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Atom cooling and trapping by disorder
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We demonstrate the possibility of three-dimensional cooling of neutral atoms by illuminating themvaith
counterpropagating laser beams of mutually orthogonal linear polarization, where one of the lasers is a speckle
field, i.e., a highly disordered but stationary coherent light field. This configuration gives rise to atom cooling
in the transverseplane via a Sisyphus cooling mechanism similar to the one known in standard two-
dimensional optical lattices formed by several plane laser waves. However, striking differences occur in the
spatial diffusion coefficients as well as in local properties of the trapped a{@h650-29478)06411-7

PACS numbgs): 32.80.Pj, 42.50.Vk

[. INTRODUCTION The paper is organized as follows. In Sec. Il we qualita-
tively discuss our proposed setup and the basic physical pro-

The study of speckle laser patterns, as created when eesses which give rise to the cooling mechanism. In Sec. Il
highly coherent light beam is transmitted through or reflectedve present the details of the theory and outline the numerical
from an object with a surface which is rough on the scale ofnethods, especially the semiclassical Monte Carlo simula-
the laser wavelength, was initiated many years ago using’ons, to obtain the results. Section IV is attributed to an
electromagnetic theory1] and statistical method$2,3]. analysis of the numerically obtained results such as tempera-
Since then, this subject has raised more and more interedtres, spatial diffusion coefficients, and local effects in the
resulting in a vast development of the thediyr a survey of  light field. Finally, in Sec. V we discuss the differences of
the most recent results, see, e.g., R4f) as well as experi- the cooling in the laser propagation direction and in the
mental achievements. These give rise to important applicafansverse plane.
tions of laser speckles in various fields of science, such as the
speck_le red_uction in image!f\‘ﬁ],_roug_hne_ss measurements in II. QUALITATIVE DISCUSSION
material scienc¢6], or applications in biophysids].

The scope of the work presented here is to investigate the Throughout this paper we will discuss the simple situation
application of such speckle laser fields in the context of laseof a single atom with a ground state of total angular momen-
cooling of neutral atoms. We are especially interested in théum F=3 and an excited state with’ =3 interacting with
disordered analog of the so-called optical lattices formed bywo counterpropagating laser fields of orthogonal polariza-
several laser plane waves, which yield periodic optical potion. In the case of both laser fields being plane waves, this
tentials and have been demonstrated experimentally to givgives rise to well-known sub-Doppler cooling mechanisms in
rise to efficient laser cooling by a Sisyphus-type mechanisnone dimensiof12]. Because of the modulation of the optical
[8—10]. The basic principle of this cooling scheme is that thepotential, trapping of atoms in the longitudinal direction has
atoms lose kinetic energy by running up potential hills, frombeen predictefi13] and observel14]. In contrast, the atoms
where they are optically pumped into lower-lying potential are free in the transverse plane.
wells. Recent experiments have also demonstrated a similar In the situation discussed here, one of the laser fields is
cooling scheme in the case of laser configurations formingeplaced by a speckle field, i.e., by a highly disordered, but
guasiperiodic optical latticgd4.1], which can be viewed as an nevertheless stationary and coherent light field. Such a
intermediate regime between the standard periodic latticespeckle field can be easily generated experimentally, for in-
and the completely disordered patterns obtained fronstance, by introducing a diffusor into the path of a laser plane
speckle light fields. wave. The resulting light field shows highly disordered in-

We consider two counterpropagating laser fields of mututensity and phase distributiofifor a discussion of the statis-
ally orthogonal polarization, where one of the beams is dical properties of speckle fields see, e.g., R&1). An ex-
speckle field. According to the randomly distributed phaseample of a computer-generated speckle field on a discrete
and intensity gradients of the speckle field in all dimensionsspatial grid is shown in Fig. 1.
we find three-dimensional Sisyphus cooling even with this Although different setups for the polarizations of the
one-dimensional beam configuration. Moreover, interestingounterpropagating light fields give rise to cooling, we will
transport phenomena are found in this case, e.g., a large difoncentrate here on the case of two mutually orthogonal lin-
ference in the spatial diffusion of the atoms even in paramearly polarized fields (linlin configuration.
eter regimes where the steady-state temperatures are of theFor this configuration one finds in the laser propagation
same order of magnitude for the longitudinal and the transdirection, essentially the usual one-dimensiofiD) Sisy-
verse directions. Other effects, such as local radiation preghus cooling mechanisfd 2] apart from the different spatial
sure forces, also arise from the fact that the amplitude angariation of intensity and phase of the speckle field as com-
phase of the speckle field are essentially independent. pared to a plane wave. Additionally, the properties of the
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steady-state kinetic energy becomes constant relative to the
depth of the optical potentials in this limit. On the other
hand, the temperature increases dramatically with small, de-
creasing values ak’, and, finally, below a certain threshold
value of A’ no steady-state temperature is achieved. Conse-
quently, one finds the lowest absolute values for the steady-
state temperature for intermediate values of the optical po-
tential depth.

