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H atom in elliptically polarized microwaves: Semiclassical versus quantum resonant dynamics
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The dynamics of Rydberg states of atomic hydrogen illuminated by resonant elliptically polarized micro-
waves is investigated both semiclassically and quantum mechanically in a simplified two-dimensional model of
an atom. Semiclassical predictions for quasienergies of the system are found to be in very good agreement with
exact quantum data enabling a classification of possible types of motion and their dynamics with the change of
the ellipticity of the microwaves. Particular attention is paid to the dynamics of the nonspreading wave packet
states, which are found to exist for an arbitrary microwave polarizaf®b050-2947{@8)07711-7

PACS numbes): 05.45+b, 32.80.Rm, 42.50.Hz

I. INTRODUCTION Floquet states of the systefwhich by definition, being time
periodic, do not spread on a long time sgale
Consider a hydrogen atom, initially in a high Rydberg The fact that one may construct in a nonlinear system
state with the principal quantum numbeg illuminated by  wave packets that do not spread induced a flurry of activity
the microwave field of a frequenay close to the frequency in the field. Somg11-16 concentrated on modifying the
of the unperturbed Kepler motioaaKzllng. Quantum me- potential so as to make the harmonic approximation as good
chanically speaking, a resonant periodic field couple®®s possible aiming at the construction of Gaussian non-
strongly severah states due to almost resonant transitionsSPreading wave packets. Claiming that the anharmonic cor-
n—n’=n=1 for n close ton,. Since the driving field is rections are big for a hydrogen atom driven _by_ circularly
periodic, applying the Floquet theorefi] one may find polarized fields those authors added a magnetic field perpen-

eigenstates of the atom-field systétime so-called Floquet or diclular to Fh_e _micrrc])wavi polari_za_t?gn E.Iarﬁiﬂ_llq' T_his

dressed?2] state$. The eigenenergies are then referred to a{e pS to minimize the unharmonicitias this plane leaving,

quasienergies of the system and are defined moaldThe owever, unaffected the terms along the magnetic field axis.
Thus the Gaussian wave packets still remain an approxima-

Floquet states, periodic in time, may be viewed as Iinea{ion to the real dynamics and must dispefathough very

combmat!ons of unperturbed system _eigenstates. While th‘s‘:"lowly in time). Another approach aimed at optimizing the
construction of Floqugt_ stat_es is possible for both nonresoz . dinate system to the symmetry of the problem is given in
nant and resonant driving, in the latter case they may hav
quite unusual properties, especially in a semiclassical limit. As discussed by us elsewhei@,10,18—21 much more
Classically a resonance between the driving frequencyyyitful is another approach, already outlined above. Namely,
and the frequency of the unperturbed motion leads to §ye define the nonspreading wave packet as a single Floquet
strong perturbation of the system and a creation of a stablgtate (for which the Gaussian packet may be merely an ap-
island in the phase space centered on a periodic orbit of thgroximation. Then a localization of the wave packet in the
frequencyw. The motion in the island is locked to the mi- vicinity of a stable fixed point is assured by the correspon-
crowave frequency due to the nonlinear resondB¢eSemi-  dence principle provided the size of the surrounding island in
classically one then expects that the corresponding Floquéhe phase space is comparableitoOne may construct an
time-periodic state will follow a classical trajectofin the = approximate resonance Hamiltonian in the vicinity of the
vicinity of the periodic orbi}, i.e., form a wave packet that island whose eigenstates will approximate well those Floquet
will not disperse in time. states that are localized in the vicinity of the islafabe
States localized in the resonance island for such a periodigelow). Simultaneously, time periodicity of Floquet eigen-
perturbation have been first considered more than 20 yeamates assures that the exact Floguet states will not disperse.
ago [4] and details of their semiclassical construction for The existence of such wave-packet Floquet eigenstates
some one-dimensiondllD) model systems have been ana- has been proven by an exact numerical diagonalization of the
lyzed[5,6]. The wave-packet character of the time evolutionproblem for both linear polarizatiodLP) [7] and circular
of individual Floquet states has been realized only quite repolarization(CP) [9,10] of the microwaves. To allow their
cently[7] for a hydrogen atom driven by linearly polarized detection one should consider the ways of populating effec-
microwaves. Independently, it has been shown that Gaussidively such states. For a CP, where the direct optical excita-
wave packets may propagate almost without dispersion alonton from a weakly perturbed low-lying state is impossible
circular periodic orbits in hydrogen atoms driven by circu- (since the wave packet is built from predominantly circular
larly polarized field48]. The fact that the harmonic approxi- atomic states unaccessible from low-lying states due to di-
mation implied in[8] and resulting the Gaussian wave packetpole selection rulgsone should first prepare the atomic cir-
form is not a necessary condition for nonspreading propertiesular statg22,23 and then switch on the microwaves suffi-
have been discussed [8,10] where it was shown that the ciently fast[9]. It has been shown that the wave-packet states
harmonic expansion provides a good approximation for exaamay be populated in this way with about 90% efficiency
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[24]. For a LP case, an addition of a static electric fieldsimultaneously exciteédut this situation may improve in the
allows one to control the trajectory of the wave padk], near future.
in particular wave packets moving along elongated, low an- The EP case is highly nontrivial. For LP microwaves the
gular momentum trajectories may be created. Such waveonservation of the angular momentum projection onto the
packets may be accessible to a direct excitation from lowpolarization axis., makes the dynamics effectively two di-
lying states. mensional. For the CP case whilg is not conserved, the
The next important question is the possible mechanism offansformation to the frame rotating with the microwave fre-
the detection of these states. At least three possible waydiency removes the explicit oscillatory time dependence
suggest themselves. Two of them utilize the residual deca(F€€: ©-9-130-33). Both these simplifications are no longer
of wave packets, either via the spontaneous emigsieated possible in the g_eneral .EP_m|crowave field. In effect, the
both for LP [25] and CP[26,21]) or the ionization. The exact quantum dlago_nallzatlon approach for the part c_>f the
former may not be efficient, since, at least for wave packetépectrum corresponding to the strongly perturbed atomic Ry-

