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Dynamics of noise-induced heating in atom traps
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A Fokker-Planck equation is derived for the energy distribution of atoms in a three-dimensional harmonic
trap with fluctuations in the spring constant and the equilibrium position. Using this model, we predict trap
lifetimes based on the measurable noise spectra of the fluctuations. The energy distributions evolve into a
single eigenmode where the apparent temperature of the distribution remains constant while the population
decays as a consequence of the energy input. The method of analysis and the corresponding results are
applicable to any optical, magnetic, or ion trap that is approximately harmonic, and offer useful insights into
both noise-induced and optical heating process®5050-294{@8)05211-1

PACS numbds): 32.80.Pj

I. INTRODUCTION model to noise-induced trap dynamics by deriving a Fokker-

Stable atom t h di licati . i Planck equation for the energy distribution of atoms in a
apié alom traps have diverse applications in quantuny, .oe_gimensional fluctuating trap. Numerical modeling for a

optics ranging from studies of Bose-Einstein condensateg,, ith a finite depth yields estimates of the atom loss rate
(BEC's) [1-3] in magnetic traps to quantum computidl 514 the average energy for a number of loading conditions.
in ion traps. Optical far-off-resonance traps have been demye pegin by reviewing the results of our previous paper for

onstrated for confining arbitrary atomic ground states inge heating rates, and then derive an approximate Fokker-
nearly identical potentialg5,6] and for optical lattice7].  pjanck equation that describes the evolution of the atom en-
Multiple spin condensates have been stored in a shallow faergy distribution in the trap.

off-resonance trap to study interactions in the quantum de-

generate regimgB]. These traps also offer an attractive pos-

sibility for investigating weakly interacting atomic fermions Il. HEATING RATES
where multiple atomic states are required $awave scatter-
ing [9]. In all of these applications, achievement of long
storage times is of great importance.

As a simple model, we first consider an atom in a one-
dimensional harmonic-oscillator potential with a fluctuating

For some time it has been appreciated that fluctuations i pring constant and a fluctuating eqL_J|I|br|gm posit[d). .
. his serves as a general model that is valid for small oscil-

the trap parameters can cause atom heating, and that t‘]aeiions in any atom trap
resulting trap loss limits the maximum storage period. This '
problem has been circumvented in BEC experiments by us-
ing magnetic traps with relatively low trap resonance fre-
quencies, so that fluctuations in the potential are only weakly ) ) o ) _
transmitted to the atoms. Consequently, adequate mechanical TO determine the heating rate arising from fluctuations in
and power supply stability are not too difficult to achieve. Inthe spring constant, we take the model Hamiltonian for a
contrast, far-off-resonance optical traps with high resonanct@pped atom of mas to be
frequencies can be very sensitive to laser intensity fluctua- 2 4
tions and beam-pointing noise which cause trap fluctuations H= L + =M1+ e(t)] X2 (1
and subsequent heating. However, the conditions on the trap 2m 27
stability needed to achieve long storage times have not been
carefully studied.

In a recent paper, we considered fluctuations in a far-offHere w;=k,/M is the mean-square trap oscillation fre-
resonance optical trap using a simple harmonic-oscillatoguency in thex direction, andk, is the mean value of the
model [10]. Heating rates were estimated in terms of thecorresponding spring constant. Fluctuations in any additive,
intensity and position noise power spectra measured for agpatially constant potentiaV, exert no force and do not
argon ion laser. Intensity noise causes fluctuations in theause heating. The spring constant exhibits a fractional fluc-
spring constant and results in exponential heating, whilduatione(t). For example, in a far-off-resonance optical trap,
beam-pointing noise causes fluctuations in the center of thihe spring constant is proportional to the laser intensity, and
trap and leads to heating at a constant rate. It was shown tha(t) is the fractional fluctuation in the laser intensity.
achieving heating time constants well beyond 10 sec imposes Equation(1) is well known, and has been studied exten-
stringent requirements on the trap stability. Since this modesively in classical treatments of parametric resongridg.
is applicable to any harmonic trap, the results apply equallyWhen x(t) =xXycoswt and e(t)=eySinZw,t, it is easily
well to magnetic, optical, and ion traps, and provide esti-shown that the energy increases exponentially with a rate
mates of the expected heating time scales. constantejw, that is also the width of the parametric reso-

In this paper, we apply the fluctuating harmonic-oscillatornance. Further, it is possible to excite subharmonic reso-

A. Fluctuations in the spring constant

1050-2947/98/58%)/39148)/$15.00 PRA 58 3914 ©1998 The American Physical Society



PRA 58 DYNAMICS OF NOISE-INDUCED HEATING IN ATOM TRAPS 3915

nances that grow exponentially at a slower rgt&]. For % % ) )
sinusoidal modulation, the relative phase betweérn and Jo do S(w)= JO dv S(v)=(e“(1))=¢eq, )
X(t) is important.

