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Quantum-classical correspondence in the hydrogen atom in weak external fields
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The complex processes leading to the collisional population of ultra-long-lived Rydberg states with very
high angular momentum can be explained surprisingly well using classical mechanics. In this paper, we explain
the reason behind this striking agreement between classical theory and experiment by showing that the classical
and quantum dynamics of Rydberg electrons in weak, slowly varying external fields agree beyond the man-
dates of Ehrenfest’s theorem. In particular, we show that the expectation values of angular momentum and
Runge-Lenz vectors in hydrogenic eigenstates obey exactly the same perturbative equations of motion as the
time averages of the corresponding classical variables. By time averaging the quantum dynamics over a Kepler
period, we extend this special quantum-classical equivalence to Rydberg wave packets relatively well localized
in energy. Finally, the perturbative equations hold well also for external fields beyond the Inglis-Teller limit,
and in the case of elliptic states, which yield the appropriate quasiclassical initial conditions, the matching with
classical mechanics is complete.@S1050-2947~98!05111-7#

PACS number~s!: 32.80.Rm, 32.60.1i, 34.10.1x, 03.65.2w
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I. INTRODUCTION

In the past few years new experimental techniques h
made possible the study of the dynamics of atoms or m
ecules in which an electron is promoted to a very hig
energy state, where it is only weakly bound to the core@1#.
These high energy states can be described by approxim
hydrogenic wave functions with very large principal qua
tum numbers (n*100) @2,3#. The atoms~or molecules! in
which a valence electron is promoted to such high-n states
are generically called ‘‘Rydberg’’ atoms, because the ene
levels of the excited electron are well described by
Rydberg-like formula@2#, and their highly energetic electro
is known as a Rydberg electron. In such systems the we
bound Rydberg electron resides mostly at an immense
tance from the atomic core, a distance so large that if R
berg atoms were solid, they would be just about visible to
naked eye. Laboratory-scale external fields, and even w
stray electric fields@4–8#, become then comparable to th
atomic Coulomb field sensed by the Rydberg electron,
that the dynamics of the electron can be probed with ac
racy, and also fundamental dynamical properties such
quantum manifestations of chaos@9–14# can be studied ex
perimentally.

To a very good approximation, the dynamics of Rydbe
electrons is hydrogenic. More precisely, small deviatio
from the purely hydrogenic eigenenergies are introduced
the interaction between the far flung electron and the e
tronic cloud around the atomic or molecular core. These
viations are quantified by the quantum defectd l , which en-
ters in the formula for the energy levels as a correction to
principal quantum numbern @2,15#. However, the quantum
defect becomes rapidly negligible as the angular momen
of the electron increases. In fact, more complex atoms
often used as experimental substitutes for hydrogen, sin
is much easier to excite their valence electron to a Rydb
PRA 581050-2947/98/58~5!/3896~18!/$15.00
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state, and yet the field sensed by the Rydberg electron d
not differ much from a pure Coulomb field. Therefore ma
recent investigations of Rydberg electrons in alkali-metal
oms have really probed the dynamics of quasiclassical e
trons in an essentially Coulombic potential. These accu
experimental results have led to a renewed theoretical in
est in the hydrogen atom in external fields in the limit
large quantum numbers@10,16–19#, which has become one
of the paradigmatic models for the study of quantum ch
@9–14# and of quantum-classical correspondence in gene

Since the degeneracy of a hydrogenicn-manifold grows
asn2, a fully quantum treatment of the dynamics of Rydbe
electrons poses formidable challenges even to the most
vanced computers. Therefore classical mechanics is often
only practical way to study such systems, under the assu
tion that for largen’s classical and quantum prediction
should somehow converge. Interestingly, however, rec
experimental and theoretical work on electronic wave pa
ets in hydrogenic systems@20–45# has shown very clearly
that the quantum-mechanical properties of the Rydberg e
tron are essential to the dynamics of the wave packet, eve
the large-n regime. For example, the observation of fra
tional revivals can be explained only by the quantized sp
trum of the Hamiltonian@20–22,25,27–29# in spite of the
very large principal quantum numbers involved, whi
seems to suggest that large quantum numbers are not s
cient to ensure the accuracy of a purely classical descrip
of Rydberg dynamics.

On the other hand, classical mechanics yields surprisin
accurate results for the problem of the hydrogen atom
weak, slowly varying external fields; i.e., when the classi
electron still moves, to a good approximation, along a Kep
ellipse, and the semimajor axis of the ellipse~or, equiva-
lently, the Kepler energy of the electron! remains unchanged
In particular, recent classical, perturbative calculatio
@4,46–51# have succeeded in explaining several diverse
3896 ©1998 The American Physical Society
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perimental results with astonishing accuracy, ranging, for
ample, from the ultralong lifetimes of the molecular highn
states employed in zero-electron-kinetic-energy~ZEKE!
spectroscopy@52–57,5–7,47,48,58# to the intrashell transi-
tions induced in alkali-metal Rydberg atoms by slow io
Rydberg collisions@59–63,47,48#. The same classical ap
proach also explains the anomalous autoionization lifetim
of Rydberg electrons in circularly polarized microwave fiel
@64,49# and the dynamics and stability of circular Rydbe
states ~i.e., states with maximum angular momentum! in
weak, slowly rotating electric fields@4,50#. Clearly, the suc-
cess of the classical treatment must stem from some sp
equivalence between classical and quantum prediction
the hydrogen atom in weak external fields: in fact, su
equivalence has been already simply observed~but not ex-
plained! only in the limited case of states with initial zer
angular momentum@65,66#.

In this work we show that the accuracy of the classi
results does indeed rest on a particularly direct connec
between classical and quantum predictions, and we dem
strate explicitly that in the perturbative limit the quantu
expectation values of the angular momentum and the Ru
Lenz vector obeyexactly the same equations as the tim
averaged classical variables. We also investigate the cond
tions on the fields for which the perturbative approach ho
and we find that classical mechanics seems to require m
relaxed constraints on the external fields than quantum
chanics, as the classical condition for the conservation of
Kepler energy—see below—is not equivalent to the quan
condition for negligible intermanifold mixing. However, b
studying in detail the contributions to the dynamics whi
stem fromn-mixing, we demonstrate that the perturbati
equations of motion for the quantum expectation values
main accurate also under the less restrictive classical co
tions, as long as the dynamics is time averaged over a Ke
period. In fact, the time-averaged equations describe well
dynamics of quantum expectation values also when the
dberg electron is initially excited in a superposition of h
drogenicn-manifolds, i.e., its initial state is not a stationa
eigenstate of the unperturbed Hamiltonian, but a tim
dependent wave packet. Interestingly, time averaging is
cisely the same procedure which leads to the classical
turbative equations, and therefore our result is an exp
example of how the scrambling of the principal quantu
number~quantum decoherence! brings about a more direc
quantum-classical correspondence. Finally, we show tha
special superpositions of the eigenstates of the bare Ha
tonian ~that is, elliptic states@67,68,29#! and in the limit of
large principal quantum numbers, the quantum expecta
values also have the appropriate quasiclassical initial co
tions. Most importantly, elliptic states are not merely the
retical constructs: they have been prepared in the labora
and some of their properties have already been studied
perimentally@69–71,8#.

Our findings are not merely an application of Ehrenfes
theorem@72#. Although Ehrenfest’s theorem relates the tim
evolution of the quantum expectation values to the class
equations of motion, it does not state that quantum expe
tion values and classical variables obeyexactly the same
equations. Such an identity holds only for the harmonic
cillator and, albeit trivially, also for the free particle and a
-
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linear potential. Because the harmonic oscillator is of
used as a textbook example, it often leads to the incor
impression that such exact equivalence is of a more gen
nature. In truth this correspondence is a very special prop
of potentials which are at most quadratic, because in gen
the expectation value of the ‘‘force operator’’f ( r̂ )5

2¹V( r̂ ), which is a function of quantum observables, is n
equal to the same function evaluated at the expectation
ues of the observables; that is~in general!,

^cu f ~ r̂ !uc&Þ f ~^cu r̂ uc&!. ~1!

In the very special case of the harmonic oscillator, for e
ample, the restoring force of the spring is simply propo
tional to x̂ and the two sides of Eq.~1! are identical, hence
the exact correspondence between quantum and clas
evolution. Also, the perturbative treatment of the Kep
problem borrows heavily from the methods of celestial m
chanics@73# and studies the dynamics of time averages of
classical variables. Such an approach is not the same a
expansion of the Hamiltonian around an equilibrium po
and up to quadratic terms in the potential, which would ma
the system trivially equivalent to a harmonic oscillato
Therefore, our work amounts to an extension of Ehrenfe
theorem, in a much stronger form, for the important case
the hydrogen atom in weak, slowly varying external field

This paper is organized as follows. In Sec. II we deri
explicitly the equations of motion for the quantum expec
tion values over states confined within a hydrogenicn-
manifold, and show that they coincide with the classical p
turbative equations to first order in the fields. In Sec. III w
investigate the contributions to the dynamics due to the
termanifold mixing: we show that the same perturbat
equations of motion remain accurate even if the state is
initially confined within a specificn-manifold, as long as one
considers the time average~over a Kepler period! of the dy-
namics. In Sec. IV we study the initial conditions for th
quantum expectation values over different quantum sta
and also discuss a few physical implications of our resu
Finally, in Sec. V we draw some general conclusions.

II. CLASSICAL AND QUANTUM EQUATIONS

In atomic units~which we use throughout this paper! the
Hamiltonian for a hydrogen atom in crossed electric a
magnetic field is

H5
p2

2
2

1

r
2vLLz1Fx1

vL
2

2
~x21y2!, ~2!

where the electric field is parallel to thex axis and its
strength isF; the magnetic field is antiparallel to thez axis
andvL is the Larmor frequency of the magnetic field, whic
in atomic units is equal to half the strength of the field. F
weak fields the diamagnetic term, which is proportional
the square of the field, can be neglected, and the Hamilto
becomes identical to the one for a hydrogen atom in a w
electric field rotating with frequencyvL , in the noninertial
frame which rotates with the field@17,50,47,49,48#.

