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Model calculations of high-harmonic generation in molecular ions
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One electron bound by a three-dimensional two-center zero-range potential is embedded in an electric field
with sinusoidal time dependence and arbitrary polarization and orientation with respect to the axis of the
two-center potential. In the absence of the field, the model supports up to two bound states, which have a large
transition dipole moment. Hence, the physical systems best described by the model are molecular ions such as
H," . Rates for high-harmonic emission are calculated analytically up to one final quadrature. In terms of the
rescattering picture, harmonic emission can be attributed to two different mechanisms: electrons recombine
either at the center they started from or at the other one. The latter case allows for three topologically different
classes of orbits, which lead to different spectral ranges of harmonics. Two of them are similar to atomic
(one-center harmonic generation, but have different cutoff laws that are no longer proportional to the pon-
deromotive potential. In the third the electron moves directly from one center to the other. This leads to strong
harmonic emission at comparatively low frequencies similar to emission from a two-level atom with the cutoff
proportional to the field amplitude rather than the intensity. The molecular dipole phase in this case is almost
independent of the field intensity and, at constant intensity, the phases of neighboring harmonics are locked.
Different orientations of the two-center system with respect to the field with various polarization configurations
are investigated. Most of the observed features lend themselves to interpretation in terms of the simple man’s
model.[S1050-2947{8)09111-3

PACS numbd(s): 32.80.Rm

[. INTRODUCTION softening and above-threshold dissociation. Owing to its
structural simplicity, they concentrated on,™H which be-

If a nonlinear bound system is irradiated by an intensecame the object of a large number of experimental and the-
laser field it reradiates harmonics of the incident field. De-oretical investigations; for a review see R¢®]. Several
pending on the incident intensity the spectrum may extendhtense-field molecular phenomena have been discovered in
up to very high harmonics. In particular, there is an extendedlose contact between theory and experiment, such as popu-
range of harmonicgthe so-called plateauhat are radiated lation trapping and the relevance of internal tunneling ion-
with comparable intensities. For the case where the bounitation versus internal barrier suppression ionization. All of
system is atomic these phenomena have been intensivelfiese mechanisms can be recovered in simulations based on
studied over the past decade, both experimentally and thegolutions of the time-dependent Sctilmger equation.
retically, and are now well understood; for reviews see Refs. Molecules as sources of high harmonics have been stud-
[1,2]. The harmonics have already been employed as lighied experimentally already several years ago and found to
sources for other experimeri3]. Ultimately, they may lead vyield radiation patterns very similar to atofi€]. Currently,
to novel sources of light with very unprecedented propertieglusters of atoms are being investigatedl]. They offer

[4]. promising prospects as to raising the up to now disappoint-
The investigation of multiphoton phenomena in moleculesngly low conversion efficiency for harmonic generation.
has been pioneered by the work of Fedoetal. [5], which Theoretical investigations of high-harmonic emission in

pointed out the significance of field-induced avoided crossmolecular ions such as,H were first presented in Refi2,
ings to molecules irradiated by intense laser fields and pret3], which both drew attention to the relevance of charge-
dicted the existence of light-induced states. With the adventesonant statgd4] to harmonic generation in these systems.
of above-threshold ionization in atoms, interest picked upA pair of charge-resonant states consists of an even-parity
also in the interaction of intense lasers with molecfi&g].  and an odd-parity state with a transition dipole moment that
In particular, the work of Bucksbaum, Muller, and collabo- for large internuclear separation grows proportionally to this
rators [8] reported the observation of a variety of field- distance. They are characteristic of odd-charge molecular
induced effects in molecular systems, interpreted them ions. These states strongly couple to an external field and
terms of field-dressed states, and coined terms such as bopetbduce harmonics efficiently. The corresponding harmonic
generation is closely related to that calculated for the ideali-
zation of a quantum mechanical two-level systéfb].
*Also at Center for Advanced Studies, Department of Physics andvanov and Corkun{12] concentrate on the two-level as-
Astronomy, University of New Mexico, Albuquerque, NM 87131. pects inherent in the molecular ions while Zuo, Chelkowski,
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and Bandrauk[13] solve the three-dimensional time- consideration to a circularly polarized driving field since, in
dependent Schrdinger equation with a two-center Coulomb contrast to the case of an atom, it does generate harmonics in
potential in the Born-Oppenheimer approximation and re-a molecule. However, the mechanism is different from har-
cover both the two-level features and the aspects related #onic emission in an atom, viz., related to the two-level
the common rescattering mechanism, which is responsiblgystem and the existence of charge-resonant states, and con-
for harmonic generation in atoms. Recent work by these ausequently the typical plateau is absent. As in the atomic case,
thors allows for self-consistently coupled nuclear motionfOr linear polarization the simple man’s model very nicely
[16]. illuminates t.he origin of most of the fgatures encountered in
The physical understanding of the process of high-the harmonic spectrum. For the various spectral ranges of

harmonic generation has been boosted by the semiCI<'slssic,}z";1"f”mOni.C emission, we can idpntify eIect'ronic orbits.thr':\t are
three-step model or simple man's mod&r,18, which is responsible for them. In particular, the intense emission at
embedded into a fully quantum mechanical descripft- comparably low frequencies is generated by electrons mov-

21]. In this class of models, the classical action of an electroi9 directly from.o_ne charge center to Fhe other. In Sec.. i,
in the laser field plays the dominant role while the atomicVe Present explicit results for harmonic spectra for typical

binding potential does little more than defining the bindingcor."clguratlons of the various parameté:r;ternuplear sepa-
energy and a source poifbr regior) where electrons are ration, molecular_blndlr_lg energy, laser intensity, ano_l pol_ar-
first injected into the laser field and later again disappear b{7alion. and relative orientation of the molecular axis with

recombination emitting their acquired energy through har- espect to the Ias)arV\_/e investigate the inter}sity-.dependent
monic radiation. In terms of such modeling, a molecule or gPhase of the harmonic components of the field-induced mo-

cluster mainly differs from an atom by providing more than ecular dipole e'eme’?t’ which IS known to be crumally Im-
one center where the electron can appear on the scene gortant f_or the collective harmonlc_ res_por[QQa Not surpris-
retire from it. This allows for a new feature: the electron 'NdlY: this phase behaves much like in the case of an atom

promoted into the continuum may travel from one center to é.’V“h".‘ Fhe ana}log of the ator_nic pl_at(_aau. However, it displays
different one in the process of harmonic emission. Investi& Strikingly different behavior within the low-energy two-

gating the implications of this mechanism provides the mo_!evel—related part of the spectrum: in this range it is virtually

tivation of the present work. independent of the intensity. The consequences of this be-

As the simplest case we explore an electron bound by twavior for the propagation of the harmonic signal have not
zero-range potentials. With total ionization rates of the nega_yet been explo_red. Also, n this regime neighboring harmon-
tive hydrogen molecular ion 4 in view, the two-center ICs are 'OCk‘?d in phase W'th respect to each. other. In a con-
zero-range potential has already been investigated exteﬁlUdIng schor:jvx;g .emp.hasmg stc;]me tOf our delngs and dis-
sively in Ref.[22]. In the context of high-harmonic genera- cu;:s t's?mAe Ae |C|ercljc.:|esd' 0 € thwo—cen f.r ze]cro—rﬁngr]]e
tion, it will turn out that the physical system most closely POt€Ntal.-An Appendix dISCUsses the question ot whic

related to this model is the positive hydrogen molecular iord2Ug€ to choose. As opposed to the one-center zero-range
H," potential where the length gauge and the velocity gauge yield

The features that are specific for high-harmonic radiatiordentical results for harmonic emission, the two-center zero-
by molecular ions have not been identified in experimentgange potential mandates using the velocity gauge. Some rea-

yet. They require internuclear separations of the order 5 to 180ns are discussed in the Appendix.