In the present case, we are interested in stochastic fluggheree, is the root-mean-square fractional fluctuation in the
tuation rather than sinusoidal modulation of the spring congpring constant, ana=2#v, with » the frequency in Hz.
stant. The dominant parametric heating rate arises from the Assuming that the trapped atoms occupy state with

component of the noise power spectrune(ff) at the second  yrgpability P(n,t) at timet, the average heating rate is just
harmonic. In this case, the energy also increases exponen-

tially, as it does for sinusoidal driving. However, the rate is .
reduced by the ratio of the linewidth of the parametric reso- <Ex(t)>:; P(n,0)2hox(Rnt2n~Rn-2n)
nanceeywy to the bandwidthA w of the fluctuations, where
€ is the rms fractional fluctuation in the spring constant. T,
Hence the rate is of ordes? S, whereS= €3/ A w is the noise = 5 OS2 (Ex(1)), ®
spectral density in fraction squared per rad/sec. The heating
rate can be calculated classically, as one would expect for @where the average energy IigE,(t))==,P(n,t)(n
harmonic-oscillator potentidll0]. Unlike the case of sinu- +1/2)4w,.
soidal modulation, it is independent of the phase of the atom Equation(8) shows that the average energy increases ex-
oscillation at the fundamental trap frequency. ponentially,

Although the heating rates and the corresponding Fokker- _
Planck equation all can be derived classically, they are easily (Ex) =T (Ey), 9
determined quantum mechanically using first-order time-
dependent perturbation theory to calculate the average tratithere the rate constait, is given by
sition rates between quantum states of the trap. Taking Eq.

X : . . 1
(1) as a quantum-mechanical Hamiltonian, the perturbation = = 72,25,(2 10
of interest is given by X~ T (seg ViSd2vx). (10
H' ()=} e(t)M w22, 2 Here v, is the trap oscillation frequency in Hz, afg is the

energye-folding time (time to increase the energy by a fac-
For an atom in the staf@) at timet=0, the average rate to tor e) in sec.
make a transition to stafen#n) in a time intervalT is The heating rate is proportional to the energy because the
mean-square force fluctuations increase as the mean-square
distance from the trap center. The dependence of the heating
rate on the second harmonic of the trap frequency shows that
it is a parametric heating process. According to Bd), to
Mwi 2 (e Lo 22 achieve an energg-folding time greater than 100 s in a trap
“\on fﬁxdTe i e(t) e(t+))Kmlx )l with an oscillation frequency of 10 kHz require&S,(2v,)
<3%10 ®Hz. Hence, if most of the noise were evenly
S distributed over a 40-kHz bandwidth, the rms fractional fluc-

Here we have assumed that the averaging timie short tuatigg in the spring constant must be less thayr6
compared to the time scale over which the level population§< 107~
vary, but large compared to the correlation time of the fluc-

2

1i—i(r gt "\ alompt’
RmHnEf Tfodt Hmn(t )e mn

tuations so that the range ofextends formally tat . The B. Fluctuations in the trap center
correlation function for fractional fluctuations in the spring  Fluctuations in the trap equilibrium position also cause
constant is defined as heating. In this case, the effective Hamiltonian is
(e(De(t+1) 1det (De(t+7) @ P a2 2
€ € T))= = € € 7). = — — —
T/, H oM + 2wa [X—e(1)]5, (11

Using the transition matrix elementsnén) of x* and  wheree,(t) is the fluctuation in the location of the trap cen-
wn+2n=* 20, in EQ. (3), the transition rates are given by ter. In this case, analogous to the methods used to obtain Eq.