- . . . . dberg spectrum would require very big computer memory.
moving on circular trajectories, the corresponding spontanel:et ugs mpention also that inqthe effec%iveQZD LPpcase the stz;{[e
ous emission rates are quite smg2ll]. In the ionization '

: . of the art computation7] consider initial atomic states with
experiment, the population of the wave-packet state may b

d db d i the ionizati - fhe principal quantum number of the order of 20.
etected by a strong decrease in the ionization yisldce For that reason we shall consider not the realistic fully 3D

ionization rates of wave-packet states are typically venynoqel of an atom but rather the restricted 2D model in which
small [9,10)). On the other hand, these rates fluctuateine electronic motion is restricted to the polarization plane.
strongly (the mechanism of their ionization, via “chaos as- stydy of such simplified models has been most successful in

sisted tunneling” is discussed in detail elsewhgt®,20)—  the past both for LRwhere one-dimensional model has been
this may make their detection in the ionization yield quitea main source of quantum results for a long tif8d,35,6)
ambiguous. and in CP[30-33 where also the 2D, polarization plane

By far the most promising method is the Floquet spectrostestricted model has been utilized. An additional argument
copy[27], i.e., probing, by a second weak microwave field, favoring the 2D model comes from our classical study of
the structure of Floquetdressed2] by microwave} states.  dynamics in EP microwaveg36,37 where comparison of
To this end a precise estimation of the quasienergies o2D [36] and 3D[37] analysis shows the similarity of physi-
wave-packet states is necessary. An exact diagonalization 68l phenomena in both cases. Simply put the perturbation is
the problem gives all the Floquet states and a time consuninost effective if the polarization plane coincides with the
ing inspection of individual eigenvectors is necessary toPlane of Kepler motion.
identify the wave-packet states. This process may be opti-
mized by calculating properties of matrix elements of appro-Il. SEMICLASSICAL VERSUS QUANTUM APPROACHES
priately chosen operators but certainly it is desirable to have
good semiclassical predictions for the quasienergies. For thﬁ
CP case those are given, to a very good accuracy from th |
harmonic approximation Hamiltonigd8—10], this approach
being, however, restricted to this particular system.

For a general case of periodically driven systems there is p2+p2
no simple unitary transformation that removes the time de- H=—"Y—>+F(x coswt+ay sinwt), (2.
pendencdas it is in the CP cagend the correct approach is 2 r

to use approximate resonant Hamiltonians. The semiclassical . .
guantization of such a Hamiltonian gives not only the goodWherer_ x“+y* while F and  denote the amplitude and

estimate for wave-packet states but allows for the classifica® frequency of the microwave field, respectivelydefines

tion of resonant states for systems of more than one dimer€ ellipticity of the microwaves wittu=0 («=1) corre-
sion. Recently, using such an approach we could discuss tiPonding to a LRCP) limiting case. _
resonant dynamics in a realistic three-dimensiof@D) Using the Floquet theorem the solution of the quantum
model of a hydrogen atom in the LP c428]. Similarly, we pro_blem is equivalent to diagonalizing the Floquet Hamil-
have discussed the control of wave-packet trajectories usin nian
an additional static electric fieldl.8].

