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Atom cooling and trapping by disorder
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75231 Paris Cedex 05, France
~Received 14 May 1998!

We demonstrate the possibility of three-dimensional cooling of neutral atoms by illuminating them withtwo
counterpropagating laser beams of mutually orthogonal linear polarization, where one of the lasers is a speckle
field, i.e., a highly disordered but stationary coherent light field. This configuration gives rise to atom cooling
in the transverseplane via a Sisyphus cooling mechanism similar to the one known in standard two-
dimensional optical lattices formed by several plane laser waves. However, striking differences occur in the
spatial diffusion coefficients as well as in local properties of the trapped atoms.@S1050-2947~98!06411-7#

PACS number~s!: 32.80.Pj, 42.50.Vk
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I. INTRODUCTION

The study of speckle laser patterns, as created whe
highly coherent light beam is transmitted through or reflec
from an object with a surface which is rough on the scale
the laser wavelength, was initiated many years ago us
electromagnetic theory@1# and statistical methods@2,3#.
Since then, this subject has raised more and more inte
resulting in a vast development of the theory~for a survey of
the most recent results, see, e.g., Ref.@4#! as well as experi-
mental achievements. These give rise to important appl
tions of laser speckles in various fields of science, such as
speckle reduction in imagery@5#, roughness measurements
material science@6#, or applications in biophysics@7#.

The scope of the work presented here is to investigate
application of such speckle laser fields in the context of la
cooling of neutral atoms. We are especially interested in
disordered analog of the so-called optical lattices formed
several laser plane waves, which yield periodic optical
tentials and have been demonstrated experimentally to
rise to efficient laser cooling by a Sisyphus-type mechan
@8–10#. The basic principle of this cooling scheme is that t
atoms lose kinetic energy by running up potential hills, fro
where they are optically pumped into lower-lying potent
wells. Recent experiments have also demonstrated a sim
cooling scheme in the case of laser configurations form
quasiperiodic optical lattices@11#, which can be viewed as a
intermediate regime between the standard periodic latt
and the completely disordered patterns obtained fr
speckle light fields.

We consider two counterpropagating laser fields of mu
ally orthogonal polarization, where one of the beams i
speckle field. According to the randomly distributed pha
and intensity gradients of the speckle field in all dimensio
we find three-dimensional Sisyphus cooling even with t
one-dimensional beam configuration. Moreover, interes
transport phenomena are found in this case, e.g., a large
ference in the spatial diffusion of the atoms even in para
eter regimes where the steady-state temperatures are o
same order of magnitude for the longitudinal and the tra
verse directions. Other effects, such as local radiation p
sure forces, also arise from the fact that the amplitude
phase of the speckle field are essentially independent.
PRA 581050-2947/98/58~5!/3953~10!/$15.00
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The paper is organized as follows. In Sec. II we quali
tively discuss our proposed setup and the basic physical
cesses which give rise to the cooling mechanism. In Sec
we present the details of the theory and outline the numer
methods, especially the semiclassical Monte Carlo simu
tions, to obtain the results. Section IV is attributed to
analysis of the numerically obtained results such as temp
tures, spatial diffusion coefficients, and local effects in t
light field. Finally, in Sec. V we discuss the differences
the cooling in the laser propagation direction and in t
transverse plane.

II. QUALITATIVE DISCUSSION

Throughout this paper we will discuss the simple situat
of a single atom with a ground state of total angular mom
tum F5 1

2 and an excited state withF85 3
2 interacting with

two counterpropagating laser fields of orthogonal polari
tion. In the case of both laser fields being plane waves,
gives rise to well-known sub-Doppler cooling mechanisms
one dimension@12#. Because of the modulation of the optic
potential, trapping of atoms in the longitudinal direction h
been predicted@13# and observed@14#. In contrast, the atoms
are free in the transverse plane.

In the situation discussed here, one of the laser field
replaced by a speckle field, i.e., by a highly disordered,
nevertheless stationary and coherent light field. Such
speckle field can be easily generated experimentally, for
stance, by introducing a diffusor into the path of a laser pla
wave. The resulting light field shows highly disordered i
tensity and phase distributions~for a discussion of the statis
tical properties of speckle fields see, e.g., Ref.@2#!. An ex-
ample of a computer-generated speckle field on a disc
spatial grid is shown in Fig. 1.

Although different setups for the polarizations of th
counterpropagating light fields give rise to cooling, we w
concentrate here on the case of two mutually orthogonal
early polarized fields (lin'lin configuration!.

