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H atom in elliptically polarized microwaves: Semiclassical versus quantum resonant dynamics

Krzysztof Sacha and Jakub Zakrzewski
Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagiellon´ski, ulica Reymonta 4, PL-30-059 Krako´w, Poland

~Received 10 July 1998!

The dynamics of Rydberg states of atomic hydrogen illuminated by resonant elliptically polarized micro-
waves is investigated both semiclassically and quantum mechanically in a simplified two-dimensional model of
an atom. Semiclassical predictions for quasienergies of the system are found to be in very good agreement with
exact quantum data enabling a classification of possible types of motion and their dynamics with the change of
the ellipticity of the microwaves. Particular attention is paid to the dynamics of the nonspreading wave packet
states, which are found to exist for an arbitrary microwave polarization.@S1050-2947~98!07711-7#

PACS number~s!: 05.45.1b, 32.80.Rm, 42.50.Hz
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I. INTRODUCTION

Consider a hydrogen atom, initially in a high Rydbe
state with the principal quantum numbern0 illuminated by
the microwave field of a frequencyv close to the frequency
of the unperturbed Kepler motionvK51/n0

3. Quantum me-
chanically speaking, a resonant periodic field coup
strongly severaln states due to almost resonant transitio
n→n85n61 for n close ton0 . Since the driving field is
periodic, applying the Floquet theorem@1# one may find
eigenstates of the atom-field system~the so-called Floquet o
dressed@2# states!. The eigenenergies are then referred to
quasienergies of the system and are defined modulo\v. The
Floquet states, periodic in time, may be viewed as lin
combinations of unperturbed system eigenstates. While
construction of Floquet states is possible for both nonre
nant and resonant driving, in the latter case they may h
quite unusual properties, especially in a semiclassical lim

Classically a resonance between the driving freque
and the frequency of the unperturbed motion leads t
strong perturbation of the system and a creation of a st
island in the phase space centered on a periodic orbit of
frequencyv. The motion in the island is locked to the m
crowave frequency due to the nonlinear resonance@3#. Semi-
classically one then expects that the corresponding Flo
time-periodic state will follow a classical trajectory~in the
vicinity of the periodic orbit!, i.e., form a wave packet tha
will not disperse in time.

States localized in the resonance island for such a peri
perturbation have been first considered more than 20 y
ago @4# and details of their semiclassical construction
some one-dimensional~1D! model systems have been an
lyzed @5,6#. The wave-packet character of the time evoluti
of individual Floquet states has been realized only quite
cently @7# for a hydrogen atom driven by linearly polarize
microwaves. Independently, it has been shown that Gaus
wave packets may propagate almost without dispersion a
circular periodic orbits in hydrogen atoms driven by circ
larly polarized fields@8#. The fact that the harmonic approx
mation implied in@8# and resulting the Gaussian wave pack
form is not a necessary condition for nonspreading proper
have been discussed in@9,10# where it was shown that th
harmonic expansion provides a good approximation for ex
PRA 581050-2947/98/58~5!/3974~9!/$15.00
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Floquet states of the system~which by definition, being time
periodic, do not spread on a long time scale!.

The fact that one may construct in a nonlinear syst
wave packets that do not spread induced a flurry of activ
in the field. Some@11–16# concentrated on modifying the
potential so as to make the harmonic approximation as g
as possible aiming at the construction of Gaussian n
spreading wave packets. Claiming that the anharmonic
rections are big for a hydrogen atom driven by circula
polarized fields those authors added a magnetic field per
dicular to the microwave polarization plane@11–16#. This
helps to minimize the unharmonicitiesin this plane, leaving,
however, unaffected the terms along the magnetic field a
Thus the Gaussian wave packets still remain an approxi
tion to the real dynamics and must disperse~although very
slowly in time!. Another approach aimed at optimizing th
coordinate system to the symmetry of the problem is given
@17#.