Until now the discussion of nonspreading wave-packet (H—ii) Yo=Hpt,=E ¥, (2.2
states has been restricted to linear and circular polarization ot
cases only. The aim of this paper is to treat a resonant dy-
namics of a hydrogen atom, both semiclassically and quanith E, being the quasienergies whilg, time-periodic Flo-
tum mechanically in a general case of an elliptical polarizaduet eigenstates.
ton (EP. Apart from generalizing the notion of The details of the numerical method are described in the
nonspreading wave packets to an arbitrary EP, we discugPpendix. In short, the calculations proceed by expressing
the full dynamics of quasienergies as a function of the ellipthe Floquet eigenvalue equation in the scaled semiparabolic
ticity of the microwaves for a resonant case, being stimulatedariables
by recent ionization experimenitg9]. Unfortunately, the ex- )
periments do not allow for a full selection of the initial state uT—v
of an atom(states with all possible angular momenta are 2

The Hamiltonian of the hydrogen 2D model atom driven
an elliptically polarized electromagnetic field reads in the

y=Auv, (2.3
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where A is an arbitrary scaling factor. This allows one to 1+ a 2 1+a 1l—-a
remove the Coulomb singularity and cast the Sdhrger I'(L,¢;a)= ( 5 Vl) +t2coshp——Vi—5—V,
equation into the generalized eigenvalue problem for

polynomial-like operators. Standard harmonic oscillator cre- 1-a 2112

ation and annihilation operators allow for simple evaluation + TVl) } , (2.6)

of matrix elements. The approach closely resembles that for
the 2D atom in the CP fieltB3] except that the explicit time
dependence is treated by the Fourier expansion. It is worth tan 6= tan ¢, 2.7
stressing that using the complex scaling paramdtesne 1=V 1+ (1+a)V,
effectively realizes the complex rotation in the system that
enables the exact treatment of the coupling to the continuuyere
(ionization; for details sed7,33] for LP and CP cases, re-
spectively. In this paper, however, we shall concentrate on — =23 a4
the Floquet level dynamics only for the sake of the compari- VarQib)=o {jl(e) N
son with the semiclassics. The analysis of the ionization phe-
nomenon is left for a future publication. J1(x) and 71(x) denote the ordinary Bessel function and its
The semiclassical quantization of resonant dynamicgierivative, respectively, while= \/1_|_2/32: \/1_|_2w2/3
closely resembles the similar procedure applied by us restands for an eccentricity of an electronic ellipse. For com-
cently for the LP casgl8,28. That in turn originates from a pleteness let us mention that a similar approximation on the
general prescription for EBK quantization of Floquet spectrapurely quantum level, leading to Mathieu equation has been
[38]. performed for the CP case only jr0].
Starting with the Hamiltonian(2.1) we remove the ex- The semiclassical quantization of EQ.5) is straightfor-
plicit time dependence by going to the extended phase spaggard and follows closely the procedure described in detail
[3]. Defining the momenturp, conjugate td (time) variable  elsewhere[28] for arbitrary m:1 resonance. For 1:1 reso-

we get the new Hamiltonian nance considered here, the trivial quantizatiopafexplor-
ing the time periodicity of the system, yields additive terms

H=H+p, (2.4 kw to quasienergiedifferent values ok correspond to dif-

ferent Floquet zongs As discussed first if41], see also

0f‘28], the orbital motion in Q,@) variables(along the per-
turbed Kepler ellipsgis much faster than the modification of
the ellipse shape and its moveméntecessionas described
by the motion in [, ¢). Thus the slow and fast motions may
"be adiabatically decoupled. Making Born-Oppenheimer ap-

proximation and using standard WKB rules, the fa&té)
motion is quantized taking the Maslov index=2 (corre-
sponding to librations, i.e., we quantize states inside the reso-
nance islang Being interested in resonantly localized states
Qe shall consider later the ground state of the radial motion,
only. For the slow angulai(, ¢) motion we take the Maslov
index =0 or 2 for a rotational or librational motion, re-
Spectively.