Bohr radii in order to become significant. This realm be-

comes accessible in highly excited vibrational states or Il. FORMAL FRAMEWORK

would be passed during Coulomb explosion. For realistic A. Two-center zero-range potential
predictions of the harmonic emission to be expected in a ,

given situation, theollectiveresponse of the sample must be AN €lectron bound to the zero-range potential
evaluated 1,2] with the single-molecule response being the 2mh2 P

input. Even with current computing capabilities this is out of V(r)= S(r) —r (1)
reach if the single-molecule input is calculated from the or

three—d|mens!onal ScMm_ger equation. A sufficiently COM-  hrovides the simplest model of an atom that still retains a
pact yet realistic model is needed for the former. Judgin

from the comparison of our present results with three_uII—erdged continuum. It has a single bound state with en-

dimensional Schdinger simulation$13,16|, the two-center ery

zero-range potential can serve as such a model. Eo= —#%k%/2m 2)
In Sec. I, we introduce the two-center zero-range poten-

tial and briefly review its properties and its relation to physi-and wave function

cal systems, in particular to homonuclear molecular ions. We

then go on to calculate th® matrix for emission of a har- ke "

monic photon for arbitrary orientation of the molecular axis bo(r,)=\/5———€ ="

with respect to the plane of the elliptically polarized driving

laser field. The ease with which three-dimensional effectdhe continuum wave functions are plane waves augmented

can be treated is characteristic of zero-range potential mody an s-wave term such that completeness including the

els. As in the case of one zero-range potential the emissiobound statg3) is warranted. Since in the interaction of at-

rates can be evaluated analytically up to one final quadraturems and molecules with high-intensity laser fields the con-

which is left for numerical computation. We give particular tinuum is of crucial importance while the detailed structure
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of the bound-state spectrum is not, the zero-range potential 0.0
has yielded a good description of intense-field phenomena.

In order to model the behavior of one electron in the
presence of a two-center binding potential we will considera __ -0.5 ¢

superposition of two zero-range potentials situated at posi- *g
tionsR; andR, >
E 10+
2mh? [ 1 g 1 p |5
V(r)= m K—lé(rl) (9Tlrl+ K—25(r2) (?Tzrz , (4) LU; - H0=infinity
R R,=8a.u.
wherer;=r—R; and R=R;—R,, |R|=R. An exact solu- —— - R=2au.
tion of the corresponding Schiimger equation can be found
from an ansatz as a linear combination of atomic orbitals 20 . X
with centers aR; andR,, 0 4 6 8
R (atomic units)
) e* Kl e* Ko
o(r,t)y=e Eot/t| ¢, +cy - ) (5) FIG. 1. Bound-state energies of the two-center zero-range po-
2

tential with two equivalent centers as a function of the separd&ion
between the two centers. The parameter «, of the model po-
tential (4) has been adjusted so as to yield the known binding en-
ergy of H,* at some internuclear separati®g. Examples are ex-
hibited for three different values d®, as indicated. In each case,
the excited bound state ceases to be boun&fold/«, as discussed
=0. (6) below Eq.(9).

with the binding energy2) as given above. If inserted in the
Schralinger equation the ansatg) yields a linear homoge-
neous system for the coefficients andc,,

ki—k e “RIR (Cl
e_KR/R Ky— K Co

. . . . come infinite. A comparable situation occurs in the linear-
The candition that its determinant vanish, combination-of-atomic-orbitals description of, Hwith Cou-
e 2kR lomb potentials; see, e.g., R¢R4]. For R—0, the LCAO

(k1= K)(Ko—K)= T (7)  approximation of the wave function fails to approach the
ground-state wave function of Fie Here we will not be

determines the binding energg) as well as the ratio concerned with this limit and refer to Reff23,27 for a

discussion.
c e *R R(k— k») The two-center zero-range potent{d) has three param-
= = — €S)) eters, the distande between the two centers, and the respec-

2 Rlx—ry) € tive strengths related to the parametegsand x,. There is,

Normalization of the wave functiofs) completely fixes the N principle, a multitude of ways of how to adjust these pa-
coefficientsc, andc, via ra_mgtgrs_ to the properties of a particular physical system.
priori, it is not even clear whether the two-center zero-range
K s R potential is better suited to model, for examplg, H,", or
§:C1+Cz+ 2c Ce . €) H,™ (after all, the one-center zero-range potential is known
to make a very good model of H. Let us concentrate on the
The (positive) solutionsk of the determinant equatioi) ~ case of two equivalent centers. Fo{= «,=1/R there are
fix the bound-state energy®). They are easily discussed in two bound states. It is easy to see that they become degen-
graphical form. The result can be summarized as follows. lerate forR—oe; cf. Fig. 1. In this limit the solution$5) have
both x; and k, are positive there are two solutions if the form
k1k,R?=1 and one solution otherwise. If both, and x,
are negative there is one solution«fx,R?°<1 and no so- G(r,sa=d1% ¢2,
lution otherwise. Ifk; and x, have opposite sign there is
always exactly one solution. lt;= «, there are two solu-
tions if k,R=1 (the one with the lower energy symmetric
and the other one antisymmefrione solution if > k;R= das=( 4|1 bs)=RI2. (11)
—1 (symmetrig, and no solution ifk;R<—1.
In the limit whereR—o, the determinant equatiof¥)  This situation is characteristic of charge resonant states
yields k=k; or k=«, and, consequentl{ffor x;# «,), ¢,  [14,12,13 such as they exist in 1, but not in H, or H,™ .
=0 orc,=0, respectively. That is, the limit of two separate Hence, whenever we will make reference to a particular
centers is realized, the electron stays near one center ampthysical system it will be b . The exact value of the tran-
does not notice the other. In contrast, the limit where the twaition dipole moment calculated with the help of the wave
centers coincide is tricky. One may expect that in this limitfunctions(5) for finite R is
the wave function(5) reduces to the one-center wave func- 114
tion (3) with « given by 1k=1/k,+ 1/k,, but this is not so. _ as S ¢ .
Rather, the determinant conditi¢f) demands thak— o in Gas=2mCCR| S+ Zpz€ (A coshA—sinh4) J,
the limit whereR—0 so that the binding energy would be- (12

(10

with identical values ok. The transition dipole moment sim-
ply becomes
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wheres=R(ks+ x,)/2 andA=R(xs— k,)/2 andks andk,  tribute to one-photon emission or absorption. Now, the
are the wave numbers of the symmetric and the antisymmeg-matrix element for the emission of one photon with polar-
ric bound state, respectively. For simplicity, two equivalentization € and frequency is

centers were assumed. The expression shows that for in-

creasingR the limit (11) is attained very quickly. om [

In order to adjust the parameters to the case of for a M(eQ)=ie\/ ~—— f dte e - v(t), (15)
specified distanc®, between the two protons, we solve Eq. QrV ]
(7) for k and adjustk;= k, such that the lower one of the
two eigenenergies2) agrees with the (do) ground-state
energy of B at the respective distan€. The correspond-
ing ground-state energies have been calculated by accurate v(t) = O)|r] ! (1)
solution of the one-particle Schimger equation and are 1
available in the literaturf25]. If «, is fixed as just described T () _ (-)
the bound-state energies of the two-center zero-range poten- m (Wi Olp=(elOAMg (D). (16
tial are determined for alR. Simultaneously, the energy of
the 2po, excited bound state is fixed by the mod#lit ~ The wave functionsy!{7)(t) satisfy boundary conditions
exists, that is, ifk;R,=1). Figure 1 shows three examples such that they agree with the initial and final bound state
where k; =k, has been adjusted to the binding energy of#; ¢(r,t) in the absence of the laser field, respectively, in the
H," at three different distance®,=2 a.u., 8 a.u., ande  limit of early and late times,
corresponding to two separate protons. If in the spirit of the
Born-Qppe;nhejmer approximatio_n the appropriate Coulomb |jm PO )=¢i(r,t) and  lim g (r,t) = py(r ).
repulsione“/R is added one obtains the nuclear energy sur-i— -« too
faces produced by the model potential. No matter what we (17)

choose forR, the ground-state potential surface has little in ) ) ) )
common with the actual s, energy surface of bf . In For reasons that will be discussed below we will, with the

particular, it is not bonding. Hence, if we actually attempt toNelp of an integration by parts, express Senatrix element
model field-induced processes in,Has a function of the (19 in dipole form. We employ the equation of motion
internuclear distance, as we do in Fig. 8 below, we enforce in o
the correct behavior by redetermining = «, for each dis- iAr=— <p_ _AL> =[r,H], (19
tanceR that we consider. m c