According to this similarity with standard optical lattices,
we may roughly estimate the steady-state temperature of the
atoms in the speckle field from the formula

D
kBT:

o

. @

whereD is a mean momentum diffusion coefficient, amc
FIG. 1. Contour plot of the intensity of a numerically created mean friction coefficien{16]. Note that this formula only

speckle field on a grid of 6464 points. holds in the absence of atomic localization, which is not the

case here, as we will see later, but nevertheless gives a useful

speckle field give rise to Sisyphus cooling of the atom in theorder of magnitude for the temperature. The friction coeffi-

transverse plane, since the phase and intensity modulatiorgent will be of the order of

in these directions lead to spatially varying light shifts and o N2 A

optical pumping rates of the Zeeman sublevels of the atomic a~ﬁk2(—) =, 2

ground state. Thus the two counterpropagating laser beams dsp/ I’

(one plane wave and one speckle fiellow for three- whereA is the detuning of the laser from the atomic reso-

dimensional coolingf the atom, in sharp contrast to the 1D nance frequencyl” is the natural linewidth of the excited

linLlin optical lattices used so f4d.5]. state, anddg, is the mean distance of neighboring intensity
The most striking difference to the configuration of coun-maxima along a 1D cut through the speckle field, i.e., the

terpropagating plane waves will be found in the transverseypical length scale of the speckle field. Equati@y is ob-

plane. Hence in the remainder of this paper we will mainlytained from the well-known expression for standard lattices

restrict ourselves to a 2D model of cooling in the transvers¢12,17,18, where we have only replaced the factors\dfy

directions, and will only briefly discuss the changes inducedly,, which accounts for the different typical length scale.

by a model including the longitudinal direction in Sec. V. The momentum diffusion coefficient can be guessed as
As an example we plot the steady-state temperature

reached in this 2D subsystem versus the optical potential - A 2

depth#A’ for fixed optical pumping rate’ in Fig. 2, where D=Dgpt Dsewﬁzkz(—ﬁ') —+y'h%%, ()

A’ andy’ for the speckle field are defined with respect to the P Y

mean intensity of the beam. The numerical method to obtain | . L = . )

these results will be described in detail in Sec. Ill. As ourWhich contains the diffusiol g, due to the fluctuating di-

first and most important result we note that, as expected frorpole force and the diffusio. due to the recoil of the

the previous discussions, the atoms reach a steady-state tegpontaneously emitted photori3g, is approximately given

perature in the transverse plane. Second, the general behavigy the square of a typical forcdik(N\/dgsp) (A/T), times a

of this steady-state temperature as a function of the opticeﬂ/ Y

. ical time 14', andDg has the same form as for a stan-
potential depth resembles very much the case of the standagfrd lattice. Hence the estimated temperatjaeads
optical lattices consisting of plane laser waves, i.e., for large

values of A’ one finds a linear dependence, and hence the KT d.\2/T\2
B (ﬂ’) (_ (4
~, 025 hA AJNA
<
02 This formula exactly predicts the qualitative behavior of the
2 015 temperature in Fig. 2, i.e., the linear increase for large values
g of A’ and a rapid increase for very small values. It also
2 0l shows that the lowest value af(=T,,,) is achieved for
= 0.05 A'ly"=dgp/N, and thakgT min=2%y'dsp/N. For a fixed op-
tical pumping ratey’, the minimum temperature is thus ex-

0 pected to increase linearly with the speckle size.
0 0.02 0.04 0.06 0.08 0.1 0.12

A’ (units of T)
Il. THEORETICAL MODEL
FIG. 2. Temperatur& vs optical potential depthA’ for a fixed
optical pumping ratey’ =0.003", whereTl is the natural linewidth In this section we give a more detailed discussion of the
of the atomic excited state. The average speckle grain sidg,is Mmathematical model and the numerical methods used to ob-

=3.8\. tain the results presented in this paper.
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A. Speckle fields lution of the atomic density operator restricted to the ground-

The first step for all the numerical treatments is to creatt@te manifold is then governed by the master equation

a speckle field. This can be easily implemented on a com- i
puter following the procedure described in the work of Hunt- b: ——[H,p]+Lp, (9)
ley [19], which we will briefly outline in the following. h
Let us denote the electric field at the diffusor By(x,y) ] o
and the electric field at the plane chosen for the numericalVith the Hamiltonian
simulations byE,(x,y). The two fields are related according R R
to the Huygens-Fresnel principle in the Fresnel approxima- H=p22m+AA'V(X) (10
tion by
and the decay and recycling term

