12t0!cosvt01 H0
6Rx /a, ~49!

whereRx denotes the projection of the internuclear sepa
tion R on the direction of the large component of the fie
and the excursion amplitudea was defined in Eq.~43!. The
solutions of the return condition~49! are easily discussed
graphically. Figure 2 depicts the two functions sinvt
6Rx/2a. For givent0 , the return condition~49! asks one to
draw the tangent at timet0 to either one of these two curve
and then to intersect it with the same curve~for an electron
that returns to the center it started from! or with the other one
~for an electron that starts at one center and recombine
the other! in order to determine the recombination timet1 .
These tangents define electron trajectories, and we will
these two terms interchangeably. Several relevant exam
are explicitly shown and labeled. CaseA is the same as for
one atom: the electron returns to the center it started fr
The tangent drawn is fort051.88, which yieldst155.97.
This is the situation that corresponds to the maximal ret
energy of 3.17Up . Of course, the same tangent can be dra
with respect to the other~lower! curve ~not shown!. This
latter tangent would bypass the other center on the way f
as well as back. However, within the simple man’s model
well as in the expression~25! the electron is not affected b
the presence of the binding potential except at the ins
when it recombines. Figure 2 depicts two other tange
which are closely related toA. TangentB starts from one
center and recombines at the other, and so does tangenC.
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4030 PRA 58R. KOPOLD, W. BECKER, AND M. KLEBER
Both B and C are drawn for those start timest0 that yield
maximal kinetic energies at the timet1 of recombination as
determined from Eqs.~52! and ~53! below. The tangents B
and C are topologically different. The trajectoryB starts
moving towards the center at which it will recombine wh
C starts moving away from it. As a consequence, the t
associated maximal kinetic energies are different. Typica
the recombination energy corresponding toB exceeds that of
C. Finally, there is a completely new solution labeledD,
unprecedented from the case of one atom. Here the elec
moves directly from one center to the other. Again, the t
gent depicted is the one that yields a maximal recombina
energy. However, in contrast to the other casesA, B, andC,
in caseD there is~provided the distanceR is not too large! a
large interval of start timest0 all of which lead to compa-
rable recombination timest1 and energies. This is illustrate
in Fig. 3: for example, forR512 a.u., start times within the
quite extended interval 2.8&vt0&4.4 all result in compa-
rable recombination energies between 1.25Up and 1.5Up ,
and the associated interval of return timest1 is much nar-
rower than the interval of start timest0 .

When it returns the electron has gained the kinetic ene

Ekin,ret5
e2

2mc2 @A~ t1!2A~ t0!#2. ~50!

FIG. 3. Recombination energies as a function of the start timt0

for a single atom~b! and for the two-center zero-range potential~a!
with the parameters from Figs. 2 and 4 forR512 a.u. and 24 a.u
For each of the three scenariosB, C, andD a typical trajectory is
sketched.
o
,

on
-
n

y

For a linearly polarized monochromatic field, obvious
Ekin,ret<8Up . This upper limit is achieved when the depa
ture time and the return time correspond to opposite max
of the vector potential. For the field~28!, with linear polar-
ization, this happens fort050 andvt15(2n11)p, and the
return condition~49! implies that the distance between th
two centers must be

R5ap~2n11!5
epEL

mv2 ~2n11!. ~51!

For fields strong enough to generate substantial harm
emission, this is a distance very large on the atomic sca

Figure 3 displays the recombination energy as a funct
of the start time. The parameters are the same as in Fig
and 4, internuclear separations areR512 a.u. as well as 24
a.u. and for comparison the single-atom results are also
picted. For the latter, start times within the first half period

