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The complex processes leading to the collisional population of ultra-long-lived Rydberg states with very
high angular momentum can be explained surprisingly well using classical mechanics. In this paper, we explain
the reason behind this striking agreement between classical theory and experiment by showing that the classical
and quantum dynamics of Rydberg electrons in weak, slowly varying external fields agree beyond the man-
dates of Ehrenfest’s theorem. In particular, we show that the expectation values of angular momentum and
Runge-Lenz vectors in hydrogenic eigenstates obey exactly the same perturbative equations of motion as the
time averages of the corresponding classical variables. By time averaging the quantum dynamics over a Kepler
period, we extend this special quantum-classical equivalence to Rydberg wave packets relatively well localized
in energy. Finally, the perturbative equations hold well also for external fields beyond the Inglis-Teller limit,
and in the case of elliptic states, which yield the appropriate quasiclassical initial conditions, the matching with
classical mechanics is complef&1050-294{®8)05111-7

PACS numbgs): 32.80.Rm, 32.60:i, 34.10+X, 03.65—w

I. INTRODUCTION state, and yet the field sensed by the Rydberg electron does
not differ much from a pure Coulomb field. Therefore many
In the past few years new experimental techniques haveecent investigations of Rydberg electrons in alkali-metal at-
made possible the study of the dynamics of atoms or molems have really probed the dynamics of quasiclassical elec-
ecules in which an electron is promoted to a very high-trons in an essentially Coulombic potential. These accurate
energy state, where it is only weakly bound to the ddfe  experimental results have led to a renewed theoretical inter-
These high energy states can be described by approximatedst in the hydrogen atom in external fields in the limit of
hydrogenic wave functions with very large principal quan-large quantum numbefd0,16—19, which has become one
tum numbers 1§=100) [2,3]. The atoms(or molecule§ in of the paradigmatic models for the study of quantum chaos
which a valence electron is promoted to such hightates [9—14] and of quantum-classical correspondence in general.
are generically called “Rydberg” atoms, because the energy Since the degeneracy of a hydrogenitnanifold grows
levels of the excited electron are well described by aasn?, a fully quantum treatment of the dynamics of Rydberg
Rydberg-like formuld 2], and their highly energetic electron electrons poses formidable challenges even to the most ad-
is known as a Rydberg electron. In such systems the weaklyanced computers. Therefore classical mechanics is often the
bound Rydberg electron resides mostly at an immense dignly practical way to study such systems, under the assump-
tance from the atomic core, a distance so large that if Rydtion that for largen’s classical and quantum predictions
berg atoms were solid, they would be just about visible to theshould somehow converge. Interestingly, however, recent
naked eye. Laboratory-scale external fields, and even weakxperimental and theoretical work on electronic wave pack-
stray electric field§4—8|, become then comparable to the ets in hydrogenic systenj20—45 has shown very clearly
atomic Coulomb field sensed by the Rydberg electron, sthat the quantum-mechanical properties of the Rydberg elec-
that the dynamics of the electron can be probed with accutron are essential to the dynamics of the wave packet, even in
racy, and also fundamental dynamical properties such ae largen regime. For example, the observation of frac-
guantum manifestations of chaf®-14] can be studied ex- tional revivals can be explained only by the quantized spec-
perimentally. trum of the Hamiltonian20—-22,25,27—2Pin spite of the
To a very good approximation, the dynamics of Rydbergvery large principal quantum numbers involved, which
electrons is hydrogenic. More precisely, small deviationsseems to suggest that large quantum numbers are not suffi-
from the purely hydrogenic eigenenergies are introduced bgient to ensure the accuracy of a purely classical description
the interaction between the far flung electron and the elecef Rydberg dynamics.
tronic cloud around the atomic or molecular core. These de- On the other hand, classical mechanics yields surprisingly
viations are quantified by the quantum deféct which en-  accurate results for the problem of the hydrogen atom in
ters in the formula for the energy levels as a correction to theveak, slowly varying external fields; i.e., when the classical
principal quantum numben [2,15]. However, the quantum electron still moves, to a good approximation, along a Kepler
defect becomes rapidly negligible as the angular momenturallipse, and the semimajor axis of the ellipg®, equiva-
of the electron increases. In fact, more complex atoms arkently, the Kepler energy of the electroremains unchanged.
often used as experimental substitutes for hydrogen, since lih particular, recent classical, perturbative calculations
is much easier to excite their valence electron to a Rydber{#,46—5] have succeeded in explaining several diverse ex-
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perimental results with astonishing accuracy, ranging, for exlinear potential. Because the harmonic oscillator is often

ample, from the ultralong lifetimes of the molecular high- used as a textbook example, it often leads to the incorrect
states employed in zero-electron-kinetic-ener@BEKE)  impression that such exact equivalence is of a more general
spectroscopy52—-57,5—7,47,48,3%0 the intrashell transi- nature. In truth this correspondence is a very special property
tions induced in alkali-metal Rydberg atoms by slow ion-©f potentials which are at most quadratic, because ip general
Rydberg collisions]|59-63,47,48 The same classical ap- the expectation value of the *“force operatorf(r)=

proach also explains the anomalous autoionization lifetimes-vVv/(r), which is a function of quantum observables, is not
of Rydberg electrons in circularly polarized microwave fieldsequal to the same function evaluated at the expectation val-
[64,49 and the dynamics and stability of circular Rydberg ues of the observables; that(is general,
states(i.e., states with maximum angular momenjum R )
weak, slowly rotating electric fieldst,50]. Clearly, the suc- (Plf ()| #F((Y]r| ). (1)
cess of the classical treatment must stem from some special
equivalence between classical and quantum predictions it the very special case of the harmonic oscillator, for ex-
the hydrogen atom in weak external fields: in fact, suchample, the restoring force of the spring is simply propor-
equivalence has been already simply obserimd not ex- tional tox and the two sides of Ed1) are identical, hence
plained only in the limited case of states with initial zero the exact correspondence between gquantum and classical
angular momentun65,66|. evolution. Also, the perturbative treatment of the Kepler
In this work we show that the accuracy of the classicalproblem borrows heavily from the methods of celestial me-
results does indeed rest on a particularly direct connectioshanicq73] and studies the dynamics of time averages of the
between classical and quantum predictions, and we demormtassical variables. Such an approach is not the same as an
strate explicitly that in the perturbative limit the quantum expansion of the Hamiltonian around an equilibrium point
expectation values of the angular momentum and the Rungend up to quadratic terms in the potential, which would make
Lenz vector obeyexactly the same equations as the time-the system trivially equivalent to a harmonic oscillator.
averaged classical variable§Ve also investigate the condi- Therefore, our work amounts to an extension of Ehrenfest’s
tions on the fields for which the perturbative approach holdstheorem, in a much stronger form, for the important case of
and we find that classical mechanics seems to require motte hydrogen atom in weak, slowly varying external fields.
relaxed constraints on the external fields than quantum me- This paper is organized as follows. In Sec. Il we derive
chanics, as the classical condition for the conservation of thexplicitly the equations of motion for the quantum expecta-
Kepler energy—see below—is not equivalent to the quantuntion values over states confined within a hydrogenic
condition for negligible intermanifold mixing. However, by manifold, and show that they coincide with the classical per-
studying in detail the contributions to the dynamics whichturbative equations to first order in the fields. In Sec. Il we
stem fromn-mixing, we demonstrate that the perturbative investigate the contributions to the dynamics due to the in-
equations of motion for the quantum expectation values retermanifold mixing: we show that the same perturbative
main accurate also under the less restrictive classical condeguations of motion remain accurate even if the state is not
tions, as long as the dynamics is time averaged over a Kepléitially confined within a specifie-manifold, as long as one
period. In fact, the time-averaged equations describe well theonsiders the time averagever a Kepler periodof the dy-
dynamics of quantum expectation values also when the Ryaamics. In Sec. IV we study the initial conditions for the
dberg electron is initially excited in a superposition of hy- quantum expectation values over different quantum states
drogenicn-manifolds, i.e., its initial state is not a stationary and also discuss a few physical implications of our results.
eigenstate of the unperturbed Hamiltonian, but a timefinally, in Sec. V we draw some general conclusions.
dependent wave packet. Interestingly, time averaging is pre-
cisely the same procedure which leads to the classical per- Il. CLASSICAL AND QUANTUM EQUATIONS
turbative equations, and therefore our result is an explicit
example of how the scrambling of the principal quantum In atomic units(which we use throughout this papehe
number(quantum decoherencérings about a more direct Hamiltonian for a hydrogen atom in crossed electric and
quantum-classical correspondence. Finally, we show that fomagnetic field is
special superpositions of the eigenstates of the bare Hamil- > 4 )
tonian (thatl is, elliptic state$67,68,29) and in the limit of . H— P ~ o Lt Fx+ ﬂ(xz_i_yz), @)
large principal quantum numbers, the quantum expectation 2 2
values also have the appropriate quasiclassical initial condi-
tions. Most importantly, elliptic states are not merely theo-where the electric field is parallel to the axis and its
retical constructs: they have been prepared in the laboratorstrength isF; the magnetic field is antiparallel to thzeaxis
and some of their properties have already been studied exndw, is the Larmor frequency of the magnetic field, which
perimentally[69-71,8. in atomic units is equal to half the strength of the field. For
Our findings are not merely an application of Ehrenfest'sweak fields the diamagnetic term, which is proportional to
theorem[72]. Although Ehrenfest’s theorem relates the timethe square of the field, can be neglected, and the Hamiltonian
evolution of the quantum expectation values to the classicdbecomes identical to the one for a hydrogen atom in a weak
equations of motion, it does not state that quantum expectaelectric field rotating with frequency, , in the noninertial
tion values and classical variables obeyactly the same frame which rotates with the field7,50,47,49,48
equations. Such an identity holds only for the harmonic os- The classical perturbative treatment of the hydrogen atom
cillator and, albeit trivially, also for the free particle and any in weak, external fields is based on the methods of celestial
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mechanics, and one is interested in the secular variation df is easy to see that both constraints are invariant under the
the elements of the Kepler ellipse followed by the classicatime evolution dictated by Eq$4), and also that the second
electron[73]. While a Kepler ellipse can be described by of Egs.(7) implies the conservation of the Kepler energy of
many equivalent sets of elements, the equations of motiothe electron.
are particularly simple if one chooses the angular momentum Instead, the quantum-mechanical interpretation is that the
and the Runge-Lenz vector. Therefore, the dynamical variexternal fields remove the degeneracy of tReunperturbed
ables of the classical problem are the time averages over states of the hydrogenio-manifold, and the conditions of
Kepler period and along a Kepler ellipéehich is the clas- Eqg.(6) mean that the energy difference between two adjacent
sical solution to zeroth order in the external figlds the  perturbed states is much smaller than the separation between
angular momentunh. of the electron and its scaled Runge- adjacent, unperturbed Rydberg energy levels. However, this
Lenz vectora, which for bound states is defined [&&f] is not the usual condition under which in quantum mechanics
intern mixing is negligible. For example, in the case of just
1 an external dc fieldthe extension to include also a magnetic
a= ——={ s (pXL—-LXp)— -, (3) field is straightforward81]), the energy separation between
V-2E[2 ' the lowest and the highest Stark states for a fixed principal