For this configuration one finds in the laser propagat
direction, essentially the usual one-dimensional~1D! Sisy-
phus cooling mechanism@12# apart from the different spatia
variation of intensity and phase of the speckle field as co
pared to a plane wave. Additionally, the properties of t
3953 ©1998 The American Physical Society
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3954 PRA 58HORAK, COURTOIS, AND GRYNBERG
speckle field give rise to Sisyphus cooling of the atom in
transverse plane, since the phase and intensity modula
in these directions lead to spatially varying light shifts a
optical pumping rates of the Zeeman sublevels of the ato
ground state. Thus the two counterpropagating laser be
~one plane wave and one speckle field! allow for three-
dimensional coolingof the atom, in sharp contrast to the 1
lin'lin optical lattices used so far@15#.

The most striking difference to the configuration of cou
terpropagating plane waves will be found in the transve
plane. Hence in the remainder of this paper we will main
restrict ourselves to a 2D model of cooling in the transve
directions, and will only briefly discuss the changes induc
by a model including the longitudinal direction in Sec. V.

As an example we plot the steady-state tempera
reached in this 2D subsystem versus the optical poten
depth\D8 for fixed optical pumping rateg8 in Fig. 2, where
D8 andg8 for the speckle field are defined with respect to t
mean intensity of the beam. The numerical method to ob
these results will be described in detail in Sec. III. As o
first and most important result we note that, as expected f
the previous discussions, the atoms reach a steady-state
perature in the transverse plane. Second, the general beh
of this steady-state temperature as a function of the op
potential depth resembles very much the case of the stan
optical lattices consisting of plane laser waves, i.e., for la
values ofD8 one finds a linear dependence, and hence

FIG. 1. Contour plot of the intensity of a numerically creat
speckle field on a grid of 64364 points.

FIG. 2. TemperatureT vs optical potential depth\D8 for a fixed
optical pumping rateg850.003G, whereG is the natural linewidth
of the atomic excited state. The average speckle grain size isdsp

53.8l.
e
ns

ic
ms

-
e

e
d

re
al

in
r
m
m-

vior
al
rd

e
e

steady-state kinetic energy becomes constant relative to
depth of the optical potentials in this limit. On the oth
hand, the temperature increases dramatically with small,
creasing values ofD8, and, finally, below a certain threshol
value ofD8 no steady-state temperature is achieved. Con
quently, one finds the lowest absolute values for the stea
state temperature for intermediate values of the optical
tential depth.

According to this similarity with standard optical lattice
we may roughly estimate the steady-state temperature o
atoms in the speckle field from the formula

kBT5
D̄

ā
, ~1!

whereD̄ is a mean momentum diffusion coefficient, andā a
mean friction coefficient@16#. Note that this formula only
holds in the absence of atomic localization, which is not
case here, as we will see later, but nevertheless gives a u
order of magnitude for the temperature. The friction coe
cient will be of the order of

ā;\k2S l

dsp
D 2 D

G
, ~2!

whereD is the detuning of the laser from the atomic res
nance frequency,G is the natural linewidth of the excited
state, anddsp is the mean distance of neighboring intens
maxima along a 1D cut through the speckle field, i.e.,
typical length scale of the speckle field. Equation~2! is ob-
tained from the well-known expression for standard lattic
@12,17,18#, where we have only replaced the factors ofl by
dsp, which accounts for the different typical length scale.

The momentum diffusion coefficient can be guessed a

D̄5D̄dip1D̄se;\2k2S l

dsp
D8D 2 1

g8
1g8\2k2, ~3!

which contains the diffusionD̄dip due to the fluctuating di-
pole force and the diffusionD̄se due to the recoil of the
spontaneously emitted photons.D̄dip is approximately given
by the square of a typical force,\k(l/dsp)(D/G), times a
typical time 1/g8, andD̄se has the same form as for a sta
dard lattice. Hence the estimated temperature~1! reads

kBT

\D8
;11S dsp

l D 2S G

D D 2

. ~4!

This formula exactly predicts the qualitative behavior of t
temperature in Fig. 2, i.e., the linear increase for large val
of D8 and a rapid increase for very small values. It al
shows that the lowest value ofT (5Tmin) is achieved for
D8/g85dsp/l, and thatkBTmin52\g8dsp/l. For a fixed op-
tical pumping rateg8, the minimum temperature is thus ex
pected to increase linearly with the speckle size.

III. THEORETICAL MODEL

In this section we give a more detailed discussion of
mathematical model and the numerical methods used to
tain the results presented in this paper.
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PRA 58 3955ATOM COOLING AND TRAPPING BY DISORDER
A. Speckle fields

The first step for all the numerical treatments is to cre
a speckle field. This can be easily implemented on a co
puter following the procedure described in the work of Hu
ley @19#, which we will briefly outline in the following.