Similarly, as in the LP microwavel28], it is easier to

(l—a)V,l—(l-l- a)Vl

Ny
e

Ji(e)|. (2.8

which is conserved during the motion. The quasienergies
the system will be then the quantized values-of

As the next step we express the Hamiltonian in action
angle variables of the unperturbed Coulomb probl&i.
For the 2D model atom those are, e.g., the canonically co
jugate pairs J,6) and (L, ). J is the principal actior{cor-
responding to the principal quantum numbey). The cor-
responding anglé determines the position of the electron on
its elliptic trajectory.L is the angular momenturequal to
L, for the 2D motion in thex-y plane while ¢ is the con-
jugate anglgthe angle between the Runge-Lenz vector an
the x axis, i.e., the main axis of the polarization ellipse

We shall consider below the case of the resonant driving
i.e., when the frequency of the Kepler motiarx=1/3° is
close to the microwave driving frequeney. Applying the L :
secular perturbation theofi3] to average over the nonreso- quantize first the slow motion generated' by constant values
nant terms one obtains an approximate resonant Hamiltonia®f 1 (L.#:@) and later treat the fast motion. Such a proce-

(in the frame rotating together with the electyaf the form dure is justified since quantizing the fast motion one takes
I'(L,¢;a) as a constant quantity and thus the order of the

guantization does not matter.

1 . R ) . -
=———wlJ+FI(L,$;a)coq 6—58)+p;, (2.5 The existence of the resonance island nd) space en-

J? sures that the radial motion is localized. So the remaining

analysis should concern the anguldr,$) motion, which

where 8= §— ot while 6t:pt+w3_ H, yields the pendu- reflects the slow evolution of the Kepler ellipse. The struc-
lumlike principal action motion with the strength and the ture of the L, ¢) space influences values of quasienergies as
equilibrium position determined byl'(L,¢;a) and &  Well as the structure of corresponding semiclassical eigen-
= 8(L, ¢; ), respectively. The pendulum Hamiltonian is ob- States. Trajectories in thel(¢) space are determined by
tained by additionally expandirity, around the center of the Cconstant values diFAaIso responsible for the size of the reso-
resonance island given hy=w ' up to second order in nance island in J,6) space(recall that the island’s size is
AJ=J—w " but we do not apply this expansion. Bakh  determined approximately byFT).
and é depend on the initial shape and orientation of the elec- Before presenting the results let us define scaled vari-
tronic ellipse(via L,¢) as well as on the ellipticity of mi- ables, typically used as a convenient parametrization of the
crowaves,w, and are given by36,39 microwave ionization problengsince the dynamics scales

r
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FIG. 1. Two-dimensional hydrogen atom illuminated by resonagt: 1, elliptically polarized microwaves. The effective scaled per-
turbationI'y=T/(ny+ 1/2)? is plotted as a function of the scaled angular momeniwgn,and the angleg, between the Runge-Lenz vector
and the main axis of the polarization ellipse—upper row. Bottom row shows equipotential curves of the angdlasfghe Hamiltonian
H,, Eq. (2.5, representing the slow evolution of the Kepler ellipse. The curves correspond to semiclassical states originating from the
ny=21 hydrogenic manifold. Columns correspond to the different ellipticity of the microwawve8.1 (left) and «=0.6 (right).

classically{42]). The common choice is to link the scaling to wave frequency to be= wx=1/(ng+1/2)%, (wy=1).
the initial energy of the electrdr85]. For an unperturbed 2D In Fig. 1 we present values bfas a function of the scaled
hydrogen atom the eigenenergies are giverERy —1/2(n angular momentuni, and the ¢ angle for two different
+1/2)* with n being non-negative integer. This allows us to values of the degree of the field ellipticity given ky Equi-
define scaled variables via the principal quantum number ofotential curves of’ corresponding to semiclassical states
the initial staten, via originating fromny= 21 hydrogenic manifold are also shown
in the figure. Due to the specific form of the resonance
Hamiltonian(2.5) those lines aréndependendf the micro-
wave amplitude-.