1 LT, 5
Ez(x,y)=ﬂex —Iﬂ(x +y9) fdxldylEl(xl,yl)

Lp=(y'12)| —=V(X)p—pV(X)

LT s 2w
xexp —i 5 (xi+y1) [expi S 00atyyy) |,

23 f d2qN(q)e "PB(X)pB, (X)€% |, (11)

©)
wherel denotes the distance between the diffusor and thguhere the sum goes over the polarization and the integral
observation plane. Hence, if we define over the wave vector of the spontaneously emitted photon
projected into two dimensions. The optical potential depth is
. ar ! H H H H '_
Ei(x,y)=E1(x,y)exr{—| H(Xzﬂ/z) , 6) ﬁA , the optical pumping rate |.$ , and thg atomic traAnS|
tion operatorsB,(x) and the optical potential operatyi(x)

are defined as

a
E5(x.y)= Ez<x,y>ex+ Oy, w ) )
B,()=| 2 EL(0'A,|Al, (12
these two quantities are related by a Fourier transform. g
Following [2] the real and imaginary part &,(x,y) at
any point, ,y) are independent Gaussian random variables. A= 2, (F',m'|Lo;F,m)|F',m'{F,m|, (13
Thus the numerical construction of a speckle field starts by m’,m

filling the real and imaginary parts &3(x,y) on a discrete

spatial grid of NXN points with random numbers from a AL Aiotn
Gaussian distribution of zero mean and unit standard devia- V(X)_g B4 (X)By(X),
tion. The grid sizeN must be chosen in such a way that it

contains a reasonably large number of speckle grains, b%hereE(,(x) gives the spatial dependence of thgolarized

nevertheless the discretized field must be smooth enough igser jight, and where we have made use of the Clebsch-
order not to introduce large numerical errors. In practice Wesordan coefficients in Eq13).

have used values df between 64 and 256 for our calcula- |5 order to derive a semiclassical theory suitable for

tions. o _ o Monte Carlo simulations we rewrite the master equat@®n
The effect of the finite size of the diffusor is implemented i, the Wigner representation defined by

by transformingg,(x,y) into E;(x,y), multiplying the latter

guantity by a window functioW/(x,y) which assumes unity

inside the diffusor and vanishes otherwise, and transforming w(x,p,t)=

the result back into a findt g(x,y), i.e., (2m)?

(14)

1

f d2u{x+u/2|p(t)|x—u/2)e~"Pu,

(15
Eé,fin:f_l(W}-( Eé)), (8) . . . .

Note thatW(x,p,t) is still an operator in the Hilbert space of
where F denotes the two-dimensional Fourier transform. ~ the internal atomic degrees of freedom. However, for our
specific choice of an atomiE=3 to F' =2 transition and
the laser polarizations always lying within the same plane,
no coherences between the ground-state sublevels build up.

As in most of the previous theoretical works on the Sisy-Hence the Wigner operatd(x,p,t) remains diagonal,
phus cooling mechanism, including semiclass[da,17,2Q

B. Semiclassical model of atomic dynamics

as well as quantum treatmenfg1,22, we consider the W(X,p,t)=W_(x,p,t)|m=1)(m=1}|
simple case of an atom with a ground state of angular mo- . )
mentumF=3% and an excited state of angular momentum +W_(x,p,)|m=—=3)(m=—3[.  (16)

F’'=2. Furthermore we restrict ourselves to a 2D model and
to the case of low atomic saturation, where we can adiabatior these diagonal terms we obtain the Fokker-Planck equa-
cally eliminate the excited state of the atom. The time evodtions
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. pi i The friction coefficient, i.e., the term of first order in the
Wet DoiWe ==y s Wet v W+ Foi 9 We velocity v of the force, averaged over the internal atomic
' ) state, is then given by
+F|I:apiWI+Dg:apiaijt a=Fﬁ+Wi+F§,W1, . (22
" Di:jiapiﬁij: , 17) Finally this must be averaged over the position within the

speckle field. Sinc&* , as well asW’ can be expressed in
terms of the speckle electric-field amplitude and its spatial
: i derivatives(see the Appendjx we need to know the expec-
The ﬂé” fﬁpresilo nslfortr:hef jump ra;fgggﬁ@etweeg tt:e tation values of products of these quantities when averaged
ground-state Sublevels, the force Coellicients.. , and the o position. Considering the complete randomness of the