FIG. 4. Comparison between harmonic spectra for a two-ce
system for various separationsR and the spectrum of a single atom
The two-center system is aligned with the linearly polarized driv
field. The parameters arev50.043 a.u.,h5Up /(\v)510.58, and
the binding energy isuE0u50.4 a.u. The distance between the tw
centers isR50 andR512 a.u.~a!, andR54 a.u. andR58 a.u.~b!.
In each case the maximal classical recombination energies give
the right half of the figure are calculated from the simple ma
Eqs.~52!–~54!. For each separation, the lower energy correspo
to scenarioB and the higher one to scenarioC. The energy assign-
ments in the upper left indicate the maximum harmonic numbe
the low-energy hump as calculated from Eq.~51!.
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PRA 58 4031MODEL CALCULATIONS OF HIGH-HARMONIC . . .
the field yield precisely the same return energies as thos
the second half period. For the two-center case, this is no
and the first half and the second half period lead to scena
C andB, respectively. In between, there is a sizable range
start timest0 such that the return energies are just bel
1.5Up ~caseD). Extrapolating the tendency fromR512 to
24 a.u. one can infer that for ever increasingR the two
maxima of caseC andD will finally merge to yield, for the
distance~51!, the absolute maximum of 8Up .

A relative maximum of the return~or recombination! en-
ergy ~50! can be determined by equating to zero its deri
tive with respect to the start timet0 taking into account tha
the return timet1 is a function oft0 via Eq. ~49! @20#. This
yields a trigonometric equation for the travel timer5v(t1
2t0)/2, viz.,

~sin r2r cosr!22~r sin r!2

56
R

2a
$~sin r2r cosr!21~r sin r!2%1/2,

~52!

whose solution allows for the determination of the start ti
through

x5
v

2
~ t11t0!5arctan

r sin r

sin r2r cosr
. ~53!

Finally, the corresponding return energies~50! can be ob-
tained from

Ekin,ret58Up sin2 r sin2 x. ~54!

In the derivation of Eqs.~52! and ~53! t0Þ0 was assumed.
The tangentsA to D depicted in Fig. 2 are the solutions o

Eqs.~52! and~53!. ForR50 all of this reduces, of course, t
the customary situation for one atom yielding 3.17Up for the
maximal return energy, etc. It is important to realize that
R50 Eqs.~52! and~53! do not contain any parameter at a
Hence the solutionsvt0 andvt1 are independent of the lase
intensity, and the return energy~54! is just proportional to
Up . This is no longer true forRÞ0 where the laser intensit
enters Eq.~52! for the travel time through the parametera.

IV. RESULTS

All of the explicit results to be discussed in this secti
are calculated from the matrix element~41! for odd harmon-
ics in the velocity gauge. We will restrict ourselves entire
to the case of equivalent centers such thatc15c2 . Moreover,
we will only consider emission processes where the a
occupies the same state~the ground state! before and after
the passage of the laser pulse. Under these conditions,
odd harmonics of the driving field are radiated. For the
terpretation we will often refer to the simple man’s mod
discussed in the previous section.

A. Emission rates of the harmonics

In all cases the quantity that we will plot is the rate
emission per time and solid angle element of a photon w
frequency V integrated over a small frequency interv
in
so
os
f

-

e

r

m

nly
-
l

h

around the center frequency. The polarizatione is chosen so
that the emission rate becomes maximal, that is, paralle
the direction defined by theS-matrix element~41!. Since we
employ the dipole approximation for the emitted photon
well as for the driving field, the emission rate obeys a dip
pattern.

Figure 4 compares harmonic emission by a single at
and by a two-center configuration, which is lined up with t
linearly polarized laser field. Spectra are displayed for va
ous distances between the two centers and the binding
ergy is kept constant. Comparing the one-atom spect
with the two-center spectra one notices two conspicuous
ferences. First, harmonic production within the plateau
more efficient for two centers. Second, there is a low-ene
part of the spectrum that is dramatically enhanced in the c
of two centers. It forms a hump such that the energy of
top harmonic is proportional to the distance between the
centers. Here and below we will refer to this feature as
‘‘low-energy hump.’’ As for the first observation, a ver
rough explanation of the general enhancement of the pla
is provided by the existence of two pathways for the elect
to recombine: with the center it started from as well as w
the other. As for the second, the hump corresponds to casD
of Fig. 2 where the electron moves from one center to
other within a time interval that is short compared with t
period of the field. Moreover, this happens around the ti
where the field is near its maximum. Therefore, we m
approximate the electron’s energy gain by

Ekin,ret5eELRx . ~55!