_ guantum numben is (to first order in the fiell[82]
whereE= —1/2n? is the Kepler energy of the electron. The

antisymmetrization of the cross product is not necessary in AE=3n(n—1)F. (8)
classical mechanics, but is essential in quantum mechanics to

obtain a Hermitian operatdr75,76. To first order in the Therefore the approximate condition for level crossing of the

external fields the classical, time-av_eraged angular momer?ﬁghest Stark state from a givemmanifold with the lowest
tgm and scalgd Rungg-Lgn; V?C(Wh'Ch for the sake of a Stark level from the nexn-manifold is given by the Inglis-
simpler notation we will still indicate, respectively, hsand Teller limit [2];

a) satisfy the following equations of motidi77—-80,47:

1
dL 2
he _ 3nF~—. (9
ar wsXa—w XL, n3
4 _ T "
da Clearly, in the semiclassical limit the quantum condition on
=—wsXL—w Xa, the external fields for negligible-mixing of Eg.(9) is much

dt stronger than the classical condition of H§). We show
below, however, that the perturbative treatment of the dy-
namics of the quantum expectation values remains accurate
also in the presence of some degreenahixing induced by
the external fields, as long as the dynamics is time averaged
(5) over a Kepler period.
In this section we confine our study to the dynamics of the
guantum expectation values of the angular momentum and

and w_is the Larmor frequency vector: it is directed along the scaled Runge-Lenz vector operathst is,(|L | ) and

the external magnetic fielt_j anq its magnitude is equal to th?z//|é| ¥); throughout this paper we use boldface letters for
Larénor I_requincy of ;he_fle(ljd |t§e_lf. v by Borf77] and i vectors, and a caret indicates a quantum operator, not a unit
| q_uallons(h)w_eretherlve originally 3{ orijl lan ;2 vector, which we denote instead @f over superpositions of
classical mechanics they remain accurate as long as the tyg,, hydrogen atom eigenfunctions with a well defined prin-
frequencies(Stark and Larmgrare much smaller than the cipal quantum number, i.e., over states) which are local-
Kepler frequencyw of the electror{77-80,47. ized within a hydrogenian-manifold. More precisely, we
show here that to first order in the external fields the quan-
<o i ©) tum expectation values obey exactly the same equations of
Vs OL=OK™ 5 motion as Eqs(4).
The cornerstone of the study of hydrogenic systems in
In classical mechanics E¢6) means that the elements of the \[/;eSaI;,a e;:;ecr(;]r?jlingelt%sv\;f]i;rr]]ethzogzltlr?g e?:%'éﬂ;ﬁﬁgg?em

Kepler orbit do not vary significantly over a Kepler period, tat ithin th ifadlth i ¢
so that the classical electron still moves, to a good approxi§ ates within the€ same n-mani € position operator are

mation, along a Kepler ellipse, and the Kepler energy of théjirectly proportional to the corresponding matrix elements of
classical electron is conserved. In fact, the classical angula{Pe Runge-Lenz vector operator:

momentum and the Runge-Lenz vector obey two constraint
equationg 74

where wg is the Stark frequency of the electric field, and is
defined as

3
wSZEnF,

N 3 -
(nl’m’|r||nlm>=—En(nl’m’|al|nlm>. (10

(7) By replacing the position operator, which appears in the per-
L2+a2=n? turbation Hamiltonian for an external field, with3na/2 the
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demonstration of quantum-classical equivalewhin an n- di o
manifold is straightforward[31,83,51, but nothing can be (z,//n|d—t'|z,//n):—i<¢n|[LI H1 ),
said about the intermanifold dynamics. Instead, in our argu-

ment we do not apply Pauli’s replacement directly in the da L (12)
Hamiltonian; our approach is more complicated, but it makes (¢l d—t'| dny=—1{olla,,H]| ),

possible the extension of our analys$is the next section

also to the dynamics of Rydberg wave packets. Moreoverand we now show that they are identical to E@B.

we will be able to show that the quantum analogs of Edjs. The classical equation®) contain two terms, an electric
remain accurate under the more relaxed, classical conditiorierm which is proportional to the Stark frequeney, and

on the external fields given in E¢g). which couples the angular momentum to the scaled Runge-

To prove the special quantum-classical equivalence, wéenz vector, and a magnetic term which is proportional to
will make use of the following identity, which holds within a the Larmor frequencys, of the field (or to the rotation fre-

; : : ; P ~quency of a slowly rotating electric field in a noninertial
BZ?,B?ST-IC manifold and which we derive explicitly in Ap frame rotating with the field itself17,50,47,49,4B. Both

the scaled Runge-Lenz vector and the angular momentum
commute with the hydrogenic Hamiltonidthey are invari-
. . ants of the pure Kepler problerfi4]. Moreover, it is easy to
(nlr 0l n)y = — (Wl Do | ) (1)  see that the magnetic term of the classical equations can be
recovered by invoking the vectorial propertiesafnd L,
because of which their commutators with the magnetic term
wherer, and E)J are components of the position and momen-in the Hamiltonian(i.e., — w, L,) obey the well known rule
tum operator, respectively. [72]
Indeed, armed with the result of E¢LY) it is easy to V.0 l=ie Vi, (13)
show that to first order in the external fields the expectation .
values of the quantum observables satisfy the same equationdiereV, stands for thaeth component of any vector opera-
as the time averagdsver a Kepler periodof the classical tOr-

variables. Therefore, we only need to investigate the commutators
The equations of motion of the quantum expectation val-of a andL with the electric perturbatiof x.
ues are straightforward in the Heisenberg pic{uia): We begin witha, :

—iF[8y X1=— 1 2 FIL(BoL— Pl X1- (Lo Libo) K1)
= i F{ Bl Lo X1~ [P XIEo— Ly X[, X1
= nF{I:z_g/E)x}- (14

However, using the identity of Eq11) one has

“n 1 an o~
_<l/fn|ypx|l//n>=§<¢nlxpy_ypx|'r//n>! (15

from which it follows

~ o~ 3 -
_iF<l//n|[aan]|’r//n>=EnF<‘//n|Lz|’r//n>- (16)

This is the same as the electric term in the equation of motion for the classical time-avajaged

The derivation of the electric term for the equati0r1<¢t1|£12| ¥,y follows along the same lines and it is easy to see that it
yields the desired result.