Let us denote the electric field at the diffusor byE1(x,y)
and the electric field at the plane chosen for the numer
simulations byE2(x,y). The two fields are related accordin
to the Huygens-Fresnel principle in the Fresnel approxim
tion by

E2~x,y!5
1

l l
expF2 i

p

l l
~x21y2!G E dx1dy1E1~x1 ,y1!

3expF2 i
p

l l
~x1

21y1
2!GexpF i

2p

l l
~xx11yy1!G ,

~5!

where l denotes the distance between the diffusor and
observation plane. Hence, if we define

E18~x,y!5E1~x,y!expF2 i
p

l l
~x21y2!G , ~6!

E28~x,y!5E2~x,y!expF i
p

l l
~x21y2!G , ~7!

these two quantities are related by a Fourier transform.
Following @2# the real and imaginary part ofE28(x,y) at

any point, (x,y) are independent Gaussian random variab
Thus the numerical construction of a speckle field starts
filling the real and imaginary parts ofE28(x,y) on a discrete
spatial grid ofN3N points with random numbers from
Gaussian distribution of zero mean and unit standard de
tion. The grid sizeN must be chosen in such a way that
contains a reasonably large number of speckle grains,
nevertheless the discretized field must be smooth enoug
order not to introduce large numerical errors. In practice
have used values ofN between 64 and 256 for our calcula
tions.

The effect of the finite size of the diffusor is implement
by transformingE28(x,y) into E18(x,y), multiplying the latter
quantity by a window functionW(x,y) which assumes unity
inside the diffusor and vanishes otherwise, and transform
the result back into a finalE2,fin8 (x,y), i.e.,

E2,fin8 5F21
„WF~E28!…, ~8!

whereF denotes the two-dimensional Fourier transform.

B. Semiclassical model of atomic dynamics

As in most of the previous theoretical works on the Sis
phus cooling mechanism, including semiclassical@12,17,20#
as well as quantum treatments@21,22#, we consider the
simple case of an atom with a ground state of angular m
mentumF5 1

2 and an excited state of angular momentu
F85 3

2 . Furthermore we restrict ourselves to a 2D model a
to the case of low atomic saturation, where we can adiab
cally eliminate the excited state of the atom. The time e
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lution of the atomic density operator restricted to the grou
state manifold is then governed by the master equation

ṙ52
i

\
@H,r#1Lr, ~9!

with the Hamiltonian

H5 p̂2/2m1\D8V~ x̂! ~10!

and the decay and recycling term

Lr5~g8/2!F2V~ x̂!r2rV~ x̂!

12(
s

E d2qN~q!e2 iqx̂Bs
†~ x̂!rBs~ x̂!eiqx̂G , ~11!

where the sum goes over the polarization and the inte
over the wave vector of the spontaneously emitted pho
projected into two dimensions. The optical potential depth
\D8, the optical pumping rate isg8, and the atomic transi-
tion operatorsBs( x̂) and the optical potential operatorV( x̂)
are defined as

Bs~ x̂!5F(
m

Em~ x̂!†AmGAs
† , ~12!

As5 (
m8,m

^F8,m8u1,s;F,m&uF8,m8&^F,mu, ~13!

V~ x̂!5(
s

Bs~ x̂!Bs
†~ x̂!, ~14!

whereEs(x) gives the spatial dependence of thes-polarized
laser light, and where we have made use of the Clebs
Gordan coefficients in Eq.~13!.

In order to derive a semiclassical theory suitable
Monte Carlo simulations we rewrite the master equation~9!
in the Wigner representation defined by

W~x,p,t !5
1

~2p!2 E d2u^x1u/2ur~ t !ux2u/2&e2 ipu.

~15!

Note thatW(x,p,t) is still an operator in the Hilbert space o
the internal atomic degrees of freedom. However, for o
specific choice of an atomicF5 1

2 to F85 3
2 transition and

the laser polarizations always lying within the same pla
no coherences between the ground-state sublevels build
Hence the Wigner operatorW(x,p,t) remains diagonal,

W~x,p,t !5W1~x,p,t !um5 1
2 &^m5 1

2 u

1W2~x,p,t !um52 1
2 &^m52 1

2 u. ~16!

For these diagonal terms we obtain the Fokker-Planck eq
tions
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Ẇ61
pi

m
] iW652g67W61g76W71F66

i ]pi
W6

1F76
i ]pi

W71D66
i j ]pi

]pj
W6

1D76
i j ]pi

]pj
W7 , ~17!

wherei , j 5x,y, and a sum overi and j must be performed
The full expressions for the jump ratesg67 between the
ground-state sublevels, the force coefficientsF66

i , and the
diffusion coefficientsD66

i j are given in the Appendix.
Finally, we use semiclassical Monte Carlo simulatio

@20# to obtain numerical solutions of Eqs.~17!, where one
follows the trajectories of many particles with internal sta
u1& and u2&. The jump rates between these two states
given by g12 and g21 , respectively. Between two jump
the particles evolve according to the forceF11

i (F22
i ) act-

ing on them, and in addition receive random kicks which
chosen in such a way as to simulate the effect of the di
sion termsD11

i j (D22
i j ).