) (9), the transition rates calculated for E41) are

Tw
Rizzon=—1 S(20)(n+1x1)(nxl). (5 _
Rntlen:ﬁwaSx(wx)(ndl' 1/2+1/2). (12
In Eq. (5), S(w) is the one-sided power spectrum of the
fractional fluctuation in the spring constant, The corresponding heating rate is
2 (= .
Sk(w)E;fO dr coswr(e(t)e(t+7)). (6) <Ex(t)>=§n: P(nt)iwJRyt1cn—Rn_1cn]. (13

The one-sided power spectrum is defined so that This yields
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w

. . T
Q=(Ex) = 3 MwySy(wy). (14) Rsz p=g (N+1=1)(n=1). (18)

Shaking the trap causes heating that is independent of the Similarly, position noise causes transitions between states
trap energy. Her&,(w) is the one-sided power spectrum of n—n=*1 with energy changedE,=*%w,. The corre-
the position fluctuations in the trap center along xhaxis, sponding ratefEg. (12)] can be written in terms of the heat-

ing rateQ, [Eq. (14)] arising from position noise:

©

2
S(w)= ;j d7 cosw (e (t+ 7)€ (t)). (15 o
0
Rnﬂhnzﬁ—x(w 1/2+1/2). (19)
The one-sided power spectrum of the position fluctuation is @x

normalized so thatfjdw S(w)=¢€2 is the mean-square From Eqgs.(18) and (19), one obtains

variation in the trap center position, analogous to &J.
An energy doubling timeT, can be defined as the time _ iy

needed to increase the energy by the average energy at Ml(EX)_m:tEL:Z MA@y Ro+men=Qx + T'x By,

=0: Q,/(E4(0))=1/T,. Then, using(E,(0))=M w(x?), (20)

where(x?) is the mean-square position of an atom in the trap

att=0, one obtains

Q  _ 1 _ 5,5
(Ex(0))  T(seq X3y

I'y

D(E)= 5

EZ + QyE,.
(21)

1 2
Em:+1+2 (MAwy,)* Ryt men=

(16)
Note that we neglect 3/4 compared to+ 1/2)? in the dif-

According to Eq.(16), if an atom is confined in a trap to a USion constant, and ugg = (n+1/2)hw, .

dimension of a 1um, with an oscillation frequency of 10 _ For one-dimensional motion along theaxis, the Fokker-
kHz, achievement of an energy doubling time of 100 sed’lanck equation for the energy distributiogE,t) then is
requires a position stability ofS,(r,) =3x 10 6 um/Hz.  9iVen by Eq.(17) as

Note that to achieve a given time scale, the required frac-

2
tional position stability in units of the spatial width of the MZ(BEZJF - )w
trapped atoms is the same as that required for the fractional at 2 70 T gE?
stability in the spring constafiEq. (10)].
+ (T, E+Q )(m(Ex’t) (22)
lll. FOKKER-PLANCK EQUATION OO 9B,

An approximate Fokker-Planck equation for evolution of This result also can be derived directly from the quantum
the energy distributiom(E,t) in the atom trap is easily de- rate equations for the state occupation numig(g, ,t) by

rived, and takes the forifil3] using the rates given in Eq¢l8) and (19) and Taylor ex-
5 pandingny(E,+ mf w,,t) to second order ik w,. By tak-
an(E;t) 4 d ing the limit A w,<E, and usingn(E,,t) =ng(Ey,t)/(Aw,),
a E[Ml(E) n(E,0]+ E[D(E) n(E,0]. the same result is obtained.
(17)

) ) ) B. Fokker-Planck equation for a three-dimensional trap
Here the first moment,(E)=(AE)/T is the mean heating ) , )
rate, and the energy diffusion coefficient i®(E) Using the results for the one-dimensional trap, the

=M,(E)/2=((AE)?)/(2T). M, andD are averaged over a Fokker-Planck equation for the energy distribution of atoms

time T that is long compared to the correlation time of the!" @ three-dimensional trap can be derived as a function of

fluctuations, but short compared to the time scale over whic’€ total energy=E, +E,+E, in an approximation of suf-

the energy distribution evolves appreciably. ficient ergodlcny: We assume that some mechanism exists
The moment$Vl, andM, can be obtained classically, but for assuring that all states of equal total energy are equally

they are readily determined from the transition rates found iffroPable. Possible mechanisms include reflections from trap
Sec. II. First, we consider the one-dimensional case for molMPerfections or collisions that occur rapidly compared to

tion in the x direction, and then generalize to three dimen-t1€ l0ng heating time scalésecondsof interest here. For a
sions. three-dimensional harmonic trap, the heating rates can be

different for each direction of motion. Hence we can define
three heating rate constants arising from fluctuations in the
spring constantd;,, I'y, andI",, where the rates are given
For a one-dimensional trap with atoms of enerBy by Eq.(10). These rates can differ because the trap oscilla-
=Ey, fluctuations in the spring constant cause transitiongion frequenciesy,, vy, and v, generally are different for
between statesn—n=*=2 with energy changesAE,= each direction or, more generally, the spring constants may
+2hwy. The rates are given by E). These rates can be fluctuate independently in some cases. Similarly, heating
written in terms of the heating rate constdijt[Eq. (10)] for  rates arising from fluctuations in the trap position will be
fluctuations in the spring constak : different for each direction, and we define three heating rates

