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Dynamics of noise-induced heating in atom traps

M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas
Physics Department, Duke University, Durham, North Carolina 27708-0305

~Received 25 June 1998!

A Fokker-Planck equation is derived for the energy distribution of atoms in a three-dimensional harmonic
trap with fluctuations in the spring constant and the equilibrium position. Using this model, we predict trap
lifetimes based on the measurable noise spectra of the fluctuations. The energy distributions evolve into a
single eigenmode where the apparent temperature of the distribution remains constant while the population
decays as a consequence of the energy input. The method of analysis and the corresponding results are
applicable to any optical, magnetic, or ion trap that is approximately harmonic, and offer useful insights into
both noise-induced and optical heating processes.@S1050-2947~98!05211-1#

PACS number~s!: 32.80.Pj
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I. INTRODUCTION

Stable atom traps have diverse applications in quan
optics ranging from studies of Bose-Einstein condensa
~BEC’s! @1–3# in magnetic traps to quantum computing@4#
in ion traps. Optical far-off-resonance traps have been d
onstrated for confining arbitrary atomic ground states
nearly identical potentials@5,6# and for optical lattices@7#.
Multiple spin condensates have been stored in a shallow
off-resonance trap to study interactions in the quantum
generate regime@8#. These traps also offer an attractive po
sibility for investigating weakly interacting atomic fermion
where multiple atomic states are required forS-wave scatter-
ing @9#. In all of these applications, achievement of lo
storage times is of great importance.

For some time it has been appreciated that fluctuation
the trap parameters can cause atom heating, and tha
resulting trap loss limits the maximum storage period. T
problem has been circumvented in BEC experiments by
ing magnetic traps with relatively low trap resonance f
quencies, so that fluctuations in the potential are only wea
transmitted to the atoms. Consequently, adequate mecha
and power supply stability are not too difficult to achieve.
contrast, far-off-resonance optical traps with high resona
frequencies can be very sensitive to laser intensity fluc
tions and beam-pointing noise which cause trap fluctuati
and subsequent heating. However, the conditions on the
stability needed to achieve long storage times have not b
carefully studied.

In a recent paper, we considered fluctuations in a far-
resonance optical trap using a simple harmonic-oscilla
model @10#. Heating rates were estimated in terms of t
intensity and position noise power spectra measured fo
argon ion laser. Intensity noise causes fluctuations in
spring constant and results in exponential heating, w
beam-pointing noise causes fluctuations in the center of
trap and leads to heating at a constant rate. It was shown
achieving heating time constants well beyond 10 sec impo
stringent requirements on the trap stability. Since this mo
is applicable to any harmonic trap, the results apply equ
well to magnetic, optical, and ion traps, and provide e
mates of the expected heating time scales.

In this paper, we apply the fluctuating harmonic-oscilla
PRA 581050-2947/98/58~5!/3914~8!/$15.00
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model to noise-induced trap dynamics by deriving a Fokk
Planck equation for the energy distribution of atoms in
three-dimensional fluctuating trap. Numerical modeling fo
trap with a finite depth yields estimates of the atom loss r
and the average energy for a number of loading conditio
We begin by reviewing the results of our previous paper
the heating rates, and then derive an approximate Fok
Planck equation that describes the evolution of the atom
ergy distribution in the trap.

II. HEATING RATES

As a simple model, we first consider an atom in a on
dimensional harmonic-oscillator potential with a fluctuati
spring constant and a fluctuating equilibrium position@10#.
This serves as a general model that is valid for small os
lations in any atom trap.

A. Fluctuations in the spring constant

To determine the heating rate arising from fluctuations
the spring constant, we take the model Hamiltonian fo
trapped atom of massM to be

H5
p2

2M
1

1

2
Mvx

2@11e~ t !# x2. ~1!