Averaging over a set of particles and over time yields
the required expectation values such as temperatures, m
local velocities, position distributions or spatial diffusion c
efficients. We will discuss the most important results o
tained in that way in Sec. IV.

C. Estimate of final temperature

Before turning to the numerical results obtained fro
solving the equations of motion presented in Sec. III B
Monte Carlo simulations, we will analytically derive a roug
estimate for the steady-state temperatureT obtained as the
ratio of the mean momentum diffusion coefficientD̄ over the
mean friction coefficientā,

kBT5
D̄

ā
, ~18!

where the bars overD anda denote averaging over the in
ternal atomic stateand over position. For simplicity we will
restrict the following calculations only to thex direction.

In order to calculate the friction coefficientā we must
find the stationary solutionW(x,p) of Eq. ~17! up to first
order in the atomic velocityv5p/m, i.e., we expand
W(x,p) by

W~x,p!5W0~x!1
p

m
W1~x!1••• , ~19!

and insert this into Eq.~17!. Since we are considering a
atom moving with constant velocity, we may neglect t
force and diffusion terms on the right-hand side of the eq
tion, and thus obtain the results

W1
0 512W2

0 5
g21

g211g12
, ~20!

W1
1 52W2

1 52
]xW1

0

g211g12
. ~21!
s
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The friction coefficient, i.e., the term of first order in th
velocity v of the force, averaged over the internal atom
state, is then given by

a5F11
x W1

1 1F22
x W2

1 . ~22!

Finally this must be averaged over the position within t
speckle field. SinceF66

x as well asW6
1 can be expressed in

terms of the speckle electric-field amplitude and its spa
derivatives~see the Appendix!, we need to know the expec
tation values of products of these quantities when avera
over position. Considering the complete randomness of
speckle field we assume that all averages over such prod
vanish except for

E1E1* 5E2E2* 51, ~23!

assuming that the speckle field and the counterpropaga
plane wave have the same average intensity, and

]xE1]xE1* 5]xE2]xE2*

5
1

2
k2S l

dsp
D 2

E1E1*

5
1

2
k2S l

dsp
D 2

, ~24!

where againdsp is the mean speckle grain size. The righ
hand side of Eq.~24! is obtained under the assumption th
the required quantity for the speckle field is the same as f
periodic electric field with the same typical length scale, i.
for an electric field given byE(x)5cos@kx(l/dsp)#. Applying
these assumptions to Eq.~22! yields the friction coefficient

ā5\k2
3D

4G S l

dsp
D 2

. ~25!

The averaged diffusion coefficient has two different co
ponents. One of these is obtained by averaging the diffus
coefficientsD66

xx over the internal atomic states and ov
position similarly as done above for the friction coefficien
The second contribution to the total diffusion coefficie
arises from the change of the dipole force, if the ato
changes its internal state. This dipole diffusion term can
derived easily following the lines of Ref.@16#. We will omit
all the calculational steps here and only give the final res
for the total momentum diffusion coefficient

D̄

\2k2g8
5

1

2 S D

G D 2S l

dsp
D 2

1
11

36 S l

dsp
D 2

1
5

36
, ~26!

where the first term is the dipole term and the second
third terms are due to the momentum diffusion of an atom
a definit internal state, i.e., coming fromD66

xx .
Thus, for the estimated steady-state temperature~18!, we

obtain

kBT

\D8
5

2

3
1

11

27 S G

D D 2

1
5

27 S G

D D 2S dsp

l D 2

. ~27!

We see that the expressions derived in Eqs.~25!–~27! are
essentially the same as the intuitive ones of Sec. II.

It should be emphasized again that all quantities deri
in this subsection should be considered as crude estim
since they are performed in one dimension and rely on so



av
u

th
.,
u
ve
v-
re

we
ca

q
lo

ra
r
a
oi

l

o
cit

th
nt
cr
fe
d

y
ra
s

f a

th

-
ger
the

ains
on

to

cal

is
ic in

the

the

ent

to
ant
g as
t
ping

on
our

eld
see

PRA 58 3957ATOM COOLING AND TRAPPING BY DISORDER
very rough approximations. However, the qualitative beh
ior of the exact solutions is predicted correctly, and th
these expressions provide a lot of physical insight.