We then considea,
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. .. n e o aa
_lF[aXaX]:EF{[(pyLz_pzl—y)yx]_[(l—ypz_szy)ax]}

=~ DFB L, X~ BAL, K- [, X1p,+ L, 5B}

N i i an an
:EF{pyy+ypy+ pzZ+sz}- (17)
|
Invoking once again Eql1) one obtains immediately a Kepler period and, most importantly, along Kepler ellipses,
o which are theclassical solutions to zeroth order in the fields
F(nllax,X]|¥n) =0, (18 The same consideration can also be cast in the language

o ) ) ~ of operators, by observing that we have proven @&d) only
which is the same as the right-hand side of the correspondingy the time-independent operators of the Sclimger pic-

classical equation of motion. ture, whereas on the right-hand side of the equations of mo-
Finally, we turn to the equations for the angular momen-jon one must more correctly use the time-dependent opera-
tum. The classical equations can be written as tors of the Heisenberg picture. However, in a first-order
dL 3 approximation one may assume that the time evolution of the
| ; . , b
g0 ks Eanl,l,kakv (19) operators in the Heisenberg picture is dictated solely by the

hydrogenic propagator, which commutes with botlanda,

sP that one can legitimately use the properties of those op-
erators in the Schubnger picture.

) ~ T : Since Eg.(11) holds for all possible pairs of indexes
tor properties of, the contribution of the electric term to the {J.k}, the same derivation can be easily extended to the case
quantum equations Is of slowly varying (both in magnitude and directipmlectric

and magnetic fields, in which case the perturbing Hamil-

tonianH; becomes

where we have specialized the right-hand side to the case
an external field along the axis. Using once again the vec-

—iF[L, ,X]=F e 14k (20)

This is not yet in the desired form. However, within a given
n-manifold one can apply Pauli’s replacemdi@6,76 ac- Fll=2 (F (OF o, (L s (23
cording to which - AN ! |

However, the most important feature of our proof is that
we have not applied Pauli's replacement directly in the
Hamiltonian[31,83,51. An early application of Pauli's re-
Pauli’s replacement is mathematically exact, and yet physiplacement yields a straightforward proof of quantum-
cally it is just an approximation, because the dynamics of thelassical equivalencwithin an n-manifold but it erases all
electron is only approximately confined within a given  information about the precise conditions on the fields under
manifold. Clearly, the accuracy of the approximation rests orwhich the perturbative classical equations of motion consti-
certain conditions on the external fields, depending on whicliute an accurate description of the dynamics of the quantum
the dynamics may, or may not, be very well localized withinexpectation values. Moreover, it also makes it impossible to
a hydrogenic manifold, and we discuss such conditions irstudy the corrections to the dynamics due to intermanifold
detail below. However, in the present section we are intermixing and therefore one could not extend E@. to the
ested only the intramanifold dynamics, and therefore one hasase of Rydberg wave packets. Instead, in the next section
we address in detail precisely these important issues.

- 3 -
(nl’m’|r,|nlm)=—En(nl’m’|a,|nlm>. (2D

“ 3 “
Fel,l,k< ¢n|rk| ¢n>: - Eanl,l,k< ¢n|ak| ¢n>1 (22
IIl. INTERMANIFOLD DYNAMICS AND

QUANTUM-CLASSICAL CORRESPONDENCE

which is the same electrl_c term as on the rlght-_hand side of IN RYDBERG WAVE PACKETS
the corresponding classical equations of motion, and our
proof is complete. In this section we study intermanifold mixing and the

Our derivation of the equations of motion of the quantumconditions on the external fields under which the classical
expectation values is accurate only to first order in the fieldperturbative equations of motion offer an accurate treatment
because it relies heavily on the identity of E41), which  of the dynamics of the quantum expectation values. We will
holds for the unperturbeldy,) states; these are eigenstates ofshow that the same conditions as in classical mechanics hold
the hydrogen atom Hamiltonian and therefore quantum in quantum mechanics too, provided that the dynamics is
solutions to zeroth order in the fieldm fact, this is exactly time averaged over a Kepler period. Most importantly, we
in the same spirit as the classical approach, where the rightvill demonstrate that upon time averaging, EG. apply
hand sides of the Hamilton equations are time averaged ovedso to the case of Rydberg wave packets.
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For the sake of simplicity we restrict our analysis to thecall “off-diagonal” the matrix elements of any operator be-
pure Stark case, that is, when there is no external magnetteveen states from two different hydrogenic manifolds,
field; the extension to the more general case including avhereas we will call “diagonal” the matrix elements be-
weak magnetic field is straightforward. Therefore, in thistween two states within the sanmemanifold, regardless of

section we assume a simplified Hamiltonian: their angular-momentum quantum numbers
o For example, if we indicate generically ,+ O, the
H=Hq+FXx, (24 combinations of operators on the right-hand side of the

N o i . Heisenberg equations of motion, in the casd pbne has
whereH, is the hydrogen atom Hamiltonian afdis again

the strength of the external electric field. q
Intermanifold mixing is due to two main causes, depend- % [ (t -F C.|2 A1) +0O.(t
ing on how the Rydberg state is prepared. If the Rydberg dtw| (O19) ; [Col “(¥n| Oai(1)+ Og(V) )
electron is initially confined within a hydrogenfemanifold,
thenn-mixing is induced by the applied external field, and in
that case the intermanifold contributions to the equations of = A A
motion are of second order in the applied field. Note that this * 2 Cor G [Oci(t) + Og(B)] ¢n)
is a very realistic picture for slow ion-Rydberg collisions n”,;t”n
[59-63,47,48 In fact, ion-Rydberg collisions are actually
gentle encounters at very large ion-Rydberg separation, (26)
which are effective because of the long-range nature of the

Coulomb interaction, and are very accurately modeled by gnere®,, indicates a combination of operators which corre-
time-dependent, weak external field acting on the Rydbergpond to the classical variables on the right-hand side of the
electron[47,48. Typically, the Rydberg state is prepared in ¢|assical equations of motidfie., a combination of angular

migﬁ,ze?gf ic;f teuﬁtﬁégalogcaz?éiztiigﬁytlz V;’ﬁ:'ﬁ;:]elglg\fvlt;‘ﬁqomentum and Runge Lenz vegtomstead,O, indicates
the purely quantum corrections, which vanish when the mo-
sis of intermanifold mixing is equivalent to the study of the Yion is exa_ctly qonflned Wlth.m a hydrogenic manifold. wa-
. . . usly, an identical expression holds also for the equation of
second-order corrections to the equations of motion, and it~ . N
allows one to determine for what precise conditions on thdnotion of the expectation value af . A
external electric field such corrections are negligible. The expectation values of the operators(yf appear in
However,n-mixing can also be present at the outset, ei-the equations of motion in the same way as the classical
ther if the Rydberg state is prepared in the presence of théme-averaged variables, and therefore they evolve in time
applied dc field and the field is strong enough to mix adja-€xactly like their classical counterparts. This is true even if
cent Rydberg levels, or alternatively if a short, large bandthe state is not confined within a hydrogenic manifold. Yet,
width laser pulse is employed in the preparation of the Rydfor states which are spread over more than omeanifold,
berg state. In both cases the ground state is coupled to the quantum contributions from the expectation valué)gf
distribution of hydrogenic manifolds, and the Rydberg elec-do not vanish exactly. In fact, we proved in the preceding
tron is not excited to a high-energy, stationary eigenstate ofection and in Appendix A that only the diagonal matrix
the hydrogen atom, but rather to some time-dependent wav§ements ofd, vanish, but the same does not hold for the
packet. To a first approximation the Rydberg wave packepyif.giagonal matrix elements.
oscillates with the Kepler frequency of the eigenstate around However, we show below that under the classical condi-
which the distribution of principal quantum numbers is cen-tions for the external field, and upon time averaging, all the
tered; therefore a Rydberg wave packet contributes rapidlyti.diagonal matrix elements of the double sum of E26)
oscillating, intermanifold terms to the equations of motiontter 4 negligible contribution to the dynamics. In our dem-
for the quantum expectation values. Such intermanifold congnstration we do not distinguish between the two operators,

trlbu_tlons may be of first qrc_jer in the exter_nal field. In th_ls and treatéc,Jqu as a single term which, for the sake of
section we extend the validity of the classical, perturbative™

Eqs. (4) precisely to the case of Rydberg wave packets, byPrevity, we simply denote a. That is, our argument dem-
time averaging the equations of motion over a Kepler perioc@onstrates that also the off-diagonal matrix elementgf
and by showing that thsecular intermanifold contributions Yyield only negligible contributions to the equations of mo-
to the dynamics remain negligible under the classical condition. Therefore, the quantum dynamics of the expectation

tions of Eq.(6) for the external field. values of the operators d,, is determined only by the
More precisely, the wave function of a Rydberg waveintramanifold terms. Note that this last observation is not
packet is essential to the issue of quantum-classical correspondence.
Before our demonstration, however, we must discuss

_ briefly the operators of Eq26) and the magnitude of their
|9(0) ; Caltn(t)) (25 matrix elements between two eigenstates of the hydrogen

atom. From the preceding section, and also from Appendix
and the Heisenberg equations of motion for the expectatiodA, it is easy to see that the sum of the two combinations of
values of eitherl. or a over the state of Eq(25) include  operator€y+O,=0 may be equal to one or a combination
“off-diagonal” matrix elements(for the sake of brevity we of the following operators:
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r RO =(nim|r|n"1'm’). (28)
O~{ npr,, 1J=123 (27
N If n”=n one haqd82
nL,. 182]
First, thenL, operator yields matrix elements the magnitudes . - 3, |2
of which are at mostn?. Moreover,L, commutes with the Roi-1=Rnp "==5n7\/1- 2 (29

hydrogen atom Hamiltonian and therefore all its off-diagonal
matrix elements vanish, and it is very easy to prove that its _ _ _ -
intermanifold contributions to the dynamics are negligiblewhereas ifn’#n the radial matrix elements of the position