As discussed by us elsewhere@9,10,18–21# much more
fruitful is another approach, already outlined above. Name
we define the nonspreading wave packet as a single Flo
state~for which the Gaussian packet may be merely an
proximation!. Then a localization of the wave packet in th
vicinity of a stable fixed point is assured by the correspo
dence principle provided the size of the surrounding island
the phase space is comparable to\. One may construct an
approximate resonance Hamiltonian in the vicinity of t
island whose eigenstates will approximate well those Floq
states that are localized in the vicinity of the island~see
below!. Simultaneously, time periodicity of Floquet eige
states assures that the exact Floquet states will not disp

The existence of such wave-packet Floquet eigenst
has been proven by an exact numerical diagonalization of
problem for both linear polarization~LP! @7# and circular
polarization~CP! @9,10# of the microwaves. To allow their
detection one should consider the ways of populating eff
tively such states. For a CP, where the direct optical exc
tion from a weakly perturbed low-lying state is impossib
~since the wave packet is built from predominantly circu
atomic states unaccessible from low-lying states due to
pole selection rules! one should first prepare the atomic ci
cular state@22,23# and then switch on the microwaves suf
ciently fast@9#. It has been shown that the wave-packet sta
may be populated in this way with about 90% efficien
3974 ©1998 The American Physical Society
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PRA 58 3975H ATOM IN ELLIPTICALLY POLARIZE D . . .
@24#. For a LP case, an addition of a static electric fie
allows one to control the trajectory of the wave packet@18#,
in particular wave packets moving along elongated, low
gular momentum trajectories may be created. Such w
packets may be accessible to a direct excitation from lo
lying states.

The next important question is the possible mechanism
the detection of these states. At least three possible w
suggest themselves. Two of them utilize the residual de
of wave packets, either via the spontaneous emission~treated
both for LP @25# and CP @26,21#! or the ionization. The
former may not be efficient, since, at least for wave pack
moving on circular trajectories, the corresponding sponta
ous emission rates are quite small@21#. In the ionization
experiment, the population of the wave-packet state may
detected by a strong decrease in the ionization yield~since
ionization rates of wave-packet states are typically v
small @9,10#!. On the other hand, these rates fluctu
strongly ~the mechanism of their ionization, via ‘‘chaos a
sisted tunneling’’ is discussed in detail elsewhere@19,20#!—
this may make their detection in the ionization yield qu
ambiguous.

By far the most promising method is the Floquet spectr
copy @27#, i.e., probing, by a second weak microwave fie
the structure of Floquet~dressed@2# by microwaves! states.
To this end a precise estimation of the quasienergies
wave-packet states is necessary. An exact diagonalizatio
the problem gives all the Floquet states and a time cons
ing inspection of individual eigenvectors is necessary
identify the wave-packet states. This process may be o
mized by calculating properties of matrix elements of app
priately chosen operators but certainly it is desirable to h
good semiclassical predictions for the quasienergies. For
CP case those are given, to a very good accuracy from
harmonic approximation Hamiltonian@8–10#, this approach
being, however, restricted to this particular system.

For a general case of periodically driven systems ther
no simple unitary transformation that removes the time
pendence~as it is in the CP case! and the correct approach
to use approximate resonant Hamiltonians. The semiclas
quantization of such a Hamiltonian gives not only the go
estimate for wave-packet states but allows for the classifi
tion of resonant states for systems of more than one dim
sion. Recently, using such an approach we could discuss
resonant dynamics in a realistic three-dimensional~3D!
model of a hydrogen atom in the LP case@28#. Similarly, we
have discussed the control of wave-packet trajectories u
an additional static electric field@18#.

Until now the discussion of nonspreading wave-pac
states has been restricted to linear and circular polariza
cases only. The aim of this paper is to treat a resonant
namics of a hydrogen atom, both semiclassically and qu
tum mechanically in a general case of an elliptical polari
tion ~EP!. Apart from generalizing the notion o
nonspreading wave packets to an arbitrary EP, we disc
the full dynamics of quasienergies as a function of the el
ticity of the microwaves for a resonant case, being stimula
by recent ionization experiments@29#. Unfortunately, the ex-
periments do not allow for a full selection of the initial sta
of an atom~states with all possible angular momenta a
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simultaneously excited! but this situation may improve in the
near future.

The EP case is highly nontrivial. For LP microwaves t
conservation of the angular momentum projection onto
polarization axisLz makes the dynamics effectively two d
mensional. For the CP case whileLz is not conserved, the
transformation to the frame rotating with the microwave fr
quency removes the explicit oscillatory time dependen
~see, e.g.,@30–33#!. Both these simplifications are no longe
possible in the general EP microwave field. In effect, t
exact quantum diagonalization approach for the part of
spectrum corresponding to the strongly perturbed atomic
dberg spectrum would require very big computer memo
Let us mention also that in the effective 2D LP case, the s
of the art computations@7# consider initial atomic states with
the principal quantum number of the order of 20.