This yields energies very close to the values given in Fig
which are determined from Eqs.~52!–~54!. It is remarkable
that the maximum of the hump is reproduced just by
energy~55! without the additional binding energyuE0u, un-
like the standard maximal energy of the plateau, viz.,
cutoff energyuE0u13.17Up . Figure 2 also suggests an e
planation of why the hump is above the altitude of the p
teau by several orders of magnitude. First, as mentio
above, the travel time is comparatively short so that the
sociated wave packet does not spread very much. Sec
there is a quite large interval of start timest0 all of which
lead to comparable recombination timest1 and energies
Ekin,ret. Hence, a time-frequency~or wavelet! analysis
@32,33# should identify a very sharply defined tempor
structure of the group of harmonics within the hump exh
iting two spikes within one optical period corresponding
the two recombination timest1 .

It is well known that a driven two-level atom exhibits
harmonic response also characterized by a kind of plat
and a cutoff whose position equals the recombination ene
~55! @12,15,31#. Indeed, the symmetric and the antisymm
ric solutions~3! of the two-center zero-range potential form
realization of a quantum mechanical two-level system. In
limit of large distance their wave functions approach t
form ~10!, and their large transition dipole moment~11!
dominates the interaction with the laser field. Hence,
two-center zero-range potential combines the harmonic s
trum of a two-level atom with the manifestations of th
simple man’s model in the continuum.

Yet another prediction of the simple man’s model ma
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4032 PRA 58R. KOPOLD, W. BECKER, AND M. KLEBER
rializes in the exact calculation of Fig. 4: this is the differe
energies corresponding to the solutions labeledB and C in
Fig. 2. Both are generated by the electron moving from o
center to the other, though not along the most direct routeD,
but rather following two topologically different trajectorie
as explained above. The separation in energy is clearly
ible for the larger internuclear distancesR58 a.u. and 12 a.u
Interestingly, these two maxima completely mask the st
dard cutoff at 3.17Up as the distance grows larger.

Figure 5 compares harmonic spectra where the two-ce
system is aligned with the field with a case where it is p
pendicular. For a separation of 4 a.u., within the plateau
two spectra show little difference between parallel and p
pendicular alignment. However, for the low harmonics t
difference is huge. For parallel alignment, the aforem
tioned hump dominates the spectrum. For perpendicular
entation, it is absent and the spectrum is very close to
case of the single atom.

Figure 6 gives an example of how the spectra depend
the intensity of the driving field. In each case the cut
positions calculated from the simple man’s model, that
from Eqs.~52!–~54!, are indicated. They reproduce the cu
offs of the exact calculations very well. The figure also d
plays how the center of the hump scales with the field
follows precisely the simple prediction~55!. Finally, Fig. 7
illustrates the scaling of the spectra with the binding ene
uE0u. As known from the case of one atom, the scaling of
plateau is dramatic. For the comparatively small distance
4 a.u. chosen for this figure, the cutoff of the plateau displ
perfect agreement with the standard estimate ofuE0u
13.17Up . In impressive contrast, the position of the hum
is completely independent of the binding energy. Also,
height is less dependent on the binding energy than
height of the plateau. Both Figs. 6 and 7 are for para
alignment.

While Figs. 4–7 illustrate general properties of harmo
production by an academic two-center zero-range poten
in Fig. 8 we attempt to simulate H2

1 as closely as possibl
within this model. The internuclear distances are moder
from 2 to 8 a.u., and for each separationR the binding en-
ergy E0 @5E0(R)# was adjusted to the respective bindin

FIG. 5. Comparison of harmonic spectra for a two-center sys
oriented parallel~for various distances between the two centers! and
perpendicular to a linearly polarized driving field. The paramet
arev50.043 a.u.,h510.5, anduE0u50.566 a.u.
t

e

s-

-

er
-
e
r-

-
ri-
e

n
f
s

-
t

y
e
of
s

s
e
l

c
l,

e,

energy of H2
1 taken from Ref.@25# as described in Sec. II A

All of the features observed above are recovered, includ
the hump for low energies and its absence for perpendic
alignment, and the splitting of the spectrum just before
cutoff for large separation. The plateau is strongly enhan
for the larger separations. However, this is predominantl
consequence of the lower binding energy for larger sep
tion, cf. Fig. 7.