Note further that the results derived here only hold in
regime of a friction force which is linear in the velocity, i.e
for velocities well below the capture range of the Sisyph
cooling. This capture range is characterized by a critical
locity vc which corresponds to the velocity of an atom tra
elling from one optical potential well to the next one befo
being optically pumped@17#, i.e.,

vc5dspg675 2
9 dspg8. ~28!

Thus Eq.~27! is valid only for atomic kinetic energies below
the critical value ofEc5mvc

2/2 which depends linearly on
the atomic mass. Therefore the critical energy is much lo
for a light atom than for a heavy atom with the same opti
properties.

On the other hand, the Monte Carlo simulations of E
~17! depend on the atomic mass, and give the correct ve
ity dependence of the force. Thus, in contrast to Eq.~27!, the
numerical simulations yield different steady-state tempe
tures for different atomic masses. Consequently, it is app
priate to introduce the mass as an addidional sytem par
eter, which is conveniently done in the form of the rec
frequencyvR5\k2/(2m). In the following sections we will
thus usevR as a fundamental unit~even if for a semiclassica
theory the linewidthG seems better suited!. All of our simu-
lations were performed for cesium atoms, whereG
'2000vR , and where the mass is large enough that for m
of the interesting parameter regimes the atomic velo
stays belowvc , and hence Eq.~27! can be applied.

IV. NUMERICAL RESULTS

A. Steady-state temperatures

As already shown in Sec. II, the general behavior of
steady-state temperature as a function of the optical pote
depth is the same for our system as for optical lattices
ated by several plane waves. However, an important dif
ence between the laser cooling inside a speckle field, as
cussed here, and plane-wave lattices, lies in the tunabilit
the typical length scale. For our setup the mean speckle g
sizedsp can be changed continuously by changing the po
tion of the diffusor which creates the speckle field out o
plane laser wave.

As an example, Fig. 3 shows the dependence of

FIG. 3. Temperature vs speckle grain size forD85200vR and
g8513.33vR ~solid curve! and 20vR ~dashed curve!, respectively.
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steady-state temperature ondsp. As expected from the dis
cussions in Sec. III, the temperature increases with lar
speckle sizes. This feature arises from the fact that while
friction force decreases as 1/dsp

2 @cf. Eq. ~25!#, only the di-
pole term of the momentum diffusion@Eq. ~26!# has the same
dependence, whereas the sponaneous emission term rem
constant. Hence the latter contribution of the total diffusi
starts to dominate for large speckle sizes~more precisely for
dsp/l@D8/g8), and hence the temperature is expected
increase quadratically with the speckle size.

The two curves of Fig. 3 correspond to the same opti
potential depthD8 but different optical pumping ratesg8,
i.e., different detuningsD. In accordance with Eq.~27!, the
difference in temperature for small speckle grain size
small, but it becomes larger as soon as the term quadrat
dsp/l starts to dominate.

However, for the parameters chosen in Fig. 3,D8/g8
510 ~15!, the temperature increases only by a factor of 3~2!,
if the speckle grain size is increased from aboutl to 12l.
But as we will discuss later in Sec. IV C, the increase of
spatial diffusion coefficient, which is equal toD̄/ā2 in a
certain range of parameters@18#, is much larger.

In Fig. 4 we plot the steady-state temperature versus
detuningD for a fixed optical potential depthD8, i.e., for a
varying optical pumping rateg8. The two lower curves cor-
respond to the same optical potential depth but to a differ
speckle grain sizedsp. In agreement with Eq.~27! the tem-
perature increases for smaller detuningsD, i.e., larger pump-
ing rates g8. For very large detunings, corresponding
small values ofg8, the temperature assumes a const
value, which is the same for different speckle sizes as lon
the optical potential depthD8 is the same. Hence in this limi
the temperature becomes independent of the optical pum
rateg8 andof the speckle sizedsp. On the other hand, for a
fixed speckle size but different values ofD8, the tempera-
tures achieved in the limit of small values ofg8 differ ~cf.
also Fig. 2!.

B. Local properties

In this subsection we will discuss some of the localizati
properties of the cold atoms. To this end we give a cont
plot of the steady-state atomic densityr in Fig. 5~a!, where
the calculations have been performed for the speckle fi
depicted in Fig. 1. Comparing these two figures, one can

FIG. 4. Temperature~2D! vs detuningD for fixed potential
depth. Solid curve:dsp51.9l and D85200vR ; dashed curve:dsp

55.7l and D85200vR ; dotted curve: dsp51.9l and D8
51000vR .
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3958 PRA 58HORAK, COURTOIS, AND GRYNBERG
easily that the atomic density is strongly correlated with
speckle field intensityI . This statistical dependence can
demonstrated more clearly by calculating the covariance,
fined as

cov~r,I !5^rI &/A^r2&^I 2&. ~29!