For that reason we shall consider not the realistic fully
model of an atom but rather the restricted 2D model in wh
the electronic motion is restricted to the polarization pla
Study of such simplified models has been most successfu
the past both for LP~where one-dimensional model has be
a main source of quantum results for a long time@34,35,6#!
and in CP@30–33# where also the 2D, polarization plan
restricted model has been utilized. An additional argum
favoring the 2D model comes from our classical study
dynamics in EP microwaves@36,37# where comparison of
2D @36# and 3D@37# analysis shows the similarity of phys
cal phenomena in both cases. Simply put the perturbatio
most effective if the polarization plane coincides with t
plane of Kepler motion.

II. SEMICLASSICAL VERSUS QUANTUM APPROACHES

The Hamiltonian of the hydrogen 2D model atom driv
by an elliptically polarized electromagnetic field reads in t
dipole approximation and in the length gauge~in atomic
units!

H5
px

21py
2

2
2

1

r
1F~x cosvt1ay sin vt !, ~2.1!

wherer 5Ax21y2 while F andv denote the amplitude an
the frequency of the microwave field, respectively.a defines
the ellipticity of the microwaves witha50 (a51) corre-
sponding to a LP~CP! limiting case.

Using the Floquet theorem the solution of the quant
problem is equivalent to diagonalizing the Floquet Ham
tonian

S H2 i
]

]t Dcn5HFcn5Encn ~2.2!

with En being the quasienergies whilecn time-periodic Flo-
quet eigenstates.

The details of the numerical method are described in
Appendix. In short, the calculations proceed by express
the Floquet eigenvalue equation in the scaled semiparab
variables

x5L
u22v2

2
, y5Luv, ~2.3!
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where L is an arbitrary scaling factor. This allows one
remove the Coulomb singularity and cast the Schro¨dinger
equation into the generalized eigenvalue problem
polynomial-like operators. Standard harmonic oscillator c
ation and annihilation operators allow for simple evaluat
of matrix elements. The approach closely resembles tha
the 2D atom in the CP field@33# except that the explicit time
dependence is treated by the Fourier expansion. It is w
stressing that using the complex scaling parameterL one
effectively realizes the complex rotation in the system t
enables the exact treatment of the coupling to the continu
~ionization!; for details see@7,33# for LP and CP cases, re
spectively. In this paper, however, we shall concentrate
the Floquet level dynamics only for the sake of the comp
son with the semiclassics. The analysis of the ionization p
nomenon is left for a future publication.

The semiclassical quantization of resonant dynam
closely resembles the similar procedure applied by us
cently for the LP case@18,28#. That in turn originates from a
general prescription for EBK quantization of Floquet spec
@38#.

Starting with the Hamiltonian~2.1! we remove the ex-
plicit time dependence by going to the extended phase s
@3#. Defining the momentumpt conjugate tot ~time! variable
we get the new Hamiltonian

H5H1pt , ~2.4!

which is conserved during the motion. The quasienergie
the system will be then the quantized values ofH.

As the next step we express the Hamiltonian in acti
angle variables of the unperturbed Coulomb problem@36#.
For the 2D model atom those are, e.g., the canonically c
jugate pairs (J,u) and (L,f). J is the principal action~cor-
responding to the principal quantum number,n0). The cor-
responding angleu determines the position of the electron o
its elliptic trajectory.L is the angular momentum~equal to
Lz for the 2D motion in thex-y plane! while f is the con-
jugate angle~the angle between the Runge-Lenz vector a
the x axis, i.e., the main axis of the polarization ellipse!.

We shall consider below the case of the resonant driv
i.e., when the frequency of the Kepler motionvK51/J3 is
close to the microwave driving frequencyv. Applying the
secular perturbation theory@3# to average over the nonreso
nant terms one obtains an approximate resonant Hamilto
~in the frame rotating together with the electron! of the form

Hr52
1

2J2
2vJ1FG~L,f;a!cos~ û2d!1 p̂t , ~2.5!

where û5u2vt while p̂t5pt1vJ. Hr yields the pendu-
lumlike principal action motion with the strength and th
equilibrium position determined byG(L,f;a) and d
5d(L,f;a), respectively. The pendulum Hamiltonian is o
tained by additionally expandingHr around the center of the
resonance island given byJ5v21/3 up to second order in
DJ5J2v21/3 but we do not apply this expansion. BothG
andd depend on the initial shape and orientation of the el
tronic ellipse~via L,f) as well as on the ellipticity of mi-
crowaves,a, and are given by@36,39#
r
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G~L,f;a!5F S 11a

2
V1D 2

12 cos 2f
11a

2
V1

12a

2
V21

1S 12a

2
V21D 2G1/2

, ~2.6!

tan d5
~12a!V212~11a!V1

~12a!V211~11a!V1
tan f, ~2.7!

where

V61~J,L !5v22/3FJ 18~e!6
A12e2

e
J1~e!G . ~2.8!