For =0 the (L,®) space is symmetric with respect to

theL,=0 axis since, in the LP case, dynamics is not affected

Lo=L/(no+1/2). (213 by thcie direction of the rotation of an )électron. The left col-

In particular note that the scaled angular momentyymay \lj;nrn I:Iozlg té ?ggsigs trgﬁléenfuut\fo{?:tr?él, rl.ees.’ergk(]:z %?S%ur
take values in th¢ —1,1] interval with extremal values cor- y P ’ P

responding to circular orbits on which the electron moves inzgar?éi fg(r?g tgoall?rfcz)gvszrgif mﬁmeozrgitzn:rﬁ:tgé 2, ::T/e?ﬁdicu
two opposite directions. p g perp -

larly to the main axis of the polarization ellipse, the other
two fixed points correspond to circular orbits, |~1 (for
such orbits¢ is a dummy variablg with an electron rotating

To compare the semiclassical predictions to the exact the same or opposite direction to the direction of the ro-
quantum calculations, we consider thg=21 manifold of tation of the field vector. In the vicinity of these fixed points
our 2D model atom. This value is a compromise between théh€ electronic motion is “shape™ localizggince the motion
requirement to be in the semiclassical, largeregime and ~ 'émains in the vicinity of a givenl(y,#) point the eccen-
computer memory limitationésize of the Floquet matrix to tricity of the orbit,e=/1— L2, as well as its orientation with
be diagonalized For resonant driving we take the micro- respect to the polarization ellipse, given kyis approxi-

wo=w(ng+1/2)3, (2.9

Fo=F(ng+1/2)4, (2.10

Ill. RESULTS AND DISCUSSION
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-1.03 ‘ ‘ , : LP case, i.e.¢=0, all states are doubly degenerate. Those of
them that correspond to rotational states in thed() space
-1.04 ¢ are degenerate because the change of the rotation of an elec-
- tron does not affect dynamics in the LP problgtme (L, ¢)
2 105 space is symmetric with respect to thg=0 axig|. The re-
YD maining librational states are degenerate as the two islands,
= -1.06 aroundLy=0,¢=7/2 and Ly=0,¢=37/2, are identical
§ and support identical states. Of course the degeneracies may
g 107 be removed due to tunneling processes, for instance, the
w wave packets localized on circular orbitee highest levels
-1.08 rotate in the opposite directions and belong to distinct semi-
classical states but quantum mechanical states are the sym-
1% 0 o2 04 o8 o8 1.0 metric or antisymmetric linear combination of them. Thus

o two wave packets propagating on a circular orbit in the op-
posite directions correspond to a single eigenstétese
'wave packets were already discusse{4ig] for the limiting

LP case only. Similarly tunneling effects affect the libra-
tional states, i.e., quantum states are the linear combinations
of solutions in each island.

An increase ofx removes the semiclassical degeneracy of
rotational states as one can see in Fig. 2—observe splittings
mately preserveld Whether the motion is well localized in of upper levels in the manifold. It corresponds to the broken
its radial motion in (,8) variables, i.e., along the ellipse, Symmetry with respect to change of a direction of rotation of

depends on the size of the resonance island, giveffdyas 2" electron. Quasienergies of states corresponding to the mo-
. : A i - tion in the opposite sense to the rotation of the field vectors,
mentioned above. If the island id,(0) space is sufficiently

large (comparable in size té@ or large) the quantum state Le., corresponding to negative values lof, move down
will be localized in the island. On the contrary, a too smallWhIIe those with positivé., go up. Itis a consequence of the

i o . behavior ofT’, i.e., the greatel” the greater the quasienergy
resonance island cannot lead to localization Jné§ space, yajye, see Fig. 1. Observe also that the degeneracy of all
and possible quantum states will spread over the whole eliyrational stateglower levels in Fig. 2 is not immediately
lipse (then also the semiclassical approach used becomes oRsmoved after a slight change of the field ellipticity fram
yiously inadequate Thus to obserye interesting, nonspread-_ g put is removed successively during an increasex.of
ing wave packets the resonance island must be large enougyjs reflects the shrinking of the corresponding islatttie

In this respect, two fixed points corresponding for small - gjy,ation mentioned aboyewhich causes the librational
to almost circular orbits|Lo|~1, lie at the maxima of’  giates to vault over the separatrix and become rotational. The
(compare the left top panel in the figuirend for sufficiently  |eyels with the smallest energy difference correspond to the
large F may enable a strong radial localization. The otherjjyrational and rotational orbits closest to the separatrix. The
two stable fixed points, corresponding to elongated orbits “Gharrowing of the level spacing in their vicinity is just a con-
at local minima ofI’. There exist also two unstable fixed sequence of the slowing down of the classical mofié4.
points around.,~0 and¢=0,m; they form the origin of the |, the |imit of a=1 there is no degeneracy in the manifold.
separatrix dividing the space. o Note that the energy splitting of the manifold is the largest