(see below operator are given by a complicated formula which involves
Next, in the case of, the magnitude of the matrix ele- hypergegrr)etnc functions [82]. However, for n’,n
ments and, most importantly, theicalingwith n are deter- >1, |R},"| is accurately approximated by a well known

mined solely by theadial matrix elements: semiclassical resu[84]:
2 2
n,,I, nc |C IC
IRa |~ 1=Ar 1 ag w0 (Bnnr € = 144 =13 - (Anre) (= : (30)
n,n’ C Cc 2|An’n/|
|
whereA, ,,=n—n" and A, »=I1—-1". In Eq. (30) we also excitation of Rydberg electrons, and it breaks down only for

usedn.,=2nn’/(n+n’), l.=max(,!’), and finally =1 ultrashort, ultralarge bandwidth pulses; or when the Rydberg
—|§/n2. Clearly the last inequality of Eq30) is accurate state is excited in the presence of ultrastrong external fields.
only to the leading order im, and to the same order it is  In what follows we conduct our analysis in the most gen-
equally correct if one uses eitharor n” or n.. eral form. Although at some point we specialize our argu-
Finally, fornblFJ by usingp,= —i[r,,H,] and inserting a ment to the cas®=r, which yields the largest off-diagonal
resolution of unity between the two operators one has: contribution to the equations of motion, it will be easy to see
that the treatment of the cae=npyr, is completely analo-

nn’l’'m’ I F n"1"m’" gous.
In¢ [P ) Any off-diagonal matrix element of Eq26) can be writ-
. Aw A A ten as
~[in> ——(n"1'm’|r [ ) plr In"1"m")|
“opn
~ iHtA a—iHt — _, ’ ’

<|<nr|rmr|rj|n/r|rrmll>|, (31) <¢n’|e Oe |¢n> l%, % Cn (l !m )Cn(l,m)

whereA,,, ,=n’—n,, and where we used the final result of x(n'l'm’[e"'Oe™ " nim), (32

Eqg. (30). In Eq. (31) for the sake of a simpler notation we

adopted the following conventiorju)=|n,l,m,) (which  where we have expanded the staltes ) and|,), which

we will often use in this section are initially confined within then’ andn manifold, respec-
The result of Eq(31) rests on the observation that in the tively, as follows:

semiclassical limit the radial matrix elements refbecome

rapidly very small for largel’s, as one can easily see from

Eqg. (30), and one may safely assume that for non-negligible [y => Cn(l,m)|nIm), (33

matrix elements the difference between the two principal hm

guantum numbers is always much smaller than any of the

principal quantum numbers themselvee.g.,, A, ,  where theC(lI,m)’s are some general coefficients, possibly

<n’,n,). Therefore one may legitimately neglect higher- complex.

order corrections i\, ,/n’. As we mentioned before, these off-diagonal matrix ele-
In fact, we assume precisely this important conditionments are present in the equations of motion either when the

throughout our argument: that is, we assume that the varhigh-energy electron is prepared in a wave packet, or when

ance of the distribution of the Rydberg wave packets ovethe electron is initially confined within a singlemanifold,

the hydrogenic principal quantum numbers is always muchin which case they represent the second-ofitethe external

smaller than the principal quantum number at the center ofield) corrections to the dynamics.

the distribution, i.e., the approximate average principal quan- The dynamics of the matrix elements of E§2) is best

tum number of the Rydberg wave packet. This is a verystudied in the interaction picturg72], and therefore it is

realistic approximation for most laser pulses employed in the&onvenient to set
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e*”*‘lnlm>=§ an(D)e ENL),
(34)

<nr| /m/|e+th:Z BM(t)e+iE”t<lu’|!
"

where we used once again the conventjan=|n,l,m,)

and|u)=|n,l,m,), as the most important features of our
argument depend on the spectrum of the hydrogen atom, and
are determined solely by the principal quantum number of

the state.
The equations of motion for the’s and theB’s can be
derived directly from the Schdinger equation:

iy =F 2 (Mxhp)ay e B8,
1
(35)

iB#:_FE <M1|;(|Iu>ﬁ#1e*i(EM*EM1)t,
M1

and the solution of Eqg35) to zeroth order in the field is

0
aE\zlzm)\z n, ,nﬁlk | 5m)\ ,m>
(36)

BE) =5 8 1Om
nﬂlﬂmﬂ n,.n IM,I m,.m’ -

In a first-order approximation Eq§35) become

('1'm’'[e"Oe N nimy P =F, > (n'I'm’'|O|A )\ |X|nIm)

N#N'
A#N

+F2 2 (n'I'm’|X| w)(u|O[nim)

n#FN
u#n’
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il =F(\[x|nIm)e "En= BV
(37)
B = —F(n'1m[X] wye 1 En B,
and their solution is straightforward:
—i(Ep—EMt_

(F)— X - -
ay'=F(\|x|nIm) E_E ny#n
a\P=—iF(\|x|nIm)t, ny,=n, {l,,m}#{l,m}

(38)

“iF): 1, {ny,Img={n,l,mj,
and also

. +i(Enf*ElL)t_1
BPU=F(n'l"'m’|X|u . n,#n’
p = F( |X| ) £ E, “

(F)—; v —
B, =iF(n’'l'm’[x|u)t, n,=n’,

{lm#{",m'}
(39

Bu'F=1,

Therefore, to first order in the external field the time depen-
dence of the matrix elements of E@2) is

nusl,mp={n"I",m'}.

~i(En=En)t_ g—1(Ex—Eqt

En_ E)\

~i(En~En)t_ g~ 1(Eq—Et

En—E,

“iFs S (1 [Olnl,my)(nlymy [Kinlm)e- 1 Ea-Ex

PN

+F, > (n1'm'|On’1,m, ){n’l, my|X|nIm)
|

PELDN

e 1(En—Ent_1q

E,—E,

+iF5IEm <n’|/m/|§(|n’|#m#><n/|Mm#|©|n|m>e—i(En—Enr)tt

wolllp

+Fg >, (n'l'm’[x|nl,m,)nl,m,|O|nim)
l,.m

wolllp

+(n’1’m’'|O|nIm)e "(En=Ent

—i(En=Ent_ 1
E,—E,

(40)

where we have attached subscripts to the field strefRgth quencywy of the hydrogenic manifold at the center of the

only for bookkeeping purposes, and Bg=F,=---=F4
=F.

Clearly, all the terms of Eq(40) oscillate with a fre-
guency comparablébut not identical to the Kepler fre-

distribution of principal quantum numbers. We indicate the
principal quantum number of this special hydrogenic eigen-
manifold asn. For very weak external fields, the Kepler

frequency is much larger than the Stark frequency of the
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motion. This is true for the classical conditions on the fieldsyhich holds only to the leading order in, and where a

of Eq. (6) and also, albeit in a much stronger form, for the gjijar result can be obtained also in the c@senp,f,. The
usual quantum condition of Eq9), i.e., the Inglis-Teller & " itis v

limit for negligible intermanifold mixing. This means that

the wave packet oscillates several times before the classical _

. . . . . . T ~ . 2An n— Anr n —_
perturbative equations of motion yield any significant change F(n'|O|n)(e " 1En=En )ty d7/| < 5| ———>2" ,
in the expectation values of angular momentum and Runge4 /0 2|An 4

Lenz vector. Therefore, following exactly the approach of (46)
classical perturbation theory for the derivation of Eqgl),

we time average the quantum dynamics over the Kepler pe¥here the last inequality follows under the very important
. A3 — . . assumption which we introduced before, i.e., that the vari-
riod Tx=2mn> of the n-manifold approximately at the cen-

ter of the energy distribution of the wave packet. Such time1c€ of the distribution of the Rydberg wave packet over the

averagng docs not afect the disgora erms of @ T 0 ML PUUes £ uen ST harne svereae
however, it allows us to evaluate with accuracy seeular P paiq . . P U
; L : . from Eq. (46) that first-order, off-diagonal contributions are
off-diagonal contributions to the dynamics over a time o S
— T, that is, over some multiple of the Stark periog very small when compared to the @mmatmg_ p_rmmpal quan-
7;:05;’3 R dbér electron confined within asmanifold tHe tum number of the wave packet; indeed, this is a sufficient

Stark ering ig defined as condition to neglect them completely, because the quantum

P S expectation values of the angular momentum and the scaled

Runge-Lenz vector range precisely froam to n. Most im-
2 . )
Te=o—. (41  portantly, however, one must also require that1, i.e., the
3nF off-diagonal contribution remains small only up to times
comparable to the Stark period; for longer times the secular
However, its definition can be easily generalized to the caseffects build up and off-diagonal terms become relevant.
of a wave packet with average principal quantum nunther ~ Clearly, the above analysis does not yet yield any infor-
by setting mation about the precise condition that the external field
must satisfy, so that all off-diagonal terms remain negligible.
5 To learn more about it, one must analyze the off-diagonal
Te~ —. (42)  contributions which are of second order in the field. We be-
3nF gin by considering the terms of E0) which are propor-
tional to F,. By inserting any of them in the equations of
First, we consider the last term of EG0) which is of ~ motion for the expectation values of the angular momentum
zeroth order in the field; by inserting it in the perturbative @nd the Runge-Lenz vector, one obtains contributions which
equations of motion, i.e., in Eq26), one obtains an off- are of second order in the external field; that is, to the leading

diagonal term which is of first order in the field. By first time order inn one obtains
averaging over a Kepler period, and then integrating over a

. . ' . ; —i(Ep—Epnt
time 7, and finally using Eq(42), one obtains f F2<n’|’m’|(5|A)<>\|§<|n|m)<e i >KdT,
0 En_E)\
f F<nr|(")|n><e—i(En—Enr)t>KdT/ Ag(n) o
0 <y|——5-|Fn°, (47)
2An’,>\An,>\
2 .3 1
= 3_#” |O|n); Ann~ EAn’v" ' (43 where(n)=(n+n')/2 and we have used the results of Egs.