J1(x) andJ 18(x) denote the ordinary Bessel function and

derivative, respectively, whilee5A12L2/J25A12L2v2/3

stands for an eccentricity of an electronic ellipse. For co
pleteness let us mention that a similar approximation on
purely quantum level, leading to Mathieu equation has b
performed for the CP case only in@40#.

The semiclassical quantization of Eq.~2.5! is straightfor-
ward and follows closely the procedure described in de
elsewhere@28# for arbitrary m:1 resonance. For 1:1 reso
nance considered here, the trivial quantization ofp̂t , explor-
ing the time periodicity of the system, yields additive term
kv to quasienergies~different values ofk correspond to dif-
ferent Floquet zones!. As discussed first in@41#, see also
@28#, the orbital motion in (J,û) variables~along the per-
turbed Kepler ellipse! is much faster than the modification o
the ellipse shape and its movement~precession! as described
by the motion in (L,f). Thus the slow and fast motions ma
be adiabatically decoupled. Making Born-Oppenheimer
proximation and using standard WKB rules, the fast (J,û)
motion is quantized taking the Maslov indexn52 ~corre-
sponding to librations, i.e., we quantize states inside the re
nance island!. Being interested in resonantly localized stat
we shall consider later the ground state of the radial moti
only. For the slow angular (L,f) motion we take the Maslov
index m50 or 2 for a rotational or librational motion, re
spectively.

Similarly, as in the LP microwaves@28#, it is easier to
quantize first the slow motion generated by constant val
of G(L,f;a) and later treat the fast motion. Such a proc
dure is justified since quantizing the fast motion one ta
G(L,f;a) as a constant quantity and thus the order of
quantization does not matter.

The existence of the resonance island in (J,û) space en-
sures that the radial motion is localized. So the remain
analysis should concern the angular (L,f) motion, which
reflects the slow evolution of the Kepler ellipse. The stru
ture of the (L,f) space influences values of quasienergies
well as the structure of corresponding semiclassical eig
states. Trajectories in the (L,f) space are determined b
constant values ofG also responsible for the size of the res
nance island in (J,û) space~recall that the island’s size is
determined approximately byAFG).

Before presenting the results let us define scaled v
ables, typically used as a convenient parametrization of
microwave ionization problem~since the dynamics scale
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FIG. 1. Two-dimensional hydrogen atom illuminated by resonant,v051, elliptically polarized microwaves. The effective scaled p
turbationG05G/(n011/2)2 is plotted as a function of the scaled angular momentum,L0 , and the angle,f, between the Runge-Lenz vecto
and the main axis of the polarization ellipse—upper row. Bottom row shows equipotential curves of the angular partG of the Hamiltonian
Hr , Eq. ~2.5!, representing the slow evolution of the Kepler ellipse. The curves correspond to semiclassical states originating f
n0521 hydrogenic manifold. Columns correspond to the different ellipticity of the microwavesa50.1 ~left! anda50.6 ~right!.
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classically@42#!. The common choice is to link the scaling
the initial energy of the electron@35#. For an unperturbed 2D
hydrogen atom the eigenenergies are given byEn521/2(n
11/2)2 with n being non-negative integer. This allows us
define scaled variables via the principal quantum numbe
the initial staten0 via

v05v~n011/2!3, ~2.9!

F05F~n011/2!4, ~2.10!

L05L/~n011/2!. ~2.11!

In particular note that the scaled angular momentumL0 may
take values in the@21,1# interval with extremal values cor
responding to circular orbits on which the electron moves
two opposite directions.

III. RESULTS AND DISCUSSION

To compare the semiclassical predictions to the ex
quantum calculations, we consider then0521 manifold of
our 2D model atom. This value is a compromise between
requirement to be in the semiclassical, largen0 regime and
computer memory limitations~size of the Floquet matrix to
be diagonalized!. For resonant driving we take the micro
f

n

ct

e

wave frequency to bev5vK51/(n011/2)3, (v051).
In Fig. 1 we present values ofG as a function of the scaled

angular momentumL0 and thef angle for two different
values of the degree of the field ellipticity given bya. Equi-
potential curves ofG corresponding to semiclassical stat
originating fromn0521 hydrogenic manifold are also show
in the figure. Due to the specific form of the resonan
Hamiltonian~2.5! those lines areindependentof the micro-
wave amplitudeF.