. . . . IJ . . . .
diffusion coefficientsD. . are given in the Appendix. ~  gpeckie field we assume that all averages over such products
Finally, we use semiclassical Monte Carlo simulations, gnish except for

[20] to obtain numerical solutions of Eqél7), where one ralli—
follows the trajectories of many particles with internal states E+EL=E EL=1, (23)

|[+) and |—). The jump rates between these two states ar@ssuming that the speckle field and the counterpropagating
given by y,_ andy_, , respectively. Between two jumps plane wave have the same average intensity, and

wherei,j=x,y, and a sum over andj must be performed.

the particles evolve according to the forgg , (F._) act- * *

ing on them, and in addition receive random kicks which are OE OB = B 0E

chosen in such a way as to simulate the effect of the diffu- 1,/ A P

sion termsD' , (D" _). :Ek dsp E.EY

Averaging over a set of particles and over time yields all

the required expectation values such as temperatures, mean _ } 2 L 2 24

local velocities, position distributions or spatial diffusion co- 2 dsp ' (24)

gfgﬁnﬁ'ﬂygfw"g iglsszucsjsl\;he most important results Ob'\évgﬁéessj%a;r?%p is the mean speckle grain size. The right-

q(24) is obtained under the assumption that
the required quantity for the speckle field is the same as for a

C. Estimate of final temperature periodic electric field with the same typical length scale, i.e.,

Before turning to the numerical results obtained fromfor an electric field given bf(x) = cogkx(\/dsp) ]. Applying
solving the equations of motion presented in Sec. Il B bythese assumptions to E@?2) yields the friction coefficient

Monte Carlo simulations, we will analytically derive a rough — ,3A [\ 2

; ) ; a=hk— || . (25
estimate for the steady-state temperatlirebtained as the 4T \dg,
ratio of the mean momentum diffusion coefficiéntover the The averaged diffusion coefficient has two different com-
mean friction coefficient, ponents. One of these is obtained by averaging the diffusion

coefficientsD%*, over the internal atomic states and over
position similarly as done above for the friction coefficient.
The second contribution to the total diffusion coefficient
arises from the change of the dipole force, if the atom

where the bars oved and « denote averaging over the in- changes its internal state. This dipole diffusion term can be
ternal atomic statend over position. For simplicity we will ~derived easily following the lines of Reff16]. We will omit
restrict the following calculations only to thedirection. all the calculational steps here and only give the final result

In order to calculate the friction coefficient we must for the total momentum diffusion coefficient
find the stationary solutioM/(x,p) of Eq. (17) up to first ~ 2 2

. : A P) : D 1 (A% X 11 A

order in the atomic velocityv=p/m, i.e., we expand = (=) = + ==

W(x,p) by #2k2y" 2 \T) \dgy) ~ 36\dgp

kgT==, (18

RO

2+ > 26
36 (26)

p where the first term is the dipole term and the second and
W(x,p)=WO(x)+ an(X)'F SRR (190 third terms are due to the momentum diffusion of an atom in
a definit internal state, i.e., coming froBr". .

Thus, for the estimated steady-state temperatlBe we

and insert this into Eq(17). Since we are considering an .
a1y 9 obtain

atom moving with constant velocity, we may neglect the
force and diffusion terms on the right-hand side of the equa-

tion, and thus obtain the results kB_T: E+ 1_1 (£)2+ E (E)z(%’)z (27)
AA'T 3 27\A 27\ A N
V\ﬂ:l_wezﬁ, 20 we see that the expressions derived in HG§)—(27) are
essentially the same as the intuitive ones of Sec. Il.
JWO It should be emphasized again that all quantities derived
WE=—W=— Xt (1) in this subsection should be considered as crude estimates,

Yostyi o since they are performed in one dimension and rely on some
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FIG. 3. Temperature vs speckle grain size #6r=200wg and FIG. 4. Temperaturd2D) vs detuningA for fixed potential

¥’ =13.33wg, (solid curve and 2@y (dashed curve respectively.  depth. Solid curveds,=1.9\ andA’=200wg; dashed curveds,
=57\ and A’'=200wg; dotted curve: d;,=1.9\ and A’

very rough approximations. However, the qualitative behay=100Qg .

ior of the exact solutions is predicted correctly, and thus

these expressions provide a lot of physical insight. steady-state temperature dg,. As expected from the dis-
Note further that the results derived here only hold in thecussions in Sec. Ill, the temperature increases with larger

regime of a friction force which is linear in the velocity, i.e., speckle sizes. This feature arises from the fact that while the

for velocities well below the capture range of the Sisyphusfriction force decreases asd:ﬁ(, [cf. Eqg. (25)], only the di-

cooling. This capture range is characterized by a critical vepole term of the momentum diffusidiEq. (26)] has the same

locity v, which corresponds to the velocity of an atom trav- dependence, whereas the sponaneous emission term remains

elling from one optical potential well to the next one before constant. Hence the latter contribution of the total diffusion

being optically pumped17], i.e., starts to dominate for large speckle size®wre precisely for
) ) dsp/A>A"/y"), and hence the temperature is expected to
ve=dspy=s=5dspy’ (28)  increase quadratically with the speckle size.