A. Fokker-Planck equation for a one-dimensional trap
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Q. Qy, andQ,, each taking the form of Eq14). In this
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case, the Fokker-Plank equation again takes the form givenn(E,t)dE= dEJ f f O(E-E,—Ey—E))
hoho ﬁwz

by Eq. (17). However, the first moment and diffusion coef-
ficient are the sums of the corresponding first moments and

diffusion coefficients for the, y, andz directions:

Mi(E)= 2 (Ti(EDetQ). (23

D(E)=

I1=X

N,
- §<Ei>E+Qi<Ei>E (29

XnO(E,t), (32

where no(E,t) is the occupation number of a single state
with vibrational energieg,, E,, andE,. h(E,t) is then an
integral containingng(Ey,E, ,E,,t) which is evaluated by
adding the right-hand sides of one-dimensional Fokker-
Planck equations of the form of E€R2) for each dimension.

Sufficient ergodicity is imposed by assuming that the occu-
pation number depends only on the total energy

Here,{---)g denotes an average over all states of fixed total

energyE=E,+E,+E,. Assuming sufficient ergodicity, this

average is carried out using the probability distribution

i d°E  S(E-E,—E,—E,dE
P(E)d°E= (E-BE7E)
hohodfo, g(E)dE
(25)
HereE=E,, E,, E, andd®*E=dE,dE,dE,. The number

of states within a fixeddE of a given total energyE is
g(E)dE, whereg(E) is the density of states given by

E_fff o JE—-E,—E,—E
9(E)= W(—x—y—z)
E2

- 2hwhohw, (26)

With Eq. (25), one obtaingE, , ,)e=E/3, as expected,
and(E .y, ,e=E?/6. Equationg23) and (24) then yield

M,(E)=T E+3Q, (27)
r .
D(E)=ZE2+QE. (28
Here we have defined the average rate condtaas
ry+r,+r
r=-—2>—° (29)
3
and an average heating re@eas
. Q+Qu+C
oo & ? Q. 30

Using Eq.(17), the Fokker-Planck equation for the energy

distribution in the three-dimensional trap is then given by

n(E,t)
JE?

.on(E,t) T
JE —En(E,t).

31)

an(E,t) =(F 2+QE)&2

ot 4

No(E,t) =ng(E=E,+E,+E,,t). (33
Here n(E,t) =g(E) no(E,t), whereg(E) is the density of
states given by Eq26). Using Eq.(33) to eIiminateno(E,t)
from the integral that appears in(E,t), one obtains the
same result as E¢31).

Equation(31) describes the evolution of the atom energy
distribution for a harmonic well of infinite depth. It is easy to

show for this case thaN;or=/dE n(E,t)=0 and E1o7
=[dE E N(E,t)=T E1or+Q N+o7, as it should be.

C. Trap loss for finite well depth

To model the trap loss arising from noise-induced heat-
ing, we consider a harmonic well of finite depth. Trap loss
occurs as the atoms, with an energy distribution evolving
according to the Fokker-Planck equation, escape from this
finite well. To model the finite well, we truncate the har-
monic oscillator potential at the top, and assume that the
heating rates are approximately unchanged from those of an
infinite well. The maximum height of the well relative to the
minimum is taken to be the well deptt,. We assume that
the atoms are lost when their energy is equaltp In this
way, we model loss as a transition to a virtual, unbound
harmonic oscillator level g =U,. This implies the bound-
ary conditionn(E=U,,t)=0. The second derivative with
respect to energy in the Fokker-Planck equation necessitates
a second boundary condition. Because the density of states
for a three-dimensional harmonic oscillator variesEdswe
assume that there are no atoms with zero energy, and we take
this other boundary condition to b E=0,t)=0.