We find that this quantity assumes values close to its m
mum value of one, e.g., for Fig. 5~a!, cov(r,I )50.92. This
means that the intensity distribution of the speckle field
efficiently mapped onto the atomic density distribution.

However, if one looks closer at Figs. 1 and 5~a!, one notes
some discrepancies; for instance, some of the relatively s
low optical potential wells at the top of the figures are s
prisingly strongly populated. Although these features can
be explained quantitatively, we will describe some of t
physical mechanisms in the following.

Basically these local differences are caused by the
that the field amplitude and the phase of the speckle field
essentially uncorrelated. Whereas in usual optical lattices
light amplitude and phase are always correlated, which, e
in a 3D lin'lin setup yields that the optical potential minim
coincide with places of pure circular polarization@8#, this is
not the case in our setup. Consequently the local polariza
of the total light field at places of maximum local speck
field intensity can be linear as well as circular, but in gene
will be an arbitrary elliptical polarization. Hence onl

FIG. 5. ~a! Contour plot of the atomic density forD85200vR

and g8513.33vR . ~b! Contour plot of the speckle field intensit
and vector field of the local radiation pressure force. The size of
spatial region is (10l)2.
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speckle grains~regions of high speckle field intensity! of
mainly circular polarization contribute to the Sisyphus-ty
cooling, but speckle grains of dominating linear polarizati
do not.

It should be emphasized that in speckle grains of mai
circular polarizationlocal coolingcan be found, that is, eve
within a single well an atom can be cooled by optical pum
ing processes between the widely differing optical potent
of the two ground-state sublevels. This is in contrast to
plane-wave 1D lin'lin configuration, where an atom mus
travel across several potential wells in order to be coo
~nonlocal cooling!. Thus, the atom is more likely to b
cooled and trapped within circularly polarized speck
grains.

Another reason for the different steady-state atomic d
sities in potential wells of the same depths is formed by
radiation pressure force. As already mentioned above,
light field amplitude and the phase of the speckle field
mutually independent, and thus the phase gradient can
differ strongly at the bottom of the potential wells. Henc
within some potential wells the atom experiences a relativ
strong radiation pressure force and is thus pushed away
an example, Fig. 5~b! again shows a contour plot of th
speckle field intensity~the same as in Fig. 1!, together with
the vector field of the local radiation pressure force. T
shows, e.g., a significant radiation pressure in thex direction
in the high-intensity speckle grains at the center of the figu
Correspondingly, we have numerically found nonvanish
mean atomic velocities in these regions, which means
there exists a stationary flow of atoms following roughly t
direction of the local radiation pressure force. This mig
suggest that a description of speckled lattices in terms
fluid mechanics formalism may be interesting to investiga
however, this is beyond the scope of this paper.

Finally we will briefly discuss the atomic density distr
butionP(r), i.e., the probability of finding a certain density
A histogram plot for the speckle field intensityP(I ) and the
atomic density is given in Fig. 6.

The numerically obtained speckle field intensity distrib
tion, Fig. 6~a!, follows an exponential law, as theoretical
discussed in@2#, with equal mean and standard deviatio
i.e.,

P~ I /^I &!5exp~2I /^I &!. ~30!

As can be seen from Fig. 6~b! the atomic density does no
follow the same law, since there is always a background
unbound atoms, and hence the probability of finding a d
sity below a certain threshold vanishes. But above t
threshold the density distribution function closely resemb
the speckle intensity distribution, which again indicates
strong correlation between the light field intensity and t
atomic density.

C. Spatial diffusion

Another important quantity for characterizing the prope
ties of the cooled and trapped atoms is the spatial diffus
coefficient, which roughly quantifies the transfer of atom
between several potential wells and hence of the spreadin
an initially small atomic cloud. Experimentally, as well as
our Monte Carlo simulations, the spatial diffusion coefficie
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Ds is obtained from the spreading of an initial atomic clo
whose variance follows a linear law in the long-time limit

@Dr ~ t !#25@Dr ~0!#212Dst. ~31!

An estimate for the value ofDs can be derived@18# by
using

Ds5
D̄

ā2
~32!

for the spatial diffusion coefficient for a Brownian motio
@23#. Applying our findings for the friction coefficient~25!
and the momentum diffusion~26!, we obtain

Ds5
8

9

g8

k2 S dsp

l D 2

3F11
11

18S G

D D 2

1
5

18S G

D D 2S dsp

l D 2G . ~33!

We can now compare this with the spatial diffusion co
ficients obtained by semiclassical Monte Carlo simulatio
as depicted in Fig. 7 as a function of the detuningD. It
follows from Eq.~33! that forg8/D85G/D!1 the first term
will dominate, and hence the spatial diffusion coefficie
scales linearly withg8, i.e., like 1/D if D8 is kept constant.
This is in qualitative agreement with the curves of Fig. 7
not too large values of the detuningD. However, Eq.~33!
only holds if the atom moves only a fraction of the spec
size d between two optical pumping processes@18#, which
explains the deviation of the numerically obtained curv
from the 1/D law for large values ofD.