The dependence of the harmonic spectrum on the or
tation of the two-center system with respect to the field
investigated in Fig. 9. When the axis turns from parallel
the field to perpendicular the hump gradually disappears.
parallel alignment, the parameterRx /a51.73 is quite large.
Hence, the different trajectoriesB andC ~in the nomencla-
ture introduced in connection with Fig. 2! clearly manifest
themselves in the two cutoffs at aboutN513 andN519.
The parameters have been chosen so that for parallel a
ment the results can be directly compared with calculati
of Ref. @16#, which numerically solve the time-depende

m

s

FIG. 6. Harmonic spectra for a two-center system withR
58 a.u. aligned with a linearly polarized driving field for variou
intensities, corresponding toEL50.058, 0.044, and 0.029 a.u. Th
other parameters arev50.043 a.u. anduE0u50.4 a.u. For each
case, the highest classical cutoff~scenarioC) is given as well as the
maximum of the low-energy hump expressed as a harmonic n
ber.

FIG. 7. Harmonic spectra for a two-center system withR
58 a.u. aligned parallel to a linearly polarized driving field wi
h510.58 andv50.043 for various binding energies.
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Schrödinger equation, both with and without the Bor
Oppenheimer approximation. Qualitatively and semiqua
tatively, many features are closely related, in particular
position and magnitude of the low-energy hump. The m
noticeable discrepancy is in the dropoff beyond the plate
which is much faster in our results. Figure 10 elucidates
dependence of the harmonic spectrum on the ellipticity of
driving field in the case where the molecular axis is align
with the large component of the driving field. Here, wi
increasing ellipticity, the hump survives though it becom
less pronounced while the plateau disappears. For a c
larly polarized driving field, a two-center system does em
harmonics. However, the common return-of-the-electron
the-core mechanism is no longer applicable and, as a co
quence, there is no plateau. The harmonics that are em
are due to the mechanism of trajectoryD in Fig. 2: twice
during one optical cycle the circularly polarized field is pa

FIG. 8. Harmonic spectra for a two-center system modeled
simulate H2

1 for various distances between the two protons,R
52 a.u. (uE0u51.103 a.u.),R54 a.u. (uE0u50.796 a.u.), andR
58 a.u. (uE0u50.628 a.u.). In all cases the molecule is lined
with the linearly polarized driving field withv50.076 a.u. andh
510.58. ForR52 a.u. the spectrum for perpendicular orientation
also given.

FIG. 9. Harmonic spectra for a two-center system withR
58 a.u. changing its orientation from parallel to perpendicular
the linearly polarized driving field. The remaining parameters
v50.076 a.u.,h51.62, and uE0u50.65 a.u. For parallel align-
ment, the parameters agree with those of Fig. 10 of Ref.@16#.
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allel to the axis and capable of driving the electron direc
from one center to the other. Finally, Fig. 11 illustrates t
transition from linear to circular polarization for the ca
where the axis of the two-center system is perpendicula
the small component of the driving field. Here, when t
polarization is close to linear, the hump is absent.

B. Phases of the harmonics

The S-matrix elements governing harmonic emission a
complex. Thus far we have concentrated on their mag
tudes, which determine the probability of emission of a h
monic photon. The physical significance of their phases
not immediately obvious. We recall, however, that for ha
monic emission owing to its characteristically low efficien
theS-matrix element and the expectation value of the dip
matrix element are practically identical@21#. The physical
relevance of the latter is very well established@34,35#: it
provides crucial input for the behavior of the collective r
sponse. With this motivation in mind, we will investigate th
phases of theS-matrix elements for the two-center system

o

o
e

FIG. 10. Harmonic spectra for a two-center system withR
58 a.u. oriented parallel to the large component of an elliptica
polarized driving field when the ellipticity changes from linear
circular. The remaining parameters are as in Fig. 9.