The Fokker-Planck equatiof31) is easily converted into
the equivalent finite-difference equation using standard
methods. We can then compute the energy distribution of the
trap at any future time given an initial distribution(E,0)
consistent with the boundary conditions. The numerical

method is validated by computifgor and E1o7 for initial
conditions with atoms that start low in the trap. The results
display the infinite well behavior until the atoms begin to
escape from the trap.

Initially, we examine solutions for the case of fluctuations
in the spring constant, whefe#0 andQ=0. The time is
given in units ofl' ! by defining a variable=T"t. Note that
I' is the average of the rate constants for the three dimen-

Equation(31) also can be obtained using the definition of thesions, given by Eq(29). The energyE is given in units of

three-dimensional energy distributior{E,t) in the form

the well depthU,, so that the energy of occupied states
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FIG. 2. Decay of the total trapped population«sI't for fluc-
tuations in the spring constan@&0).

z 1.0
) .
= 08 <10 sec for trap resonance frequencies above 5 kHz. Storage
5 3'2 times well above 10 sec are unlikely in optical traps that
E 0.9 employ argon-ion pump lasers, unless the atoms are initially
€ 00 loaded near the bottom of the trap.

| )
0.0 0.2 04 0.6 0.8 1.0 Figure 3 shows the mean energy per atom

E/U, E+o7(7)/Ntor(7) in units of Uy as a function of time for
various loading conditions. For loading near the trap bottom,
FIG. 1. Evolution of the energy distributior(E,t) as a function E.=0.1U,, the mean energy first rises as the atoms heat
of r=I"t=0.0-1.0 in steps ah 7=0.1 for fluctuations in the spring and then asymptotically approaches a constant value
constant Q=0). The curves have been scaled so that the initial=0.36U,. For loading at high temperatureg.=0.8, the
distribution has a peak value of 1.0. Three initial conditions aremean energy initially drops as hot atoms are rapidly expelled

shown:(a) Ec=0.1U,, (b) E;=0.4U,, and(c) E;=0.8U,. from the trap and then approaches OB6 This behavior is
a consequence of the evolution of the energy distribution into
varies from 0 to 1. The initial condition is taken to be a single eigenmode. This result is confirmed by the

asymptotic forms of the analytic solutions for the total en-
ergy and number, each decaying exponentially at large times
with a rate 3°/9, and reaching a steady state ratio of 9/25
=0.36. Hence, after a couple of time constants, the apparent
Here we assume that the initial distribution is a product oftemperature of the distribution does not change, although the
the harmonic-oscillator density of state&? and an occupa- population decays as a consequence of the energy input.
tion number that smoothly cuts off f&>E_ over a range The evolution of the energy distribution for fluctuations in
AE. This distribution avoids an abrupt cutoff of E,0) that  the center of the tra) #0 andI'=0, is shown in Fig. 4 for
occurs forE=U, when the initial occupation number is different values ofE.. Here, the unit of time is taken as
Maxwellian' and the thermal energy is comparable to the welbo/'Q’ the time needed to increase the energy per atom by
depth. Typically, we vary the cutoff enerdy, from 0.1U

to 0.8U,, and takeAE=0.1U,. 0.6 1E,=0.8

Figure 1 shows the evolution of the energy distributions,
n(E,t), for initial distributions with E./U,=0.1, 0.4, and
0.8. The distributions always evolve into an eigenmode that
decays with a single time constant.

The fraction of the total number of atoms remaining,
Ntot(7)/N1o1(0), isplotted as a function of=T't in Fig. 2.
When the atoms are loaded with an initial distribution that
has a mean energy near the bottom of the trap, the evolution
is not exponential untit- is substantially larger than 1. When : E =01
the trap is loaded with an initial occupation number that is
relatively flat (E.=0.8), the quadratic dependence of the 0.1 I I I I |
density of states favors loading of high-lying states, and the 0 5 10 15 20 95
total number decays by a factor of about 0.4 in a time
0.5I' 1. Hence traps that are loaded at temperatiligesuch
thatkgT, is comparable to the well depth will decay with a  FIG. 3. Mean energy of the trapped atomsresI't for fluctua-
time constant almost twice as fastlas®. From our previous tions in the spring constantY=0). The energy is in units of the
measurements for an argon-ion lage®], we find thatl' ! well depthU,.