The classical perturbative treatment of the hydrogen a
in weak, external fields is based on the methods of celes
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3898 PRA 58BELLOMO, STROUD, FARRELLY, AND UZER
mechanics, and one is interested in the secular variatio
the elements of the Kepler ellipse followed by the classi
electron @73#. While a Kepler ellipse can be described b
many equivalent sets of elements, the equations of mo
are particularly simple if one chooses the angular momen
and the Runge-Lenz vector. Therefore, the dynamical v
ables of the classical problem are the time averages ov
Kepler period and along a Kepler ellipse~which is the clas-
sical solution to zeroth order in the external fields! of the
angular momentumL of the electron and its scaled Rung
Lenz vectora, which for bound states is defined as@74#

a5
1

A22E
H 1

2
~p3L2L3p!2

r

r J , ~3!

whereE521/2n2 is the Kepler energy of the electron. Th
antisymmetrization of the cross product is not necessar
classical mechanics, but is essential in quantum mechani
obtain a Hermitian operator@75,76#. To first order in the
external fields the classical, time-averaged angular mom
tum and scaled Runge-Lenz vector~which for the sake of a
simpler notation we will still indicate, respectively, asL and
a) satisfy the following equations of motion@77–80,47#:

dL

dt
52vS3a2vL3L ,

~4!
da

dt
52vS3L2vL3a,

wherevS is the Stark frequency of the electric field, and
defined as

vS5
3

2
nF, ~5!

and vL is the Larmor frequency vector: it is directed alon
the external magnetic field and its magnitude is equal to
Larmor frequency of the field itself.

Equations~4! were derived originally by Born@77# and in
classical mechanics they remain accurate as long as the
frequencies~Stark and Larmor! are much smaller than th
Kepler frequencyvK of the electron@77–80,47#:

vS ,vL!vK5
1

n3
. ~6!

In classical mechanics Eq.~6! means that the elements of th
Kepler orbit do not vary significantly over a Kepler perio
so that the classical electron still moves, to a good appr
mation, along a Kepler ellipse, and the Kepler energy of
classical electron is conserved. In fact, the classical ang
momentum and the Runge-Lenz vector obey two constr
equations@74#:

L•a50,
~7!

L21a25n2.
of
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It is easy to see that both constraints are invariant under
time evolution dictated by Eqs.~4!, and also that the secon
of Eqs.~7! implies the conservation of the Kepler energy
the electron.

Instead, the quantum-mechanical interpretation is that
external fields remove the degeneracy of then2 unperturbed
states of the hydrogenicn-manifold, and the conditions o
Eq. ~6! mean that the energy difference between two adjac
perturbed states is much smaller than the separation betw
adjacent, unperturbed Rydberg energy levels. However,
is not the usual condition under which in quantum mechan
inter-n mixing is negligible. For example, in the case of ju
an external dc field~the extension to include also a magne
field is straightforward@81#!, the energy separation betwee
the lowest and the highest Stark states for a fixed princ
quantum numbern is ~to first order in the field! @82#

DE53n~n21!F. ~8!

Therefore the approximate condition for level crossing of
highest Stark state from a givenn-manifold with the lowest
Stark level from the nextn-manifold is given by the Inglis-
Teller limit @2#:

3n2F'
1

n3
. ~9!

Clearly, in the semiclassical limit the quantum condition
the external fields for negligiblen-mixing of Eq.~9! is much
stronger than the classical condition of Eq.~6!. We show
below, however, that the perturbative treatment of the
namics of the quantum expectation values remains accu
also in the presence of some degree ofn-mixing induced by
the external fields, as long as the dynamics is time avera
over a Kepler period.

In this section we confine our study to the dynamics of
quantum expectation values of the angular momentum
the scaled Runge-Lenz vector operators~that is,^cuL̂ uc& and

^cuâuc&; throughout this paper we use boldface letters
vectors, and a caret indicates a quantum operator, not a
vector, which we denote instead aseı) over superpositions o
the hydrogen atom eigenfunctions with a well defined pr
cipal quantum number, i.e., over statesucn& which are local-
ized within a hydrogenicn-manifold. More precisely, we
show here that to first order in the external fields the qu
tum expectation values obey exactly the same equation
motion as Eqs.~4!.

The cornerstone of the study of hydrogenic systems
weak, external fields is the so-called Pauli replacem
@75,76#, according to which the matrix elementsbetween
states within the same n-manifoldof the position operator are
directly proportional to the corresponding matrix elements
the Runge-Lenz vector operator:

^nl8m8u r̂ ıunlm&52
3

2
n^nl8m8uâıunlm&. ~10!

By replacing the position operator, which appears in the p
turbation Hamiltonian for an external field, with23nâ/2 the
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demonstration of quantum-classical equivalencewithin an n-
manifold is straightforward@31,83,51#, but nothing can be
said about the intermanifold dynamics. Instead, in our ar
ment we do not apply Pauli’s replacement directly in t
Hamiltonian; our approach is more complicated, but it ma
possible the extension of our analysis~in the next section!
also to the dynamics of Rydberg wave packets. Moreo
we will be able to show that the quantum analogs of Eqs.~4!
remain accurate under the more relaxed, classical condit
on the external fields given in Eq.~6!.

To prove the special quantum-classical equivalence,
will make use of the following identity, which holds within
hydrogenic manifold and which we derive explicitly in Ap
pendix A:

^cnu r̂ ı p̂ucn&52^cnu p̂ır̂ ucn&, ~11!

wherer̂ ı and p̂ are components of the position and mome
tum operator, respectively.

Indeed, armed with the result of Eq.~11! it is easy to
show that to first order in the external fields the expectat
values of the quantum observables satisfy the same equa
as the time averages~over a Kepler period! of the classical
variables.

The equations of motion of the quantum expectation v
ues are straightforward in the Heisenberg picture@72#:
-

s

r,

ns

e

-

n
ns

l-

^cnu
dL̂ı

dt
ucn&52 i ^cnu@ L̂ ı ,Ĥ#ucn&,

~12!

^cnu
dâı

dt
ucn&52 i ^cnu@ âı ,Ĥ#ucn&,

and we now show that they are identical to Eqs.~4!.
The classical equations~4! contain two terms, an electric

term which is proportional to the Stark frequencyvS , and
which couples the angular momentum to the scaled Run
Lenz vector, and a magnetic term which is proportional
the Larmor frequencyvL of the field ~or to the rotation fre-
quency of a slowly rotating electric field in a noninerti
frame rotating with the field itself@17,50,47,49,48#!. Both
the scaled Runge-Lenz vector and the angular momen
commute with the hydrogenic Hamiltonian~they are invari-
ants of the pure Kepler problem! @74#. Moreover, it is easy to
see that the magnetic term of the classical equations ca
recovered by invoking the vectorial properties ofâ and L̂ ,
because of which their commutators with the magnetic te
in the Hamiltonian~i.e., 2vLL̂z) obey the well known rule
@72#

@V̂ı ,L̂ #5 i e ı,,kV̂k , ~13!

whereV̂ı stands for theıth component of any vector opera
tor.

Therefore, we only need to investigate the commutat
of â and L̂ with the electric perturbationFx̂.

We begin withây :
t it
2 iF @ ây ,x̂#52 i
n

2
F$@~ p̂zL̂x2 p̂xL̂z!,x̂#2@~ L̂zp̂x2L̂xp̂z!,x̂#%

52 i
n

2
F$2 p̂x@ L̂z ,x̂#2@ p̂x ,x̂#L̂z2L̂z@ p̂x ,x̂#2@ L̂z ,x̂# p̂x%

5nF$L̂z2 ŷp̂x%. ~14!

However, using the identity of Eq.~11! one has

2^cnu ŷp̂xucn&5
1

2
^cnux̂p̂y2 ŷp̂xucn&, ~15!

from which it follows

2 iF ^cnu@ ây ,x̂#ucn&5
3

2
nF^cnuL̂zucn&. ~16!

This is the same as the electric term in the equation of motion for the classical time-averageday .
The derivation of the electric term for the equation of^cnuâzucn& follows along the same lines and it is easy to see tha

yields the desired result.
We then considerâx :
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2 iF @ âx ,x̂#5
n

2
F$@~ p̂yL̂z2 p̂zL̂y!,x̂#2@~ L̂yp̂z2L̂zp̂y!,x̂#%

52 i
n

2
F$ p̂y@ L̂z ,x̂#2 p̂z@ L̂y ,x̂#2@ L̂y ,x̂# p̂z1@ L̂z ,x̂# p̂y%

5
n

2
F$ p̂yŷ1 ŷp̂y1 p̂zẑ1 ẑp̂z%. ~17!
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Invoking once again Eq.~11! one obtains immediately

F^cnu@ âx ,x̂#ucn&50, ~18!

which is the same as the right-hand side of the correspon
classical equation of motion.

Finally, we turn to the equations for the angular mome
tum. The classical equations can be written as

dLı

dt
52e ı,,kvSak52

3

2
nFe ı,1,kak , ~19!

where we have specialized the right-hand side to the cas
an external field along thex axis. Using once again the vec
tor properties ofr̂ , the contribution of the electric term to th
quantum equations is

2 iF @ L̂ ı ,x̂#5Fe ı,1,kr̂ k . ~20!

This is not yet in the desired form. However, within a giv
n-manifold one can apply Pauli’s replacement@75,76# ac-
cording to which

^nl8m8u r̂ ıunlm&52
3

2
n^nl8m8uâıunlm&. ~21!

Pauli’s replacement is mathematically exact, and yet ph
cally it is just an approximation, because the dynamics of
electron is only approximately confined within a givenn-
manifold. Clearly, the accuracy of the approximation rests
certain conditions on the external fields, depending on wh
the dynamics may, or may not, be very well localized with
a hydrogenic manifold, and we discuss such conditions
detail below. However, in the present section we are in
ested only the intramanifold dynamics, and therefore one

Fe ı,1,k^cnu r̂ kucn&52
3

2
nFe ı,1,k^cnuâkucn&, ~22!

which is the same electric term as on the right-hand side
the corresponding classical equations of motion, and
proof is complete.

Our derivation of the equations of motion of the quantu
expectation values is accurate only to first order in the fie
because it relies heavily on the identity of Eq.~11!, which
holds for the unperturbeducn& states; these are eigenstates
the hydrogen atom Hamiltonian and therefore arequantum
solutions to zeroth order in the fields. In fact, this is exactly
in the same spirit as the classical approach, where the ri
hand sides of the Hamilton equations are time averaged
ng
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a Kepler period and, most importantly, along Kepler ellips
which are theclassical solutions to zeroth order in the field.

The same consideration can also be cast in the langu
of operators, by observing that we have proven Eq.~11! only
for the time-independent operators of the Schro¨dinger pic-
ture, whereas on the right-hand side of the equations of
tion one must more correctly use the time-dependent op
tors of the Heisenberg picture. However, in a first-ord
approximation one may assume that the time evolution of
operators in the Heisenberg picture is dictated solely by
hydrogenic propagator, which commutes with bothL̂ and â,
so that one can legitimately use the properties of those
erators in the Schro¨dinger picture.