Here vx
25kx /M is the mean-square trap oscillation fr

quency in thex direction, andkx is the mean value of the
corresponding spring constant. Fluctuations in any addit
spatially constant potentialV0 exert no force and do no
cause heating. The spring constant exhibits a fractional fl
tuatione(t). For example, in a far-off-resonance optical tra
the spring constant is proportional to the laser intensity, a
e(t) is the fractional fluctuation in the laser intensity.

Equation~1! is well known, and has been studied exte
sively in classical treatments of parametric resonance@11#.
When x(t)5x0cosvxt and e(t)5e0sin2vxt, it is easily
shown that the energy increases exponentially with a
constante0vx that is also the width of the parametric res
nance. Further, it is possible to excite subharmonic re
3914 ©1998 The American Physical Society
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nances that grow exponentially at a slower rate@12#. For
sinusoidal modulation, the relative phase betweene(t) and
x(t) is important.

In the present case, we are interested in stochastic
tuation rather than sinusoidal modulation of the spring c
stant. The dominant parametric heating rate arises from
component of the noise power spectrum ofe(t) at the second
harmonic. In this case, the energy also increases expo
tially, as it does for sinusoidal driving. However, the rate
reduced by the ratio of the linewidth of the parametric re
nancee0vx to the bandwidthDv of the fluctuations, where
e0 is the rms fractional fluctuation in the spring consta
Hence the rate is of ordervx

2 S, whereS.e0
2/Dv is the noise

spectral density in fraction squared per rad/sec. The hea
rate can be calculated classically, as one would expect f
harmonic-oscillator potential@10#. Unlike the case of sinu-
soidal modulation, it is independent of the phase of the a
oscillation at the fundamental trap frequency.

Although the heating rates and the corresponding Fok
Planck equation all can be derived classically, they are ea
determined quantum mechanically using first-order tim
dependent perturbation theory to calculate the average
sition rates between quantum states of the trap. Taking
~1! as a quantum-mechanical Hamiltonian, the perturba
of interest is given by

H8~ t !5 1
2 e~ t !Mvx

2x2. ~2!

For an atom in the stateun& at timet50, the average rate to
make a transition to stateumÞn& in a time intervalT is

Rm←n[
1

T U 2 i

\ E
0

T

dt8Hmn8 ~ t8! eivmnt8U2

5S Mvx
2

2\ D 2E
2`

`

dt eivmnt^e~ t !e~ t1t!& z^mux2un& z2.

~3!

Here we have assumed that the averaging timeT is short
compared to the time scale over which the level populati
vary, but large compared to the correlation time of the flu
tuations so that the range oft extends formally to6`. The
correlation function for fractional fluctuations in the sprin
constant is defined as

^e~ t !e~ t1t!&[
1

TE0

T

dt e~ t !e~ t1t!. ~4!

Using the transition matrix elements (mÞn) of x2 and
vn62,n562vx in Eq. ~3!, the transition rates are given by

Rn62←n5
pvx

2

16
Sk~2vx!~n1161!~n61!. ~5!

In Eq. ~5!, Sk(v) is the one-sided power spectrum of th
fractional fluctuation in the spring constant,

Sk~v![
2

pE0

`

dt cosvt^e~ t !e~ t1t!&. ~6!

The one-sided power spectrum is defined so that
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`

dv Sk~v!5E
0

`

dn Sk~n!5^e2~ t !&[e0
2 , ~7!

wheree0 is the root-mean-square fractional fluctuation in t
spring constant, andv52pn, with n the frequency in Hz.

Assuming that the trapped atoms occupy stateun& with
probability P(n,t) at time t, the average heating rate is ju

^Ėx~ t !&5(
n

P~n,t !2\vx~Rn12←n2Rn22←n!

5
p

2
vx

2Sk~2vx!^Ex~ t !&, ~8!

where the average energy iŝ Ex(t)&5(nP(n,t)(n
11/2)\vx .

Equation~8! shows that the average energy increases
ponentially,

^Ėx&5Gx^Ex&, ~9!

where the rate constantGx is given by

Gx[
1

Tx~sec!
5p2nx

2Sk~2nx!. ~10!