E2

n(E,0)= (34

e(E-EQ/AEL 1°
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FIG. 6. Mean energy of the trapped atoms w%Qt/UO for
fluctuations in the trap centef'&0). The energy is in units of the
well depthU, .

to Ug. Hence, trap loss can occur on time scales much

shorter thanU,/Q. Figure 6 shows the mean energy per

atom, E1o7(7)/Ntot(7), which rapidly approaches 0.5k,

in agreement with the analytic solution. Again, at large

times, the apparent temperature of the distribution does not

change although the population decays as a consequence of
FIG. 4. Evolution of the energy distributior(E, t) as a function ~ the energy input. o

of 7=0t/U,=0.0—0.5 in steps oA 7=0.05 for fluctuations in the The analytic solution shows that the energy distribution

trap center [ =0). The curves have been scaled so that the initiall@Pidly decays to the lowest eigenmodé€& J,(z21VE/Uo).

distribution has a peak value of 1.0. Three initial conditions areThis mode decays as dxp(z21/2)° 7] =exq —6.67], where

shown:(a) E,=0.1U,, (b) E,.=0.4U,, and(c) E.=0.8U,. Z,;=5.14 is the first zero of,(x).

Since the energy for a single atom increases generally

the well depth, and=Qt/U, is the time in dimensionless according toE=T"E+Q, the constant heating ra@ from
fluctuations in the trap center can be exponentially enhanced

by the ratel” arising from fluctuations in the spring constant.
Figure 7 shows the evolution of the total number that results

POPULATION

00 02 04 06 08 10
E/U,

units. Note thaQ is the average of the heating rates for the
three dimensions given by E30). The corresponding de-
cay of the total numbeX o(7)/N1or(0) is shown in Fig. 5. . ) _ _
Since all atoms will have escaped the trap when the addef®” X=I'Uo/Q=0.5, 2, and 5 under various loading condi-
energy equals the well depth and the energy distributioriions. The unit of time idJ,/Q and 7=Qt/Uj.

broadens by energy diffusion, the number decays exponen-

tially after just a fraction of a time constantly/Q. As a IV. DISCUSSION
consequence of the quadratic dependence of the density of
states, states with high energy are preferentially filled when We have derived a Fokker-Planck equation for the energy
the trap is loaded at temperatures whies&, is comparable distribution of atoms in a three-dimensional fluctuating har-
monic trap, under conditions of sufficient ergodicity. The
1 expected trap lifetimes for a truncated harmonic potential are
determined for initial energy distributions with different
mean energies. The heating rates and rate constants which
determine the trap lifetime are given in terms of the noise
spectral densities of fluctuations in the trap spring constants
and trap center position. The heating rates directly determine
the time for atoms to leave the ground state of the well at
very low temperature. Numerical solution of the Fokker-
Planck equation for a variety of initial conditions shows that
population loss from the trap can be quite rapid in some
cases. The effective time constant can be significantly shorter

than 1I" or U,/Q as a result of the density of states, which

predisposes atoms to be near the top of the trap when the

occupation number is slowly varying. The results of the fluc-

tuating harmonic oscillator model can be applied to mag-
FIG. 5. Decay of the total trapped population #s Qt/U, for ~ netic, optical, and ion traps.

fluctuations in the trap centef'&0). In recent BEC experiments, magnetic traps are employed

N(z) / N(0)
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whereq is the optical wave vector. The trap lifetime is well

known to be of ordet) ,/ Q. [14]. However, the recoil heat-
ing rate is equivalent to the heating caused by a position-

independent fluctuating forcaf (t), with a short correlation
time of the order of the spontaneous lifetimg,. In one
dimension, this force is described by an effective potential
H'=—x&f(t). In a harmonic well, this is equivalent to a
displacement in the well center, by(t)=of,(t)/(M a)i).
Using Eq.(14) in the limit w,7,;<1, one can show that this
leads toQX=D§/M, whereDy is the momentum diffusion
constant for the direction, as it should be. For a short cor-
relation time, the force changes the momentum, but not the
position. The potential energy remains constant during the
fluctuation, and the free particle heating rate is obtained. In
three dimensions, one obtains the recoil heating rate. Since
the scattering force is equivalent to a fluctuation in the center

N(1)/ N(0)

N(t) / N(0)

0

_ 11(?1: () of the trap, the average heating rate, E3) is Q=0Q,.J3.