(42), (44), and (45); we have also used the following result

A .
where( )¢ indicates the time averaging over the Kepler pe-(See ppendix &

riod, and where we used the following resutterived in 1 —3 3 1 A2
Appendix B: S N W Yo (48)
E—E, Al pl7n 2% 2l
. 1 (™« _. S .
<e*'(En*En’>t>K:T—f “eFiE-Egy From Eq.(47) it is finally possible to extract a necessary and
KJO

sufficient condition on the field strength. By requiring that

% 1 A2 the result of Eq(47) is much smaller tham one obtains
n\~"™o27" n? Frt<1, (49)
From Eq.(30) one has which is essentially the same as the classical condition of Eq.
(6), as we had claimed before.
— Clearly, the same analysis applies to the terms of(EQ).

(45) which are proportional t6,, and also to the oscillating part

n’|O|ny|=(n’[r,|n)|= ,
KnlOImI=Kn'Ir, m] 2|An 4l of the F, andFg terms.
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Therefore, we next turn our attention to the remaining terms fronm{4), that is, the contributions which are proportional
to F53 and Fg and also the nonoscillating parts of thg and Fg terms as well. First, one needs the time averages of the
time-dependent factors in tHe; andF5 sums, which are given by the following equatisee Appendix B

i T
<ite‘i<El‘Eﬂ‘>K:|—J “te IE—Etgt
TkJo

_ F3 E( B 1 ) . A3
_—A—IJ 1—; A”*J_EA"J (1+imA, ) +0 ? ] (50)

By inserting the time-averagde; andF5 terms, along with the nonoscillating parts of the andFg terms in the equations

of motion and integrating over time, one obtaitrs the leading order iml_), an additional intermanifold correction, which we
denote ass(n’l’'m’;nlm):

3
n . . . .
G(n'I’'m’;nlm)=yT4F {F3 > (n'1'm’[O]nlym {nlymy|x|nImy—F, >, (n'I’m’[O|n’1,my){(n’l,my|X|nIm)
I\ .my

n,n’ DN

—Fs > (n'I'm’[x|n’l,m,)(n"l,m,|OInIm)+Fg > (n'l'm’'[x|nl,m,)nl,m,[O|nim)}. (51)
| |

M’mH M’ml’«

It is easy to see from the previous analysis of Eheterms

. - . : . n,l 1 n',l |
that G(n’l’m’;nIm) is a negligible intermanifold contribu- IEm W(FsRn,f,,Rﬂ,u_F4Rn,‘,7R2r,|A)
tion if and only if the expression within the curly brackets of M
Eq. (50) scales as- Fn3. However, each of the terms in the . Ny onl N
four sums consists of the product of two matrix elements, - z FRn/,l/(Rnﬁ'fRn/,l/)' (53

Iy ,m
and our previous analysis of the magnitude of the matrix M

elements of , and also of any of the possible choices €r
indicates that all such terms may scale-aBn®. Therefore, Where7 is a coefficient-1 which contains the angular part
the desired scaling as the third powerEfmust originate of the mgtnx elgmentEBZ]. The d|ﬁerence_of the two diag-
from cross cancelations between the four sums within th@nal radial matrix elements scales asi~n, and therefore
curly brackets. the whole expression scales a4n®, which is the desired
This is obviously correct when, for examp@=ni, and  result. Note that in E¢(53) one can approximately factor out
all the off-diagonal matrix elements &(n’l’'m’;nlm) van-  an off-diagonal radial matrix element because both off-
ish, and one has diagonal elements represent the same kind of transition, i.e.,
the principal quantum numbend the angular-momentum
qguantum number decrease in both cagesuming thah’

IG(n'1"'m’;nIm)| >n), that is, the transitions are
)
=y [Fn(m—m’){n’I"m’|x|nIm)| =1y, 1>y
3[Ann| n'—n, (54)
- l,—I, [,>1.
Fn®°
~Y3a? (52
3 n.n’ Indeed, it is well known that the matrix element for an

atomic transition which increases both the energy and the

angular momentum of the electron is significantly larger than
where we used Ed42) and also the usual selection rules to the one for a transition which brings about the same change
conclude thamn—m’= = 1. A moment's thought shows that in energy, but leads to a smaller final angular momentum
an essentially similar analysis holds also for the other comfg2]. Therefore, ifA,, =0, a different, more complicated
ponents of the angular momentum. pairing of the terms must be employed, which in this case

The situation, instead, becomes much more complicateghay depend also on the angular part of the matrix elements.

whenO=r, orO=npy,. In those cases the pairing of terms  However, the scaling o&(n’'l’'m’;nIm) with the princi-
which leads to the desired cross cancelations depends on tpal quantum number can most effectively and also more con-
differences of the angular-momentum quantum numbersyincingly be studied by evaluating numerically the whole
that is, it depends on\, | and possibly also o\, ,. For  expression within the curly brackets of E&§J1), divided by
example, ifl=1"—2, by pairing anF; term with the corre- F. More precisely, for each paim’,n} we computed the
spondingF, term one obtains maximum magnitude of the expression within curly brackets
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18.3 3 classical electronf20—43. However, unless some suitable
— 1723 @ external fields are applied to the systdBR—-43, they do so
= 16.1 3 only for a few Kepler periods. Such wave packets do not
§ 3 remain localized in the angular variable and therefore spread
& 15.0 3 along the classical ellipse. Eventually they display interfer-
5 13.9 ence fringes as the front of the packet catches up with its tail,
12.8 3 : : and finally they also show quantum revivals and superreviv-
3.2 5 5.1 5.7 als[20-22,25,27-2P However, from the point of view of
3.04 the time-averaged equations of motion, the electraivigys
1., spread(i.e., averagedalong the classical trajectory, very
3.03 4 ., Q) much like in classical mechanics, where after time averaging
- the elements of the Kepler ellipse become the dynamical
o 3.02 B e variables of the system, replacing the phase-space coordi-
3.01 3 . nates of the electron. Therefore the time-averaged, quantum
] equations of motion are insensitive to the spreading of the
3.00 — 100 150 200 220 300 Wave packet, and to its revivals, and that is why the same

(2]

results as for stationary states can be legitimately extended to

FIG. 1. Scaling of the intermanifold contribution with the prin- wave packets too. ) .
cipal quantum number. Ifg) we plot the natural logarithm of the Note that the results of our analysis can be generalized

maximum magnitude of the intermanifold terms vs the natural loga2€y0ond the case of Rydberg electrons excited to wave pack-

rithm of the principal quantum number, and the approximate€ts. and hold also when the Rydberg electron is initially con-

straight line indicates a simple power-law scaling(ihwe plot the  fined within a hydrogenic manifold, angmixing is brought

slope of the line ir(a), i.e., the exponent of the power law, which is about only by an external field. In that case, in fact, one

clearly converging t@= 3, thereby proving that in the semiclassical needs only to replacén’l’m’| with (nl'm’|. Clearly, for a

limit all intermanifold contributions become negligible. Rydberg electron initially confined within ammanifold, all
off-diagonal terms in the equations of motion for the quan-

(divided byF) over all possible choices of angular quantumtum expectation values are of second order in the field, how-

numbers, and we we denote it lggn’,n), that is, ever they still derive from the first-order terms of H40),
and that is why the classical constraint on the external field

A Gl ’m"nlm)‘ of Eq. (49 holds in that case too. _
n.n’ _ . (55 Indeed, in the very important case of slow ion-Rydberg
yTsF2n3 ‘ collisions, the Rydberg electron is initially excited to a spe-
cific n-manifold, and in the next section we show that some