Since Eq. ~11! holds for all possible pairs of indexe
$,k%, the same derivation can be easily extended to the c
of slowly varying ~both in magnitude and direction! electric
and magnetic fields, in which case the perturbing Ham
tonian Ĥ1 becomes

Ĥ15(
ı

$Fı~ t ! r̂ ı2vLı~ t !L̂ ı%. ~23!

However, the most important feature of our proof is th
we have not applied Pauli’s replacement directly in t
Hamiltonian @31,83,51#. An early application of Pauli’s re-
placement yields a straightforward proof of quantu
classical equivalencewithin an n-manifold, but it erases all
information about the precise conditions on the fields un
which the perturbative classical equations of motion con
tute an accurate description of the dynamics of the quan
expectation values. Moreover, it also makes it impossible
study the corrections to the dynamics due to intermanif
mixing and therefore one could not extend Eqs.~4! to the
case of Rydberg wave packets. Instead, in the next sec
we address in detail precisely these important issues.

III. INTERMANIFOLD DYNAMICS AND
QUANTUM-CLASSICAL CORRESPONDENCE

IN RYDBERG WAVE PACKETS

In this section we study intermanifold mixing and th
conditions on the external fields under which the class
perturbative equations of motion offer an accurate treatm
of the dynamics of the quantum expectation values. We w
show that the same conditions as in classical mechanics
in quantum mechanics too, provided that the dynamics
time averaged over a Kepler period. Most importantly,
will demonstrate that upon time averaging, Eqs.~4! apply
also to the case of Rydberg wave packets.
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For the sake of simplicity we restrict our analysis to t
pure Stark case, that is, when there is no external magn
field; the extension to the more general case includin
weak magnetic field is straightforward. Therefore, in th
section we assume a simplified Hamiltonian:

Ĥ5Ĥ01Fx̂, ~24!

whereĤ0 is the hydrogen atom Hamiltonian andF is again
the strength of the external electric field.

Intermanifold mixing is due to two main causes, depen
ing on how the Rydberg state is prepared. If the Rydb
electron is initially confined within a hydrogenicn-manifold,
thenn-mixing is induced by the applied external field, and
that case the intermanifold contributions to the equations
motion are of second order in the applied field. Note that t
is a very realistic picture for slow ion-Rydberg collision
@59–63,47,48#. In fact, ion-Rydberg collisions are actual
gentle encounters at very large ion-Rydberg separat
which are effective because of the long-range nature of
Coulomb interaction, and are very accurately modeled b
time-dependent, weak external field acting on the Rydb
electron@47,48#. Typically, the Rydberg state is prepared
the absence of external dc fields, and the weak field of
colliding ion is turned on adiabatically as the ion slow
approaches the Rydberg atom. In such a situation, the an
sis of intermanifold mixing is equivalent to the study of th
second-order corrections to the equations of motion, an
allows one to determine for what precise conditions on
external electric field such corrections are negligible.

However,n-mixing can also be present at the outset,
ther if the Rydberg state is prepared in the presence of
applied dc field and the field is strong enough to mix ad
cent Rydberg levels, or alternatively if a short, large ba
width laser pulse is employed in the preparation of the R
berg state. In both cases the ground state is coupled
distribution of hydrogenic manifolds, and the Rydberg ele
tron is not excited to a high-energy, stationary eigenstate
the hydrogen atom, but rather to some time-dependent w
packet. To a first approximation the Rydberg wave pac
oscillates with the Kepler frequency of the eigenstate aro
which the distribution of principal quantum numbers is ce
tered; therefore a Rydberg wave packet contributes rap
oscillating, intermanifold terms to the equations of moti
for the quantum expectation values. Such intermanifold c
tributions may be of first order in the external field. In th
section we extend the validity of the classical, perturbat
Eqs. ~4! precisely to the case of Rydberg wave packets,
time averaging the equations of motion over a Kepler per
and by showing that thesecular, intermanifold contributions
to the dynamics remain negligible under the classical con
tions of Eq.~6! for the external field.

More precisely, the wave function of a Rydberg wa
packet is

uc~ t !&5(
n

Cnucn~ t !& ~25!

and the Heisenberg equations of motion for the expecta
values of eitherL̂ or â over the state of Eq.~25! include
‘‘off-diagonal’’ matrix elements~for the sake of brevity we
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call ‘‘off-diagonal’’ the matrix elements of any operator be
tween states from two different hydrogenic manifold
whereas we will call ‘‘diagonal’’ the matrix elements be
tween two states within the samen-manifold, regardless of
their angular-momentum quantum numbers!.

For example, if we indicate generically byÔcl1Ôq the
combinations of operators on the right-hand side of
Heisenberg equations of motion, in the case ofL̂ ı one has

d

dt ^cuL̂ ı~ t !uc&5FH (
n

uCnu2^cnuÔcl~ t !1Ôq~ t !ucn&

1 (
n8Þn
n8,n

C̄n8Cn^cn8uÔcl~ t !1Ôq~ t !ucn&J .

~26!

whereÔcl indicates a combination of operators which corr
spond to the classical variables on the right-hand side of
classical equations of motion~i.e., a combination of angula
momentum and Runge Lenz vector!. Instead,Ôq indicates
the purely quantum corrections, which vanish when the m
tion is exactly confined within a hydrogenic manifold. Obv
ously, an identical expression holds also for the equation
motion of the expectation value ofâı .

The expectation values of the operators ofÔcl appear in
the equations of motion in the same way as the class
time-averaged variables, and therefore they evolve in t
exactly like their classical counterparts. This is true even
the state is not confined within a hydrogenic manifold. Y
for states which are spread over more than onen-manifold,
the quantum contributions from the expectation value ofÔq
do not vanish exactly. In fact, we proved in the preced
section and in Appendix A that only the diagonal matr
elements ofÔq vanish, but the same does not hold for t
off-diagonal matrix elements.

However, we show below that under the classical con
tions for the external field, and upon time averaging, all
off-diagonal matrix elements of the double sum of Eq.~26!
offer a negligible contribution to the dynamics. In our dem
onstration we do not distinguish between the two operat
and treatÔcl1Ôq as a single term which, for the sake o
brevity, we simply denote asÔ. That is, our argument dem
onstrates that also the off-diagonal matrix elements ofÔcl
yield only negligible contributions to the equations of m
tion. Therefore, the quantum dynamics of the expectat
values of the operators ofÔcl is determined only by the
intramanifold terms. Note that this last observation is n
essential to the issue of quantum-classical corresponden

Before our demonstration, however, we must disc
briefly the operators of Eq.~26! and the magnitude of thei
matrix elements between two eigenstates of the hydro
atom. From the preceding section, and also from Appen
A, it is easy to see that the sum of the two combinations
operatorsÔcl1Ôq5Ô may be equal to one or a combinatio
of the following operators:
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Ô;H r̂ ı

n p̂ır̂  , ı,51,2,3

nL̂ı.

~27!

First, thenL̂ı operator yields matrix elements the magnitud
of which are at most&n2. Moreover,L̂ ı commutes with the
hydrogen atom Hamiltonian and therefore all its off-diago
matrix elements vanish, and it is very easy to prove that
intermanifold contributions to the dynamics are negligib
~see below!.

Next, in the case ofr̂ ı the magnitude of the matrix ele
ments and, most importantly, theirscalingwith n are deter-
mined solely by theradial matrix elements:
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Rn,l
n8,l 85^nlmu r̂ un8l 8m8&. ~28!

If n85n one has@82#

Rn,l 21
n,l 5Rn,l

n,l 2152
3

2
n2A12

l 2

n2
, ~29!

whereas ifn8Þn the radial matrix elements of the positio
operator are given by a complicated formula which involv
hypergeometric functions @82#. However, for n8,n

@1, uRn,l
n8,l 8u is accurately approximated by a well know

semiclassical result@84#:
uRn,l
n8,l 8u'U nc

2

2Dn,n8
H S 12D l ,l 8

l c

nc
D J~Dn,n811!~Dn,n8e!2S 11D l ,l 8

l c

nc
D J~Dn,n821!~Dn,n8e!J U&

n2

2uDn,n8u
, ~30!
for
erg
lds.
n-
u-
l
ee

ly

le-
the

hen
where Dn,n85n2n8 and D l ,l 85 l 2 l 8. In Eq. ~30! we also
usednc52nn8/(n1n8), l c5max(l ,l 8), and finally e251
2 l c

2/n2. Clearly the last inequality of Eq.~30! is accurate
only to the leading order inn, and to the same order it i
equally correct if one uses eithern or n8 or nc .

Finally, for np̂ır̂  by usingp̂ı52 i @ r̂ ı ,Ĥ0# and inserting a
resolution of unity between the two operators one has:

zn^n8l 8m8u p̂ır̂ un9l 9m9& z

'u in(
m

Dn8,m

mn82
^n8l 8m8u r̂ ıum&^mu r̂ un9l 9m9&u

, z^n8l 8m8u r̂ un9l 9m9& z, ~31!

whereDn8,m5n82nm , and where we used the final result
Eq. ~30!. In Eq. ~31! for the sake of a simpler notation w
adopted the following convention:um&5unml mmm& ~which
we will often use in this section!.

The result of Eq.~31! rests on the observation that in th
semiclassical limit the radial matrix elements ofr̂ ı become
rapidly very small for largeD ’s, as one can easily see from
Eq. ~30!, and one may safely assume that for non-negligi
matrix elements the difference between the two princi
quantum numbers is always much smaller than any of
principal quantum numbers themselves~e.g., Dn8,m
!n8,nm). Therefore one may legitimately neglect highe
order corrections inDn8,m /n8.

In fact, we assume precisely this important conditi
throughout our argument: that is, we assume that the v
ance of the distribution of the Rydberg wave packets o
the hydrogenic principal quantum numbers is always m
smaller than the principal quantum number at the cente
the distribution, i.e., the approximate average principal qu
tum number of the Rydberg wave packet. This is a v
realistic approximation for most laser pulses employed in
e
l
e

ri-
r
h
of
-

y
e

excitation of Rydberg electrons, and it breaks down only
ultrashort, ultralarge bandwidth pulses; or when the Rydb
state is excited in the presence of ultrastrong external fie

In what follows we conduct our analysis in the most ge
eral form. Although at some point we specialize our arg
ment to the caseÔ5 r̂ ı which yields the largest off-diagona
contribution to the equations of motion, it will be easy to s
that the treatment of the caseÔ5np̂ır̂  is completely analo-
gous.

Any off-diagonal matrix element of Eq.~26! can be writ-
ten as

^cn8ue
iĤ tÔe2 iĤ tucn&5 (

l 8,m8
(
l ,m

C̄n8~ l 8,m8!Cn~ l ,m!