The model of H* outlined in the preceding paragraph
may come across as a rough caricature of this molecular io
However, we do not intend to model,Hper se, but rather

H,* generating harmonics owing to the presence of an in- om (=
tense fieldLike a good caricature, it is intended to highlight M(e,Q)=iee* - [ = f dte (gt () [r] ! (1)
the features of interest at the expense of obscuring others. Qv ) -

where

yvhereH is the full Hamiltonian so thaH (¢; ¢| =ih 0 i 4|
and insert it in the velocity forn§l5). This yields

(19
B. S-matrix element of harmonic emission 27Q (= i
o =ee* \/ J dte Uyt ) )yl ().
We decompose the total electromagnetic field into a clas- AV f !
sical partA, (t) that describes the laser field and a quantized (20

partAq that is related to the mode of a high harmonic emit- o o )
ted by irradiating a bound system by the intense laser field he boundary terms occurring in the partial integration that
A_ . For reasons to be discussed in the Appendix we use thi€d from Eq.(19) to Eqg.(20) do not contribute to a transition

radiation gauge. The total Hamiltonian of the laser-mattefate and have been omitted. o
system reads The S-matrix element(20) is still in the radiation gauge

even though it contains the dipole matrix element. At this
e e e point we approximate the wave functiong;(t)) in the
T D _ _ . _ A2 o . - if
Hiota=H mc (p CAL) Aqt ngZAq' (13 spirit of the Keldysh approximation. We follow a procedure
introduced earlief21]. In the matrix element

2

with n _
R(t) = (g (0]r] (1)

P e e = lim ((t)Ut", Hru(t,t’|¢(t")),
H—ﬁJrV(r)—m—CA,_- p— EAL (14 t' ot s —w
(21)

the Hamiltonian of the atom interacting with tldassical we employ the(Dyson) integral equation for the exact time
laser fieldA_(t) while the terms that incorporate tlgian-  evolution operatot)(t,t’) in the radiation gauge. Then in-
tized field A, cause emission and absorption of high-troducing the crucial approximation we replace the exact
harmonic photons. The term proportionalAé does not con- time evolution operatod by the Volkov time evolution op-
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eratorU(VR and perform several integrations by pdr#d].
We end up with the compact form

1 [t -
R(t)~—Pf_ dt”ft dt’

X (st VUYR(t HruVR(t,t") V] ¢ (t").
(22)
This expression simplifies considerably if one realig26]
that
(r'JUVR(t" t)ruVR(t,t")|r")
=Fas i 11 E)(r [UVR(E [, (23)

Here,
Y] "en 1 ”n ’ € t
Feasd 6T, 1) = ) (=) 1= —— ftld)\A()\)
! n e t
—(t—t )(r —aft"d)\A(x))] (29

denotes the trajectory as a function of timef a classical
particle from the initial positiorr” at timet” to the final
positionr’ at timet’ in the presence of a field given by the
vector potentialA(t). With the help of Eqs(21)—(24), the
matrix element20) assumes the form

66* 2779] X 0
M(e0)=— —5 \| dtelmf d3r’d3r”f dt’
(e8) h? Y ¢

t
xf dt"f (r',t)V(r" HUVR(r' ,t';r",t")

Xl oasd 11" V(") ¢i(r,t"). (29

This will be the starting point for the explicit calculations
below.
Had we not performed the integration by parts in E)
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larly important contributions to the matrix element. At these
end points, however,,ssis discontinuous: it jumps from an
ensemble average of zero, corresponding to a bound state, to
a finite value. Moreover, near these end points the approxi-
mation of ignoring the binding potential is least justified. On
the other hand, after the integration by parts, the matrix ele-
ment containg . ,ssWhose end points

r
rclasgt;rlt,ur”t”): r (26)

for t=t"
are well defined and independent of any approximation
made. This is why we performed the integration by parts that
led from Eq.(19) to (20).

C. Explicit results for the S-matrix element

The computation of th&-matrix element can be carried
out analytically all the way down to one final integration,
which is left for numerical evaluation. The calculation is
fairly straightforward though lengthy and the procedure is
similar to the case of just one centfg0] where extensive
details are presented. We will therefore just give an outline
and essentially be content with writing down the final result.
Details for the present case can be found in [Ref].

From the structure of the wave functi¢b) it is clear that
the matrix elemen{25) has the form

2
M(e,Q)=J_%1 ciciMk(€,9), (27)

wherec'n'f is the coefficient in the wave functiofd) of the
initial and final state, respectively, that determines the prob-
ability of the electron being near center The decomposi-
tion (27) allows for the identification of the contribution
where the electron departs from the ceritein the initial
state and returns to the centelin the final state. For the
evaluation we assume a monochromatic elliptically polarized
laser field specified by the vector potential

then we would have arrived at a form like E&5) but with AL()=A_[& cogwt) &, sin(wl)]. (28)
Velass= T elassin place ofr aee It turns out that the end points
of the classical trajectoryatt=t" andt=t’) make particu- The lengthy calculation yields
[iQ - = dr . nr\ R—R
_ Q.2 * _ i[(Eq/hw)m+isg(Ri—Ry, 1) | _; i S
M (€,Q) 8me oV € nzl o(Q) nw)jo me 0 olRj =Rk H i COS{ 2) 5
S (nTy\ . Rj_Rk Rj+Rk
+sin 7 | nr + 2 En(sl(T)ijk(T)vﬁjk)
eA | N
+ Zwmc[(le"+ £6,)g" (N, 7)2 01 1(82(7),Sj(7), ¥j)
+(iex—§ey)g(n,T)En_l(sl(r),sjk(r),ﬁjk)]]. (29
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The integration variable/w can be interpreted as the time are commonly used parameters related to the intensity and
that the electron having started from tkiéa center spends in polarization, respectively, of the laser fie{@8). The two

the continuum until it reaches théh center and recombines. functionss, ands, have the same form in any gauge while
The abbreviations used here originate from the Volkov

propagator, which has the form Sy(r' 1" 1) = ;_AL(X, _X,,)E sin%, (36)
c
3/2 T
VRt t")=(.—> exp S(r',t';r",t") AL T
T 2@ih(t’ —t") i) T Sa(r' 1", 7)=— g(y -y’ )— sin= (37)
(30) 3 2
with the action are gauge specific. The form given here is for the radiation

gauge, which is used in this paper. The functispsand 9
1 that enter the matrix elemeM , [Eq. (29)] have to be de-
7St =sdr' —r',o(t’ —t")] termined from

S2(Rj Rk, 7) = sjk(7)sin(d ),
S3(Rj Rk, 7) =sjk(7)cog F). (39

w
+eoso (U +1)s[r', 1", w(t' —t")] They all depend oR; andR,.. Generalized Bessel functions
are used as defined by

+cosw(t’' +t")s[w(t' —t")] (31

o0

w
—sin = (t'+t")sg[r' 1", w(t’' —t")].