In Fig. 1(a) we plot the logarithm ofj(n’,n’ —1) versus  SPecial linear combinations of hydrogen atom eigenfunctions
the logarithm ofn’, setting©=§<: this is the case in which which are conflngd within a hydr_ogemc m_anlfoq_dlllpt_lq .
G(n’I’m’;nlm) is the largest, as many numerical calcula- state_s[67,68,29) yield the appropriate guasiclassical initial
tions confirm. The line in Fig. (B) is almost exactly straight, conditions for the quantum expectation value_s of the angular

_ X ., L, = momentum and the Runge-Lenz vector, which then closely
which confirms thag(n’,n’ —1) scales witm’~n accord-  yack the time averages of the classical variables.
ing to a power law, i.e.g~n¢. However, the exponert is
not exactly constant, and in Fig(t we plot the slope of the
straight line of Fig.. B versu_sn’. Clearly, for increas!ng IV. CLASSICAL, QUASICLASSICAL, AND QUANTUM
n’’s the exponent is converging to 3, and that is precisely INITIAL CONDITIONS
the result which we need to prove th@(n’l’m’;nlm) is
truly a negligible intermanifold contribution to the equations In this section we discuss the initial conditions for the
of motion. equations of motion for the quantum expectation values, and

The proportionality coefficient of the power law can also show that in the case of elliptic statg7,68,29 the quantum
be easily evaluated from the numerical data and one obtairxpectation values track exactly the time averages of the

classical variables. More precisely, for a classical Kepler el-

g(n,vn):maﬁl’m’;lm}

A lipse, initially in thexy plane, and with the semimajor axis
g(n’,n’—1)~3.15ﬂ’3=3.1573 1+0 :> (56) pointing along thex axis, one has
n
Finally, we have repeated the same calculations for several L,=ny1l—e*, as=ne,
values ofA, ,, and also forO=y,z andO=npyr,, {1,5} (57)
=1,2,3. In all cases our findings were essentially identical to
the ones of Fig. 1. Ly=Ly=a,=a,=0,

The physical interpretation of our result is particularly
interesting. Rydberg wave packets which are relatively well
localized in energy move along the trajectories of the classiwhere e is the eccentricity of the orbit and, as usual, the
cal electron or, for radial wave packets, of an ensemble oénergy of the classical electron is
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1 nim|L,/nim)=m,
e 59) (nim|L/nlm)
2n (nlm|L,[nImy=(nIm|L,/nlm)=0, (61)
On the other hand, for an elliptic stdiea) (an elliptic state (nlm|a,/nIm)=(nim|ay/nlm)=(nlm|a,|nim)=0,

is given by a complicated superposition of spherical eigen- . . ) ) .
sta%es of )t/he hydPogen atorrf) aFI)I with the Same pringipaf’md the initial conditions differ dramatically from the classi-
quantum numbef67,68,29), which is also localized in the cal ones, which leads to some interesting considerations.

- - : ; As we explained before, the classical constraints of Eq.
g;fgnzézgd oriented like the classical ellipse above, Om?7) remain invariant under the evolution of the perturbative

equations. The second classical constraint translates into a
condition over the quantum expectation values, which is also
(na|Lna)=(n—1)cose, invariant:

x=2 (AL )2+ (wlaly)?, (62)

(nalayna)=(n—1)sina,
(59 . - :
. . where |¢) is any state(elliptic, spherical, or also a wave
(na|Lyna)=(nalL,|na)=0, packet, in which case the expectation value must also be
averaged over a Kepler perip@hich satisfies the require-
ments of our derivation. The invariant is related to the
Casimir operator of the S@ symmetry group of the hydro-
gen aton76,86. The value of the classical invariant of Eq.
so that the correspondence betweemd sine is established  (7) is n2. For an elliptic state the quantum invariant of Eq.
(obviously thise has no relation with the coefficients of the (62) is equal to 6—1)?; however, for a spherical eigenstate
preceding sectionClearly, in the limit of largen’s the quan-  y is equal tom?, which for the smalim’s typically excited
tum expectation values and the classical predictions corby optical transitions from the initial low state to the
verge, and for elliptic states the quantum expectation valuefRydberg higha state is a much smaller number than the
not only obey the same perturbative equations as the timelassical result. This poses severe limits on the largest pos-
averages of the classical variables, but also have almost theible expectation value of any component of the angular mo-
same initial conditions. Therefore, they closely follow the mentum over a spherical eigenstate; this feature might be
same trajectories as the time-averaged classical angular mexploited in experiments to study the properties of Rydberg
mentum and Runge-Lenz vector. This result has already beestates.
observed numericallj4,83,57 and also experimentaliy,8] The limitation which Eq(62) imposes on the expectation
for some special configurations of the external fields. Mostalues of the angular momentum and the Runge-Lenz vector
importantly, since elliptic states are coherent states of thever spherical eigenstates stems from the fact that such states
angular momentun{85,67,68,29 i.e., states of minimum have vanishing electric dipole moment; a small angular mo-
uncertainty, it turns out that mentum is not balanced by a large Runge-Lenz vector, as it
happens in classical ellipses and quantum elliptic states.
More precisely, for spherical states, the electric field cannot
induce first-order dynamical effects because the expectation
_ 1 value of the Runge-Lenz vector over a spherical eigenstate is
1 . R 1 zero(i.e., there is no permanent electric dipolend the state
5 <”“|L2|”a>+2l (ne|Lna)?|  (n—1)cos a+ 5 must first be distorted by the field so that the expectation
(60)  Value of the angular momentufor Runge-Lenz vectorcan
change. This indicates that the dynamics must be at least of
) N second order in the external fields. This situation is germane
and in the semiclassical limit the expectation valued gf  to the well known linear Stark effe¢82], where degenerate
1=1,2,3, are related to the expectation valud_bfapproxi-  perturbation theory and parabolic states must be used to ac-
mately as in classical mechanics. In fact, it has been verifiedount for the linear dependence of the eigenvalues on the
numerically in a few special cas¢83,51 that not only do  external field. In fact, a spherical eigenstate can be seen as a
the expectation values @f anda, evolve in time quasiclas- Superposition of elliptic state®r in a semiclassical interpre-
sically according to Eqs(4), but also that during the time tation an ensemble of Kepler ellipgesvhich are oriented
evolution the state remains elliptic. This is exactly the sama!niformly in thexy plane, so that the total Runge-Lenz vec-
situation as in classical mechanics, where the electron keepj@r is averaged to zero.
moving along an ellipse, but the properties of the ellipse vary The (at least quadratic dependence of the time evolution
slowly in time; similarly, the numerical evidence shows thaton the field can be explicitly verified by expanding the time-
the elliptic state remains localized along a classical Kepleflependent operators in the Heisenberg picfu@ and by
ellipse while it slowly evolves in time. showing that the expectation values of the first-order terms in
Instead, for the more familiar spherical eigenstateghe electric field vanish. Using the Hamiltonian of HQ)
Inim)’s of the hydrogen atom the situation is completely (minus the diamagnetic tepnand writing the hydrogen atom
different, and one has Hamiltonian asH,, one has

(na|ay|na>=<na|az|na>=0,

(na|L?na)— EI (na|l,|na)?
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el e M= —it[Hy— o L,,[,]1-itF[x,L,]

+FY
p

—it pp—1 . R . R R A
( p'!) 2 [Fo— il [ Dxlfomoily [ (Ao oLy L) 1II+OF?). (69

The simplest first-order term is a direct commutator of thetime; if we consider times comparable to the Stark period
field with a component of the angular momentum: thereforeand the scaling of the matrix elements of the position opera-
it is either zero or a component of the position operatie-  tor with the principal quantum number as given in E2g),
pending on the index), and its expectation value over a it is easy to see that the final result is not negligible. More-
spherical eigenstate vanishes. Other, more complex firs@ver, the constraint on the quantum invarignof Eq. (62)

order terms come from the double sum in E8@) and con- does not say much about the total angular momentum of a
sist of a first series ofk commutators ofi with 0 spherical state, which is not a coherent state of the angular
1 0

- i ] ) momentum, and therefore not only does one have
—w_L,, and then of a commutator with the field, and finally
of a second series ofp(-~1—k) commutators withl:lo

—w L,. Itis easy to see that the expectation value of any
such terms over a spherical eigenstate of the hydrogen atom
which is quantized along theaxis vanishes, simply because but the difference between the two sides of the equation can

such a state is an eigenstate Fa’é_wLLz- However, the be very large, as one can see by considering a statelwith
same result can be proven as follows also when the atom isn—1 andm=0.

quantized along an arbitrary directidi). The first series ok Since the results of the preceding section show that under
commutators either vanishes or yields a component of théhe classical conditions for the external fields intermanifold
angular momenturfdepending on the indes}; (ii) the com-  contributions to the dynamics can be neglected, all our con-
mutator of the result of stefi) with the electric field either ~siderations apply also to a superposition of spherical states
vanishes or yields a component of the position operaiioy; ~ With different n’s, and therefore our analysis sheds some
finally, the result of step§) and (ii) must be commutedp(  light on the nature of the Rydberg states employed in ZEKE

1 i I troscopy.
1-Kk) times withHy— w| L,; this sequence of commuta- spec .
tors can be organized so that one does first the commutatog%In ZEKE, ultrahigh molecular Rydberg statgs-7,52—