Herenx is the trap oscillation frequency in Hz, andTx is the
energye-folding time ~time to increase the energy by a fa
tor e! in sec.

The heating rate is proportional to the energy because
mean-square force fluctuations increase as the mean-sq
distance from the trap center. The dependence of the hea
rate on the second harmonic of the trap frequency shows
it is a parametric heating process. According to Eq.~10!, to
achieve an energye-folding time greater than 100 s in a tra
with an oscillation frequency of 10 kHz requiresASk(2nx)
<331026/AHz. Hence, if most of the noise were even
distributed over a 40-kHz bandwidth, the rms fractional flu
tuation in the spring constant must be less thane056
31024.

B. Fluctuations in the trap center

Fluctuations in the trap equilibrium position also cau
heating. In this case, the effective Hamiltonian is

H5
p2

2M
1

1

2
Mvx

2 @x2ex~ t !#2, ~11!

whereex(t) is the fluctuation in the location of the trap ce
ter. In this case, analogous to the methods used to obtain
~9!, the transition rates calculated for Eq.~11! are

Rn61←n5
p

2\
Mvx

3Sx~vx!~n11/261/2!. ~12!

The corresponding heating rate is

^Ėx~ t !&5(
n

P~n,t !\vx@Rn11←n2Rn21←n#. ~13!

This yields
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Q̇x[^Ėx&5
p

2
Mvx

4Sx~vx!. ~14!

Shaking the trap causes heating that is independent of
trap energy. HereSx(v) is the one-sided power spectrum
the position fluctuations in the trap center along thex axis,

Sx~v!5
2

pE0

`

dt cosvt^ex~ t1t!ex~ t !&. ~15!

The one-sided power spectrum of the position fluctuation
normalized so that*0

`dv Sx(v)5ex
2 is the mean-square

variation in the trap center position, analogous to Eq.~7!.
An energy doubling timeTx8 can be defined as the tim

needed to increase the energy by the average energyt

50: Q̇x /^Ex(0)&[1/Tx8 . Then, using^Ex(0)&5Mvx
2^x2&,

where^x2& is the mean-square position of an atom in the t
at t50, one obtains

Q̇x

^Ex~0!&
[

1

Tx8~sec!
5p2nx

2 Sx~nx!

^x2&
. ~16!

According to Eq.~16!, if an atom is confined in a trap to
dimension of a 1mm, with an oscillation frequency of 10
kHz, achievement of an energy doubling time of 100 s
requires a position stability ofASx(nx)5331026 mm/AHz.
Note that to achieve a given time scale, the required fr
tional position stability in units of the spatial width of th
trapped atoms is the same as that required for the fracti
stability in the spring constant@Eq. ~10!#.

III. FOKKER-PLANCK EQUATION

An approximate Fokker-Planck equation for evolution
the energy distributionn(E,t) in the atom trap is easily de
rived, and takes the form@13#

]n~E,t !

]t
52

]

]E
@M1~E! n~E,t !#1

]2

]E2
@D~E! n~E,t !#.

~17!

Here the first momentM1(E)5^DE&/T is the mean heating
rate, and the energy diffusion coefficient isD(E)
5M2(E)/25^(DE)2&/(2T). M1 andD are averaged over
time T that is long compared to the correlation time of t
fluctuations, but short compared to the time scale over wh
the energy distribution evolves appreciably.

The momentsM1 andM2 can be obtained classically, bu
they are readily determined from the transition rates found
Sec. II. First, we consider the one-dimensional case for m
tion in the x direction, and then generalize to three dime
sions.

A. Fokker-Planck equation for a one-dimensional trap

For a one-dimensional trap with atoms of energyE
5Ex , fluctuations in the spring constant cause transitio
between statesn→n62 with energy changesDEx5
62\vx . The rates are given by Eq.~5!. These rates can b
written in terms of the heating rate constantGx @Eq. ~10!# for
fluctuations in the spring constantkx :
he
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Rn62←n5
Gx

8
~n1161!~n61!. ~18!