Whena increases the fixed points situated initially aroundj, cp case while the smallest for LP. It is associated with the
Lo~0 and ¢=/2,37/2 move in the direction of greater corresponding strength of the perturbation and simply ex-
negative values off ; (see the right column in Fig.)lthus, presses the dependenceldbn a.
the eccentricity of the corresponding orbits decreases. The Exact quantum results coming from the numerical diago-
circular orbits do not change the shape but the resonanGgjization of the Floguet Hamiltonian are presented also in
island in @, ) space associated witly~1 becomes larger Fig. 2. Among the multitude of Floguet states appearing in
while that associated withy~—1 becomes smaller as re- the same energy range only those with the largest overlap on
flected by the greater and smaller valued ofrespectively. the initial manifold are plotted for clarity. One can see that

FIG. 2. Two-dimensional hydrogen atom driven by resonant
wo=1, elliptically polarized microwaves. Level dynamics, ws
(i.e., the degree of the field ellipticityof the semiclassical quasien-
ergies(full lines) of the states originating from the,=21 hydro-
genic manifold forF,=0.03 compared with the exact quantum re-
sults (dotted lines.

Note also that the islands in thé& (@) space containing li- the agreement with the semiclassical predictions is very good
brational states shrink with the increasengthence, they can except in the region of broad avoided crossigith other
support fewer and fewer semiclassical states—whilen- levels—partners in the crossing eliminated by the overlap

creases librational states vault over the separatrices and bselection, which appear in the upper part of the figure. The
come rotational. In the limit oir=1 the islands disappear semiclassical method does not take into account the interac-
and there exist only rotational states. tion of the considered,= 21 manifold with other manifolds
Consider the level dynamics corresponding to the changé&he method describes only a single resonant maniféihais

of a. Figure 2 shows the level dynamics for the group ofsuch avoided crossings have no chance to appear in our
states originating from they=21 hydrogenic manifold. We semiclassical calculations. For a more accurate comparison
take the scaled field amplitude,=0.03, which for the CP  we plotted, in Fig. 3, quasienergies for two different values
case corresponds already to a significant ionization Y838l  of « separately. The agreement between the semiclassical
and may be, therefore, considered a quite large value. For trend quantum results is very good for high-lying levels
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(dotted line$ in the vicinity of the resonant manifold emerging
from ny=21, compared with the semiclassical predictitmll
lineg), for Fy=0, ... ,0.06 anda=0.6, wy=1. Note that the maxi-
mum field amplitude clearly exceeds typical ionization thresholds
measured in current experiments at the principal resonance. The
semiclassical prediction accurately tracks the exact solution across a
(greater values of) while for lower levels some differences '2rge number of avoided crossings.

appear as expected due to small size of the resonance island.

In the limiting casex=1, for the CP case, another analy- formed using the Lanczos code yields not only the eigenval-
sis of resonant dynamics is possible, namely, a harmoniaes but also the corresponding eigenvectors. Their time evo-
approximation around a stable equilibrium point in the rotat-lution may be visualize45] to confirm directly that indeed
ing frame[8] (corresponding to the expansion about a stablgpe Floguet states localized both id,8) and in (,d)
fixed pointL,=1, ¢ arbitrary in our picturg It is interesting  gpaces correspond to the nonspreading localized wave pack-
to compare both approaches. The present semiclassical quasts. Consider again the level dynamics presented in Fig. 2.
tization of the resonance Hamiltonian is certainly a moreag discussed above the higher-lying state in the manifold
general approach valid for a general EP case and for thgyrresponds to the wave-packet motion of the electron on the
whole manifold. The harmonic expansion is limited to thecjrcular orbit in the direction coinciding with the direction of
CP case and valid for highest-lying states in the manifoldtation of the electric field vector. And indeed such a mo-
only. On the other hand this expansion is quadratic in deviagign is revealed by the plots of the corresponding Floquet
tions from the equilibrium point but nonlinear in the micro- state(see Fig. 5, upper rowThis Floquet state changes little
wave fieldF strength while the resonance Hamiltonian ap-yth change of the ellipticity of the microwaves, and in
proach is a first order iff expansion. Clearly in the deep the |imiting case of CP becomes a well-known CP non-
semiclassical regim@argen,) and for sufficiently large=y  spreading wave packé8,9]. In the opposite limit ofx=0
the harmonic expansion approach yields a better approximge_ the LP microwave case, this state becomes almost de-
tion for wave packet states in the CP than the present resgpenerate with another one corresponding to the different di-
nant Hamiltonian analysig/ielding, however, little informa-  rection of the electron rotation. The two, almost degenerate
tion on the energies of other states in the resonant mahifoldexact Floquet states are linear combinations of the two wave
On the other hand, quite surprisingly, we have found, by Backets(at least in 2D as discussed i3],
direct comparison of numerical values, that fe around It seems interesting to see what happens to the second
0.01 or 0.06 andh, up to 30—40 the resonant Hamiltonian member of the pair as polarization is changed from linear to
yields semiclassical values closer to exact quantum data theg]”pticau (e increasep The two states separate fastdrand
the harmonic expansion. Thus for an intermediate range afach of them represents a distinct motion. As mentioned
Ng and Fo values the resonant Hamiltonian quantization iSabove the state going down in energy corresponds to a wave
surprisingly good in accuracy, yielding, at the same time, thgyacket moving on the circular orbit in the direction opposite
predictions for the whole resonant manifold and for an arbi+o the field. It undergoes a series of avoided crossings with
trary polarization. other states of the manifold losing progressively its localized