FIG. 11. Same as Fig. 9, but the two-center system is orien
parallel to the small component of the elliptically polarized drivin
field.
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A typical result is given in Fig. 12, which displays th
phase of the 21st harmonic for the parameters of Fig. 4
R512 a.u. as a function of the driving intensity expressed
the dimensionless parameterh5Up /\v. Up to h&10 the
behavior is completely familiar from the one-atom case,
e.g., Refs.@35,36#: belowh&3 the 21st harmonic is beyon
the cutoff of the plateau and, consequently, the phase d
proportionally to about 3h. At h53.69, the 21st harmonic
enters the plateau, and the phase starts exhibiting the as
ated typical erratic behavior. At the same time, itsaverage
rate of decrease approximately doubles. However, ath'10
something unexpected happens: the phase becomes la
independent of the intensity. Inspection of Fig. 4 reveals t
at about this intensity the 21st harmonic enters the lo
energy hump from above, that is, from the region of hi
harmonics. It appears that harmonics within the hump
characterized by a phase that is almost independent of
intensity. This is confirmed by Fig. 13. The two insets de
onstrate that in this case the 15th harmonic is part of
low-energy hump for intensities in the range specified by
&h&15 and, indeed, it is throughout precisely this ran
that the phase is virtually independent of the intensity. F
h&2, the 15th harmonic briefly belongs to the plateau u
for h&0.5 it has moved beyond the cutoff. On the oth
hand, on the high-intensity side of the hump, the ph
shows behavior that is reminiscent of the low harmonics
the one-atom case, those below the plateau which are
described by lowest-order perturbation theory. Again, the
tensity dependence of the phase is not very pronounced.~The
harmonics that make up the hump are, however, not ac
sible to lowest-order perturbation theory.! For h*20 ~not
shown!, the 15th harmonic is definitely part of the platea
and its phase behaves accordingly.

The fact that the phase is almost independent of the in
sity for harmonics within the hump can be understood
inspection of the action~31! in the time-evolution operato
~30!, which is the essential input in the matrix element~25!.
The harmonics in the hump are due to trajectories of typeD

FIG. 12. Phase of theS-matrix element for emission of the 21s
harmonic for a two-center system withR512 a.u., aligned paralle
to the linearly polarized driving field, as a function of its intens
specified by h5Up /(\v). The remaining parameters,uE0u
50.4 a.u. andv50.043 a.u. are those of Fig. 4. The two simpl
man cutoffs as calculated from Eqs.~52!–~54! areh52.7 ~scenario
C) andh54.54 ~scenarioB).
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as defined in Figs. 2 and 3. They unfold near the maxim
of the driving field. Therefore, in order to scrutinize the
properties, we may approximate the action by the limit o
constant driving field lettingv→0, AL→` while vAL
5cEL5const. Then

S~r 8t8,r 9t9!5
m~r 82r 9!2

2~ t82t9!
2

1

2
eEL~x82x9!~ t81t9!

2
~eEL!2

24m
~ t82t9!3

5
mvR2

2t
6Ahm\vRxv~ t81t9!2

1

6
\ht3,

~56!

where t[v(t82t9). In the second line of the precedin
equation, the action is specialized to exchange terms
rewritten in dimensionless quantities. The first term on
right-hand side is independent of the intensity, and the s
ond only depends on the sumt81t9. Let us envision a
stationary-phase evaluation of the integrals in the matrix
ement~25!. For the harmonics within the hump, the integr
with respect to the time differencet82t9 ~which corresponds
to the travel time! will be stationary for a travel time oft1
2t0 corresponding to the trajectory of typeD. For the con-
ditions of Fig. 2 we havet5v(t12t0)'0.9. The intensity
dependence of the phase is then determined by the last
on the right-hand side of the action~56!, which is equal to
20.12h in this case. This must be compared with23.3h in
the case of a single atom for the harmonics beyond the cu
@20#. Hence, for harmonics within the low-energy hump t
phase depends only very weakly on the driving intens
The preceding argument followed Refs.@34,2#.