. . L . The two curves of Fig. 3 correspond to the same optical
Thus Eq.(27) is valid only for atomic kinetic energies below potential depthA’ but different optical pumping rates’,

the critical value OfE=mu¢/2 which depends linearly on j ¢ " gifferent detuningg. In accordance with Eq27), the
the atomic mass. Therefore the critical energy is much lowegjtference in temperature for small speckle grain size is
for a light atom than for a heavy atom with the same opticalgmg|, but it becomes larger as soon as the term quadratic in

properties. . . dsp/\ starts to dominate.
On the other hand, the Monte Carlo simulations of Eq. "However. for the parameters chosen in Fig. A3, y’

_(17) depend on the atomic mass, qnd give the correct veloc- 10 (15), the temperature increases only by a factor @)3
ity dependence of the force. Thus, in contrast to @), the i the speckle grain size is increased from abaub 12\.

numerical simulations yield different steady-state temperag;; 55 we will discuss later in Sec. IV C, the increase of the
tures for different atomic masses. Consequently, it is appro-

priate to introduce the mass as an addidional sytem pararﬁgﬁgﬂ ?alerf]uz%r; ng&%‘fg&‘]’vhéc?n 'ihegl#aérﬂb/a na
eter, which is conveniently done in the form of the recoil N rang p 1S Mu ger.
frequencywg=%k?/(2m). In the following sections we will In Fig. 4 we p!ot the s_teady—statg temper?tu_re versus the
thus usewg as a fundamental unieven if for a semiclassical \cj:':uinnlngoA tl;ggla ﬁ)r(:dinoptrlgf : ’po;ﬁgtﬂ:?oﬁr’clﬁ?\./'efsoi:gr-
theory the linewidtH™ seems better suit@dAll of our simu- ying op pumping rate . i :
lations were performed for cesium atoms, whefe respond to the same optical potential depth but to a different

~200Qwg, and where the mass is large enough that for mos§peckle grain sizel,. In agreement with E¢27) the tem-

of the interesting parameter regimes the atomic velocit}Perature mc,:reases for smaller detun_nﬁgs.e., larger pump-

stays belows,, and hence Eq27) can be applied. ing ratesy’. For ,very large detunings, corresponding to
small values ofy’, the temperature assumes a constant

value, which is the same for different speckle sizes as long as

IV. NUMERICAL RESULTS the optical potential depth’ is the same. Hence in this limit

A. Steady-state temperatures the temperature becomes independent of the optical pumping

rate y’ andof the speckle sizé,. On the other hand, for a

As already shown in Sec. Il, the general behavior of theﬁf(ed speckle size but different values &f, the tempera-

steady-state temperature as a function of the optical potenti?ures achieved in the limit of small values gf differ (cf.
depth is the same for our system as for optical lattices Crezso Fig. 2

ated by several plane waves. However, an important differ-
ence between the laser cooling inside a speckle field, as dis-
cussed here, and plane-wave lattices, lies in the tunability of
the typical length scale. For our setup the mean speckle grain In this subsection we will discuss some of the localization
sizeds, can be changed continuously by changing the posiproperties of the cold atoms. To this end we give a contour
tion of the diffusor which creates the speckle field out of aplot of the steady-state atomic densjtyn Fig. 5a), where
plane laser wave. the calculations have been performed for the speckle field
As an example, Fig. 3 shows the dependence of théepicted in Fig. 1. Comparing these two figures, one can see

B. Local properties
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speckle graindregions of high speckle field intensjtyf
mainly circular polarization contribute to the Sisyphus-type
cooling, but speckle grains of dominating linear polarization
do not.