2 3(ab,c)= > i'g(a)d, a(b)e" e (39
(32 I===
Its ingredients are the functions Finally, we have defined the functions
Mar 4 sirf 7/2 + _ 1 2 nr T
So(r,7)= 5oF _,77.( R ) (33 g (n,7)=— n+1S|n(n+l) +n sin 5 sm2
(40)
sy(7)= nt| —sin 74 ——< 4 sirf 7/2 (34) We now restrict ourselves to the case where the initial and
W=7 4 ’ the final states are identical so tltat=c' and the molecule is

in the end, after the laser pulses has passed through, in the
where same state as before. We place the origin half-way between
22 ) ) the two centers so th&; = — R,=R/2. The final form of the
_ Yp _¢ AL(1+£7) _ 1-¢ (35) matrix element29) is different for odd and even harmonics.
T~ %o  4mhoc? 1+ &2 In the first case the matrix element reads

M(e.0)=8rie /2 e*-i SQ—(2n-1)0) [ 2T givor
’ mQV n=1 0 ’7'Wﬁ

—i<ex+i§ey>g<2n—1,r>Jn1<s1<r>>}+c1c2eiSo<va>[ R(

(c+c3)e*o 0 (g, —ige,)g" (2n—1,7)J,(S1(7))

2 ) T
m sin(2n— 1)5
—cog2n— 1)%)2%1(51(7')7512( 7,91+ a(e—ife)g" (2n— 1,73 5n(s1(7),5127), 912)

+a(e+iég)g (2n—1,71)2 5, (S1(7),814 T).fhz)} } (41

A much simpler expression is obtained for the even harmonHowever, for reasons detailed in the Appendix this expres-

ics sion may not yield a reliable estimate of the emission of even
harmonics. The quantity
iw ”
— 20~2__ A2 * | _
M(€,Q)=472(c? cz)e\/mﬂv € anl 8(Q—2nw) A s
MwC
dT |£0T

X ﬁ—e'so(oﬂ sin(n7)i"J, (s 42
0 InNm)Na(s1(m). (42 denotes the excursion amplitud@r linear polarization of



4028 R. KOPOLD, W. BECKER, AND M. KLEBER PRA 58

an electron oscillating in the continuum subject to the laseAll of the properties of the respective atom or molec(te
field (28). the absence of the fieldre contained in the tensoy§V. For

It is instructive to inspect the dependence of thesea monochromatic driving field,
S-matrix elements on the internuclear separafirirhe co-
efficients c; and c, of the wave function(5) specify the
probability that the electron is found at the first or the second E~eexp —iwt)+€* expiwt), (45)
center. The matrix elemei@1) for the emission of odd har-
monics consists of two terms, one being proportionad:ito a term with fixed value oh generates harmonics up to the
+c¢3 and the other ta;c,. The first term contains those nth order.
contributions to harmonic emission where the electron re- First, let us recall the case of an atom. If the binding
turns to the center from which it started. In contrast, in thepotential as well as the relevant initial and final state obey
second it moves from one center to the other. We will referspherical symmetry, the susceptibility tensor has to be con-
to these two terms as the “return term” and the “exchangestructed out of Kronecker tensos as these are the only
term,” respectively. The return term is independent of thepnes available in view of the spatial isotropy of the atom
distance between the two centers. It is the sum of one con27). This only allows for the construction of™ with an
tribution from each center and, correspondingly, its formeven number of indices. that iﬁ(s) X(s) etc. Moreover
agrees with theS matrix for harmonic emission by just one \;han calculating the polarizatio@4) of the atom one con-
Zﬁro-lraljgeh atlgn{ZO]f. AIS?’ th'sl term goesh 10 z€ro as It yo0ts the susceptibility tensor with the driving figkb). In
should in the limit of circular polarization whem(7) van- order to generate theth harmonic we need at leastterms

ishes. In contrast, the exchange term does dependR on e exp(—iwt) from the field(45). For circular polarization, the

through the functionsy(7), S15(7), and 94,. The overall A _ ; e - )
factor expisy(R, 7)] ensures that it does not grow forever aspf)lanzatlon vectore= (g i€,)/v2 satisfiese-e=0 while

R increases. For circular polarization, the exchange term suf. - €= 1. Since the susceptibility tensor consists of products
vives in simplified form: the generalized Bessel functigg) ~ Of Kronecker tensors, the polarization vecterwill have to
reduces to an ordinary one. The resulting expression is did2€ contracted with themselves. As a consequence, all har-
cussed below. monic components of the polarizatiéhare identically zero.

For two equiva|ent CentersKisz) parity invariance For a two-center blndlng potential the situation is com-
holds and, as a consequence, even harmonics cannot be enfiitetely different. The spatial isotropy is violated by the exis-
ted. Indeed, th&-matrix element42) vanishes in this case tence of the vectoR, which specifies the orientation of the
owing to |c,|=|c,|. Parity also mandates that tiematrix =~ molecule. This vector can be employed in the construction of
element(41) for the odd harmonics does not depend on thethe susceptibility tensor so that the aforementioned contrac-
sign of R, which indeed it does not. tions of the polarization vector with itself can be avoided.

The expression{42), which we calculated for even har- Hence, arbitrary harmonic components result that are non-
monics is problematic. It does vanish for equivalent centers
(where |cq|=|c,|) as it should, but it does so for circular
polarization, too, even for nonequivalent centers. However,
there is no general conservation law that prohibits emission 1}
of even harmonics for two inequivalent centers irradiated by
a circularly polarized field. Moreover, the matrix element is
just proportional toR with no damping for increasing dis-
tance. In order to get a reliable expression for the emission of
even harmonics, the approximation that led to &% must
be improved. Some dressing of the ground state is required.
This can be achieved by further iteration of the Dyson equa- case A, E=317U,
tion for the exact time-evolution operatbk(t,t’), but will ——-caseB E=273U,

. . -1 --—-caseC,E=367U, 5.93
not be attempted in this paper. | case D, E = 1.50 U,

sin(mt) £ R/2a.
o

D. Circular polarization of the driving field 0 2 n 302 on

There is a pronounced difference between harmonic gen- ot
eration by an atom and by a molecule: the latter allows, in
general, for the emission of harmonics oiecularly polar- . . o . :
ized driving field. The origin of this difference can be Undel’-tlmetl according to Eq(49). Four qualitatively different scenarios

stood by attempting to construct the nonlinear susceptibilit)flre depicted. CasA is analogous to the single-atom situation. In
tensory(™ of the atom on the one hand or the mol caseB andC the electron starts at one center and recombines at the
X . . in -

AETPE other bypassing along its way either the center it started ficase
ecule on the other. The polarization of the atom or moleculec) or the other onéat which it is going to recombineaseB)]. In
(viz., its time-dependent dipole momeiig caseD the electron starts at one center and moves directly to the

other. The parameters used in the figure are those from Fig. 4 for

FIG. 2. Graphical determination of the retuor recombinatioh

- * R=12 a.u., which shows explicit calculations. The trajectories de-
Pi(t)= nzl o 2 i Jo dry--dm, picted correspond to maximal classical recombination energies
e n which along with the times, andt; were calculated from Egs.
XXET)l ..... in(Tl, T Ei(t= ) By (t= ). (52)—(54). Notice that the assignments in terms of multipledJof

are specific for the parameters ugwdth the exception of 3.17,,,
(44)  which holds universally
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zero provided only thae-R#0. Also, owing to the exis- These considerations are borne out by the explicit matrix
tence of the vectoR, we can now construct tensop§” with element. For circular polarizationé€1, say we have
evenn. For two equivalent centers, however, the sigrRof s;(7)=0, and the gener&-matrix elemen{41) for the odd
must not play any role, sg's with evenn vanish as before. harmonics reduces tdX> w)

M(e.0)=8n2ie | —2 e*~§ SQ—(2n-1)w) [ 2T gieor
’ mQV n=2 0 ;377

- sin(2n—1)5 —cog2n—1) 5) Jan-1(5:47)

% iSo(2R, M@l (219 Rl — —
C1Coe e (2n—1)

+a(e—ie)g" (2n—1,71)Jn(51 7)€ 12+ a(e,+ig)) g™ (20— 1,7)Ipn_o(S1a r))e‘“"lz} : (46)

As it should be, it is exclusively due to the exchange term. Ifpolarization, there is just one equation to be solved and there
the orientation of the molecule is perpendicular to the planare solutiong;=t;(ty) for whole regions ot,. A common
of the polarization so thatg(*ie))-R=0, thens;(7)=0 procedure for elliptic polarizatiofprovided the ellipticityé
[cf. the definition of this function in Eq¥36)—(38)], and is not too larggis to solve only the component of the return
there is no harmonic emission. condition(48) that corresponds to the large component of the