Similarly, position noise causes transitions between sta
n→n61 with energy changesDEx56\vx . The corre-
sponding rates@Eq. ~12!# can be written in terms of the hea
ing rateQ̇x @Eq. ~14!# arising from position noise:

Rn61←n5
Q̇x

\vx
~n11/261/2!. ~19!

From Eqs.~18! and ~19!, one obtains

M1~Ex!5 (
m561,62

m\vx Rn1m←n5Q̇x 1 Gx Ex ,

~20!

D~Ex!5
1

2 (
m561,62

~m\vx!
2 Rn1m←n5

Gx

2
Ex

2 1 Q̇x Ex .

~21!

Note that we neglect 3/4 compared to (n11/2)2 in the dif-
fusion constant, and useEx5(n11/2)\vx .

For one-dimensional motion along thex axis, the Fokker-
Planck equation for the energy distributionn(Ex ,t) then is
given by Eq.~17! as

]n~Ex ,t !

]t
5S Gx

2
Ex

21Q̇xExD ]2n~Ex ,t !

]Ex
2

1 ~GxEx1Q̇x!
]n~Ex ,t !

]Ex
. ~22!

This result also can be derived directly from the quant
rate equations for the state occupation numbersn0(Ex ,t) by
using the rates given in Eqs.~18! and ~19! and Taylor ex-
pandingn0(Ex1m\vx ,t) to second order in\vx . By tak-
ing the limit \vx!Ex and usingn(Ex ,t)5n0(Ex ,t)/(\vx),
the same result is obtained.

B. Fokker-Planck equation for a three-dimensional trap

Using the results for the one-dimensional trap, t
Fokker-Planck equation for the energy distribution of ato
in a three-dimensional trap can be derived as a function
the total energyE5Ex1Ey1Ez in an approximation of suf-
ficient ergodicity: We assume that some mechanism ex
for assuring that all states of equal total energy are equ
probable. Possible mechanisms include reflections from
imperfections or collisions that occur rapidly compared
the long heating time scales~seconds! of interest here. For a
three-dimensional harmonic trap, the heating rates can
different for each direction of motion. Hence we can defi
three heating rate constants arising from fluctuations in
spring constants,Gx , Gy , andGz , where the rates are give
by Eq. ~10!. These rates can differ because the trap osci
tion frequenciesnx , ny , and nz generally are different for
each direction or, more generally, the spring constants m
fluctuate independently in some cases. Similarly, hea
rates arising from fluctuations in the trap position will b
different for each direction, and we define three heating ra
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Q̇x , Q̇y , and Q̇z , each taking the form of Eq.~14!. In this
case, the Fokker-Plank equation again takes the form g
by Eq. ~17!. However, the first moment and diffusion coe
ficient are the sums of the corresponding first moments
diffusion coefficients for thex, y, andz directions:

M1~E!5 (
i 5x,y,z

~G i ^Ei&E1Q̇i !, ~23!

D~E!5 (
i 5x,y,z

S G i

2
^Ei

2&E1Q̇i^Ei&ED . ~24!

Here,^¯&E denotes an average over all states of fixed to
energyE5Ex1Ey1Ez . Assuming sufficient ergodicity, this
average is carried out using the probability distribution

P~EW !d3EW 5
d3EW

\vx\vy\vz

d~E2Ex2Ey2Ez!dE

g~E!dE
.

~25!

HereEW [Ex , Ey , Ez, andd3EW [dExdEydEz . The number
of states within a fixeddE of a given total energyE is
g(E)dE, whereg(E) is the density of states given by

g~E!5E E E d3EW

\vx\vy\vz
d~E2Ex2Ey2Ez!

5
E2

2\vx\vy\vz
. ~26!

With Eq. ~25!, one obtainŝ Ex,y,z&E5E/3, as expected
and ^Ex,y,z

2 &E5E2/6. Equations~23! and ~24! then yield

M1~E!5G E13Q̇, ~27!