It should be emphasized that in speckle grains of mainly
circular polarizatiorlocal coolingcan be found, that is, even
within a single well an atom can be cooled by optical pump-
ing processes between the widely differing optical potentials
of the two ground-state sublevels. This is in contrast to the
plane-wave 1D linlin configuration, where an atom must
travel across several potential wells in order to be cooled
(nonlocal cooling. Thus, the atom is more likely to be
cooled and trapped within circularly polarized speckle

grains.
Another reason for the different steady-state atomic den-
(b) /‘ N sities in potential wells of the same depths is formed by the
/ ) radiation pressure force. As already mentioned above, the
Sy light field amplitude and the phase of the speckle field are
QQ,L mutually independent, and thus the phase gradient can also
Vs differ strongly at the bottom of the potential wells. Hence,
N\)\‘/Qt: within some potential wells the atom experiences a relatively
/“@{ strong radiation pressure force and is thus pushed away. As
;@A\ an example, Fig. ®) again shows a contour plot of the
@) @ speckle field intensitythe same as in Fig.)1together with
. shows, e.g., a significant radiation pressure inxfikrection

—

_ /@Q\\%{ the vector field of the local radiation pressure force. This
[

30— ><Y %?)‘/‘ X
rroay f :/C//“O\ @ J e s in the high-intensity speckle grains at the center of the figure.
5)’% . - S e -§ Correspondingly, we have numerically found nonvanishing
' A\ l/ - ‘/_( \% N\ (((;)\ . o . . .
4 / Z & . mean atomic velocities in these regions, which means that
e da\S L) A WIS - 8 .

there exists a stationary flow of atoms following roughly the
FIG. 5. (a) Contour plot of the atomic density fax’=200wg

direction of the local radiation pressure force. This might
o - . suggest that a description of speckled lattices in terms of
and y’'=13.33uz. (b) Contour plot of the speckle field intensity fluid mechanics formalism may be interesting to investigate;
and vector field of the local radiation pressure force. The size of th?‘lowever this is beyond the scope of this paper
spatial region is (10)2. e aats . ! S
P g (10) Finally we will briefly discuss the atomic density distri-

- : T : butionP(p), i.e., the probability of finding a certain density.
easily that the atomic density is strongly correlated with the} . e ;
speckle field intensity. This statistical dependence can bee:t:ﬁrg%r:gigifg{vglneif]plfi(;klz field intensi(1) and the

demonstrated more clearly by calculating the covariance, de- The numerically obtained speckle field intensity distribu-

fined as : . : :
— tion, Fig. §a), follows an exponential law, as theoretically
cov(p, 1) =(p)IN{p){1°). (29 discussed 2], with equal mean and standard deviation,
We find that this quantity assumes values close to its maxi-€-
mum value of one, e.g., for Fig.(®, cov(p,l)=0.92. This PO/ =exol — 1 /(1 30
means that the intensity distribution of the speckle field is () =exp(=1K1). (30
efficiently mapped onto the atomic density distribution. As can be seen from Fig.(§) the atomic density does not

However, if one looks closer at Figs. 1 an@f one notes  follow the same law, since there is always a background of
some discrepancies; for instance, some of the relatively shaimbound atoms, and hence the probability of finding a den-
low optical potential wells at the top of the figures are sur-sity below a certain threshold vanishes. But above this
prisingly strongly populated. Although these features cannothreshold the density distribution function closely resembles
be explained quantitatively, we will describe some of thethe speckle intensity distribution, which again indicates a
physical mechanisms in the following. strong correlation between the light field intensity and the

Basically these local differences are caused by the facitomic density.
that the field amplitude and the phase of the speckle field are
essentially uncorrelated. Whereas in usual optical lattices the
light amplitude and phase are always correlated, which, e.g.,
in a 3D linLlin setup yields that the optical potential minima  Another important quantity for characterizing the proper-
coincide with places of pure circular polarizatif8y, this is  ties of the cooled and trapped atoms is the spatial diffusion
not the case in our setup. Consequently the local polarizationoefficient, which roughly quantifies the transfer of atoms
of the total light field at places of maximum local speckle between several potential wells and hence of the spreading of
field intensity can be linear as well as circular, but in generahn initially small atomic cloud. Experimentally, as well as in
will be an arbitrary elliptical polarization. Hence only our Monte Carlo simulations, the spatial diffusion coefficient

C. Spatial diffusion
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14 F FIG. 7. Spatial diffusion vs detuninyy for fixed potential depth.
' b Solid curve:dg,=1.9x and A’=200wg; dotted curve:dg,=1.9n
127 (b) andA’=100Qwg ; dashed curveds,=5.7n andA’=200wg. (For
a3 Lt the corresponding steady-state temperatures, see [Fig. 4.
~ 08¢
06 | experiment, where the speckle size is typically of the order
04 | of tens of wavelengths, this means that the spatial diffusion
o2 | of the atoms in the speckle field can easily be orders of
'0 . . : magnitude larger than for a standard optical lattice, even if
0o 1 2 3 4 5 the steady-state temperatuf@3) are comparable.