S 2 | The corresponding first moment, diffusion constant, and

= 10 E,=0.1 . . L

~ 10 - E —08 N Fokker-Planck equation are identical in form to those for

% 107 - e fluctuations in the trap center. The recoil heating rate simply
107 4 : : : : | can be added to the heating rate for position fluctuations. The

0.0 0.9 04 0.6 0.8 10 analytic solution shows that the Iowest eigenmode of the
T energy distribution decays as ¢xp6.6Qt/U,] as described

above. Hence, recoil heating causes trap loss according to

FIG. 7. Decay of the total trapped populationstt/UO for _ : . . .
fluctuations in both the trap center and the spring constant. TWC?XF[ 2.2Qred/Uo]. The decay is exponential and the rate is

initial conditions are shownE.=0.1U, and 0.8. The ratio of the more than twice as fast as that determined from the heating

heating rates arising from fluctuations in the spring constant to thaft€ neglecting energy diffusion. _ _

from fluctuations in the trap center is defined by the paramgter ~ Optical scattering also can induce fluctuations in the

=T Uy/Q. (@ x=0.5.(b) x=2.0.(c) x=5.0. spring constant of a far-off-resonance trap. This is already
implicit in the general results for the optical heating obtained

to achieve evaporative cooling using a radio-frequery in Ref. [14], t'hat.includes the positipn dependence_of fthe
scalpel[1-3]. These traps are very well approximated by themomentum diffusion constant. The dipole force contribution
truncated harmonic-oscillator model when the rf scalpel id14,19 in a far-off-resonance trap is equivalent to three-
on. The harmonic-oscillator model predicts time scales foPhoton scattering that causes real transitions from the ground
the energy to increase in terms of the trap fluctuation spectrgtate to the excited state. This causes fluctuations in the re-
In Refs.[1,2], electromagnets are used to create the trappingtoring force and hence in the spring constant over a short
potential. It is of interest to estimate the power supply stacorrelation time, of orderrg,= y;pl. In far-off-resonance
bility required to attain lifetimes exceeding 100 sec, as usedraps, usually the detuning is large enough that dipole force
in the first demonstration of BECId]. For a radial oscilla-  heating is negligible, and even the lowest-order recoil scat-
tion frequency of 320 H2], Eq. (10) shows that achieving  tering contributions are small. However, when near-resonant
100 sec requires a fractional stability 8f=10"*/\Hz. As-  fields are present, for example, optical repumping beams for
suming that the high current power supply noise has a bandoading the trap from a low-intensity magneto-optical trap or
width of 1 kHz, the required rms stability is 0.3%, which is for Raman cooling, leakage fields, etc., real transitions to the
not too stringent. _ _ _ _ excited state can occur. Then the near-resonant fields will

In a previous paper, we investigated heating rates in fargayse heating both from recoil and from induced fluctuations
off-resonance optical tragd.0]. For tightly confining traps, in the spring constant of the trap. In the two-level approxi-
very high trap oscillation frequencies are possible, in somgnation, the excited- and ground-state potentials have identi-
cases as high as 100 kHz. In this case, to achieve 100-s@g| shapes and opposite signs. For small excitation probabil-
storage times, the fractional stability in the laser intensity,wl the net heating rate from the near-resonant beam will be
must be smaller thag,=3x10""/\Hz. For atom distribu-  dominated by induced spring constant fluctuations when the
tions localized to aum at low temperatures, the position force from the trap- M w?x exceeds the maximum radiation
Stability of the trap must bsxz 3x10°7 ,lL/\/H_Z pressure forc@,sphq/z_

In addition to determining trap lifetimes arising from = Qur treatment has been restricted to nearly harmonic traps
noise-induced heating processes, the fluctuating harmoni¢n order to obtain simple analytical results. Of course, real
oscillator model also offers useful insights for optical heatingoptica| traps often employ focused laser beams with a Gauss-
processes, such as the recoil heating rate in a far-offan intensity distribution. Since the force decreases near the
resonance trapQ,..=2 Rs€ec [14]. Here R, is the optical top of a Gaussian trap, one expects reduced heating when
scattering rate, and. is the recoil energyf?q?/(2M), E=U,, at least for trap fluctuations with a white noise fluc-



PRA 58 DYNAMICS OF NOISE-INDUCED HEATING IN ATOM TRAPS 3921

tuation spectrum. The numerical modeling shows that the&nd loading for Gaussian potentials is currently under inves-
initial energy distribution in the trap can significantly affect tigation.

the trap lifetime. Since the harmonic-oscillator density of

states isxE?, high-lying states may be preferentially loaded ACKNOWLEDGMENTS
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