Figure 14 compares the phase for parallel and perpend
lar alignment. Remarkably, the phase in the one-atom c
~here that of the 15th harmonic! is virtually identical to the
phase in case of the two-center system oriented perpend
larly to the field even though in the latter exchange ter
make substantial contributions. In contrast, the phase for

FIG. 13. Same as Fig. 12, but for the 15th harmonic anduE0u
50.6 a.u. The two insets show harmonic emission rates under
same conditions forh52 and forh514 in order to present evi-
dence that the 15th harmonic is part of the low-energy hump
2&h&14.
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allel orientation shows evidence of the higher cutoff of t
plateau~which is due to scenarioC mentioned above! and
becomes approximately constant when the 15th harmoni
h'4, enters the hump from below.

Finally, Fig. 15 points out that the harmonics within th
hump are to some degree phase locked.~Harmonic emission
rates for the same parameters are shown in Fig. 4.! For fixed
intensity, the phases of adjacent harmonics are compare
plotting their differencesfN2fN22 as a function ofN.
First, as may have been expected, the well-known ph
locking of the one-atom harmonics beyond the cutoff is
covered in the present two-center case. Also, as expecte
starts somewhat later at the higher cutoff corresponding
scenarioC. This is clearly visible for the largest internucle
distance (R512 a.u.) covered by this figure. In this case o
may also observe a very brief interval of phase locking t
starts at the lower cutoff corresponding to scenarioB, but
has no opportunity fully to develop since soon afterwards
higher cutoff begins to dominate with its own associa

FIG. 14. Comparison of the phase of theS-matrix element for
emission of the 15th harmonic by one atom~top!, a two-center
system with R512 a.u. oriented perpendicularly to the fie
~middle!, and the same oriented parallel to the field~bottom!. The
parameters are the same as in Figs. 12 and 4.

FIG. 15. Phase differencesfN2fN22 between adjacent har
monics as a function of the harmonic numberN for R50, 4, 8, and
12 a.u., respectively, from top to bottom. The parameters are th
of Figs. 12 and 4.
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phase locking. However, the novel feature of this figure
the phase locking of the harmonics within the hump. It is n
as rigid as in the cutoff, but quite noticeable. It is most co
spicuous forR58 a.u.

For R54 a.u. within the major part of the plateau th
harmonic phases are not exactly but quite closely lock
This corresponds to the intensities~cf. Fig. 4 within the pla-
teau which is forR54 a.u. much less rugged than for th
single atom. Apparently, two centers at a moderate dista
that is much smaller than the width of the returning ele
tronic wave packet tend to smooth theS-matrix element,
both its magnitude and its phase, as a function of both d
ing intensity and harmonic number.

V. CONCLUSIONS

We have extended the zero-range potential model to
electron in a two-center zero-range potential in order
model, in particular, harmonic generation by molecular io
Such a system combines the characteristic traits of harm
generation in atoms~notably the extended plateau with
well-defined cutoff proportional to the ponderomotive pote
tial! with those typical of a two-level system~a hump in
place of a plateau with a cutoff proportional to the field a
plitude!. The two-level related features disappear when
orientation of the molecular axis changes from parallel to
laser field to perpendicular. In the latter case high-harmo
generation is very much atomlike. In a similar vein, if th
two-center system is irradiated by a laser field with circu
polarization the harmonic spectrum is essentially that o
two-level system.~The atom, after all, in a circularly polar
ized field produces no harmonics at all.! In contrast to an
idealized quantum mechanical two-level system whose t
dimensional Hilbert space cannot be represented in ordin
space, here the two-level features manifest themselves
very intuitive geometrical way: the electron moves from o
center to the other. The simple man’s model, which identifi
particular electronic orbits in the presence of the laser field
responsible for particular spectral regions of harmonics,
mains ~for linear polarization! a very convenient tool with
high predictive power.