p/<p>
FIG. 6. (a) Histogram plot of a numerically obtained speckle v INFLUENCE OF THE LONGITUDINAL DIRECTION
field intensity. Theoretical analyses predict an exponential behavior
(smooth curvg (b) Histogram plot of the atomic density fak’ Compared to the transverse directions, which have been
=200wg, y'=13.33wg, anddg,=1.9\. discussed so far, the physical properties of the system along
the laser propagation direction are completely different.
D, is obtained from the spreading of an initial atomic cloudFirst, it should be emphasized again that the size of the
whose variance follows a linear law in the long-time limit, speckle grains in this direction is generally much larger, i.e.,
5 5 by a factor on the order afsp/N. But superimposed on this
[Ar(t)]°=[Ar(0)]°+2D4t. (3D relatively large length scale there is a standard 1D Ilm
configuration with a typical length scale of half an optical
wavelength, such that the system must be characterized in
. this direction by two widely different length scales. Second,
D this superimposed linlin configuration leads to efficient
= (32 cooling in the longitudinal direction at regions in space
where the speckle field intensity approximately equals the
for the spatial diffusion coefficient for a Brownian motion intensity of the counterpropagating plane wave. However, at
[23]. Applying our findings for the friction coefficien25  |ocations where the two beam intensities differ, it also leads

An estimate for the value dDg can be derived18] by
using

Dgs=

N

a

and the momentum diffusiof26), we obtain to a nonbalanced radiation pressure force driving the atoms
8y [dep 2 away from these Iocat_ions. Note fcha_t the _situation is similar
DS=§ _Z(T) to what can be found in quasiperiodic lattiddd].
k Hence, the full 3D situation is much more intricate than
11/T\2 5 /T\2/d.\? the transverse 2D scheme. Also, numerically, a complete 3D
X1+ — —) + —(—) (—Sp } (33 treatment would be very demanding. Instead we performed
181A 181A A some 2D simulations of the cooling dynamics including the

We can now compare this with the spatial diffusion coef-longitudinal and one transverse direction, which should give
ficients obtained by semiclassical Monte Carlo simulationssome relevant information about the actual behavior of the
as depicted in Fig. 7 as a function of the detunifiglt  system in three dimensions.
follows from Eq.(33) that fory'/A’=I"/A<1 the first term In Fig. 8 we depict the temperatures in the longitudinal
will dominate, and hence the spatial diffusion coefficientdirection and in the transverse direction obtained from such
scales linearly withy’, i.e., like 1A if A’ is kept constant. 2D Monte Carlo simulations. We see that the transverse tem-
This is in qualitative agreement with the curves of Fig. 7 forperatures are always higher than the longitudinal ones. Even
not too large values of the detuning However, Eq.(33) if there exists a strong radiation pressure in the longitudinal
only holds if the atom moves only a fraction of the speckledirection in regions of differing speckle and plane wave in-
size d between two optical pumping procesgés], which  tensity, this effect is overcompensated for by the much more
explains the deviation of the numerically obtained curvesefficient Sisyphus cooling in this direction.
from the 1A law for large values of\. Second, let us remark that the transverse temperatures are

Note that forA>1I", and within its range of validity, Eq. larger for this type of Monte Carlo simulations than those
(33) predicts an increase of the spatial diffusion coefficientobtained from simulations including two transverse direc-
with the square of the speckle grain size. This has beetions. Hence the inclusion of the longitudinal direction tends
nicely confirmed by our numerical simulations. For an actualto reduce the efficiency of the transverse cooling. This can be
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~, 800 pressure forces which are essentially decoupled from the lo-
- cal optical potential depth. Furthermore, according to the
§ 600 speckle field the spatial diffusion of the atoms is increased
- by a factor of approximately the square of the typical speckle
2 400 grain size.
g Thus for an experimental realization of this scheme two

200 points should be emphasized. First, the experimental setup is
= relatively simple since a 1D configuration is already suffi-