The polarization of the emitted harmonics can be calcufield and to ignore the other. The physical reasoning behind
lated from the matrix elemerf#6). It is, in general, elliptic  this procedure is the rapid spreading of the wave packet as-
and there are no simple rules regarding the orientation of theociated with such a classical trajectory, which implies that it
plane of polarization. If, however, the molecular axis lies indoes not matter whether the electron returns exactly to a
the plane of polarization of the driving field then the harmon-particular point or just into some vicinity; see, e [29].
ics are polarized in this plane as well. For our elliptically polarized field28), the x component

is the large component. So the applicable return condition is
Ill. THE SIMPLE MAN'S MODEL

The simple classical model where an electron starts its sin wt;=sin wty+ w(t;—ty)coswty+
orbit at the center of the binding potential with zero velocity,
thereafter follows a classical trajectory in the presence of

merely the laser, and depending on its time of departure rev_vhere R, denotes the projection of the internuclear separa-

turns to its site of release to recombine into the atomic'on R on the direction of the large component of the field

ground state emitting its acquired kinetic energy plus theand the excursion amplitude was defined in Eg(43). The

binding energy in the form of one harmonic photon—thissomﬁ(.)ns of th_e return conditiomg) are easily .discusged
model has contributed to the understanding of high—harmonigraph'ca”y' F_lgure 2 depicts the _t\_NO functions _sin
generation more than anything e[d,18. It is also embed- *Rd2a. For g|vent0,. the retu_rn conditior{49) asks one to
ded in realistic quantum model49,20. The extension to draw the tangent at timg to either one of these two curves
two-center binding potentials is straightforward and has bee nd then to intersect it with the same cui¥er an electron

discussed befor§28]. We briefly summarize the relevant that returns to the center it started frpar with the other one
formulas (for an electron that starts at one center and recombines at

The trajectory verbally depicted above is the othey in order to determine the recombination tirne
These tangents define electron trajectories, and we will use
t these two terms interchangeably. Several relevant examples
(t—to)A(to)—f dT/-\(T)> (47)  are explicitly shown and labeled. Caseis the same as for
fo one atom: the electron returns to the center it started from.

with ty the departure time at positiag andA(t) the vector Th? t_angent.dra\_/vn Is foto=1.88, which yieldst1f5.97.
potential of the laser field, in this paper specified by &8). This is the situation that corresponds to the maximal return

We are interested in those timeg, viz. the recombination €N€rdy of 3.10,. Of course, the same tangent can be drawn
thh respect to the otheflower) curve (not shown. This

times, when the electron either returns to its starting point o

arrives at the other center of the binding potential. Thes atter tangent would bypass t.he. other center on ﬂ,]e way forth

times are defined by as well as back. Howe_ver, within the S|m_ple man’s model as
well as in the expressiof25) the electron is not affected by

r(ty))—ro=R;—R, or 0. (48)  the presence of the binding potential except at the instant

when it recombines. Figure 2 depicts two other tangents,

For general elliptic polarization, this vector equation onlywhich are closely related té. TangentB starts from one

has solutions for particular pairs @f andt,. For linear center and recombines at the other, and so does ta@ent

(49

*R,/«a,

t +—e
r(t)=r
(D=ro mc
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FIG. 3. Recombination energies as a function of the starttyme ~ FIG. 4. Comparison between harmonic spectra for a two-center
for a single ator(b) and for the two-center zero-range potent@l  system for various separatioRsand the spectrum of a single atom.
with the parameters from Figs. 2 and 4 =12 a.u. and 24 a.u. The two-center system is aligned with the linearly polarized driving
For each of the three scenariBs C, andD a typical trajectory is  field. The parameters are=0.043 a.u.,p= U,/(fhw)=10.58, and
sketched. the binding energy i$Ey|=0.4 a.u. The distance between the two

Both B andC d for th . h ield centers iR=0 andR=12 a.u.(a), andR=4 a.u. andR=8 a.u.(b).
ot an are drawn for those start timég that yie In each case the maximal classical recombination energies given in

maximal kinetic energies at the time of recombination as e rignt half of the figure are calculated from the simple man’s
determined from Eqs(52) and (53) below. The tangents B gqs (52—(54). For each separation, the lower energy corresponds
and C are topologically different. The trajectoB starts (g scenarid and the higher one to scenaf@® The energy assign-
moving towards the center at which it will recombine while ments in the upper left indicate the maximum harmonic number of
C starts moving away from it. As a consequence, the twahe low-energy hump as calculated from E5J).

associated maximal kinetic energies are different. Typically,

the recombination energy correspondingdtexceeds that of For a linearly polarized monochromatic field, obviously,
C. Finally, there is a completely new solution labelBd  E,j, ~8U,. This upper limit is achieved when the depar-
unprecedented from the case of one atom. Here the electraore time and the return time correspond to opposite maxima
moves directly from one center to the other. Again, the tanof the vector potential. For the fiel@8), with linear polar-
gent depicted is the one that yields a maximal recombinatioiration, this happens fdg=0 andwt,;=(2n+ 1), and the
energy. However, in contrast to the other cade8, andC, return condition(49) implies that the distance between the
in caseD there is(provided the distancR is not too larggéa  two centers must be

large interval of start timeg, all of which lead to compa-

. . . . . . . e’]TE
rable recombination timetg and energies. This is illustrated R=am(2n+1)= L

(2n+1). (51)

in Fig. 3: for example, foR=12 a.u., start times within the mw?

quite extended interval 28wty=<4.4 all result in compa-

rable recombination energies between Ug%nd 1.%J,, For fields strong enough to generate substantial harmonic
and the associated interval of return tintgsis much nar-  emission, this is a distance very large on the atomic scale.
rower than the interval of start timeg. Figure 3 displays the recombination energy as a function

When it returns the electron has gained the kinetic energgf the start time. The parameters are the same as in Figs. 2

) and 4, internuclear separations &e 12 a.u. as well as 24

E. - e [A(ty) —A(to)]? (50) a.u. and for comparison the single-atom results are also de-
kinret™om@t e o7 picted. For the latter, start times within the first half period of
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the field yield precisely the same return energies as those iaround the center frequency. The polarizatis chosen so
the second half period. For the two-center case, this is not sithat the emission rate becomes maximal, that is, parallel to
and the first half and the second half period lead to scenariae direction defined by th8-matrix element41). Since we

C andB, respectively. In between, there is a sizable range oémploy the dipole approximation for the emitted photon as
start timest, such that the return energies are just belowwell as for the driving field, the emission rate obeys a dipole
1.5, (caseD). Extrapolating the tendency froR=12 to  pattern.

24 a.u. one can infer that for ever increasiRgthe two Figure 4 compares harmonic emission by a single atom
maxima of caseC andD will finally merge to yield, for the and by a two-center configuration, which is lined up with the
distance(51), the absolute maximum ofl8, . linearly polarized laser field. Spectra are displayed for vari-

A relative maximum of the returor recombinationen-  ous distances between the two centers and the binding en-
ergy (50) can be determined by equating to zero its deriva-ergy is kept constant. Comparing the one-atom spectrum
tive with respect to the start tintg taking into account that Wwith the two-center spectra one notices two conspicuous dif-
the return timet, is a function oft, via Eq. (49) [20]. This  ferences. First, harmonic production within the plateau is
yields a trigonometric equation for the travel tirpe=w(t;  more efficient for two centers. Second, there is a low-energy

—t0)/2, viz., part of the spectrum that is dramatically enhanced in the case
of two centers. It forms a hump such that the energy of its
(sinp—p cosp)?—(p sin p)? top harmonic is proportional to the distance between the two
centers. Here and below we will refer to this feature as the
_ ;{(smp p cosp)2+(p sin p)2122 “low-energy hump.” As for the first observation, a very

rough explanation of the general enhancement of the plateau
(52) is provided by the existence of two pathways for the electron
to recombine: with the center it started from as well as with
whose solution allows for the determination of the start timethe other. As for the second, the hump corresponds tol@ase

through of Fig. 2 where the electron moves from one center to the
other within a time interval that is short compared with the

o) p sSinp period of the field. Moreover, this happens around the time
X=§(t1+t0)=arctanm. (33 where the field is near its maximum. Therefore, we may

approximate the electron’s energy gain by

Finally, the corresponding return energi€s) can be ob-
tained from Exinrer=€ELRx. (55