The phases of the dipole components in the spectral
gion corresponding to two-level emission are strikingly d
ferent from the phases within the ordinary atomlike plate
Their intensity dependence is very weak whereas in the
teau the phase changes by about 2p when the ponderomotive
potential of the field changes by the energy\v of one pho-
ton. This will have a marked impact on the collective ha
monic response of an ensemble of stretched molecular i
Closely related is the fact that the phases of adjacent harm
ics within the same spectral region are locked with respec
each other. The explicit calculations presented in this pa
proceed sufficiently fast so that they can be used as the
lecular input for the simulation of the collective response
an ensemble.

From the experimental point of view, it is crucial wheth
or not the orientation of the molecular ions with respect
the field can be controlled. There is a lot of accumula
evidence@8,9,37,38# that for laser pulses down to a puls
length of 100 fs molecules do become aligned with a linea
polarized field, either due to some dynamical mechan

se
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generated by the laser-molecule interaction@39,40# or, pos-
sibly, already by the way the molecular beam is prepared.~In
exceptional cases, though, it has been predicted that the
ecule orients itself perpendicularly to the field@40#.! With a
pump-probe experiment, then, molecules can be subjecte
pulses with arbitrary polarization. Indeed, a high-intens
pump-probe experiment has been carried out recently w
the probe field was polarized perpendicularly to the mole
lar axis @41#.

The extension of the presently discussed model of
zero-range potentials to an arbitrary numberN is quite
straightforward without any technical difficulties. The n
merical effort increases roughly likeN2. This would yield a
model of a cluster in close analogy to the one recently d
cussed in Ref.@42#, but being able to deal with three
dimensional clusters.

There are some limitations of the two-center zero-ran
potential model, which one has to be aware of: two ze
range potentials, no matter how closely spaced, never o
lap. Hence, such a model cannot incorporate internal o
the-barrier ionization, which is responsible for ionizatio
enhancement and subsequent Coulomb explosion with
well-defined range of internuclear separations@43#. Nor does
it allow for population trapping since the 1ssg energy sur-
face is not bonding. In a similar vein, the model would yie
identical spectra for harmonic generation in H2

1 and D2
1 for

fixed internuclear separationR. Of course, different distribu-
tions of R tailored to mimic vibrational modes in H2

1 and
D2

1 could be put in by hand. Experimentally, photoelectr
spectra of H2 and D2 have been found to be largely identic
while dissociation of H2

1 and D2
1 shows marked isotopy

effects @44#. Deficiencies such as these, however, sho
not affect the calculation of harmonic generationfor a fixed
internuclear separation R. If we intend to model harmonic
generation by a particular molecular ion as a function oR
then we may as we did in case of H2

1 readjust the param
eters of the two-center zero-range potential for every va
of R so as to reproduce the energy surface calculated
other means.

ACKNOWLEDGMENTS

We enjoyed and benefited from discussions with M. Do¨rr,
C. Figueira de Morisson Faria, H. Rottke, and W. Sandn
This work was supported in part by Deutsche Forschungs
meinschaft.

APPENDIX: GAUGE CONSIDERATIONS

The question of gauge in analytical approximations
multiphoton processes is known to be tricky. If we redeve
the same formalism as above in the length gauge we a
end up with the matrix element~25!, just the radiation-gauge
time-evolution operatorU (VR)(t,t8) is replaced by the corre
sponding time-evolution operatorU (VE)(t,t8) in the length
gauge. For one zero-range atom at the origin, it is evid
that the two gauges yield identical matrix elements. In g
eral, however, this is not so.

Let us consider the matrix element~25! in either gauge
( i 5R,L),
ol-

to

re
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M a~e,V!52
ee* •
\2 A2pV

\V E dteiVtE d3r 8d3r 9

3E
t

`

dt8E
2`

t

dt9f0,a* ~r 8,t8!Va~r 8!

3U ~Vi !~r 8,t8;r 9,t9!r class~ t;r 8,t8;r 9,t9!

3Va~r 9!f0,a~r 9,t9! ~A1!

for a zero-range potential situated at positiona so that

Va~r !5V~r2a! and f0,a~r ,t !5f0~r2a,t !. ~A2!