D~E!5
G

4
E21Q̇E. ~28!

Here we have defined the average rate constantG as

G[
Gx1Gy1Gz

3
, ~29!

and an average heating rateQ̇ as

Q̇5
Q̇x1Q̇y1Q̇z

3
. ~30!

Using Eq.~17!, the Fokker-Planck equation for the ener
distribution in the three-dimensional trap is then given by

]n~E,t !

]t
5S G

4
E21Q̇ED ]2n~E,t !

]E2
2Q̇

]n~E,t !

]E
2

G

2
n~E,t !.

~31!

Equation~31! also can be obtained using the definition of t
three-dimensional energy distributionn(E,t) in the form
en

d

l

n~E,t !dE5dEE E E d3EW

\vx\vy\vz
d~E2Ex2Ey2Ez!

3n0~EW ,t !, ~32!

where n0(EW ,t) is the occupation number of a single sta
with vibrational energiesEx , Ey , andEz . ṅ(E,t) is then an
integral containingṅ0(Ex ,Ey ,Ez ,t) which is evaluated by
adding the right-hand sides of one-dimensional Fokk
Planck equations of the form of Eq.~22! for each dimension.
Sufficient ergodicity is imposed by assuming that the oc
pation number depends only on the total energy

n0~EW ,t !5n0~E5Ex1Ey1Ez ,t !. ~33!

Here n(E,t)5g(E) n0(E,t), whereg(E) is the density of
states given by Eq.~26!. Using Eq.~33! to eliminaten0(EW ,t)
from the integral that appears inṅ(E,t), one obtains the
same result as Eq.~31!.

Equation~31! describes the evolution of the atom ener
distribution for a harmonic well of infinite depth. It is easy
show for this case thatṄTOT5*dE ṅ(E,t)50 and ĖTOT

5*dE E ṅ(E,t)5G ETOT1Q̇ NTOT , as it should be.

C. Trap loss for finite well depth

To model the trap loss arising from noise-induced he
ing, we consider a harmonic well of finite depth. Trap lo
occurs as the atoms, with an energy distribution evolv
according to the Fokker-Planck equation, escape from
finite well. To model the finite well, we truncate the ha
monic oscillator potential at the top, and assume that
heating rates are approximately unchanged from those o
infinite well. The maximum height of the well relative to th
minimum is taken to be the well depthU0 . We assume tha
the atoms are lost when their energy is equal toU0. In this
way, we model loss as a transition to a virtual, unbou
harmonic oscillator level atE5U0. This implies the bound-
ary conditionn(E5U0 ,t)50. The second derivative with
respect to energy in the Fokker-Planck equation necessi
a second boundary condition. Because the density of st
for a three-dimensional harmonic oscillator varies asE2, we
assume that there are no atoms with zero energy, and we
this other boundary condition to ben(E50,t)50.

The Fokker-Planck equation~31! is easily converted into
the equivalent finite-difference equation using stand
methods. We can then compute the energy distribution of
trap at any future time given an initial distributionn(E,0)
consistent with the boundary conditions. The numeri
method is validated by computingṄTOT andĖTOT for initial
conditions with atoms that start low in the trap. The resu
display the infinite well behavior until the atoms begin
escape from the trap.

Initially, we examine solutions for the case of fluctuatio
in the spring constant, whereGÞ0 andQ̇50. The time is
given in units ofG21 by defining a variablet5Gt. Note that
G is the average of the rate constants for the three dim
sions, given by Eq.~29!. The energyE is given in units of
the well depthU0, so that the energy of occupied stat
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varies from 0 to 1. The initial condition is taken to be

n~E,0!5
E2

e~E2Ec!/DE11
. ~34!

Here we assume that the initial distribution is a product
the harmonic-oscillator density of states}E2 and an occupa-
tion number that smoothly cuts off forE.Ec over a range
DE. This distribution avoids an abrupt cutoff ofn(E,0) that
occurs for E5U0 when the initial occupation number i
Maxwellian and the thermal energy is comparable to the w
depth. Typically, we vary the cutoff energyEc from 0.1U0
to 0.8U0, and takeDE50.1U0 .