LA A are first excited by a few optical transitions and succes-
with L, and next those withd, because these two operators | y b

ith her. Obviously. th : | sively field ionized. This technique is extremely successful
commute with one another. Obviously, the expectation valuge 4,56 of the ultralong lifetimes of these Rydberg states,

of the commutator of any operator withy vanishes if it is  which are explained in terms of extensive intrashell mixing
taken over an eigenstate Hf, itself. On the other hand, the of the initial, unstable low- states with the longer-lived

commutators with_, either vanish directly or yield a com- high4 states. For increasing angular momenta the coupling

ponent of the position operator, whose expectation valu&etween the Rydberg electron and the molecular core be-

over a spherical state also vanishes, and our point is prove@omes rapidly negligible, so that autoionization and predis-
Similar considerations apply also E8. In fact, it is even sociation channels are effectively quenched, and the Rydberg

easier to demonstrate that the time evolution of the expect:f’-tate becomes uItr.a—Iong—Ilved. Therefqre it is understood
. ~y . . that ZEKE states, i.e., the ultra-long-living Rydberg states
tion value ofL“ over a spherical eigenstate of the hydrogen

e d order in the field. CI m i responsible for the ZEKE signal, are complicated superposi-
aFom IS of second order in t 9 ield. Clearyyim) is an tions of largen spherical eigenstates of the hydrogen atom,
eigenstate of.2 and the expectation value of the commutatoryhich are skewed in favor of large angular momentum

of x with L2 over|nIm) vanishes. Moreovel,? commutes ~states. Because of the small spacing of higRydberg

with Fg— w L, and therefore the sequence of commutatorstigenenergies and of the width of the initial laser pulses,
similar to the one of Eq(63) can be rearranged so that first ZEKE states initially consist of a superposition of several
one commutes the field operator with— o, L, and next the states with different principal quantum numbéis6,57.

Iti d with2 H h . | However, it is generally assumed that only one angular mo-
result is commuted with.“. However, the expectation value \enym quantum number is allowed in the superposition be-

over [nim) of the commutator of any operator wittf van-  cause of the usual selection rules. The population of higher-
ishes, which proves our point. Clearly, this result does not states is ascribed solely to the effect of external fields.
depend on the orientation of the axis of quantization of the |n fact, several experimental studigs-7,59 have shown
atom relative to the external fields. that the vanishingly small stray fields of the experimental
Note tl"]\at eveAn if the time evolution of the expectation setup and, most importanﬂy, the very weak, S|ow|y Varying

values ofL, andL? is only of second order in the external electric fields of the ions present in the interaction region
field, that does not imply that weak external fields are notpopulate with great efficacy the highRydberg states which
effective in bringing about changes of the angular momenare responsible for the observed ultralong lifetimes of ZEKE
tum. For example, in the expansion of E§3), the second- states. On the theoretical side recent results
order terms are multiplied by at least a square power of th€s6,57,50,47,49,48 some of which were based on the clas-

> (nIm|L,[nIm)2# (nim|L?|nIm), (64)
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sical perturbative approach of Eq¥) [50,47,49,48 have cient multiplying m becomes=0.9. Therefore the expecta-

explainedl-mixing in terms of the hydrogenic model, in tjon value of L, cannot change much, and if initially the

which vanishingly small fields are sufficient to induce thegjectron is prepared in am+0 state, the expectation value

desired scrambling of the angular—.momelntum quantum numag L, will not vanish. However, both in the interpretation of
bers. The great effectiveness with which such extremel

weak fields F<1 V/m) populate high- states strongly Xhe experimental daf@®?2] and also in fully quantum theoret-

s that the hvd ; del is indeed ot ical treatment$88,63,89,90) the assumption has been made
suggests that the hydrogenic model is indeed appropriate {g niform population of then substates, which corre-
describe angular-momentum mixing in ZEKE states. More- . A ,

ponds to a zero expectation valuelgf. For highl states

over, our present findings show that the previous classical®™~", L .
results[50,47,49,48 are really quantum mechanical in na- this is a reasonably good approximation, even in the case of

ture, and can also be extended to the case of wave packegs.nonvanishing expectation value bf. However, the ap-

On the other hand, the lowstates excited by the laser pulse proximation clearly breaks down for smaller values lof
have a non-negligible quantum defect, which decouples therwhich is precisely the regime for which we suggested a criti-
from the hight, quasihydrogenic states; it is then likely that cal review of current results.

another mechanism is at work. More precisely, it is possible

that the initial optical excitation of the ultrahighstates may V. CONCLUSIONS

not be strictly limited by the standard selection rules. Instead, |, this paper we have shown that under realistic condi-
by contributions which are of higher order in the optical ﬁeldtions, the classical and quantum dynamics of Rydberg elec-
and yet are non-negligible because of the ultralarge dipolgqns in weak, slowly varying external fields agree beyond
moments of Rydberg states—see Ef) and Eq.(29—the o mandates of Ehrenfest theorem.

initial optical pulse.may V\_/eII populate a few angular-  \ye have shown that for the hydrogen atom in weak,
momentum states with relatively largis, as one of us has  gjo\ly varying electric and magnetic fields, to first order in
recently shown[87]. Therefore, some degree of angular- \he applied fields the quantum expectation values of the com-
momentum mixing is probably already present in the initial yonents of the angular momentum and the Runge-Lenz vec-
Rydberg state, in which case the hydrogenic model, in itgor ohey exactly the same equations as the time averages
present extension to superpositions of states with differenioyer 5 Kepler period and along a Kepler ellipss the

quantum numbers, provides an accurate description of hoWqresponding classical variables. Our proof follows in spirit
weak stray and ionic fields bring about tii@pproximat®  the approach of classical perturbation theory, as we fully
randomization it andm of ZEKE states, which accounts for ypoit the properties of the zeroth-order solutions of the
the observed ultralong lifetimes. _quantum problem, exactly as one does in classical mechanics
Finally, the extension of equatiori8) from purely classi-  yhere the time averaging is done along Kepler ellipses, i.e.,
cal variables to quantum expectation values lends strength {e zeroth-order solutions of the classical problem. Note that
a previous argument of ours concerning slow, ion-Rydbergh;s result is not an application of Ehrenfest's theorem, be-
collisions and which until now was based solely on purely.qse the perturbative approach does not consist of the lin-

classical calculation47,48. More precisely, we suggested garization of the problem in the neighborhood of an equilib-
the need for a review of both experimental and theoretical;,, point. Instead, it is an extension, in stronger form, of

results for the intrashell transitions induced in Rydbergie theorem for the important case of the hydrogen atom in
alkali-metal atoms by slow collisions with ions. In the case\yeak external fields.

of slow ion-Rydberg collisions the “magnetic” term of the Most importantly, in our derivation we have not applied
Hamiltonian arises from the rotation frequency of the ﬁeld*PauIi’s replacement directly in the Hamiltoni§81,83,51,

and the problem is treated in the frame rotating with the fieldy g therefore we have been able to investigate the intermani-
itself. In that frame the Hamiltonian is equivalent to the one¢y 4 contributions to the dynamics. In fact, by time averaging
of a hydrogenic electron in weak electric and magnetic fieldgpe dynamics over a Kepler perigdhich, again, is exactly

of constant orientat_ion and time-depe_ndent magnitudene same procedure as in classical perturbation thewey
[17,47,49,4% The ratio of the two magnitudes, however, haye shown that intermanifold terms do not contribute sig-
remains constant, and Eqd4) can be solved exactly pificantly to the evolution of the quantum expectation values,
[47,49,48. Itis then easy to see that after a full collision, the 55 |ong as the strength of the external fields satisfies the same
expectation value df, is over a spherical eigenstdtbat is,  requirement as in classical mechanics. Interestingly, in the

with the initial conditions of Eq(61)] [47,48, semiclassical limit the classical constraint is much weaker
than the quantum condition for negligibhemixing, i.e., the
_ . 4b% —9n? Inglis-Teller limit.
tllm(nlmle(t)|nIm>= o (65) This paradox can be resolved by observing that the per-

turbative equations remain accurate only up to times compa-
- rable to the Stark period, that is, for times which in atomic
whereb is the impact parameter of the collision ands the  ynjts are~1/AE, where AE is the energy separation be-
“reduced” velocity of the incoming ion, i.e., its velocity in tween two Stark levels. Therefore, over such relatively short
atomic units multiplied byn, which is the principal quantum times the stationary picture of the Stark eigenstates which
number of the Rydberg electron in the target. In a first apspread out of a hydrogenitmanifold does not have much
proximation, one may insert in E¢65) an average impact physical significance, and that is why for these relatively
parametelb~50n? and a reduced velocity~ 1, which are  short times the more stringent quantum condition can be ig-
consistent with the experimental conditions, and the coeffinored.
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Moreover, by time averaging the intermanifold dynamicsquantization of the atom and the direction of the applied,
we have also extended the validity of the classical perturbaexternal fields in the Hamiltonian of E).
tive equations to the case of Rydberg wave packets, as long We begin with the simplest case, that is, whey:
as the spread of the packet over the hydrogenic eigenmani-