3^n8l 8m8ueiĤ tÔe2 iĤ tunlm&, ~32!

where we have expanded the statesucn8& and ucn&, which
are initially confined within then8 and n manifold, respec-
tively, as follows:

ucn&5(
l ,m

Cn~ l ,m!unlm&, ~33!

where theCn( l ,m)’s are some general coefficients, possib
complex.

As we mentioned before, these off-diagonal matrix e
ments are present in the equations of motion either when
high-energy electron is prepared in a wave packet, or w
the electron is initially confined within a singlen-manifold,
in which case they represent the second-order~in the external
field! corrections to the dynamics.

The dynamics of the matrix elements of Eq.~32! is best
studied in the interaction picture@72#, and therefore it is
convenient to set
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e2 iĤ tunlm&5(
l

al~ t !e2 iEltul&,

~34!

^n8l 8m8ue1 iĤ t5(
m

bm~ t !e1 iEmt^mu,

where we used once again the conventionul&5unll lml&
and um&5unml mmm&, as the most important features of o
argument depend on the spectrum of the hydrogen atom,
are determined solely by the principal quantum number
the state.

The equations of motion for thea ’s and theb ’s can be
derived directly from the Schro¨dinger equation:

i ȧl5F(
l1

^lux̂ul1&al1
e2 i ~El1

2El!t,

~35!

i ḃm52F(
m1

^m1ux̂um&bm1
e2 i ~Em2Em1

!t,

and the solution of Eqs.~35! to zeroth order in the field is

anl l lml

~F0! 5dnl ,nd l l ,ldml ,m ,

~36!
bnm l mmm

~F0! 5dnm ,n8d l m ,l 8dmm ,m8 .

In a first-order approximation Eqs.~35! become
h

nd
f

i ȧl
~F !5F^lux̂unlm&e2 i ~En2El!t,

i ḃm
~F !52F^n8l 8m8ux̂um&e1 i ~En82Em!t,

~37!

and their solution is straightforward:

al
~F !5F^lux̂unlm&

e2 i ~En2El!t21

En2El
, nlÞn

al
~F !52 iF ^lux̂unlm&t, nl5n, $ l l ,ml%Þ$ l ,m%

~38!

al
~F !51, $nl ,l l ,ml%5$n,l ,m%,

and also

bm
~F !5F^n8l 8m8ux̂um&

e1 i ~En82Em!t21

En82Em

, nmÞn8

bm
~F !5 iF ^n8l 8m8ux̂um&t, nm5n8, $ l m ,mm%Þ$ l 8,m8%

~39!

bm~F !51, $nm ,l m ,mm%5$n8,l 8,m8%.

Therefore, to first order in the external field the time depe
dence of the matrix elements of Eq.~32! is
^n8l 8m8ueiĤ tÔe2 iĤ tunlm&~F !5F1 (
lÞn
lÞn8

^n8l 8m8uÔul&^lux̂unlm&
e2 i ~En2En8!t2e2 i ~El2En8!t

En2El

1F2 (
mÞn8
mÞn

^n8l 8m8ux̂um&^muÔunlm&
e2 i ~En2En8!t2e2 i ~En2Em!t

En82Em

2 iF 3 (
l l ,ml

^n8l 8m8uÔunllml&^nllmlux̂unlm&e2 i ~En2En8!tt

1F4 (
l l ,ml

^n8l 8m8uÔun8l lml&^n8l lmlux̂unlm&
e2 i ~En2En8!t21

En2En8

1 iF 5 (
l m ,mm

^n8l 8m8ux̂un8l mmm&^n8l mmmuÔunlm&e2 i ~En2En8!tt

1F6 (
l m ,mm

^n8l 8m8ux̂unlmmm&^nlmmmuÔunlm&
e2 i ~En2En8!t21

En82En

1^n8l 8m8uÔunlm&e2 i ~En2En8!t, ~40!
e
he
en-
r

the
where we have attached subscripts to the field strengtF
only for bookkeeping purposes, and soF15F25•••5F6

5F.
Clearly, all the terms of Eq.~40! oscillate with a fre-

quency comparable~but not identical! to the Kepler fre-
quencyvK of the hydrogenic manifold at the center of th
distribution of principal quantum numbers. We indicate t
principal quantum number of this special hydrogenic eig
manifold as n̄. For very weak external fields, the Keple
frequency is much larger than the Stark frequency of
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motion. This is true for the classical conditions on the fie
of Eq. ~6! and also, albeit in a much stronger form, for t
usual quantum condition of Eq.~9!, i.e., the Inglis-Teller
limit for negligible intermanifold mixing. This means tha
the wave packet oscillates several times before the clas
perturbative equations of motion yield any significant chan
in the expectation values of angular momentum and Run
Lenz vector. Therefore, following exactly the approach
classicalperturbation theory for the derivation of Eqs.~4!,
we time average the quantum dynamics over the Kepler
riod TK52pn̄3 of the n̄-manifold approximately at the cen
ter of the energy distribution of the wave packet. Such ti
averaging does not affect the diagonal terms of Eq.~26!;
however, it allows us to evaluate with accuracy thesecular,
off-diagonal contributions to the dynamics over a timet
5gTS , that is, over some multiple of the Stark periodTS .

For a Rydberg electron confined within ann-manifold the
Stark periodTS is defined as

TS5
2

3nF
. ~41!

However, its definition can be easily generalized to the c
of a wave packet with average principal quantum numben̄,
by setting

TS'
2

3n̄F
. ~42!

First, we consider the last term of Eq.~40! which is of
zeroth order in the field; by inserting it in the perturbati
equations of motion, i.e., in Eq.~26!, one obtains an off-
diagonal term which is of first order in the field. By first tim
averaging over a Kepler period, and then integrating ove
time t, and finally using Eq.~42!, one obtains

E
0

t

F^n8uÔun&^e2 i ~En2En8!t&Kdt8

'g
2

3n̄
^n8uÔun&

3

n̄
S D n̄,n2

1

2
Dn8,nD , ~43!

where^ &K indicates the time averaging over the Kepler p
riod, and where we used the following result~derived in
Appendix B!:

^e2 i ~En2En8!t&K5
1

TK
E

0

TK
e7 i ~Eı2E!tdt

5
3

n̄
S D n̄,2

1

2
D ı,D1OS D2

n̄2 D . ~44!

From Eq.~30! one has

z^n8uÔun& z5 z^n8u r̂ ıun& z&
n̄2

2uDn8,nu
, ~45!
s

al
e
e-
f

e-

e

e

a

-

which holds only to the leading order inn̄, and where a
similar result can be obtained also in the caseÔ5np̂ır̂  . The
final result is

U E
0

t

F^n8uÔun&^e2 i ~En2En8!t&Kdt8U&gU2D n̄,n2Dn8,n

2uDn8,nu
U!n̄,

~46!

where the last inequality follows under the very importa
assumption which we introduced before, i.e., that the v
ance of the distribution of the Rydberg wave packet over
principal quantum numbers is much smaller than the aver
principal quantum number of the wave packet. We conclu
from Eq. ~46! that first-order, off-diagonal contributions ar
very small when compared to the dominating principal qu
tum number of the wave packet; indeed, this is a suffici
condition to neglect them completely, because the quan
expectation values of the angular momentum and the sc
Runge-Lenz vector range precisely from2n̄ to n̄. Most im-
portantly, however, one must also require thatg;1, i.e., the
off-diagonal contribution remains small only up to time
comparable to the Stark period; for longer times the sec
effects build up and off-diagonal terms become relevant.

Clearly, the above analysis does not yet yield any inf
mation about the precise condition that the external fieldF
must satisfy, so that all off-diagonal terms remain negligib
To learn more about it, one must analyze the off-diago
contributions which are of second order in the field. We b
gin by considering the terms of Eq.~40! which are propor-
tional to F1 . By inserting any of them in the equations o
motion for the expectation values of the angular moment
and the Runge-Lenz vector, one obtains contributions wh
are of second order in the external field; that is, to the lead
order in n̄ one obtains

U E
0

t

F2^n8l 8m8uÔul&^lux̂unlm&
^e2 i ~En2En8!t&K

En2El
dt8U

&gU D n̄,^n&

2Dn8,lDn,l
2 UFn̄5, ~47!

where^n&5(n1n8)/2 and we have used the results of Eq
~42!, ~44!, and ~45!; we have also used the following resu
~see Appendix B!:

1

Eı2E
5

n̄3

D ı,
H 11

3

n̄
S D ,n̄1

1

2
D ı,D1OS D2

n̄2 D J . ~48!

From Eq.~47! it is finally possible to extract a necessary a
sufficient condition on the field strength. By requiring th
the result of Eq.~47! is much smaller thann̄ one obtains

Fn̄4!1, ~49!

which is essentially the same as the classical condition of
~6!, as we had claimed before.

Clearly, the same analysis applies to the terms of Eq.~40!
which are proportional toF2 , and also to the oscillating par
of the F4 andF6 terms.
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Therefore, we next turn our attention to the remaining terms from Eq.~40!, that is, the contributions which are proportion
to F3 and F5 and also the nonoscillating parts of theF4 and F6 terms as well. First, one needs the time averages of
time-dependent factors in theF3 andF5 sums, which are given by the following equation~see Appendix B!:

^ i te2 i ~Eı2E!t&K5
i

TK
E

0

TK
te2 i ~Eı2E!tdt

52
n̄3

D ı,
H 12

6

n̄
S D n̄,2

1

2
D ı,D ~11 ipD ı,!1OS D3

n̄2 D J . ~50!

By inserting the time-averagedF3 andF5 terms, along with the nonoscillating parts of theF4 andF6 terms in the equations
of motion and integrating over time, one obtains~to the leading order inn̄), an additional intermanifold correction, which w
denote asG(n8l 8m8;nlm):

G~n8l 8m8;nlm!5gTSF
n̄3

Dn,n8
H F3 (

l l ,ml

^n8l 8m8uÔunllml&^nllmlux̂unlm&2F4 (
l l ,ml

^n8l 8m8uÔun8l lml&^n8l lmlux̂unlm&

2F5 (
l m ,mm

^n8l 8m8ux̂un8l mmm&^n8l mmmuÔunlm&1F6 (
l m ,mm

^n8l 8m8ux̂unlmmm&^nlmmmuÔunlm&J . ~51!
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It is easy to see from the previous analysis of theF1 terms
that G(n8l 8m8;nlm) is a negligible intermanifold contribu
tion if and only if the expression within the curly brackets
Eq. ~50! scales as;Fn̄3. However, each of the terms in th
four sums consists of the product of two matrix elemen
and our previous analysis of the magnitude of the ma
elements ofr̂ ı and also of any of the possible choices forÔ

indicates that all such terms may scale as;Fn̄4. Therefore,
the desired scaling as the third power ofn̄ must originate
from cross cancelations between the four sums within
curly brackets.