Figure 1 shows the evolution of the energy distributio
n(E,t), for initial distributions with Ec /Uo50.1, 0.4, and
0.8. The distributions always evolve into an eigenmode t
decays with a single time constant.

The fraction of the total number of atoms remainin
NTOT(t)/NTOT(0), isplotted as a function oft5Gt in Fig. 2.
When the atoms are loaded with an initial distribution th
has a mean energy near the bottom of the trap, the evolu
is not exponential untilt is substantially larger than 1. Whe
the trap is loaded with an initial occupation number that
relatively flat (Ec50.8), the quadratic dependence of t
density of states favors loading of high-lying states, and
total number decays by a factor of about 0.4 in a tim
0.5G21. Hence traps that are loaded at temperaturesT0 such
that kBT0 is comparable to the well depth will decay with
time constant almost twice as fast asG21. From our previous
measurements for an argon-ion laser@10#, we find thatG21

FIG. 1. Evolution of the energy distributionn(E,t) as a function
of t[Gt50.0–1.0 in steps ofDt50.1 for fluctuations in the spring

constant (Q̇50). The curves have been scaled so that the ini
distribution has a peak value of 1.0. Three initial conditions
shown:~a! Ec50.1U0 , ~b! Ec50.4U0 , and~c! Ec50.8U0 .
f

ll

,

t

,

t
on

s

e
e

<10 sec for trap resonance frequencies above 5 kHz. Sto
times well above 10 sec are unlikely in optical traps th
employ argon-ion pump lasers, unless the atoms are initi
loaded near the bottom of the trap.

Figure 3 shows the mean energy per ato
ETOT(t)/NTOT(t) in units of U0 as a function of time for
various loading conditions. For loading near the trap botto
Ec50.1U0 , the mean energy first rises as the atoms h
and then asymptotically approaches a constant va
.0.36U0 . For loading at high temperatures,Ec50.8, the
mean energy initially drops as hot atoms are rapidly expe
from the trap and then approaches 0.36U0. This behavior is
a consequence of the evolution of the energy distribution i
a single eigenmode. This result is confirmed by t
asymptotic forms of the analytic solutions for the total e
ergy and number, each decaying exponentially at large tim
with a rate 5G/9, and reaching a steady state ratio of 9/
50.36. Hence, after a couple of time constants, the appa
temperature of the distribution does not change, although
population decays as a consequence of the energy inpu

The evolution of the energy distribution for fluctuations
the center of the trap,Q̇Þ0 andG50, is shown in Fig. 4 for
different values ofEc . Here, the unit of time is taken a
U0 /Q̇, the time needed to increase the energy per atom

l
e

FIG. 2. Decay of the total trapped population vst5Gt for fluc-

tuations in the spring constant (Q̇50).

FIG. 3. Mean energy of the trapped atoms vst5Gt for fluctua-

tions in the spring constant (Q̇50). The energy is in units of the
well depthU0 .
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the well depth, andt5Q̇t/U0 is the time in dimensionles
units. Note thatQ̇ is the average of the heating rates for t
three dimensions given by Eq.~30!. The corresponding de
cay of the total numberNTOT(t)/NTOT(0) is shown in Fig. 5.
Since all atoms will have escaped the trap when the ad
energy equals the well depth and the energy distribu
broadens by energy diffusion, the number decays expon
tially after just a fraction of a time constant,U0 /Q̇. As a
consequence of the quadratic dependence of the densi
states, states with high energy are preferentially filled wh
the trap is loaded at temperatures wherekBT0 is comparable

FIG. 4. Evolution of the energy distributionn(E,t) as a function

of t5Q̇t/U050.0–0.5 in steps ofDt50.05 for fluctuations in the
trap center (G50). The curves have been scaled so that the ini
distribution has a peak value of 1.0. Three initial conditions
shown:~a! Ec50.1U0 , ~b! Ec50.4U0 , and~c! Ec50.8U0 .