Exinre=8Up si? p sir? x. 54 This yields energies very close to the values given in Fig. 4,

which are determined from Eq&2)—(54). It is remarkable
that the maximum of the hump is reproduced just by the
energy(55) without the additional binding enerd{,|, un-

like the standard maximal energy of the plateau, viz., the
cutoff energy|Eq|+3.17U,,. Figure 2 also suggests an ex-
planation of why the hump is above the altitude of the pla-
teau by several orders of magnitude. First, as mentioned
above, the travel time is comparatively short so that the as-
sociated wave packet does not spread very much. Second,
there is a quite large interval of start timgsall of which

lead to comparable recombination timés and energies
Exinret- Hence, a time-frequencyor wavelej analysis

IV. RESULTS [32,33 should identify a very sharply defined temporal

All of the explicit results to be discussed in this section structure of the group of harmonics within the hump exhib-

are calculated from the matrix elemd@tl) for odd harmon- iting two spikes_ wit_hin one optical period corresponding to
ics in the velocity gauge. We will restrict ourselves entirely N€ tWO recombination times .

to the case of equivalent centers such thatc,. Moreover, It is well known that a driven two-level atom exhibits a
rﬁlarmonlc response also characterized by a kind of plateau

d a cutoff whose position equals the recombination energy
occupies the same statthe ground stajebefore and after an
the passage of the laser pulse. Under these conditions, onﬁ 5 [12. 15,31. Indeed, the symmetric and the anysymmet—
odd harmonics of the driving field are radiated. For the in- ric solutions(3) of the two-center zero-range potential form a

terpretation we will often refer to the simple man’s model realization of a quantum mechanical two-level system. In the
discussed in the previous section limit of large distance their wave functions approach the

form (10), and their large transition dipole momefitl)

dominates the interaction with the laser field. Hence, the

two-center zero-range potential combines the harmonic spec-
In all cases the quantity that we will plot is the rate of trum of a two-level atom with the manifestations of the

emission per time and solid angle element of a photon wittsimple man’s model in the continuum.

frequency Q integrated over a small frequency interval Yet another prediction of the simple man’s model mate-

In the derivation of Egs(52) and(53) t,# 0 was assumed.
The tangent#\ to D depicted in Fig. 2 are the solutions of
Egs.(52) and(53). ForR=0 all of this reduces, of course, to
the customary situation for one atom yielding 3J},/or the
maximal return energy, etc. It is important to realize that for
R=0 Egs.(52) and(53) do not contain any parameter at all.
Hence the solutionet, andwt; are independent of the laser
intensity, and the return enerd$4) is just proportional to
U,. This is no longer true foR+ 0 where the laser intensity
enters Eq(52) for the travel time through the parameter

A. Emission rates of the harmonics
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FIG. 5. Comparison of harmonic spectra for a two-center system FIG. 6. Harmonic spectra for a two-center system wRh

oriented paralle{for various distances between the two centarsl =8 a.u. aligned with a linearly polarized driving field for various
perpendicular to a linearly polarized driving field. The parametersntensities, corresponding 6, =0.058, 0.044, and 0.029 a.u. The
are w=0.043 a.u.,n=10.5, and Ey|=0.566 a.u. other parameters are@=0.043 a.u. andEy|=0.4 a.u. For each

case, the highest classical cutgtenariaC) is given as well as the

rializes in the exact calculation of Fig. 4: this is the differentmaximum of the low-energy hump expressed as a harmonic num-
energies corresponding to the solutions labddednd C in ber.
Fig. 2. Both are generated by the electron moving from one
center to the other, though not along the most direct riyte  €nergy of H* taken from Ref[25] as described in Sec. Il A.
but rather following two topologically different trajectories All of the features observed above are recovered, including
as explained above. The separation in energy is clearly vighe hump for low energies and its absence for perpendicular
ible for the larger internuclear distand@s-8 a.u. and 12 a.u. alignment, and the splitting of the spectrum just before the
Interestingly, these two maxima completely mask the stancutoff for large separation. The plateau is strongly enhanced
dard cutoff at 3.1@, as the distance grows larger. for the larger separations. However, this is predominantly a

Figure 5 compares harmonic spectra where the two-centé&onsequence of the lower binding energy for larger separa-
system is aligned with the field with a case where it is pertion, cf. Fig. 7. . _
pendicular. For a separation of 4 a.u., within the plateau the The dependence of the harmonic spectrum on the orien-
two spectra show little difference between parallel and periation of the two-center system with respect to the field is
pendicular alignment. However, for the low harmonics theinvestigated in Fig. 9. When the axis turns from parallel to
difference is huge. For parallel alignment, the aforementhe field to perpendicular the hump gradually disappears. For
tioned hump dominates the spectrum. For perpendicular oriparallel alignment, the parametBy/a=1.73 is quite large.
entation, it is absent and the spectrum is very close to thklence, the different trajectoriéd and C (in the nomencla-
case of the single atom. ture introduced in connection with Fig,) 2learly manifest

Figure 6 gives an example of how the spectra depend offilemselves in the two cutoffs at aboNt=13 andN=19.
the intensity of the driving field. In each case the cutoff The parameters have been chosen so that for parallel align-
positions calculated from the simple man’s model, that isment the results can be directly compared with calculations
from Eqgs.(52)—(54), are indicated. They reproduce the cut- of Ref. [16], which numerically solve the time-dependent
offs of the exact calculations very well. The figure also dis-

plays how the center of the hump scales with the field: It 107 T e
follows precisely the simple predictiof®5). Finally, Fig. 7 E A o—o 040 1
illustrates the scaling of the spectra with the binding energy 107° : e—a 048

0.56
0.64
0.70
0.80

|Eq|. As known from the case of one atom, the scaling of the
plateau is dramatic. For the comparatively small distance of
4 a.u. chosen for this figure, the cutoff of the plateau displays
perfect agreement with the standard estimate |Bf)
+3.1MJ,,. In impressive contrast, the position of the hump
is completely independent of the binding energy. Also, its
height is less dependent on the binding energy than the
height of the plateau. Both Figs. 6 and 7 are for parallel
alignment.

While Figs. 4-7 illustrate general properties of harmonic 107®
production by an academic two-center zero-range potential,
in Fig. 8 we attempt to simulate £ as closely as possible
within this model. The internuclear distances are moderate, FIG. 7. Harmonic spectra for a two-center system wRh
from 2 to 8 a.u., and for each separati@rthe binding en- =8 a.u. aligned parallel to a linearly polarized driving field with
ergy Eq [ =Ep(R)] was adjusted to the respective binding 5»=10.58 andw=0.043 for various binding energies.