This is obviously correct when, for example,Ô5nL̂z and
all the off-diagonal matrix elements ofG(n8l 8m8;nlm) van-
ish, and one has

uG~n8l 8m8;nlm!u

5g
2n̄2

3uDn,n8u
uFn~m2m8!^n8l 8m8ux̂unlm&u

'g
Fn̄5

3Dn,n8
2 , ~52!

where we used Eq.~42! and also the usual selection rules
conclude thatm2m8561. A moment’s thought shows tha
an essentially similar analysis holds also for the other co
ponents of the angular momentum.

The situation, instead, becomes much more complica
whenÔ5 r̂ ı or Ô5np̂ır̂  . In those cases the pairing of term
which leads to the desired cross cancelations depends o
differences of the angular-momentum quantum numb
that is, it depends onD l 8,l and possibly also onDm8,m . For
example, ifl 5 l 822, by pairing anF3 term with the corre-
spondingF4 term one obtains
,
x

e

-

d

the
s;

(
l l ,ml

h~F3R
n8,l 8

n,l l Rn,l l
n,l 2F4R

n8,l 8

n8,l lRn8,l l

n,l
!

' (
l l ,ml

hFR
n8,l 8

n,l l ~Rn,l l
n,l 2R

n8,l 8

n8,l l!, ~53!

whereh is a coefficient;1 which contains the angular pa
of the matrix elements@82#. The difference of the two diag
onal radial matrix elements scales as;n'n̄, and therefore
the whole expression scales as;Fn̄3, which is the desired
result. Note that in Eq.~53! one can approximately factor ou
an off-diagonal radial matrix element because both o
diagonal elements represent the same kind of transition,
the principal quantum numberand the angular-momentum
quantum number decrease in both cases~assuming thatn8
.n), that is, the transitions are

n8→n, H l 8→ l l , l 8. l l

l l→ l , l l. l .
~54!

Indeed, it is well known that the matrix element for a
atomic transition which increases both the energy and
angular momentum of the electron is significantly larger th
the one for a transition which brings about the same cha
in energy, but leads to a smaller final angular moment
@82#. Therefore, ifD l 8,l50, a different, more complicated
pairing of the terms must be employed, which in this ca
may depend also on the angular part of the matrix eleme

However, the scaling ofG(n8l 8m8;nlm) with the princi-
pal quantum number can most effectively and also more c
vincingly be studied by evaluating numerically the who
expression within the curly brackets of Eq.~51!, divided by
F. More precisely, for each pair$n8,n% we computed the
maximum magnitude of the expression within curly brack
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~divided byF) over all possible choices of angular quantu
numbers, and we we denote it byg(n8,n), that is,

g~n8,n!5max$ l 8m8; lm%UDn,n8G~n8l 8m8;nlm!

gTSF2n̄3 U . ~55!

In Fig. 1~a! we plot the logarithm ofg(n8,n821) versus
the logarithm ofn8, settingÔ5 x̂: this is the case in which
G(n8l 8m8;nlm) is the largest, as many numerical calcu
tions confirm. The line in Fig. 1~a! is almost exactly straight
which confirms thatg(n8,n821) scales withn8'n̄ accord-
ing to a power law, i.e.,g;n̄j. However, the exponentj is
not exactly constant, and in Fig. 1~b! we plot the slope of the
straight line of Fig. 1~a! versusn8. Clearly, for increasing
n8’s the exponentj is converging to 3, and that is precise
the result which we need to prove thatG(n8l 8m8;nlm) is
truly a negligible intermanifold contribution to the equatio
of motion.

The proportionality coefficient of the power law can al
be easily evaluated from the numerical data and one obt

g~n8,n821!'3.15n8353.15n̄3H 11OS D

n̄
D J . ~56!

Finally, we have repeated the same calculations for sev
values ofDn8,n , and also forÔ5 ŷ,ẑ and Ô5np̂ır̂  , $ı,%
51,2,3. In all cases our findings were essentially identica
the ones of Fig. 1.

The physical interpretation of our result is particular
interesting. Rydberg wave packets which are relatively w
localized in energy move along the trajectories of the cla
cal electron or, for radial wave packets, of an ensemble

FIG. 1. Scaling of the intermanifold contribution with the prin
cipal quantum number. In~a! we plot the natural logarithm of the
maximum magnitude of the intermanifold terms vs the natural lo
rithm of the principal quantum number, and the approxim
straight line indicates a simple power-law scaling. In~b! we plot the
slope of the line in~a!, i.e., the exponent of the power law, which
clearly converging toj53, thereby proving that in the semiclassic
limit all intermanifold contributions become negligible.
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classical electrons@20–43#. However, unless some suitab
external fields are applied to the system,@32–43#, they do so
only for a few Kepler periods. Such wave packets do n
remain localized in the angular variable and therefore spr
along the classical ellipse. Eventually they display interf
ence fringes as the front of the packet catches up with its
and finally they also show quantum revivals and superrev
als @20–22,25,27–29#. However, from the point of view of
the time-averaged equations of motion, the electron isalways
spread~i.e., averaged! along the classical trajectory, ver
much like in classical mechanics, where after time averag
the elements of the Kepler ellipse become the dynam
variables of the system, replacing the phase-space coo
nates of the electron. Therefore the time-averaged, quan
equations of motion are insensitive to the spreading of
wave packet, and to its revivals, and that is why the sa
results as for stationary states can be legitimately extende
wave packets too.

Note that the results of our analysis can be generali
beyond the case of Rydberg electrons excited to wave p
ets, and hold also when the Rydberg electron is initially co
fined within a hydrogenic manifold, andn-mixing is brought
about only by an external field. In that case, in fact, o
needs only to replacên8l 8m8u with ^nl8m8u. Clearly, for a
Rydberg electron initially confined within ann manifold, all
off-diagonal terms in the equations of motion for the qua
tum expectation values are of second order in the field, h
ever they still derive from the first-order terms of Eq.~40!,
and that is why the classical constraint on the external fi
of Eq. ~49! holds in that case too.

Indeed, in the very important case of slow ion-Rydbe
collisions, the Rydberg electron is initially excited to a sp
cific n-manifold, and in the next section we show that som
special linear combinations of hydrogen atom eigenfuncti
which are confined within a hydrogenic manifold~elliptic
states@67,68,29#! yield the appropriate quasiclassical initi
conditions for the quantum expectation values of the ang
momentum and the Runge-Lenz vector, which then clos
track the time averages of the classical variables.

IV. CLASSICAL, QUASICLASSICAL, AND QUANTUM
INITIAL CONDITIONS

In this section we discuss the initial conditions for th
equations of motion for the quantum expectation values,
show that in the case of elliptic states@67,68,29# the quantum
expectation values track exactly the time averages of
classical variables. More precisely, for a classical Kepler
lipse, initially in thexy plane, and with the semimajor axi
pointing along thex axis, one has

Lz5nA12e2, ax5ne,
~57!

Lx5Ly5ay5az50,

where e is the eccentricity of the orbit and, as usual, t
energy of the classical electron is

-
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E52
1

2n2
. ~58!

On the other hand, for an elliptic stateuna& ~an elliptic state
is given by a complicated superposition of spherical eig
states of the hydrogen atom, all with the same princi
quantum number@67,68,29#!, which is also localized in the
xy plane, and oriented like the classical ellipse above,
has@67,68,29#

^nauL̂zuna&5~n21!cosa,

^nauâxuna&5~n21!sina,
~59!

^nauL̂xuna&5^nauL̂yuna&50,

^nauâyuna&5^nauâzuna&50,

so that the correspondence betweene and sina is established
~obviously thisa has no relation with the coefficients of th
preceding section!. Clearly, in the limit of largen’s the quan-
tum expectation values and the classical predictions c
verge, and for elliptic states the quantum expectation val
not only obey the same perturbative equations as the
averages of the classical variables, but also have almos
same initial conditions. Therefore, they closely follow t
same trajectories as the time-averaged classical angular
mentum and Runge-Lenz vector. This result has already b
observed numerically@4,83,51# and also experimentally@4,8#
for some special configurations of the external fields. M
importantly, since elliptic states are coherent states of
angular momentum@85,67,68,29#, i.e., states of minimum
uncertainty, it turns out that

^nauL̂2una&2(
ı

^nauL̂ ıuna&2

1

2S ^nauL̂2una&1(
ı

^nauL̂ ıuna&2D 5
1

~n21!cos2 a1
1

2
~60!

and in the semiclassical limit the expectation values ofL̂ ı ,
ı51,2,3, are related to the expectation value ofL̂2 approxi-
mately as in classical mechanics. In fact, it has been veri
numerically in a few special cases@83,51# that not only do
the expectation values ofL̂ ı andâı evolve in time quasiclas
sically according to Eqs.~4!, but also that during the time
evolution the state remains elliptic. This is exactly the sa
situation as in classical mechanics, where the electron ke
moving along an ellipse, but the properties of the ellipse v
slowly in time; similarly, the numerical evidence shows th
the elliptic state remains localized along a classical Kep
ellipse while it slowly evolves in time.

Instead, for the more familiar spherical eigensta
unlm& ’s of the hydrogen atom the situation is complete
different, and one has
-
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^nlmuL̂zunlm&5m,

^nlmuL̂xunlm&5^nlmuL̂yunlm&50, ~61!

^nlmuâxunlm&5^nlmuâyunlm&5^nlmuâzunlm&50,

and the initial conditions differ dramatically from the class
cal ones, which leads to some interesting considerations

As we explained before, the classical constraints of
~7! remain invariant under the evolution of the perturbati
equations. The second classical constraint translates in
condition over the quantum expectation values, which is a
invariant:

x5(
ı

$^cuL̂ ıuc&21^cuâıuc&2%, ~62!

where uc& is any state~elliptic, spherical, or also a wave
packet, in which case the expectation value must also
averaged over a Kepler period! which satisfies the require
ments of our derivation. The invariantx is related to the
Casimir operator of the SO~4! symmetry group of the hydro
gen atom@76,86#. The value of the classical invariant of Eq
~7! is n2. For an elliptic state the quantum invariant of E
~62! is equal to (n21)2; however, for a spherical eigensta
x is equal tom2, which for the smallm’s typically excited
by optical transitions from the initial low-n state to the
Rydberg high-n state is a much smaller number than t
classical result. This poses severe limits on the largest p
sible expectation value of any component of the angular m
mentum over a spherical eigenstate; this feature might
exploited in experiments to study the properties of Rydb
states.