For a50 the (L,f) space is symmetric with respect t
theL050 axis since, in the LP case, dynamics is not affec
by the direction of the rotation of an electron. The left co
umn in Fig. 1 presents the results fora50.1, i.e., the case
very close to the LP problem. Note the presence of fo
stable fixed points: two of them,L0'0 andf5p/2, 3p/2,
correspond to almost straight line orbits oriented perpendi
larly to the main axis of the polarization ellipse, the oth
two fixed points correspond to circular orbits,uL0u'1 ~for
such orbitsf is a dummy variable!, with an electron rotating
in the same or opposite direction to the direction of the
tation of the field vector. In the vicinity of these fixed poin
the electronic motion is ‘‘shape’’ localized@since the motion
remains in the vicinity of a given (L0 ,f) point the eccen-

tricity of the orbit,e5A12L0
2, as well as its orientation with

respect to the polarization ellipse, given byf is approxi-
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mately preserved#. Whether the motion is well localized in
its radial motion in (J,û) variables, i.e., along the ellipse
depends on the size of the resonance island, given byAFG as
mentioned above. If the island in (J,û) space is sufficiently
large ~comparable in size to\ or larger! the quantum state
will be localized in the island. On the contrary, a too sm
resonance island cannot lead to localization in (J,û) space,
and possible quantum states will spread over the whole
lipse ~then also the semiclassical approach used become
viously inadequate!. Thus to observe interesting, nonsprea
ing wave packets the resonance island must be large eno

In this respect, two fixed points corresponding for smala
to almost circular orbits,uL0u'1, lie at the maxima ofG
~compare the left top panel in the figure! and for sufficiently
large F may enable a strong radial localization. The oth
two stable fixed points, corresponding to elongated orbits
at local minima ofG. There exist also two unstable fixe
points aroundL0'0 andf50,p; they form the origin of the
separatrix dividing the space.

Whena increases the fixed points situated initially arou
L0'0 and f5p/2, 3p/2 move in the direction of greate
negative values ofL0 ~see the right column in Fig. 1!, thus,
the eccentricity of the corresponding orbits decreases.
circular orbits do not change the shape but the resona
island in (J,û) space associated withL0'1 becomes large
while that associated withL0'21 becomes smaller as re
flected by the greater and smaller values ofG, respectively.
Note also that the islands in the (L,f) space containing li-
brational states shrink with the increase ofa, hence, they can
support fewer and fewer semiclassical states—whilea in-
creases librational states vault over the separatrices and
come rotational. In the limit ofa51 the islands disappea
and there exist only rotational states.

Consider the level dynamics corresponding to the cha
of a. Figure 2 shows the level dynamics for the group
states originating from then0521 hydrogenic manifold. We
take the scaled field amplitudeF050.03, which for the CP
case corresponds already to a significant ionization yield@33#
and may be, therefore, considered a quite large value. Fo

FIG. 2. Two-dimensional hydrogen atom driven by resona
v051, elliptically polarized microwaves. Level dynamics, vsa
~i.e., the degree of the field ellipticity!, of the semiclassical quasien
ergies~full lines! of the states originating from then0521 hydro-
genic manifold forF050.03 compared with the exact quantum r
sults ~dotted lines!.
l

l-
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r
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e
f

he

LP case, i.e.,a50, all states are doubly degenerate. Those
them that correspond to rotational states in the (L,f) space
are degenerate because the change of the rotation of an
tron does not affect dynamics in the LP problem@the (L,f)
space is symmetric with respect to theL050 axis#. The re-
maining librational states are degenerate as the two isla
around L050,f5p/2 and L050,f53p/2, are identical
and support identical states. Of course the degeneracies
be removed due to tunneling processes, for instance,
wave packets localized on circular orbits~the highest levels!
rotate in the opposite directions and belong to distinct se
classical states but quantum mechanical states are the
metric or antisymmetric linear combination of them. Th
two wave packets propagating on a circular orbit in the o
posite directions correspond to a single eigenstate~these
wave packets were already discussed in@43# for the limiting
LP case only!. Similarly tunneling effects affect the libra
tional states, i.e., quantum states are the linear combinat
of solutions in each island.