_.
<
3

emission rate (arb. units)
b=

1 11 21 31 41 51 61 71
harmonic order
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FIG. 8. Harmonic spectra for a two-center system modeled to FIG. 10. Harmonic spectra for a two-center system wih
simulate H* for various distances between the two protoRs, =8 a.u. oriented parallel to the large component of an elliptically

—2au. (Eo|=1.103 a.u.),R=4a.u. (Eo|=0.796 a.u.), anR pplarized driving fi_el_d when the ellipticity c_han_ges from linear to

—8a.u. (E)|=0.628 a.u.). In all cases the molecule is lined up ¢ircular. The remaining parameters are as in Fig. 9.

with the linearly polarized driving field withw=0.076 a.u. andy

:10.5.8. ForR=2 a.u. the spectrum for perpendicular orientation is g||e| to the axis and capable of driving the electron directly

also given. from one center to the other. Finally, Fig. 11 illustrates the
. transition from linear to circular polarization for the case

Schralinger equation, both with and without the Born- where the axis of the two-center system is perpendicular to

Oppenheimer approximation. Qualitatively and semiquantithe small component of the driving field. Here, when the

tatively, many features are closely related, in particular thgyolarization is close to linear, the hump is absent.
position and magnitude of the low-energy hump. The most

noticeable discrepancy is in the dropoff beyond the plateau,

which is much faster in our results. Figure 10 elucidates the B. Phases of the harmonics
dependence of the harmonic spectrum on the ellipticity of the The S-matrix el i ina h . .
driving field in the case where the molecular axis is aligned Ie mz?]rlx $emen rS] governing arm((j)nlc er;]ms_smn are
with the large component of the driving field. Here, with compiex. .T us far we have concentrated on their magni-
increasing ellipticity, the hump survives though it becomestUde.S' which determine the prqbgp|llty of emission of a ha‘f‘
less pronounced while the plateau disappears. For a circgronic photon. The physical significance of their phases is

larly polarized driving field, a two-center system does emit"°! |_mmec_1|aFer ob_wous._We recall, hoyvever, that fo_r har-
harmonics. However, the common return-of-the-electron-to/'ONIC €Mission owing to its character!sncally low efﬂmency
the-core mechanism is no longer applicable and, as a cons 1€ Smatrlx element and Fhe expectation value of the.dlpole
guence, there is no plateau. The harmonics that are emittéHat”X element are prac;tlcally identicgl1]. .The physu;al
are due to the mechanism of trajectddyin Fig. 2: twice relevance of the latter is very well establishig#,35: it

: ; : - 1 ides crucial input for the behavior of the collective re-
during one optical cycle the circularly polarized field is par-P'OV! : . T - .
9 P y yp P sponse. With this motivation in mind, we will investigate the

phases of th&-matrix elements for the two-center system.
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FIG. 9. Harmonic spectra for a two-center system wRh harmonic order

=8 a.u. changing its orientation from parallel to perpendicular to

the linearly polarized driving field. The remaining parameters are FIG. 11. Same as Fig. 9, but the two-center system is oriented
»w=0.076 a.u., =1.62, and|Ey|=0.65 a.u. For parallel align- parallel to the small component of the elliptically polarized driving
ment, the parameters agree with those of Fig. 10 of Réi. field.
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FIG. 12. Phase of th&-matrix element for emission of the 21st FIG. 13. Same as Fig. 12, but for the 15th harmonic gl
harmonic for a two-center system wiR= 12 a.u., aligned parallel =0.6 a.u. The two insets show harmonic emission rates under the
to the linearly polarized driving field, as a function of its intensity same conditions fom=2 and for =14 in order to present evi-
specified by 7=U,/(fAw). The remaining parameters,E| dence that the 15th harmonic is part of the low-energy hump for
=0.4 a.u. andv=0.043 a.u. are those of Fig. 4. The two simple- 2=< p=<14.
man cutoffs as calculated from Eq52)—(54) are = 2.7 (scenario
C) and 7=4.54 (scenarioB). as defined in Figs. 2 and 3. They unfold near the maximum
of the driving field. Therefore, in order to scrutinize their

A typical result is given in Fig. 12, which displays the Properties, we may approximate the action by the limit of a
phase of the 21st harmonic for the parameters of Fig. 4 angonstant driving field lettingo—0, A —o while oA
R=12 a.u. as a function of the driving intensity expressed by~ ¢EL=const. Then
the dimensionless parametgr=U,/iw. Up to <10 the m(r’ —r")2
behavior is completely familiar from the one-atom case, see S(r't’,r"t")= —————— =eE (X’ —X")(t' +1")

e.g., Refs[35,36]: below =<3 the 21st harmonic is beyond 2t —t") 2
the cutoff of the plateau and, consequently, the phase drops (eE,)?
proportionally to about 3. At »=3.69, the 21st harmonic - (t'—t")3
enters the plateau, and the phase starts exhibiting the associ- 24m

ated typical erratic behavior. At the same time, dierage Mo R2

1

rate of decrease approximately doubles. Howevety-atL0 =5 *VypmhoRw(t’' +1")— gh 7,
something unexpected happens: the phase becomes largely
independent of the intensity. Inspection of Fig. 4 reveals that (56)
at about this intensity the 21st harmonic enters the low-
energy hump from above, that is, from the region of highwhere r=w(t’'—t"). In the second line of the preceding
harmonics. It appears that harmonics within the hump arequation, the action is specialized to exchange terms and
characterized by a phase that is almost independent of thewritten in dimensionless quantities. The first term on the
intensity. This is confirmed by Fig. 13. The two insets dem-right-hand side is independent of the intensity, and the sec-
onstrate that in this case the 15th harmonic is part of thend only depends on the suti+t”. Let us envision a
low-energy hump for intensities in the range specified by 2stationary-phase evaluation of the integrals in the matrix el-
=< =15 and, indeed, it is throughout precisely this rangeement(25). For the harmonics within the hump, the integral
that the phase is virtually independent of the intensity. Fomwith respect to the time differen¢é—t" (which corresponds
7=<2, the 15th harmonic briefly belongs to the plateau untilto the travel timg will be stationary for a travel time of;
for =<0.5 it has moved beyond the cutoff. On the other—t, corresponding to the trajectory of tyfe For the con-
hand, on the high-intensity side of the hump, the phaselitions of Fig. 2 we haver= w(t;—ty)=0.9. The intensity
shows behavior that is reminiscent of the low harmonics independence of the phase is then determined by the last term
the one-atom case, those below the plateau which are wetin the right-hand side of the actidf6), which is equal to
described by lowest-order perturbation theory. Again, the in—0.127 in this case. This must be compared witt8.37 in
tensity dependence of the phase is not very pronouri¢eée. the case of a single atom for the harmonics beyond the cutoff
harmonics that make up the hump are, however, not accef20]. Hence, for harmonics within the low-energy hump the
sible to lowest-order perturbation thegrfzor =20 (not  phase depends only very weakly on the driving intensity.
shown, the 15th harmonic is definitely part of the plateau, The preceding argument followed Ref84,2].
and its phase behaves accordingly. Figure 14 compares the phase for parallel and perpendicu-

The fact that the phase is almost independent of the interlar alignment. Remarkably, the phase in the one-atom case
sity for harmonics within the hump can be understood by(here that of the 15th harmoniés virtually identical to the
inspection of the actioti31) in the time-evolution operator phase in case of the two-center system oriented perpendicu-
(30), which is the essential input in the matrix eleméz). larly to the field even though in the latter exchange terms
The harmonics in the hump are due to trajectories of ®pe make substantial contributions. In contrast, the phase for par-
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phase locking. However, the novel feature of this figure is
the phase locking of the harmonics within the hump. It is not
as rigid as in the cutoff, but quite noticeable. It is most con-
spicuous forR=8 a.u.

For R=4 a.u. within the major part of the plateau the
harmonic phases are not exactly but quite closely locked.
This corresponds to the intensitiesf. Fig. 4 within the pla-
teau which is forR=4 a.u. much less rugged than for the
single atom. Apparently, two centers at a moderate distance

s f’i, i —— R=0au . that is much smaller than the width of the returning elec-
Sl L \ »--= R=12a.u, perpendicular tronic wave packet tend to smooth tiSematrix element,
" | 1,1!‘ "«...fﬁ | e both its magnitude and its phase, as a function of both driv-
2 \ ¥ K«L «-— R=12au, parallel ina i i dh i b
ol Y . ; . ing intensity and harmonic number.
0 5 10
Ul

V. CONCLUSIONS

FIG. 14. Comparison of the phase of tBanatrix element for
emission of the 15th harmonic by one atqiop), a two-center
system with R=12 a.u. oriented perpendicularly to the field
(middle), and the same oriented parallel to the fidbdttom). The
parameters are the same as in Figs. 12 and 4.