To complete the picture we show in Fig. 4 the level dy-character. Still, fore not too large, and far from avoided
namics of the same,= 21 manifold versus scaled field am- crossings its wave-packet character is clearly visiltem-
plitude, Fo, for =0.6. Quantum results are presented to-pare lower row in Fig. 5 This state loses its wave-packet
gether with the semiclassical ones. Again, for the resonancgharacter when the librational islan@®mpare Fig. Lmove
island in orbital §,8) motion sufficiently large to capture sufficiently far down so that rotational states with large nega-
guantum states, semiclassical results reproduce quantutive Lo disappear since there is no “space left” for them due
ones quite well even beyond a classical chaos botder to the finite value ofi. As may be seen by comparison of
course except avoided crossings Figs. 1 and 2 this transition occurs arouaer 0.45 for ng

Exact quantum Floquet matrix diagonalizations, per-=21, manifesting itself in the quantum datkig. 2) by

FIG. 3. Comparison of the semiclassical quasienerg@igsles
originating from the unperturbea,= 21 manifold forF,=0.03 and
wo=1 with the exact quantum valuésrossey at different values
of the degree of the field ellipticity=0.1(a), 0.9(b). Integer index
p counts consecutive states in the perturbed manifold.
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corresponding to electron rotating in the opposite direction to
the microwave field. In the limiting LP case both wave pack-
ets coalesce, the exact Floquet states correspond semiclassi-
cally to linear combinations of two wave packets propagat-
ing in the opposite direction on the circular orpd3].

The analysis presented is restricted to the two-
dimensional model atonsimilar assumption is implicit in
[43]), its validity for the real three-dimensional atom is an

open question. Certainly, in the limiting LP case, due to ro-

tational symmetry with respect to the field axis, the two wave
packets moving in the opposite directions in 2D lead in 3D to
a doughnut shaped localized function oscillating between
north and south poles of the sphéessuming a vertical po-
J larization of LP microwaves[28]. For CP, on the other
hand, the wave-packet motion remains essentially two di-
mensional[10]. It will be most interesting to see how the

third dimension affects the dynamics also for a general case
FIG. 5. Nonspreading wave packets for a 2D hydrogen atonPf EP microwave field since already classical stufi@37

iluminated by the elliptically polarized microwaves with the am- indicate that some qualitative differences may appear. This
plitude Fo=0.03, frequencywy=1 for ny=21 and ellipticity «  SUPject is left for future studies. _
=0.4. Top row: the exact Floguet state corresponding to a non- Still the present 2D analysis shows that the nonspreading
spreading wave packet moving on a circular orbit in the direction oﬁque—packgt states Ioc.allz.ed on c;lrcular orbits are not re-
the rotation of the microwave field at timeg = 0,7/4,7/2 from left  Stricted to circular polarization of microwaves only. Thus the
to right. This wave packet corresponds to the one known for thdP€rfect circular polarization is not essential for a possible
circular polarization and may be obtained from the latter by aéXperimental observation of nonspreading wave packets.
change of the microwave polarization. Bottom row: another exact Interestingly, in the EP case, there appears a possibility of
Floquet state corresponding to a nonspreading wave packet movirthe angular localization in minima of the effective potential
in the opposite directiotishown at the same timest=0,7/4,m/2  I" with the position of the minima being dependentcom-
from left to righf. Note that while the former almost preserves its pare Fig. ). If the creation of localized wave packets in such
shape in temporal evolution, the latter becomes significantly disminima were possible it would allow one to control the
torted. Still being an exact Floquet time-periodic eigenstate it reshape of the trajectories on which the wave packets propa-
gains its shapéas depicted, e.g., in the bottom left corner of the gate by a change of microwave polarization, and not by an
figure) every period of the microwave. The size of each box isadditional static field as proposed [ih8]. Study of the cor-
+800 Bohr radii in botix andy directions. responding wave functions indicates, however, that due to