An increase ofa removes the semiclassical degeneracy
rotational states as one can see in Fig. 2—observe splitt
of upper levels in the manifold. It corresponds to the brok
symmetry with respect to change of a direction of rotation
an electron. Quasienergies of states corresponding to the
tion in the opposite sense to the rotation of the field vecto
i.e., corresponding to negative values ofL0 , move down
while those with positiveL0 go up. It is a consequence of th
behavior ofG, i.e., the greaterG the greater the quasienerg
value, see Fig. 1. Observe also that the degeneracy o
librational states~lower levels in Fig. 2! is not immediately
removed after a slight change of the field ellipticity froma
50 but is removed successively during an increase ofa.
This reflects the shrinking of the corresponding islands~the
situation mentioned above!, which causes the librationa
states to vault over the separatrix and become rotational.
levels with the smallest energy difference correspond to
librational and rotational orbits closest to the separatrix. T
narrowing of the level spacing in their vicinity is just a co
sequence of the slowing down of the classical motion@44#.
In the limit of a51 there is no degeneracy in the manifol

Note that the energy splitting of the manifold is the large
in CP case while the smallest for LP. It is associated with
corresponding strength of the perturbation and simply
presses the dependence ofG on a.

Exact quantum results coming from the numerical diag
nalization of the Floquet Hamiltonian are presented also
Fig. 2. Among the multitude of Floquet states appearing
the same energy range only those with the largest overla
the initial manifold are plotted for clarity. One can see th
the agreement with the semiclassical predictions is very g
except in the region of broad avoided crossings~with other
levels—partners in the crossing eliminated by the over
selection!, which appear in the upper part of the figure. T
semiclassical method does not take into account the inte
tion of the consideredn0521 manifold with other manifolds
~the method describes only a single resonant manifold!, thus
such avoided crossings have no chance to appear in
semiclassical calculations. For a more accurate compar
we plotted, in Fig. 3, quasienergies for two different valu
of a separately. The agreement between the semiclas
and quantum results is very good for high-lying leve

t,
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~greater values ofG! while for lower levels some difference
appear as expected due to small size of the resonance is

In the limiting casea51, for the CP case, another anal
sis of resonant dynamics is possible, namely, a harmo
approximation around a stable equilibrium point in the rot
ing frame@8# ~corresponding to the expansion about a sta
fixed pointL051, f arbitrary in our picture!. It is interesting
to compare both approaches. The present semiclassical q
tization of the resonance Hamiltonian is certainly a mo
general approach valid for a general EP case and for
whole manifold. The harmonic expansion is limited to t
CP case and valid for highest-lying states in the manif
only. On the other hand this expansion is quadratic in de
tions from the equilibrium point but nonlinear in the micr
wave fieldF strength while the resonance Hamiltonian a
proach is a first order inF expansion. Clearly in the dee
semiclassical regime~largen0) and for sufficiently largeF0
the harmonic expansion approach yields a better approx
tion for wave packet states in the CP than the present r
nant Hamiltonian analysis~yielding, however, little informa-
tion on the energies of other states in the resonant manifo!.
On the other hand, quite surprisingly, we have found, b
direct comparison of numerical values, that forF0 around
0.01 or 0.06 andn0 up to 30–40 the resonant Hamiltonia
yields semiclassical values closer to exact quantum data
the harmonic expansion. Thus for an intermediate range
n0 and F0 values the resonant Hamiltonian quantization
surprisingly good in accuracy, yielding, at the same time,
predictions for the whole resonant manifold and for an ar
trary polarization.

To complete the picture we show in Fig. 4 the level d
namics of the samen0521 manifold versus scaled field am
plitude, F0 , for a50.6. Quantum results are presented
gether with the semiclassical ones. Again, for the resona
island in orbital (J,û) motion sufficiently large to capture
quantum states, semiclassical results reproduce quan
ones quite well even beyond a classical chaos border~of
course except avoided crossings!.