We have extended the zero-range potential model to one
electron in a two-center zero-range potential in order to
model, in particular, harmonic generation by molecular ions.
Such a system combines the characteristic traits of harmonic
generation in atomgnotably the extended plateau with a
well-defined cutoff proportional to the ponderomotive poten-
tial) with those typical of a two-level systerta hump in

ace of a plateau with a cutoff proportional to the field am-
plitude). The two-level related features disappear when the
orientation of the molecular axis changes from parallel to the
laser field to perpendicular. In the latter case high-harmonic
generation is very much atomlike. In a similar vein, if the

0-center system is irradiated by a laser field with circular
olarization the harmonic spectrum is essentially that of a

allel orientation shows evidence of the higher cutoff of the
plateau(which is due to scenari€ mentioned abovyeand
becomes approximately constant when the 15th harmonic,
n~4, enters the hump from below.

Finally, Fig. 15 points out that the harmonics within the
hump are to some degree phase lockethrmonic emission
rates for the same parameters are shown in Fjg=dr. fixed
intensity, the phases of adjacent harmonics are compared B

plotting their differencespy— ¢n_» as a function ofN. ) :
First, as may have been expected, the well-known phas.%“’o'le.vel system(The atom, aftgr all, in a circularly polar-
ized field produces no harmonics at alin contrast to an

locking of the one-atom harmonics beyond the cutoff is re-,

covered in the present two-center case. Also, as expected,I ealizgd quan.tum mechanical two-level system W'hose .tWO'
starts somewhat later at the higher cutoff corresponding t imensional Hilbert space cannot be represented in ordinary

scenarioC. This is clearly visible for the largest internuclear SP2C€: h_e_re the two-l_evel fea.tures manifest themselves in a
distance R=12 a.u.) covered by this figure. In this case one’®"Y Intuitive geometrlcallway. the electron moves from one
may also observe a very brief interval of phase locking thaf:em.er to the othe(. The.s'mp'e man's model, which |der1t|f|es
starts at the lower cutoff corresponding to scendiobut partlculqr eIectronlc_orblts in the presence of the Iaserfleld as
has no opportunity fully to develop since soon afterwards théeSponSIbIe for particular spectral regions of harmonics, re-

higher cutoff begins to dominate with its own associatedmains (for_ "Ueaf polarization a very convenient tool with
high predictive power.

The phases of the dipole components in the spectral re-
gion corresponding to two-level emission are strikingly dif-
ferent from the phases within the ordinary atomlike plateau.
Their intensity dependence is very weak whereas in the pla-
teau the phase changes by abomtwhen the ponderomotive
potential of the field changes by the energy of one pho-
ton. This will have a marked impact on the collective har-
monic response of an ensemble of stretched molecular ions.
Closely related is the fact that the phases of adjacent harmon-
ics within the same spectral region are locked with respect to
each other. The explicit calculations presented in this paper
proceed sufficiently fast so that they can be used as the mo-
lecular input for the simulation of the collective response of
an ensemble.

From the experimental point of view, it is crucial whether
or not the orientation of the molecular ions with respect to

FIG. 15. Phase differencesy— ¢y_» between adjacent har- the field can be controlled. There is a lot of accumulated
monics as a function of the harmonic numbefor R=0, 4, 8, and  evidence[8,9,37,38 that for laser pulses down to a pulse
12 a.u., respectively, from top to bottom. The parameters are thodength of 100 fs molecules do become aligned with a linearly
of Figs. 12 and 4. polarized field, either due to some dynamical mechanism

[®(N) — ®(N-2)] mod 2r

3 13 23 33 43 53
harmonic order N
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generated by the laser-molecule interacti@,4Q or, pos- ee*- 270 _

sibly, already by the way the molecular beam is prepa(ied. M(€Q)=— 77 N7y f dte'mf d3r d3r"
exceptional cases, though, it has been predicted that the mol-

ecule orients itself perpendicularly to the fi¢iD].) With a £ t

pump-probe experiment, then, molecules can be subjected to XJ dt'J dt" g (r',t")Va(r")

pulses with arbitrary polarization. Indeed, a high-intensity ! o

pump-probe experiment has been carried out recently where XUNMD(P 7" 1) gasd t1 507 ")

the probe field was polarized perpendicularly to the molecu-

lar axis[41]. XVq(r'") doalr”,t") (A1)

The extension of the presently discussed model of two o .
zero-range potentials to an arbitrary numbéris quite for a zero-range potential situated at posit@so that
straightforward without any technical difficulties. The nu-
merical effort increases roughly likg2. This would yield a Va(r)=V(r—a) and ¢o,r,t)=eo(r—a,t). (A2)
model of a cluster in close analogy to the one recently dis- ) ) ) _ _ )
cussed in Ref[42], but being able to deal with three- If we shift the integration variables this turns into
dimensional clusters. .

There are some limitations of the two-center zero-range __te 2mQ) it [ 43,7437

i X M(€ Q)= > dte d°r'd°r
potential model, which one has to be aware of: two zero- f (A%
range potentials, no matter how closely spaced, never over- . .
lap. Hence, such a model cannot incorporate internal over- XJ dt’f dt" % (r' 1 )V(r')
the-barrier ionization, which is responsible for ionization t —
enhancement and subsequent Coulomb explosion within a

. . . Vi) P ”
well-defined range of internuclear separatip43]. Nor does XU +atri+at’)

it allow for population trapping since thesdy energy sur- XToasd U1+t ;1" +at")\V(r") do(r",t").
face is not bonding. In a similar vein, the model would yield
identical spectra for harmonic generation ig'Hand D," for (A3)

fixed internuclear separatid® Of course, different distribu-
tions of R tailored to mimic vibrational modes in #1 and
D," could be put in by hand. Experimentally, photoelectron
spectra of Hand D, have been found to be largely identical Feasd T/ Fat 1" +at’)=rgasdtir’ ,t/:r" ") +a

while dissociation of H" and D,* shows marked isotopy (A4)
effects[44]. Deficiencies such as these, however, should

not affect the calculation of harmonic generation a fixed  The time-evolution operator is translationally invariant in the
internuclear separation RIf we intend to model harmonic Velocity gauge while in the length gauge it satisfies
generation by a particular molecular ion as a functiorRof

The classical trajectony,ssdoes not depend on the gauge. It
is just displaced according to

then we may as we did in case onHreadjust the param- UVEI(r' +at’:r"+at")
eters of the two-center zero-range potential for every value _ / ,
of R so as to reproduce the energy surface calculated by =g lealA)-AIIYNVE (¢’ t7:r" t"). (AD)

other means.
As a consequence, in the velocity gauge we have
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. o0 t
APPENDIX: GAUGE CONSIDERATIONS Xf dt,f dt"d)g(l",t')V(l")
t —

The question of gauge in analytical approximations to
multiphoton processes is known to be tricky. If we redevelop XUNMR(r! 71" " )YV(r") do(r” t"). (A7)
the same formalism as above in the length gauge we again
end up with the matrix elemefi@5), just the radiation-gauge The fact thatN(t) is time dependent is due to the approxi-
time-evolution operatot (VR)(t,t') is replaced by the corre- mations we have introduced. An exact calculation would
sponding time-evolution operatds(VE)(t,t’) in the length yield a constant in place (t), and the harmonic spectrum
gauge. For one zero-range atom at the origin, it is evidentvould be translationally invariant as it should. The quantity
that the two gauges yield identical matrix elements. In genN(t) has, however, only even harmonic components as can
eral, however, this is not so. be readily inferred from the explicit form of the time-
Let us consider the matrix eleme(®5) in either gauge evolution operatot) VR, as given, e.g., in Ref20]. Hence,
(i=R,L), in our approximation, the odd harmonic components are not



PRA 58 MODEL CALCULATIONS OF HIGH-HARMONIC . .. 4037

dependent on the position of the atom. The even component®rding to Eq.(A5). The exponential in this equation intro-

of N(t) generate spurious even harmonics in the spectrurduces both even and odd harmonics. As a consequence, shift-
which must not be taken seriously. In the length gauge, oiing the position of the atom mixes even and odd harmonics,
the other hand, the time-evolution operator transforms acand translation invariance holds for neither.
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