If we shift the integration variables this turns into

M ~e,V!a52
ee* •
\2 A2pV

\V E dteiVtE d3r 8d3r 9

3E
t

`

dt8E
2`

t

dt9f0* ~r 8,t8!V~r 8!

3U ~Vi !~r 81a,t8;r 91a,t9!

3r class~ t;r 81a,t8;r 91a,t9!V~r 9!f0~r 9,t9!.

~A3!

The classical trajectoryr classdoes not depend on the gauge.
is just displaced according to

r class~ t;r 81a,t8;r 91a,t9!5r class~ t;r 8,t8;r 9,t9!1a.
~A4!

The time-evolution operator is translationally invariant in t
velocity gauge while in the length gauge it satisfies

U ~VE!~r 81a,t8;r 91a,t9!

5e2 iea•@A~ t8!2A~ t9!#U ~VE!~r 8,t8;r 9,t9!. ~A5!

As a consequence, in the velocity gauge we have

M ~e,V!a5M ~e,V!01aN~ t !, ~A6!

with

N~ t !52
ee*

\2 A2pV

\V E dteiVtE d3r 8d3r 9

3E
t

`

dt8E
2`

t

dt9f0* ~r 8,t8!V~r 8!

3U ~VR!~r 8,t8;r 9,t9!V~r 9!f0~r 9,t9!. ~A7!

The fact thatN(t) is time dependent is due to the approx
mations we have introduced. An exact calculation wou
yield a constant in place ofN(t), and the harmonic spectrum
would be translationally invariant as it should. The quant
N(t) has, however, only even harmonic components as
be readily inferred from the explicit form of the time
evolution operatorU (VR), as given, e.g., in Ref.@20#. Hence,
in our approximation, the odd harmonic components are
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dependent on the position of the atom. The even compon
of N(t) generate spurious even harmonics in the spect
which must not be taken seriously. In the length gauge,
the other hand, the time-evolution operator transforms
,
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cording to Eq.~A5!. The exponential in this equation intro
duces both even and odd harmonics. As a consequence,
ing the position of the atom mixes even and odd harmon
and translation invariance holds for neither.
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@22# P. S. Krstić, D. B. Milošević, and R. K. Janev, Phys. Rev. A
44, 3089~1991!.

@23# Yu. N. Demkov and V. N. Ostrovskii,Zero-Range Potentials
and their Applications in Atomic Physics~Plenum, New York,
1988!.

@24# B. H. Bransden and C. J. Joachain,Physics of Atoms and Mol
ecules~Addison-Wesley, Longman Ltd., Essex, 1983!.

@25# T. E. Sharp, At. Data2, 119 ~1971!.
@26# W. Becker, A. Lohr, and M. Kleber, Quantum Semiclass

Opt. 7, 423 ~1995!.
@27# P. N. Butcher and D. Cotter,The Elements of Nonlinear Optic

~Cambridge University Press, Cambridge, 1990!.
@28# P. Moreno, L. Plaja, and L. Roso, Phys. Rev. A55, R1593

~1997!; Laser Phys.7, 602 ~1997!; A. D. Bandrauk, S.
Chelkowski, H. Yu, and E. Constant, Phys. Rev. A56, R2537
~1997!.

@29# B. Gottlieb, A. Lohr, W. Becker, and M. Kleber, Phys. Rev.
54, R1022~1996!.

@30# R. Kopold, Diploma thesis, Munich Technical Universit
1997.

@31# L. Plaja and L. Roso-Franco, J. Opt. Soc. Am. B9, 2210
~1992!; A. E. Kaplan and P. Shkolnikov, Phys. Rev. A49,
1275 ~1994!; R. Burlon, G. Ferrante, C. Leone, P. A. Olein
kov, and V. T. Platonenko, J. Opt. Soc. Am. B13, 162~1996!;
F. I. Gauthey, B. M. Garraway, and P. L. Knight, Phys. Rev.
56, 3093~1997!.

@32# S. C. Rae, K. Burnett, and J. Cooper, Phys. Rev. A50, 3438
~1994!; Ph. Antoine, B. Piraux, D. B. Milosˇević, and M. Ga-
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