FIG. 5. Decay of the total trapped population vst5Q̇t/U0 for
fluctuations in the trap center (G50).
ed
n
n-

of
n

to U0 . Hence, trap loss can occur on time scales mu
shorter thanU0 /Q̇. Figure 6 shows the mean energy p
atom, ETOT(t)/NTOT(t), which rapidly approaches 0.55U0
in agreement with the analytic solution. Again, at lar
times, the apparent temperature of the distribution does
change although the population decays as a consequen
the energy input.

The analytic solution shows that the energy distributi
rapidly decays to the lowest eigenmode}E J2(z21AE/U0).
This mode decays as exp@2(z21/2)2t#5exp@26.6t#, where
z2155.14 is the first zero ofJ2(x).

Since the energy for a single atom increases gener
according toĖ5G E1Q̇, the constant heating rateQ̇ from
fluctuations in the trap center can be exponentially enhan
by the rateG arising from fluctuations in the spring constan
Figure 7 shows the evolution of the total number that res
for x[G U0 /Q̇50.5, 2, and 5 under various loading cond
tions. The unit of time isU0 /Q̇ andt5Q̇t/U0 .

IV. DISCUSSION

We have derived a Fokker-Planck equation for the ene
distribution of atoms in a three-dimensional fluctuating h
monic trap, under conditions of sufficient ergodicity. Th
expected trap lifetimes for a truncated harmonic potential
determined for initial energy distributions with differen
mean energies. The heating rates and rate constants w
determine the trap lifetime are given in terms of the no
spectral densities of fluctuations in the trap spring consta
and trap center position. The heating rates directly determ
the time for atoms to leave the ground state of the wel
very low temperature. Numerical solution of the Fokke
Planck equation for a variety of initial conditions shows th
population loss from the trap can be quite rapid in so
cases. The effective time constant can be significantly sho
than 1/G or U0 /Q̇ as a result of the density of states, whic
predisposes atoms to be near the top of the trap when
occupation number is slowly varying. The results of the flu
tuating harmonic oscillator model can be applied to ma
netic, optical, and ion traps.

In recent BEC experiments, magnetic traps are emplo

l
e

FIG. 6. Mean energy of the trapped atoms vst5Q̇t/U0 for
fluctuations in the trap center (G50). The energy is in units of the
well depthU0 .
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to achieve evaporative cooling using a radio-frequency~rf!
scalpel@1–3#. These traps are very well approximated by t
truncated harmonic-oscillator model when the rf scalpe
on. The harmonic-oscillator model predicts time scales
the energy to increase in terms of the trap fluctuation spec
In Refs.@1,2#, electromagnets are used to create the trapp
potential. It is of interest to estimate the power supply s
bility required to attain lifetimes exceeding 100 sec, as u
in the first demonstration of BEC’s@1#. For a radial oscilla-
tion frequency of 320 Hz@2#, Eq. ~10! shows that achieving
100 sec requires a fractional stability ofSk51024/AHz. As-
suming that the high current power supply noise has a ba
width of 1 kHz, the required rms stability is 0.3%, which
not too stringent.

In a previous paper, we investigated heating rates in
off-resonance optical traps@10#. For tightly confining traps,
very high trap oscillation frequencies are possible, in so
cases as high as 100 kHz. In this case, to achieve 100
storage times, the fractional stability in the laser intens
must be smaller thanSk5331027/AHz. For atom distribu-
tions localized to amm at low temperatures, the positio
stability of the trap must beSx5331027 m/AHz.