The limitation which Eq.~62! imposes on the expectatio
values of the angular momentum and the Runge-Lenz ve
over spherical eigenstates stems from the fact that such s
have vanishing electric dipole moment; a small angular m
mentum is not balanced by a large Runge-Lenz vector, a
happens in classical ellipses and quantum elliptic sta
More precisely, for spherical states, the electric field can
induce first-order dynamical effects because the expecta
value of the Runge-Lenz vector over a spherical eigensta
zero~i.e., there is no permanent electric dipole!, and the state
must first be distorted by the field so that the expectat
value of the angular momentum~or Runge-Lenz vector! can
change. This indicates that the dynamics must be at leas
second order in the external fields. This situation is germ
to the well known linear Stark effect@82#, where degenerate
perturbation theory and parabolic states must be used to
count for the linear dependence of the eigenvalues on
external field. In fact, a spherical eigenstate can be seen
superposition of elliptic states~or in a semiclassical interpre
tation an ensemble of Kepler ellipses!, which are oriented
uniformly in thexy plane, so that the total Runge-Lenz ve
tor is averaged to zero.

The ~at least! quadratic dependence of the time evoluti
on the field can be explicitly verified by expanding the tim
dependent operators in the Heisenberg picture@72# and by
showing that the expectation values of the first-order term
the electric field vanish. Using the Hamiltonian of Eq.~2!
~minus the diamagnetic term! and writing the hydrogen atom
Hamiltonian asĤ0 , one has
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eiĤ tL̂ ıe
2 iĤ t5L̂ ı2 i t @Ĥ02vLL̂z ,L̂ ı#2 i tF @ x̂,L̂ ı#

1F(
p

~2 i t !p

p! (
k50

p21

@Ĥ02vLL̂z ,@•••@x,@Ĥ02vLL̂z ,@•••@Ĥ02vLL̂z ,L̂ ı#•••#####1O~F2!. ~63!
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The simplest first-order term is a direct commutator of
field with a component of the angular momentum: theref
it is either zero or a component of the position operator~de-
pending on the indexı), and its expectation value over
spherical eigenstate vanishes. Other, more complex fi
order terms come from the double sum in Eq.~63! and con-

sist of a first series ofk commutators ofL̂ ı with Ĥ0

2vLL̂z , and then of a commutator with the field, and fina

of a second series of (p212k) commutators withĤ0

2vLL̂z . It is easy to see that the expectation value of a
such terms over a spherical eigenstate of the hydrogen a
which is quantized along thez axis vanishes, simply becaus
such a state is an eigenstate ofĤ02vLL̂z . However, the
same result can be proven as follows also when the ato
quantized along an arbitrary direction.~i! The first series ofk
commutators either vanishes or yields a component of
angular momentum~depending on the indexı); ~ii ! the com-
mutator of the result of step~i! with the electric field either
vanishes or yields a component of the position operator;~iii !
finally, the result of steps~i! and ~ii ! must be commuted (p
212k) times with Ĥ02vLL̂z ; this sequence of commuta
tors can be organized so that one does first the commuta
with L̂z and next those withĤ0 because these two operato
commute with one another. Obviously, the expectation va
of the commutator of any operator withĤ0 vanishes if it is
taken over an eigenstate ofĤ0 itself. On the other hand, th
commutators withL̂z either vanish directly or yield a com
ponent of the position operator, whose expectation va
over a spherical state also vanishes, and our point is pro

Similar considerations apply also toL̂2. In fact, it is even
easier to demonstrate that the time evolution of the expe
tion value ofL̂2 over a spherical eigenstate of the hydrog
atom is of second order in the field. Clearly,unlm& is an
eigenstate ofL̂2 and the expectation value of the commuta
of x̂ with L̂2 over unlm& vanishes. Moreover,L̂2 commutes
with Ĥ02vLL̂z and therefore the sequence of commutat
similar to the one of Eq.~63! can be rearranged so that fir
one commutes the field operator withĤ02vLL̂z and next the
result is commuted withL̂2. However, the expectation valu
over unlm& of the commutator of any operator withL̂2 van-
ishes, which proves our point. Clearly, this result does
depend on the orientation of the axis of quantization of
atom relative to the external fields.

Note that even if the time evolution of the expectati
values ofL̂ ı and L̂2 is only of second order in the extern
field, that does not imply that weak external fields are
effective in bringing about changes of the angular mom
tum. For example, in the expansion of Eq.~63!, the second-
order terms are multiplied by at least a square power of
e
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time; if we consider times comparable to the Stark per
and the scaling of the matrix elements of the position ope
tor with the principal quantum number as given in Eq.~28!,
it is easy to see that the final result is not negligible. Mo
over, the constraint on the quantum invariantx of Eq. ~62!
does not say much about the total angular momentum
spherical state, which is not a coherent state of the ang
momentum, and therefore not only does one have

(
ı

^nlmuL̂ ıunlm&2Þ^nlmuL̂2unlm&, ~64!

but the difference between the two sides of the equation
be very large, as one can see by considering a state wl
5n21 andm50.

Since the results of the preceding section show that un
the classical conditions for the external fields intermanifo
contributions to the dynamics can be neglected, all our c
siderations apply also to a superposition of spherical st
with different n’s, and therefore our analysis sheds som
light on the nature of the Rydberg states employed in ZE
spectroscopy.

In ZEKE, ultrahigh molecular Rydberg states@5–7,52–
55# are first excited by a few optical transitions and succ
sively field ionized. This technique is extremely success
because of the ultralong lifetimes of these Rydberg sta
which are explained in terms of extensive intrashell mixi
of the initial, unstable low-l states with the longer-lived
high-l states. For increasing angular momenta the coup
between the Rydberg electron and the molecular core
comes rapidly negligible, so that autoionization and pred
sociation channels are effectively quenched, and the Rydb
state becomes ultra-long-lived. Therefore it is understo
that ZEKE states, i.e., the ultra-long-living Rydberg sta
responsible for the ZEKE signal, are complicated superp
tions of large-n spherical eigenstates of the hydrogen ato
which are skewed in favor of large angular momentu
states. Because of the small spacing of high-n Rydberg
eigenenergies and of the width of the initial laser puls
ZEKE states initially consist of a superposition of seve
states with different principal quantum numbers@56,57#.
However, it is generally assumed that only one angular m
mentum quantum number is allowed in the superposition
cause of the usual selection rules. The population of high
l states is ascribed solely to the effect of external fields.

In fact, several experimental studies@5–7,58# have shown
that the vanishingly small stray fields of the experimen
setup and, most importantly, the very weak, slowly varyi
electric fields of the ions present in the interaction reg
populate with great efficacy the high-l Rydberg states which
are responsible for the observed ultralong lifetimes of ZE
states. On the theoretical side recent resu
@56,57,50,47,49,48#, some of which were based on the cla
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sical perturbative approach of Eqs.~4! @50,47,49,48#, have
explained l-mixing in terms of the hydrogenic model, i
which vanishingly small fields are sufficient to induce t
desired scrambling of the angular-momentum quantum n
bers. The great effectiveness with which such extrem
weak fields (F&1 V/m) populate high-l states strongly
suggests that the hydrogenic model is indeed appropriat
describe angular-momentum mixing in ZEKE states. Mo
over, our present findings show that the previous class
results@50,47,49,48# are really quantum mechanical in n
ture, and can also be extended to the case of wave pac
On the other hand, the low-l states excited by the laser puls
have a non-negligible quantum defect, which decouples th
from the high-l , quasihydrogenic states; it is then likely th
another mechanism is at work. More precisely, it is poss
that the initial optical excitation of the ultrahigh-n states may
not be strictly limited by the standard selection rules. Inste
by contributions which are of higher order in the optical fie
and yet are non-negligible because of the ultralarge dip
moments of Rydberg states—see Eq.~28! and Eq.~29!—the
initial optical pulse may well populate a few angula
momentum states with relatively largel ’s, as one of us has
recently shown@87#. Therefore, some degree of angula
momentum mixing is probably already present in the init
Rydberg state, in which case the hydrogenic model, in
present extension to superpositions of states with diffe
quantum numbers, provides an accurate description of
weak stray and ionic fields bring about the~approximate!
randomization inl andm of ZEKE states, which accounts fo
the observed ultralong lifetimes.

Finally, the extension of equations~4! from purely classi-
cal variables to quantum expectation values lends streng
a previous argument of ours concerning slow, ion-Rydb
collisions and which until now was based solely on pur
classical calculations@47,48#. More precisely, we suggeste
the need for a review of both experimental and theoret
results for the intrashell transitions induced in Rydbe
alkali-metal atoms by slow collisions with ions. In the ca
of slow ion-Rydberg collisions the ‘‘magnetic’’ term of th
Hamiltonian arises from the rotation frequency of the fie
and the problem is treated in the frame rotating with the fi
itself. In that frame the Hamiltonian is equivalent to the o
of a hydrogenic electron in weak electric and magnetic fie
of constant orientation and time-dependent magnit
@17,47,49,48#. The ratio of the two magnitudes, howeve
remains constant, and Eq.~4! can be solved exactly
@47,49,48#. It is then easy to see that after a full collision, t
expectation value ofL̂z is over a spherical eigenstate@that is,
with the initial conditions of Eq.~61!# @47,48#,

lim
t→`

^nlmuL̂z~ t !unlm&5
4b2ṽ29n2

4b2ṽ19n2
m, ~65!

whereb is the impact parameter of the collision andṽ is the
‘‘reduced’’ velocity of the incoming ion, i.e., its velocity in
atomic units multiplied byn, which is the principal quantum
number of the Rydberg electron in the target. In a first
proximation, one may insert in Eq.~65! an average impac
parameterb;50n2 and a reduced velocityṽ;1, which are
consistent with the experimental conditions, and the coe
-
ly
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cient multiplying m becomes*0.9. Therefore the expecta
tion value of L̂z cannot change much, and if initially th
electron is prepared in anmÞ0 state, the expectation valu
of L̂z will not vanish. However, both in the interpretation o
the experimental data@62# and also in fully quantum theoret
ical treatments@88,63,89,90#, the assumption has been ma
of a uniform population of them substates, which corre
sponds to a zero expectation value ofL̂z . For high l states
this is a reasonably good approximation, even in the cas
a nonvanishing expectation value ofL̂z . However, the ap-
proximation clearly breaks down for smaller values ofl ,
which is precisely the regime for which we suggested a cr
cal review of current results.

V. CONCLUSIONS

In this paper we have shown that under realistic con
tions, the classical and quantum dynamics of Rydberg e
trons in weak, slowly varying external fields agree beyo
the mandates of Ehrenfest theorem.