the small resonance island width the localizatadong the
relatively broad avoided crossings encountered by the wavesiiipse[i.e., in (J,8) spacé is not very effective at least in
packet state. The transition point is, of coursedependent, tne range oh, andF, studied by us.
for smaller & (larger ny) the rotational, wave-packet-like,
state with large negative exists for largera. It is worth ACKNOWLEDGMENTS
stressing that forr below this critical,ny- (and thus driving . )
frequency dependent value there are two distinct Floquet V€ are grateful to Dominique Delande for numerous dis-

states corresponding to two wave packets moving in opposit%“SSions_ and the permission to use his Lanczos diagonaliza-
directions. tion routines. The support of the KBN under Project No.

2P302B-00915K.S. and J.2.is acknowledged. Numerical

calculations were performed at the Academic Computer Cen-
IV. CONCLUSIONS ter Cyfronet in Krakev with the help of Grant Nos. KBN/

S$2000/UJ/067/1998 and KBN/S2000/UJ/068/1998. K. Sacha

To conclude we have shown, by comparison with the,cinowledges financial support from the Foundation for Pol-
quantum numerical results, that the proposed semiclassic@l, science.

method, based on the first-order resonant Hamiltonian, gives
good quantitative predictions. Numerical calculations pro- APPENDIX
duce nothing but numbers and an advantage of a semiclassi- ) o ] )
cal analysis is an understanding of what physics is hidden Consider the Floquet Hamiltoniar as defined in Eq.
behind them. Apparently the behavior of the H atom placed2.-2 With the Hamiltonian given by2.1). For the sake of
in the EP microwave field, in the range of parameters usegfficiency of the numerical diagonalization it is convenient to
above, is determined by the underlying classical dynamicsiéwrite the Floguet Hamiltonian in the velocity gauge by
especially, one may build wave packets that follow classicaPPPlying a standard unitary transformatigh39]
trajectories without spreading. We have shown that the wave P 2, 2

pxtpy 1 F

packet discovered in CP microwavig 9] corresponding to He=—i—+ — =+ —[p,sin wt—pya coswt]
the motion of the electron on a circular orbit in the same at 2 r o
direction as the rotation of the microwave field exists also in 2
i A ; F
EP case. For a sufficiently small ellipticity of the microwave +——(a?+1) (A1)
5 .

polarization,«, there exists also another wave packet state, 4o
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Next we turn to scaled semiparabolic coordinat@s3), pﬁ+ pi
which allows us to express the Floquet eigenvalue equation e Kao(u?+0v2) ||ul)+ (Ws— W) |uk 1)
HeAi() =Bl (V) #2 — (Wb Wl "4y = E (0 +07)|ul) A7)
as a generalized eigenvalue problem
(A= EqB)|uy(1) =0, (a3) Where
where

F
W=i _(Up _vpv)r
A=(u2+v?)H °20A !
(A8)
and (A4)

F
B=u2+02, We=a 5+ (vpytup,).

with All terms in the above equation have the polynomial form in
’ p3+ pg 2 d F coordinates and momenta. This suggests using the harmonic
F= - Nt oscillator basis for an efficient evaluation of matrix elements
20%(u*+0%) AU+ at Aw(ut+o?) [39]. The method becomes then analogous to the treatment
X[(up,—vp,)sin wt—a(vp,+up,)coswt] (A5)  Of the circular polarization case discussed in detail elsewhere
[33]. The resulting generalized eigenvalue equation is diago-
(with the additive pondoromotive term omited nalized using the Lanczos code, which allows for an extrac-
Floguet states are periodic in timgvith the periodT  tion of eigenvalues in a selected energy range and the corre-
=2mlw), thus we may expanfli,(t)) in the Fourier series sponding eigenvectors. For completeness let us mention only
that the Floguet Hamiltonian is invariant under the general-
CiKe ized parity transformation, i.e., the parity transformation
|un(t))=K:E_x e " “up). (AB)  combined with the translation in time byl w. Thus.A andB
matrices may be split into uncoupled matrices that are two
This allows us to cast EqA3) into the equivalent set of times smaller. This makes the numerical calculations more

+ oo

coupled equations efficient.
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