Note that forD@G, and within its range of validity, Eq
~33! predicts an increase of the spatial diffusion coefficie
with the square of the speckle grain size. This has b
nicely confirmed by our numerical simulations. For an act

FIG. 6. ~a! Histogram plot of a numerically obtained speck
field intensity. Theoretical analyses predict an exponential beha
~smooth curve!. ~b! Histogram plot of the atomic density forD8
5200vR , g8513.33vR , anddsp51.9l.
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experiment, where the speckle size is typically of the or
of tens of wavelengths, this means that the spatial diffus
of the atoms in the speckle field can easily be orders
magnitude larger than for a standard optical lattice, eve
the steady-state temperatures~27! are comparable.

V. INFLUENCE OF THE LONGITUDINAL DIRECTION

Compared to the transverse directions, which have b
discussed so far, the physical properties of the system a
the laser propagation direction are completely differe
First, it should be emphasized again that the size of
speckle grains in this direction is generally much larger, i
by a factor on the order ofdsp/l. But superimposed on this
relatively large length scale there is a standard 1D lin'lin
configuration with a typical length scale of half an optic
wavelength, such that the system must be characterize
this direction by two widely different length scales. Secon
this superimposed lin'lin configuration leads to efficien
cooling in the longitudinal direction at regions in spa
where the speckle field intensity approximately equals
intensity of the counterpropagating plane wave. However
locations where the two beam intensities differ, it also lea
to a nonbalanced radiation pressure force driving the ato
away from these locations. Note that the situation is sim
to what can be found in quasiperiodic lattices@11#.

Hence, the full 3D situation is much more intricate th
the transverse 2D scheme. Also, numerically, a complete
treatment would be very demanding. Instead we perform
some 2D simulations of the cooling dynamics including t
longitudinal and one transverse direction, which should g
some relevant information about the actual behavior of
system in three dimensions.

In Fig. 8 we depict the temperatures in the longitudin
direction and in the transverse direction obtained from s
2D Monte Carlo simulations. We see that the transverse t
peratures are always higher than the longitudinal ones. E
if there exists a strong radiation pressure in the longitudi
direction in regions of differing speckle and plane wave
tensity, this effect is overcompensated for by the much m
efficient Sisyphus cooling in this direction.

Second, let us remark that the transverse temperature
larger for this type of Monte Carlo simulations than tho
obtained from simulations including two transverse dire
tions. Hence the inclusion of the longitudinal direction ten
to reduce the efficiency of the transverse cooling. This can

or

FIG. 7. Spatial diffusion vs detuningD for fixed potential depth.
Solid curve:dsp51.9l and D85200vR ; dotted curve:dsp51.9l
andD851000vR ; dashed curve:dsp55.7l andD85200vR . ~For
the corresponding steady-state temperatures, see Fig. 4.!
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understood by the following arguments. Since the transve
cooling relies on a Sisyphus effect, it is more efficient f
deeper potential wells because in this case a single quan
jump between the two adiabatic potentials reduces
atomic energy by a larger amount. Thus the cooling mec
nism is most effective in regions of maximum speckle fie
intensity. But in the longitudinal direction, these regions c
respond exactly to the regions of maximum radiation pr
sure, and hence the atom is efficiently pushed away. For
transverse cooling this means that the atom avoids the d
est potential wells, which consequently reduces the coo
efficiency and therefore increases the steady-state temp
ture.

For the spatial diffusion coefficient we found a mu
larger difference between the longitudinal and transverse
rections than for the temperature. This agrees well with
previous results that the leading term in the expression of
temperature@Eq. ~27!# is independent of the speckle siz
whereas the spatial diffusion~33! scales with the square o
the speckle size. Hence the difference in the typical len
scale between the longitudinal direction~l! and the trans-
verse direction (dsp) yields widely different spatial diffusion
Again we note that the values for the transverse spatial
fusion obtained by the Monte Carlo simulations with t
longitudinal and one transverse direction lies above the va
obtained from simulations restricted to the transverse pla
according to the reduced cooling efficiency as discus
above.

VI. CONCLUSIONS

In this work we have demonstrated that 3D laser cool
of neutral atoms can be achieved by a 1D setup, if one of
two counterpropagating laser beams of a plane-wave 1D
tical ‘‘molasses’’ @14# is replaced by a speckle laser fie
@24#. The cooling mechanism in this case relies on a Si
phus effect similar to the one known in usual~periodic! lat-
tices@12# in one, two, and three dimensions. We have cal
lated steady-state temperatures similar to those obtaine
periodic lattices for large red detunings of the lasers from
atomic resonance. In this far-detuned limit the steady-s
temperatures also become independent of the mean sp
grain size.