Exact quantum Floquet matrix diagonalizations, p

FIG. 3. Comparison of the semiclassical quasienergies~circles!
originating from the unperturbedn0521 manifold forF050.03 and
v051 with the exact quantum values~crosses!, at different values
of the degree of the field ellipticitya50.1 ~a!, 0.9~b!. Integer index
p counts consecutive states in the perturbed manifold.
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formed using the Lanczos code yields not only the eigenv
ues but also the corresponding eigenvectors. Their time e
lution may be visualized@45# to confirm directly that indeed
the Floquet states localized both in (J,û) and in (L,f)
spaces correspond to the nonspreading localized wave p
ets. Consider again the level dynamics presented in Fig
As discussed above the higher-lying state in the manif
corresponds to the wave-packet motion of the electron on
circular orbit in the direction coinciding with the direction o
rotation of the electric field vector. And indeed such a m
tion is revealed by the plots of the corresponding Floq
state~see Fig. 5, upper row!. This Floquet state changes littl
with change of the ellipticity of the microwaves,a, and in
the limiting case of CP becomes a well-known CP no
spreading wave packet@8,9#. In the opposite limit ofa50
i.e., the LP microwave case, this state becomes almost
generate with another one corresponding to the different
rection of the electron rotation. The two, almost degener
exact Floquet states are linear combinations of the two w
packets~at least in 2D! as discussed in@43#.

It seems interesting to see what happens to the sec
member of the pair as polarization is changed from linea
elliptical ~a increases!. The two states separate fast ina and
each of them represents a distinct motion. As mention
above the state going down in energy corresponds to a w
packet moving on the circular orbit in the direction oppos
to the field. It undergoes a series of avoided crossings w
other states of the manifold losing progressively its localiz
character. Still, fora not too large, and far from avoide
crossings its wave-packet character is clearly visible~com-
pare lower row in Fig. 5!. This state loses its wave-pack
character when the librational islands~compare Fig. 1! move
sufficiently far down so that rotational states with large ne
tive L0 disappear since there is no ‘‘space left’’ for them d
to the finite value of\. As may be seen by comparison o
Figs. 1 and 2 this transition occurs arounda50.45 for n0
521, manifesting itself in the quantum data~Fig. 2! by

FIG. 4. Level dynamics of the exact quantum quasienerg
~dotted lines! in the vicinity of the resonant manifold emergin
from n0521, compared with the semiclassical prediction~full
lines!, for F050, . . . ,0.06 anda50.6,v051. Note that the maxi-
mum field amplitude clearly exceeds typical ionization thresho
measured in current experiments at the principal resonance.
semiclassical prediction accurately tracks the exact solution acro
large number of avoided crossings.
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relatively broad avoided crossings encountered by the wa
packet state. The transition point is, of course,\ dependent,
for smaller \ ~larger n0) the rotational, wave-packet-like
state with large negativeL0 exists for largera. It is worth
stressing that fora below this critical,n0- ~and thus driving
frequency! dependent value there are two distinct Floqu
states corresponding to two wave packets moving in oppo
directions.

IV. CONCLUSIONS

To conclude we have shown, by comparison with t
quantum numerical results, that the proposed semiclas
method, based on the first-order resonant Hamiltonian, g
good quantitative predictions. Numerical calculations p
duce nothing but numbers and an advantage of a semicl
cal analysis is an understanding of what physics is hid
behind them. Apparently the behavior of the H atom plac
in the EP microwave field, in the range of parameters u
above, is determined by the underlying classical dynam
especially, one may build wave packets that follow class
trajectories without spreading. We have shown that the w
packet discovered in CP microwaves@8,9# corresponding to
the motion of the electron on a circular orbit in the sam
direction as the rotation of the microwave field exists also
EP case. For a sufficiently small ellipticity of the microwa
polarization,a, there exists also another wave packet sta

FIG. 5. Nonspreading wave packets for a 2D hydrogen a
illuminated by the elliptically polarized microwaves with the am
plitude F050.03, frequencyv051 for n0521 and ellipticity a
50.4. Top row: the exact Floquet state corresponding to a n
spreading wave packet moving on a circular orbit in the direction
the rotation of the microwave field at timesvt50,p/4,p/2 from left
to right. This wave packet corresponds to the one known for
circular polarization and may be obtained from the latter by
change of the microwave polarization. Bottom row: another ex
Floquet state corresponding to a nonspreading wave packet mo
in the opposite direction~shown at the same timesvt50,p/4,p/2
from left to right!. Note that while the former almost preserves
shape in temporal evolution, the latter becomes significantly
torted. Still being an exact Floquet time-periodic eigenstate it
gains its shape~as depicted, e.g., in the bottom left corner of t
figure! every period of the microwave. The size of each box
6800 Bohr radii in bothx andy directions.
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corresponding to electron rotating in the opposite direction
the microwave field. In the limiting LP case both wave pac
ets coalesce, the exact Floquet states correspond semic
cally to linear combinations of two wave packets propag
ing in the opposite direction on the circular orbit@43#.