In addition to determining trap lifetimes arising from
noise-induced heating processes, the fluctuating harmo
oscillator model also offers useful insights for optical heat
processes, such as the recoil heating rate in a far-
resonance trap,Q̇rec52 Rse rec @14#. Here Rs is the optical
scattering rate, ande rec is the recoil energy,\2q2/(2M ),

FIG. 7. Decay of the total trapped population vst5Q̇t/U0 for
fluctuations in both the trap center and the spring constant. T
initial conditions are shown:Ec50.1U0 and 0.8. The ratio of the
heating rates arising from fluctuations in the spring constant to
from fluctuations in the trap center is defined by the parametex

[G U0 /Q̇. ~a! x50.5. ~b! x52.0. ~c! x55.0.
s
r
a.
g
-
d

d-

r-

e
ec

y

ic-

ff-

whereq is the optical wave vector. The trap lifetime is we

known to be of orderU0 /Q̇rec @14#. However, the recoil heat
ing rate is equivalent to the heating caused by a positi

independent fluctuating forced fW(t), with a short correlation
time of the order of the spontaneous lifetimetsp. In one
dimension, this force is described by an effective poten
H852x d f (t). In a harmonic well, this is equivalent to
displacement in the well center, byex(t)5d f x(t)/(Mvx

2).
Using Eq.~14! in the limit vxtsp!1, one can show that this

leads toQ̇x5Dp
x/M , whereDp

x is the momentum diffusion
constant for thex direction, as it should be. For a short co
relation time, the force changes the momentum, but not
position. The potential energy remains constant during
fluctuation, and the free particle heating rate is obtained
three dimensions, one obtains the recoil heating rate. S
the scattering force is equivalent to a fluctuation in the cen

of the trap, the average heating rate, Eq.~30! is Q̇5Q̇rec/3.
The corresponding first moment, diffusion constant, a
Fokker-Planck equation are identical in form to those
fluctuations in the trap center. The recoil heating rate sim
can be added to the heating rate for position fluctuations.
analytic solution shows that the lowest eigenmode of

energy distribution decays as exp@26.6Q̇t/U0# as described
above. Hence, recoil heating causes trap loss accordin

exp@22.2Q̇rect/U0#. The decay is exponential and the rate
more than twice as fast as that determined from the hea
rate neglecting energy diffusion.

Optical scattering also can induce fluctuations in t
spring constant of a far-off-resonance trap. This is alrea
implicit in the general results for the optical heating obtain
in Ref. @14#, that includes the position dependence of t
momentum diffusion constant. The dipole force contributi
@14,15# in a far-off-resonance trap is equivalent to thre
photon scattering that causes real transitions from the gro
state to the excited state. This causes fluctuations in the
storing force and hence in the spring constant over a s
correlation time, of ordertsp5gsp

21 . In far-off-resonance
traps, usually the detuning is large enough that dipole fo
heating is negligible, and even the lowest-order recoil sc
tering contributions are small. However, when near-reson
fields are present, for example, optical repumping beams
loading the trap from a low-intensity magneto-optical trap
for Raman cooling, leakage fields, etc., real transitions to
excited state can occur. Then the near-resonant fields
cause heating both from recoil and from induced fluctuatio
in the spring constant of the trap. In the two-level appro
mation, the excited- and ground-state potentials have ide
cal shapes and opposite signs. For small excitation proba
ity, the net heating rate from the near-resonant beam wil
dominated by induced spring constant fluctuations when
force from the trap2Mvx

2x exceeds the maximum radiatio
pressure forcegsp\q/2.

Our treatment has been restricted to nearly harmonic tr
in order to obtain simple analytical results. Of course, r
optical traps often employ focused laser beams with a Ga
ian intensity distribution. Since the force decreases near
top of a Gaussian trap, one expects reduced heating w
E5U0 , at least for trap fluctuations with a white noise flu
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tuation spectrum. The numerical modeling shows that
initial energy distribution in the trap can significantly affe
the trap lifetime. Since the harmonic-oscillator density
states is}E2, high-lying states may be preferentially loade
in some cases. For three-dimensional Gaussian traps
density of states atE5U0 is 6.4 times as large as that of
harmonic well, further favoring the loading of a Gaussi
trap near the top. Modeling of noise-induced trap dynam
an

n,
tt.

et

.

. A

h

e,
e

f

the

s

and loading for Gaussian potentials is currently under inv
tigation.
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