folds is small compared to its average principal quantum <¢’n|;<|F3|+f3.§<.|llfn>=—i<l/fn|;<.[;<.,|:|o]+[;<.,|:|o];<.|¢n>
number. Note, however, that although our analysis shows o
that the quantum expectation values of the angular momen- = —i{nl[X? ,Hol|¢n)y =0, (A2)

tum and the Runge-Lenz vector evolve in time like the clas-
sical time-averaged variablet,says nothing about the lo- whereH, is the hydrogen atom Hamiltonian and the result

calizatipn of the wave packet and 'the quasiqlas;icalroHOWS becauséy,) is an eigenstate dfl,. The same ap-
dynamics of the packet itselh fact, our time averaging is  ooach could be easily extended to all cases. However, for

precisely equivalent to considering a spread out version he cases in which+ a different approach is more conve-

the wave packet, smeared along its orbit. This is the samfiant t the end of studying the intermanifold contributions

situation as in classical mechanics, where one studies t 8 the equations of motion, which we do in the main text of
motion of the Kepler ellipse, as if the classical electron ha '

b icall d al . ; he papefsee Eq.(27)]. Indeed, a different proof identifies
een magically smeared along its own trajectory. explicitly the nonclassical terms of the Heisenberg equations

We have also demonstrated that the close quantumss aiion: these are operators which have no counterpart in

classical equivalence can be extended, in the limit of Verya classical equations. Such terfsse below yield a null
large principal quantum numbers, to the initial conditions ofg, o tation value over states which are confined within an

the equations of r'no'tion, provideq that the expectati_on valueﬁ-manifold, and also negligible intermanifold contributions
are taken over elliptic states, which are states localized alon% the equations of motiotsee main text
the classical solution$7,68,29. Therefore the quantum ex- Therefore, we consider next the case2, j=1:
pectation values of the angular momentum and the Runge- ' ' '
Lenz vector over elliptic states follow essentially the same B — e [
trajectories as the time averages of the corresponding classi- yPx=—iylpy. L]
cal variables. Such complete quantum-classical equivalence I oS o ® ol ST
' =— + +

however, does not hold for the more familiar spherical eigen- Pyl HIY Llpy +Laypyl
states (nIm)) of the hydrogen atom. =—xpy+ilL,yp,—yp.L,}. (A3)

The realization that the hydrogenic, perturbative equa- Py itkaypy—ypyLat
tions of motion(which account so well for several physical we must then show that the expectation value dye) of

phenomenh can also be interpreted as purely quantum-the operator within curly brackets vanishes, that is,
mechanical equations has led to some insight into the nature

of the Rydberg states employed in ZEKE spectroscopy; it poon nas _
also lends support to our resupreviously only classical (gnlL2ypy=ypyLalthn) =0. (Ad)

which indicates that the averaging over the sublevels  Clearly, the statéy,) can be written as

(which is used in quantum close-coupling calculations to the

end of making the problem of ion-Rydberg collisions nu-

merically more tractable, and also in the interpretation of |¢n>=|2 Cn(l,m)[nIm), (A5)

experimental dajamay be unjustified. m
Finally, one may wonder if the special equivalence be- , - .

tween tr)(e dynamig/s of the time aveprages o? classical vari\-Nhere theCn(l,m) S are some genera! coefﬁments,. possibly

ables and quantum expectation values is a peculiarity of théimep(!te;ﬁO?lyv;ﬁf;sgtfugzii?%r?é(%zgs'on of E@S) in the

hydrogen atom in weak external fields, or if it can be ex- P

tended to other weakly perturbed integrable systems, and the
investigation of this problem is in progress in our groups. <¢n||“_2§,|5y_§,[3y|“_z| )= >, > Cp(l”,m")Cph(l,m)
I’'m’ I.m

APPENDIX A: PROOF OF THE IDENTITY OF EQ. (10) X{m’(nl rmr|§/6 |n|m>
y

In our proof of the special quantum-classical equivalence A
of the dynamics of Rydberg electrons in weak external fields, —m(nl'm |ypy| nim)},  (A6)
we have made extensive use of the following identity: _
where C,(I’',m’) denotes the complex conjugate. On the
<l//n|F.EJJ|¢n>= _<¢n|f,lfj|¢n>7 (A1)  other hand, from Eq(A2) it follows that

wherer, andp, are components of the position and momen- (nl"'m’[ypy+pyy[nim)=(nl"m’[2ypy+[py,y][nIm)=0,
tum operator, respectively, and wheye,) is a state confined (A7
within a hydrogenian-manifold. . “n

In this appendix we prove explicitly the identity of Eq. and therefore the matrix elementsqs, are
(A1), and we do so for all the pairs of indexfagj} to stress
that our derivation of the equations of motion does not de-

nn i
pend on the relative orientation between the initial axis of (nl'm’lypy|nim)= 291 %m'm: (A8)
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By inserting the matrix elements of EGA8) in the double We use
sum of Eq.(A6), it is easy to see that each term within curly

brackets vanishes exactly, and therefore the identity of Eq. 1
(A4) is proved. Ly=E(L+—L,) (Al11)
Next, we consider the case-3, J=1. One has
zp,=iz[p,.L,] and also
=izpLy—i{[z,Ly]p,+L,zp,} L.|nImy=(I—m)(I+m+1)|nim+1),
= —xp,—i{L,zp,~zp,L,}, (A9) (A12)

and so we must prove that L_Inim)= (I +m)(I—m+1)[nim—1),

(¢nlLyzp,—zp,L|¢h,) =0. (A10)  and the expectation value of EGA10) becomes

A 1 — ~n
(nlLy2p,= 2Ly = 5 3 3 Coll’,m')Collm) {7+ M) (I =M’ + 1)(nl’m’ ~ 1|2,|nim)

1" m’ IL.m

—J("=m) (" +m’ +1)(nl'm’ +1|zp,|nIm)— /(I —m) (I + m+1){(nl’'m’|zp,/nIm+ 1)

+V{I+m)(I—=m+1)(nl’m’|zp,/nIm—1)}. (A13)

Clearly, the matrix elements dfp, are also given by Eq. WhereAJ;:J—FandFis the principal quantum number of
(A8), and by inserting that result in E¢A13) it is easy to  the hydrogenic manifold which carries the largest weight in
verify that once again the expression within curly bracketshe state. The energy difference between two manifolds can

vanishes. then be rewritten as
Finally, an essentially similar argument proves that the
identity of Eq.(11) holds also forzp, , which completes our A, 3 1 A3
proof. EI_EJZ? 1—5 A_] n— EAIJ +O ? , (BS)

APPENDIX B: TIME AVERAGING

whereA? (i.e., with no indexesstands for the product of any
OF THE INTERMANIFOLD DYNAMICS

threeA'’s regardless of the indices. The Kepler period is
In this appendix we evaluate explicitly the time averages

over a Kepler periodk of the intermanifold contributions to Te=2mn3 (B6)
the equations of motion for the quantum expectation values.
We begin with Substituting the results of E¢B5) and Eq.(B6) in Eq. (B2),
one obtains
_. 1 (T _,
<e+I(E|*EJ)t>K: _j e+I(E|*EJ)tdt. (Bl)
TJo 1 (T _ 3 1 A2
) ) ) T_ e+I(E|_EJ)tdt=:(ARJ— §A|J +0 |-
The integral of Eq(B1) is easily evaluated, and one has KJo n n
B7
1 T . e:i(EI_Ej)TK—]_ ( )
—| eEBt=tj—————. (B2) . L
Tk Jo (E,—E)Tk Note that to the leading order in/n the result does not
. _ depend on the sign of the exponent; in fact, the leading term
However, the energy differende —E, is of the right-hand side of Eq(B7) can be cast in a more
5 5 symmetric form:
1 1 A, 3A7, 1 AV,
E—E=- F_i :J_S’_Z_j'J_3+O J_5 , 1 1 1
(B3) A;J—EAw:A;,—EAJ’,=n—§(|+J), (B8)

whereA, ;=1—J. We then use which concludes the calculation of the first time average.

R Incidentally, by inverting to the leading order the expres-
J=n|1+-2L%, (84)  sion of Eq.(B5), we obtain a result which we used in the
main text of this paper:

n
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3

1 nd A
?) . (B9)

3
EE" A_[ 1+ ﬁ(AJ;—%A,J) +0

J 1J

Next we evaluate
(it e I(EE, = T'_KLTKt e IE-E)tdt.  (B10)
Once again, the integral is straightforward:
e IE—EpTk_q
(E.—E))

T
Kt e I(E—E)tgt=
TkJo

1
(E—E)T¢|’

—TKei(E'EJ)TK) : (B11)
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Finally, inserting in Eq(B11) the results of Eq9B3)—(B6),
one obtains
i

Kte—i(E,—EJ)tdt

TkJo
nd 6 ,
S Rt GOV IMICRS L
A3
+0| =, (B12)
n

which concludes our analysis.
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