We have shown that for the hydrogen atom in wea
slowly varying electric and magnetic fields, to first order
the applied fields the quantum expectation values of the c
ponents of the angular momentum and the Runge-Lenz
tor obey exactly the same equations as the time avera
~over a Kepler period and along a Kepler ellipse! of the
corresponding classical variables. Our proof follows in sp
the approach of classical perturbation theory, as we fu
exploit the properties of the zeroth-order solutions of t
quantum problem, exactly as one does in classical mecha
where the time averaging is done along Kepler ellipses,
the zeroth-order solutions of the classical problem. Note t
this result is not an application of Ehrenfest’s theorem,
cause the perturbative approach does not consist of the
earization of the problem in the neighborhood of an equil
rium point. Instead, it is an extension, in stronger form,
the theorem for the important case of the hydrogen atom
weak external fields.

Most importantly, in our derivation we have not applie
Pauli’s replacement directly in the Hamiltonian@31,83,51#,
and therefore we have been able to investigate the interm
fold contributions to the dynamics. In fact, by time averagi
the dynamics over a Kepler period~which, again, is exactly
the same procedure as in classical perturbation theory! we
have shown that intermanifold terms do not contribute s
nificantly to the evolution of the quantum expectation valu
as long as the strength of the external fields satisfies the s
requirement as in classical mechanics. Interestingly, in
semiclassical limit the classical constraint is much wea
than the quantum condition for negligiblen-mixing, i.e., the
Inglis-Teller limit.

This paradox can be resolved by observing that the p
turbative equations remain accurate only up to times com
rable to the Stark period, that is, for times which in atom
units are;1/DE, whereDE is the energy separation be
tween two Stark levels. Therefore, over such relatively sh
times the stationary picture of the Stark eigenstates wh
spread out of a hydrogenicn-manifold does not have muc
physical significance, and that is why for these relative
short times the more stringent quantum condition can be
nored.
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Moreover, by time averaging the intermanifold dynam
we have also extended the validity of the classical pertur
tive equations to the case of Rydberg wave packets, as
as the spread of the packet over the hydrogenic eigenm
folds is small compared to its average principal quant
number. Note, however, that although our analysis sho
that the quantum expectation values of the angular mom
tum and the Runge-Lenz vector evolve in time like the cl
sical time-averaged variables,it says nothing about the lo
calization of the wave packet and the quasiclassi
dynamics of the packet itself. In fact, our time averaging is
precisely equivalent to considering a spread out version
the wave packet, smeared along its orbit. This is the sa
situation as in classical mechanics, where one studies
motion of the Kepler ellipse, as if the classical electron h
been magically smeared along its own trajectory.

We have also demonstrated that the close quant
classical equivalence can be extended, in the limit of v
large principal quantum numbers, to the initial conditions
the equations of motion, provided that the expectation val
are taken over elliptic states, which are states localized a
the classical solutions@67,68,29#. Therefore the quantum ex
pectation values of the angular momentum and the Run
Lenz vector over elliptic states follow essentially the sa
trajectories as the time averages of the corresponding cl
cal variables. Such complete quantum-classical equivale
however, does not hold for the more familiar spherical eig
states (unlm&) of the hydrogen atom.

The realization that the hydrogenic, perturbative eq
tions of motion~which account so well for several physic
phenomena! can also be interpreted as purely quantu
mechanical equations has led to some insight into the na
of the Rydberg states employed in ZEKE spectroscopy
also lends support to our result~previously only classical!

which indicates that the averaging over theL̂z sublevels
~which is used in quantum close-coupling calculations to
end of making the problem of ion-Rydberg collisions n
merically more tractable, and also in the interpretation
experimental data! may be unjustified.

Finally, one may wonder if the special equivalence b
tween the dynamics of the time averages of classical v
ables and quantum expectation values is a peculiarity of
hydrogen atom in weak external fields, or if it can be e
tended to other weakly perturbed integrable systems, and
investigation of this problem is in progress in our groups

APPENDIX A: PROOF OF THE IDENTITY OF EQ. „10…

In our proof of the special quantum-classical equivalen
of the dynamics of Rydberg electrons in weak external fie
we have made extensive use of the following identity:

^cnu r̂ ı p̂ucn&52^cnu p̂ır̂ ucn&, ~A1!

wherer̂ ı and p̂ are components of the position and mome
tum operator, respectively, and whereucn& is a state confined
within a hydrogenicn-manifold.

In this appendix we prove explicitly the identity of Eq
~A1!, and we do so for all the pairs of indexes$ı,% to stress
that our derivation of the equations of motion does not
pend on the relative orientation between the initial axis
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quantization of the atom and the direction of the applie
external fields in the Hamiltonian of Eq.~2!.

We begin with the simplest case, that is, whenı5:

^cnux̂ı p̂ı1 p̂ıx̂ıucn&52 i ^cnux̂ı@ x̂ı ,Ĥ0#1@ x̂ı ,Ĥ0# x̂ıucn&

52 i ^cnu@ x̂ı
2 ,Ĥ0#ucn&50, ~A2!

whereĤ0 is the hydrogen atom Hamiltonian and the res
follows becauseucn& is an eigenstate ofĤ0 . The same ap-
proach could be easily extended to all cases. However,
the cases in whichıÞ a different approach is more conve
nient to the end of studying the intermanifold contributio
to the equations of motion, which we do in the main text
the paper@see Eq.~27!#. Indeed, a different proof identifie
explicitly the nonclassical terms of the Heisenberg equati
of motion; these are operators which have no counterpa
the classical equations. Such terms~see below! yield a null
expectation value over states which are confined within
n-manifold, and also negligible intermanifold contribution
to the equations of motion~see main text!.

Therefore, we consider next the caseı52, 51:

ŷp̂x52 i ŷ@ p̂y ,L̂z#

52 i ŷ p̂yL̂z1 i $@ ŷ,L̂z# p̂y1L̂zŷp̂y%

52 x̂p̂y1 i $L̂zŷp̂y2 ŷp̂yL̂z%. ~A3!

We must then show that the expectation value overucn& of
the operator within curly brackets vanishes, that is,

^cnuL̂zŷp̂y2 ŷp̂yL̂zucn&50. ~A4!

Clearly, the stateucn& can be written as

ucn&5(
l ,m

Cn~ l ,m!unlm&, ~A5!

where theCn( l ,m)’s are some general coefficients, possib
complex. By substituting the expansion of Eq.~A5! in the
expectation value of Eq.~A4! one has

^cnuL̂zŷp̂y2 ŷp̂yL̂zucn&5 (
l 8,m8

(
l ,m

C̄n~ l 8,m8!Cn~ l ,m!

3$m8^nl8m8u ŷp̂yunlm&

2m^nl8m8u ŷp̂yunlm&%, ~A6!

where C̄n( l 8,m8) denotes the complex conjugate. On t
other hand, from Eq.~A2! it follows that

^nl8m8u ŷp̂y1 p̂yŷunlm&5^nl8m8u2ŷp̂y1@ p̂y ,ŷ#unlm&50,
~A7!

and therefore the matrix elements ofŷp̂y are

^nl8m8u ŷp̂yunlm&5
i

2
d l 8 ldm8m . ~A8!
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By inserting the matrix elements of Eq.~A8! in the double
sum of Eq.~A6!, it is easy to see that each term within cur
brackets vanishes exactly, and therefore the identity of
~A4! is proved.

Next, we consider the caseı53, 51. One has

ẑp̂x5 i ẑ@ p̂z ,L̂y#

5 i ẑp̂zL̂y2 i $@ ẑ,L̂y# p̂z1L̂yẑp̂z%

52 x̂p̂z2 i $L̂yẑp̂z2 ẑp̂zL̂y%, ~A9!

and so we must prove that

^cnuL̂yẑp̂z2 ẑp̂zL̂yucn&50. ~A10!
.

et

th

e

e

q.

We use

L̂y5
1

2i
~ L̂12L̂2! ~A11!

and also

L̂1unlm&5A~ l 2m!~ l 1m11!unlm11&,
~A12!

L̂2unlm&5A~ l 1m!~ l 2m11!unlm21&,

and the expectation value of Eq.~A10! becomes
^cnuL̂yẑp̂z2 ẑp̂zL̂yucn&5
1

2i (l 8,m8
(
l ,m

C̄n~ l 8,m8!Cn~ l ,m!$A~ l 81m8!~ l 82m811!^nl8m821uẑp̂zunlm&

2A~ l 82m8!~ l 81m811!^nl8m811uẑp̂zunlm&2A~ l 2m!~ l 1m11!^nl8m8uẑp̂zunlm11&

1A~ l 1m!~ l 2m11!^nl8m8uẑp̂zunlm21&%. ~A13!
f
in

can

y

t
rm

.
s-
e

Clearly, the matrix elements ofẑp̂z are also given by Eq
~A8!, and by inserting that result in Eq.~A13! it is easy to
verify that once again the expression within curly brack
vanishes.

Finally, an essentially similar argument proves that
identity of Eq.~11! holds also forẑp̂y , which completes our
proof.

APPENDIX B: TIME AVERAGING
OF THE INTERMANIFOLD DYNAMICS

In this appendix we evaluate explicitly the time averag
over a Kepler periodTK of the intermanifold contributions to
the equations of motion for the quantum expectation valu

We begin with

^e7 i ~Eı2E!t&K5
1

TK
E

0

TK
e7 i ~Eı2E!tdt. ~B1!

The integral of Eq.~B1! is easily evaluated, and one has

1

TK
E

0

TK
e7 i ~Eı2E!tdt56 i

e7 i ~Eı2E!TK21

~Eı2E!TK
. ~B2!

However, the energy differenceEı2E is

Eı2E52S 1

2ı2
2

1

22D 5
D ı,

3
2

3D ı,
2

2 j

1

3
1OS D ı,

3

5 D ,

~B3!

whereD ı,5ı2. We then use

5n̄S 11
D ,n̄

n̄
D , ~B4!
s

e

s

s.

whereD ,n̄52n̄ andn̄ is the principal quantum number o
the hydrogenic manifold which carries the largest weight
the state. The energy difference between two manifolds
then be rewritten as

Eı2E5
D ı,

n̄3 H 12
3

n̄
S D ,n̄2

1

2
D ı,D J 1OS D3

n̄5 D , ~B5!

whereD3 ~i.e., with no indexes! stands for the product of an
threeD ’s regardless of the indices. The Kepler period is

TK52pn̄3. ~B6!

Substituting the results of Eq.~B5! and Eq.~B6! in Eq. ~B2!,
one obtains

1

TK
E

0

TK
e7 i ~Eı2E!tdt5

3

n̄
S D n̄,2

1

2
D ı,D1OS D2

n̄2 D .