In contrast to usual lattices we have found various lo
effects, such as local cooling and nonvanishing radiat

FIG. 8. Steady-state temperatures in the transverse direc
~solid line! and in the longitudinal direction~dashed! for fixed op-
tical pumping rateg8520vR vs optical potential depth. The
speckle grain size isdsp51.8l transversally, anddsp8 57.2l longi-
tudinally.
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pressure forces which are essentially decoupled from the
cal optical potential depth. Furthermore, according to th
speckle field the spatial diffusion of the atoms is increase
by a factor of approximately the square of the typical speck
grain size.

Thus for an experimental realization of this scheme tw
points should be emphasized. First, the experimental setup
relatively simple since a 1D configuration is already suffi
cient to yield 3D sub-Doppler cooling. On the other hand
the obtained speckle grain size is typically much larger tha
an optical wavelength, which gives rise to longer coolin
times and a huge increase of the spatial diffusion. Thus t
lifetime of the trapped atomic cloud will be much shorte
than in usual lattices, and the achievable atomic densiti
much lower. However, first experimental results@25# have
already confirmed most of the theoretical predictions pre
sented in this work, and reasonable agreement with the n
merically obtained values for, e.g., the steady-state tempe
tures has been found.

Although such investigations and possible extensions
the scheme, e.g., to the study of speckled dark lattices,
ready present interesting results for laser cooling, we thin
that the main interest lies in the possibility of creating
disordered sample of cold atoms with well-controlled statis
tical characteristics. Because of the growing interest in th
study of disordered materials, the presented system may th
be useful in this domain.
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APPENDIX: FOKKER-PLANCK EQUATION

In the following we give exact expressions for the coeffi
cients which appear in the Fokker-Planck equation~17! as
obtained from the Wigner transform of the master equatio
~9! ~the derivation is straightforward but lengthy and will
thus be omitted!. The jump rates read

g675 2
9 g8uE7u2, ~A1!

the force coefficients are

F66
i 5D8H ~] iE6!E6

† 1
1

3
~] iE7!E7

† 1c.c.J
1g8

i

2 H ~] iE6!E6
† 1

1

9
~] iE7!E7

† 2c.c.J ,

~A2!

F76
i 5g8

i

9
$~] iE6!E6

† 2c.c.%, ~A3!

wherei 5x,y, and the diffusion coefficients are

D66
xx 5g8

1

8 H 4~]xE6!~]xE6
† !1

2

9
~]x]xE7!E7

†

1
2

9
E7~]x]xE7

† !1
8

9
~]xE7!~]xE7

† !J
1g8

k2

8 UE61
1

3
E7U2

, ~A4!
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D66
yy 5g8

1

8 H 4~]yE6!~]yE6
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2

9
~]y]yE7!E7

†

1
2

9
E7~]y]yE7

† !1
8

9
~]yE7!~]yE7

† !J
1g8

k2

8 UE62
1

3
E7U2

, ~A5!

D66
xy 5D66

yx 5g8
1

8 H 2~]xE6!~]yE6
† !1

2

9
~]x]yE7!E7

†

1
4

9
~]xE7!~]yE7

† !1c.c.J , ~A6!

D76
i i 52g8

1

36
$~] i] iE6!E6

† 1E6~] i] iE6
† !

22~] iE6!~] iE6
† !%1g8

k2
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uE6u2, ~A7!
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D76
xy 5D76

yx 52g8
1

36
$~]x]yE6!E6

†

1~]xE6!~]yE6
† !1c.c.%. ~A8!

For the derivation of the diffusion coefficients, we have si
plified the spontaneous emission pattern by assuming
fluorescence photons are only emitted along thex, y, andz
axes@20#.

Two other points are worth a comment here concern
the application of these diffusion constants and forces in
semiclassical Monte Carlo simulations outlined in Sec. III
First, it turns out that for all realistic choices of the syste
parameters the cross termsF76

i andD76
i j between the two

ground-state sublevels can be neglected as compared
the termsF66

i andD66
i j . Second, at some positions in spa

the diffusion coefficients assume negative values. This pr
erty indicates a purely quantum feature of the system, i.e
shows that there exist positions in space where the ato
wavefunction collapses rather than spreads out@26#. How-
ever, this featurecannotbe mimicked by the semiclassica
simulations, where negative diffusion makes no sen
Hence, whenever this situation occurs in our numerical sim
lations we set the diffusion coefficients equal to zero to av
this problem.
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