The analysis presented is restricted to the tw
dimensional model atom~similar assumption is implicit in
@43#!, its validity for the real three-dimensional atom is a
open question. Certainly, in the limiting LP case, due to
tational symmetry with respect to the field axis, the two wa
packets moving in the opposite directions in 2D lead in 3D
a doughnut shaped localized function oscillating betwe
north and south poles of the sphere~assuming a vertical po
larization of LP microwaves! @28#. For CP, on the other
hand, the wave-packet motion remains essentially two
mensional@10#. It will be most interesting to see how th
third dimension affects the dynamics also for a general c
of EP microwave field since already classical studies@36,37#
indicate that some qualitative differences may appear. T
subject is left for future studies.

Still the present 2D analysis shows that the nonspread
wave-packet states localized on circular orbits are not
stricted to circular polarization of microwaves only. Thus t
perfect circular polarization is not essential for a possi
experimental observation of nonspreading wave packets

Interestingly, in the EP case, there appears a possibilit
the angular localization in minima of the effective potent
G with the position of the minima beinga dependent~com-
pare Fig. 1!. If the creation of localized wave packets in su
minima were possible it would allow one to control th
shape of the trajectories on which the wave packets pro
gate by a change of microwave polarization, and not by
additional static field as proposed in@18#. Study of the cor-
responding wave functions indicates, however, that due
the small resonance island width the localizationalong the
ellipse @i.e., in (J,û) space# is not very effective at least in
the range ofn0 andF0 studied by us.
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APPENDIX

Consider the Floquet HamiltonianHF as defined in Eq.
~2.2! with the Hamiltonian given by~2.1!. For the sake of
efficiency of the numerical diagonalization it is convenient
rewrite the Floquet Hamiltonian in the velocity gauge
applying a standard unitary transformation@2,39#

HF52 i
]

]t
1

px
21py

2

2
2

1

r
1

F

v
@pxsin vt2pya cosvt#

1
F2

4v2
~a211!. ~A1!

n-
f

e
a
t

ing

-
-



tio

f

in
onic

nts
ent
ere
go-
ac-
rre-

only
ral-
on

two
ore

PRA 58 3981H ATOM IN ELLIPTICALLY POLARIZE D . . .
Next we turn to scaled semiparabolic coordinates~2.3!,
which allows us to express the Floquet eigenvalue equa

HFuun~ t !&5Enuun~ t !& ~A2!

as a generalized eigenvalue problem

~A2EnB!uun~ t !&50, ~A3!

where

A5~u21v2!HF

and ~A4!

B5u21v2,

with

HF5
pu

21pv
2

2L2~u21v2!
2

2

L~u21v2!
2 i

]

]t
1

F

Lv~u21v2!

3@~upu2vpv!sin vt2a~vpu1upv!cosvt# ~A5!

~with the additive pondoromotive term omitted!.
Floquet states are periodic in time~with the periodT

52p/v), thus we may expanduun(t)& in the Fourier series

uun~ t !&5 (
K52`

1`

e2 iKvtuun
K&. ~A6!

This allows us to cast Eq.~A3! into the equivalent set o
coupled equations
.

ys

ev

.

n Fpu
21pv

2

2L2 2
2

L
2Kv~u21v2!G uun

K&1~Ws2Wc!uun
K21&

2~Ws1Wc!uun
K11&5En~u21v2!uun

K& ~A7!

where

Ws5 i
F

2vL
~upu2vpv!,

~A8!

Wc5a
F

2vL
~vpu1upv!.

All terms in the above equation have the polynomial form
coordinates and momenta. This suggests using the harm
oscillator basis for an efficient evaluation of matrix eleme
@39#. The method becomes then analogous to the treatm
of the circular polarization case discussed in detail elsewh
@33#. The resulting generalized eigenvalue equation is dia
nalized using the Lanczos code, which allows for an extr
tion of eigenvalues in a selected energy range and the co
sponding eigenvectors. For completeness let us mention
that the Floquet Hamiltonian is invariant under the gene
ized parity transformation, i.e., the parity transformati
combined with the translation in time byp/v. ThusA andB
matrices may be split into uncoupled matrices that are
times smaller. This makes the numerical calculations m
efficient.
.
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