0

cient to yield 3D sub-Doppler cooling. On the other hand,
A" (units of o) the obt.ained speckle grain 'size i.s typic;ally much larger than
FIG. 8. Steady-state temperatures in the transverse directio n optical Waveler_lgth, which gives rse tc_) Ior_lger cooling
(solid line) and in the longitudinal directiofdashedl for fixed op- IMES and a huge increase O.f the Spa“f’" diffusion. Thus the
tical pumping ratey’=20ws vs optical potential depth. The lifetime of the trapped atomic cloud will be much shorter
speckle grain size id;= 1.8\ transversally, andi},=7.2\ longi- than in usual lattices, a_nd the ac;h|evable atomic densities
tudinally. much lower. However, first experimental resul&5] have
already confirmed most of the theoretical predictions pre-

understood by the following arguments. Since the transversge"ted in this work, and reasonable agreement with the nu-
cooling relies on a Sisyphus effect, it is more efficient for merically obtained values for, e.g., the steady-state tempera-
deeper potential wells because in this case a single quantumres has been fom_md. L . ,

jump between the two adiabatic potentials reduces the Although such investigations and possible extensions of
atomic energy by a larger amount. Thus the cooling mechaln® scheme, e.g., to the study of speckled dark lattices, al-
nism is most effective in regions of maximum speckle fieldready present interesting re_sults for Ias_er_ _coollng, we think
intensity. But in the longitudinal direction, these regions cor-that the main interest lies in the possmnlty of creating a
respond exactly to the regions of maximum radiation Iores_cysordered samp_le of cold atoms with well_—corytrolled statis-
sure, and hence the atom is efficiently pushed away. For thlical chargcterlsucs. Because of the growing interest in the
transverse cooling this means that the atom avoids the deepid Of disordered materials, the presented system may thus
est potential wells, which consequently reduces the cooling® Useful in this domain.

efficiency and therefore increases the steady-state tempera-
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previous results that the leading term in the expression of the

temperaturd Eq. (27)] is independent of the speckle size, APPENDIX: FOKKER-PLANCK EQUATION

whereas the spatial diffusiof83) scales with the square of  |n the following we give exact expressions for the coeffi-
the speckle size. Hence the difference in the typical lengtiients which appear in the Fokker-Planck equatid® as
scale between the longitudinal directi¢n) and the trans-  optained from the Wigner transform of the master equation

verse directionds) yields widely different spatial diffusion. (9) (the derivation is straightforward but lengthy and will
Again we note that the values for the transverse spatial difthus be omitted The jump rates read

fusion obtained by the Monte Carlo simulations with the

0 200 400 600 800

- o | y.:=57'|Ez|? (A1)
longitudinal and one transverse direction lies above the value o = A
obtained from simulations restricted to the transverse plandhe force coefficients are
according to the reduced cooling efficiency as discussed Fl, =A'{ (3E.)E! + Z(4E-)E +c.c.
above. == = 3 *
i 1 +
VI. CONCLUSIONS + 9’ 5 (BEL)EL + 5(0iEI)EI—c.c. ,
In this work we have demonstrated that 3D laser cooling (A2)

of neutral atoms can be achieved by a 1D setup, if one of the i

two counterpropagating laser beams of a plane-wave 1D op- FL.=9" ={(4E+)EL—c.c}, (A3)
tical “molasses” [14] is replaced by a speckle laser field N 9 T

[24]. The cooling mechanism in this case relies on a Sisy- _ e -

phus effect similar to the one known in usuperiodio lat-  Wheréi=x.y, and the diffusion coefficients are
tices[12] in one, two, and three dimensions. We have calcu-

lated steady-state temperatures similar to those obtained for DX =4/
periodic lattices for large red detunings of the lasers from the B
atomic resonance. In this far-detuned limit the steady-state

| =

T 2 T
4(ﬁin)(axEt)+ §(§x‘9xEI)EI

¢ . 2 . 8 "
emperatures also become independent of the mean speckle + §E:(¢9x¢9xE:)+ §(t9xE:)(t9xE:)
grain size.
In contrast to usual lattices we have found various local 2 1 2
effects, such as local cooling and nonvanishing radiation + ' 5 Ei+§E; , (A4)
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1
DY, =D¥, =~/ %{(axayEi)ETi

+(94EL)(9,EL) +c.c). (A8)

For the derivation of the diffusion coefficients, we have sim-
plified the spontaneous emission pattern by assuming that
fluorescence photons are only emitted alongxhg, andz
axes[20].

Two other points are worth a comment here concerning
the application of these diffusion constants and forces in the
semiclassical Monte Carlo simulations outlined in Sec. Il B.
First, it turns out that for all realistic choices of the system
parameters the cross terris . andD' . between the two
ground-state sublevels can be neglected as compared with
the terms=', . andD'. . . Second, at some positions in space
the diffusion coefficients assume negative values. This prop-
erty indicates a purely quantum feature of the system, i.e., it
shows that there exist positions in space where the atomic
wavefunction collapses rather than spreads[@6]. How-
ever, this featureeannotbe mimicked by the semiclassical
simulations, where negative diffusion makes no sense.
Hence, whenever this situation occurs in our numerical simu-
lations we set the diffusion coefficients equal to zero to avoid
this problem.
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