~B7!

Note that to the leading order inD/n̄ the result does no
depend on the sign of the exponent; in fact, the leading te
of the right-hand side of Eq.~B7! can be cast in a more
symmetric form:

D n̄,2
1

2
D ı,5D n̄,ı2

1

2
D ,ı5n̄2

1

2
~ ı1 !, ~B8!

which concludes the calculation of the first time average
Incidentally, by inverting to the leading order the expre

sion of Eq.~B5!, we obtain a result which we used in th
main text of this paper:
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1

Eı2E
5

n̄3

D ı,
H 11

3

n̄
~D ,n̄2 1

2 D ı,!J 1OS D3

n̄5 D . ~B9!

Next we evaluate

^ i t e2 i ~Eı2E!t&K5
i

TK
E

0

TK
t e2 i ~Eı2E!tdt. ~B10!

Once again, the integral is straightforward:

i

TK
E

0

TK
t e2 i ~Eı2E!tdt5

1

~Eı2E!TK
H i

e2 i ~Eı2E!TK21

~Eı2E!

2TKe2 i ~Eı2E!TKJ . ~B11!
,

.

y

cs

ar

h.

.

s

J.

m

Finally, inserting in Eq.~B11! the results of Eqs.~B3!–~B6!,
one obtains

i

TK
E

0

TK
te2 i ~Eı2E!tdt

52
n̄3

D ı,
H 12

6

n̄
~D n̄,2

1
2 D ı,!~11 ipD ı,!

1OS D3

n̄2 D J , ~B12!

which concludes our analysis.
ev.
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Éksp. Teor. Fiz.66, 125 ~1974! @Sov. Phys. JETP39, 57
~1974!#.

@18# J. von Milczewski, G. H. F. Diercksen, and T. Uzer, Phy
Rev. Lett.73, 2428~1994!.

@19# J. von Milczewski, G. H. F. Diercksen, and T. Uzer, Int.
Bifurcation Chaos Appl. Sci. Eng.4, 905 ~1994!.

@20# J. Parker and C. R. Stroud, Jr., Phys. Rev. Lett.56, 716~1986!.
@21# J. A. Yeazell and C. R. Stroud, Jr., Phys. Rev. A43, 5153

~1991!.
@22# M. Nauenberg, C. R. Stroud, Jr., and J. A. Yeazell, Sci. A

~Int. Ed.! 270, 24 ~1994!.
s.

.

.

@23# M. Mallalieu and C. R. Stroud, Jr., Phys. Rev. A49, 2329
~1994!.

@24# Z. D. Gaeta, M. W. Noel, and C. R. Stroud, Jr., Phys. R
Lett. 73, 636 ~1994!.

@25# M. W. Noel and C. R. Stroud, Jr., Phys. Rev. Lett.75, 1252
~1995!.

@26# M. W. Noel and C. R. Stroud, Jr., Phys. Rev. Lett.77, 1913
~1996!.

@27# M. W. Noel and C. R. Stroud, Jr., Opt. Express1, 176~1997!.
@28# I. S. Averbukh and N. F. Perelman, Phys. Lett. A139, 449

~1989!.
@29# M. Nauenberg, Phys. Rev. A40, 1133~1989!.
@30# M. Nauenberg, J. Phys. B23, L385 ~1990!.
@31# M. Nauenberg, inCoherent States: Past, Present and Futu,

edited by D. H. Feng, J. R. Klauder, and M. R. Strayer~World
Scientific, Singapore, 1994!, p. 345.

@32# I. Bialynicki-Birula, M. Kalinski, and J. H. Eberly, Phys. Rev
Lett. 73, 1777~1994!.

@33# M. Kalinski and J. H. Eberly, Phys. Rev. A52, 4285~1995!.
@34# M. Kalinski and J. H. Eberly, Phys. Rev. Lett.77, 2420~1996!.
@35# M. Kalinski and J. H. Eberly, Phys. Rev. A53, 1715~1996!.
@36# D. Farrelly, E. Lee, and T. Uzer, Phys. Lett. A204, 359

~1995!.
@37# A. F. Brunello, T. Uzer, and D. Farrelly, Phys. Rev. Lett.76,

2874 ~1996!.
@38# C. Cerjan, E. Lee, D. Farrelly, and T. Uzer, Phys. Rev. A55,

2222 ~1997!.
@39# E. Lee, A. F. Brunello, and D. Farrelly, Phys. Rev. A55, 2203

~1997!.
@40# E. Lee, D. Farrelly, and T. Uzer, Opt. Express1, 221 ~1998!.
@41# Z. Bialynicka-Birula and I. Bialynicki-Birula, Phys. Rev. A56,

3623 ~1997!.
@42# A. Buchleitner and D. Delande, Phys. Rev. Lett.75, 1487

~1995!.
@43# J. Zakrzewski, D. Delande, and A. Buchleitner, Phys. R

Lett. 75, 4015~1995!.
@44# J. R. Klauder, J. Phys. A29, L293 ~1996!.
@45# P. Bellomo and C. R. Stroud, Jr, J. Phys. A31, L445 ~1998!.
@46# P. Kappertz and M. Nauenberg, Phys. Rev. A47, 4749~1993!.
@47# P. Bellomo, D. Farrelly, and T. Uzer, J. Chem. Phys.107,

2499 ~1997!.



h

m

A

A

.

,

al,

-

of

n

li-

PRA 58 3913QUANTUM-CLASSICAL CORRESPONDENCE IN THE . . .
@48# P. Bellomo, D. Farrelly, and T. Uzer, J. Chem. Phys.108, 402
~1998!.

@49# P. Bellomo, D. Farrelly, and T. Uzer, J. Chem. Phys.108,
5295 ~1998!.

@50# P. Bellomo, D. Farrelly, and T. Uzer, J. Phys. Chem.101,
8902 ~1997!.

@51# J. A. West, Z. D. Gaeta, and C. R. Stroud, Jr., Phys. Rev. A58,
186 ~1998!.

@52# G. Reiser, W. Habenicht, K. Mu¨ller-Dethlefs, and E. W.
Schlag, Chem. Phys. Lett.152, 119 ~1988!.

@53# K. Müller-Dethlefs, M. Sander, and E. Schlag, Z. Naturforsc
Teil A 39, 1089~1984!.

@54# K. Müller-Dethlefs and E. Schlag, Annu. Rev. Phys. Che
42, 109 ~1991!.

@55# E. Schlag, W. Peatman, and K. Mu¨ller-Dethlefs, J. Electron
Spectrosc. Relat. Phenom.66, 139 ~1993!.

@56# W. A. Chupka, J. Chem. Phys.98, 4520~1993!.
@57# W. A. Chupka, J. Chem. Phys.99, 5800~1993!.
@58# H. Palm and F. Merkt, Chem. Phys. Lett.270, 1 ~1997!.
@59# K. B. MacAdam, R. Rolfes, and D. A. Crosby, Phys. Rev.

24, 1286~1981!.
@60# K. B. MacAdam, D. B. Smith, and R. Rolfes, J. Phys. B18,

441 ~1985!.
@61# R. G. Rolfes, D. B. Smith, and K. B. MacAdam, Phys. Rev.

37, 2378~1988!.
@62# X. Sun and K. B. MacAdam, Phys. Rev. A47, 3913~1993!.
@63# V. D. Irby et al., Phys. Rev. A52, 3809~1995!.
@64# R. R. Jones, P. Fu, and T. F. Gallagher, J. Chem. Phys.106,

3578 ~1997!.
@65# A. K. Kazansky and V. N. Ostrovsky, Phys. Rev. Lett.77,

3094 ~1996!.
@66# A. K. Kazansky and V. N. Ostrovsky, Zh. E´ ksp. Teor. Fiz.

110, 1988~1996! @Sov. Phys. JETP83, 1095~1996!#.
@67# J. C. Gay, D. Delande, and A. Bommier, Phys. Rev. A39,

6587 ~1989!.
@68# A. Bommier, D. Delande, and J. C. Gay, inAtoms in Strong

Fields, edited by C. A. Nicolaides, C. W. Clark, and H. M
.

.

Nayfeh ~Plenum Press, New York, 1990!, p. 155.
@69# J. C. Dayet al., Phys. Rev. Lett.72, 1612~1994!.
@70# T. Ehrenreichet al., J. Phys. B27, L383 ~1994!.
@71# J. C. Dayet al., Phys. Rev. A56, 4700~1997!.
@72# J. J. Sakurai,Modern Quantum Mechanics~Addison-Wesley,

New York, 1985!.
@73# V. Szebehely,Theory of Orbits~Academic Press, New York

1967!.
@74# H. Goldstein,Classical Mechanics, 2nd ed.~Addison-Wesley,

Reading, 1980!.
@75# W. Pauli, Z. Phys.36, 336 ~1926!.
@76# M. J. Englefield,Group Theory and the Coulomb Problem

~John Wiley & Sons, New York, 1972!.
@77# M. Born, Mechanics of the Atom~Bell, London, 1960!.
@78# T. P. Hezel, C. E. Burkhardt, M. Ciocca, and J. J. Leventh

Am. J. Phys.60, 324 ~1992!.
@79# T. P. Hezelet al., Am. J. Phys.60, 329 ~1992!.
@80# I. C. Percival and D. Richards, J. Phys. B12, 2051~1979!.
@81# M. A. Iken and T. Uzer, inAtomic, Molecular and Optical

Physics Handbook, edited by G. W. F. Drake~AIP Press, New
York, 1996!, p. 194.

@82# H. A. Bethe and E. E. Salpeter,Quantum Mechanics of One
and Two-Electrons Atoms~Plenum, New York, 1977!.

@83# J. A. West, Ph.D. thesis, The Institute of Optics, University
Rochester, Rochester, New York, 1997.

@84# I. C. Percival and D. Richards, inAdvances in Atomic and
Molecular Physics, edited by D. R. Bates and B. Bederso
~Academic Press, New York, 1975!, p. 1.

@85# A. Perelomov,Generalized Coherent States and Their App
cations~Springer, Berlin, 1986!.

@86# B. G. Wybourne,Classical Groups for Physicists~John Wiley
& Sons, New York, 1974!.

@87# J. D. Corless and C. R. Stroud, Jr., Phys. Rev. Lett.79, 637
~1997!.

@88# I. L. Beigman and M. I. Syrkin,@Sov. Phys. JETP62, 226
~1985!#.

@89# M. I. Syrkin, Phys. Rev. A53, 825 ~1996!.
@90# M. J. Cavagnero, Phys. Rev. A52, 2865~1995!.


