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Rabi resonances induced by an off-resonant, stochastic field

J. C. Camparo, J. G. Coffer, and R. P. Frueholz
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~Received 26 March 1998!

When an atom interacts with a phase-fluctuating field of fairly arbitrary spectral character, the Fourier
spectrum of atomic population variations manifests a ‘‘bright line’’ at the atomic system’s Rabi frequency.
This bright line is termed a Rabi resonance. Here, we generalize our previous studies of this phenomenon by
considering the characteristics of the Rabi resonance when it is excited by anoff-resonantstochastic field. We
find both experimentally and theoretically that~i! the Rabi resonance occurs at the Rabinutationalfrequency,
V5AD21v1

2, where D is the detuning andv1 is the Rabi frequency,~ii ! that the strength of the Rabi
resonance is maximized whenuDu equalsv1 , and~iii ! that the strength of the Rabi resonance is an asymmetric
function of detuning.@S1050-2947~98!03611-7#

PACS number~s!: 42.50.Md, 42.50.Ar, 32.80.2t
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I. INTRODUCTION

In previous work we investigated the response of an at
in terms of its Bloch-vector components, to a pha
fluctuating field ~PDF! @1# that was on resonance with a
atomic transition@2,3#. In those studies we found that a
atom’s temporal response to a resonant PDF is essen
composed of just two components. On time scales long c
pared to a Rabi period, an adiabatic component manif
itself in the instantaneous frame of field-atom interactions
a figure-eight pattern of the Bloch-vector trajectory@4#. Ad-
ditionally, there is a nonadiabatic component in the atom
temporal response that manifests itself as enhanced at
population variations oscillating at the Rabi frequency,v1 ,
similar to the oscillations of a damped, driven harmonic
cillator with its resonant frequency atv1 . These oscillations
are a reflection of what has come to be called the ‘‘R
resonance’’ of an atom. While the adiabatic figure-eig
component is only readily apparent in the instantane
frame, the nonadiabatic component is principally associa
with atomic population variations, and therefore is u
changed by the choice of reference frame~i.e., instantaneous
rotating, or laboratory frame!. Consequently, the Rabi reso
nance is easily accessible to experimental investigation,
has relevance to quantum electronic devices such as at
clocks, whose operation depends on atomic population va
tions.

Rabi-resonance phenomena can be observed experi
tally in several ways. Cappeller and Mueller@5# first noted
the existence of Rabi resonances in experiments with a199Hg
spin system, where the modulation frequency of a pha
modulated, resonant field was tuned through the Ra
resonance condition. In their experiments, the Rabi re
nance was manifested as a resonant enhancement in
amplitude of population oscillations occurring at twice t
phase-modulation frequency. Our work manifests a Ra
resonance phenomenon in a very different fashion.
atomic system interacts with abroadband field, and as a
consequence the atom exhibits population fluctuations c
acterized by a broadband of Fourier frequencies. A R
resonance in our experiments is observed as a resonan
hancement of Fourier components whose frequencies
PRA 581050-2947/98/58~5!/3873~6!/$15.00
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near the Rabi frequency. Though at a fundamental le
these two Rabi-resonance phenomena may be intima
connected, representing the same intrinsic property of
atomic system, at the present time their exact relationshi
unclear.

In the work to be discussed below, we generalize o
previous results on stochastic-field induced Rabi resonan
by considering the temporal response of an atom tooff-
resonantstochastic fields. Examining the Fourier spectru
of the atomic population variations we find that the Ra
resonance occurs at the Rabi nutational frequency,V
5AD21v1

2, whereD is the field-atom detuning. This resu
is consistent with the findings of Andersonet al. @6# regard-
ing fluorescence intensity fluctuations in a PDF, though
studies investigate the Rabi-resonance condition in m
greater detail. Additionally, we have examined the stren
of the Rabi resonance as a function of detuning. As will
shown below, the strength of the Rabi resonance is m
mized for uDu5v1 , and it is an asymmetric function of de
tuning. In the following section, the theory of stochast
field induced Rabi resonances is generalized to off-reson
excitation, and then in Secs. III and IV an experiment
described verifying certain key elements of the theory’s p
dictions.

II. THEORY

As the starting point for our analysis, we employ the tw
level atom Bloch equations in the rotating frame. The eq
tions are the same as those used previously@2#, except now
the field detuningD is included~i.e., D[vfield2vatom),

dX

dt
52gX1DY2v1Z cos~u!, ~1a!

dY

dt
52gY2DX2v1Z sin~u!, ~1b!

dZ

dt
52g~Z2Z0!1v1Y sin~u!1v1X cos~u!. ~1c!
3873 ©1998 The American Physical Society
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In these expressions, the transverse and longitudinal re
ation rates have been equalized~i.e., g15g25g, as would
be appropriate in magnetic resonance experiments!; Z is the
value of the population imbalance between the two sta
~with Z0 its value in the absence of the electromagne
field!, while X and Y correspond to the imaginary and re
parts of the atomic coherence, respectively, andu is the
field’s instantaneous phase in the rotating frame. We are
ticularly interested in the behavior ofZ for comparison with
the experimental results, and while the analysis is best
formed in the instantaneous frame, the transformation fr
the rotating to the instantaneous frame has no effect oZ.
Applying the following transformation equations to the a
propriate Bloch vector components,

Xinst5cos~u!Xrot1sin~u!Yrot , ~2a!

Yinst52sin~u!Xrot1cos~u!Yrot , ~2b!

results in the three instantaneous frame Bloch-vector eq
tions:

dX

dt
52gX1S du

dt
1D DY2v1Z, ~3a!

dY

dt
52gY2S du

dt
1D DX, ~3b!

dZ

dt
52g~Z2Z0!1v1X. ~3c!

~For ease of notation we have dropped the instantane
frame subscript, it being understood in all the following e
pressions.! Note that the principal simplification of the Bloc
equations in the instantaneous frame is that the field’s ph
variation now appears directly as a multiplicative fac
rather than the argument of a transcendental function@7#.

As in our previous work, the phase variations are writt
as the sum of adiabatic and nonadiabatic components:

u~ t !5uadia~ t !1«( aisin~2p f i t1c i !, ~4!

whereuadia(t) corresponds to all phase variations with Fo
rier frequencies,f adia, less than the Rabi frequency, and t
sum is over the Fourier frequencies,f i , in the vicinity of the
Rabi frequency and higher. Thec i are random and uniformly
distributed phases between 0 and 2p; the parameter« repre-
sents the mean amplitude of the Fourier components nea
Rabi frequency, and theai reflect the specific variations in
Fourier amplitudes and are associated with the power s
tral density of phase variations. In the present case, the F
rier frequencies associated with the adiabatic phase va
tions, while less than the Rabi frequency, are greater than
atom’s intrinsic relaxation rate,g. Consequently, the relativ
magnitudes of the key frequencies and rates in the pre
problem areg,2p f adia,v1<2p f i . These relationships re
flect the experimental conditions to be discussed sub
quently, and allow several simplifications in the followin
analysis.

For realistic phase fluctuations, the adiabatic phase va
tions typically have larger Fourier amplitudes than the n
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adiabatic variations. This prompts a perturbation approac
the analysis of Eqs.~3! in which the nonadiabatic fluctua
tions are treated as a perturbation to the primary respo
induced by the adiabatic phase variations. Each Bloch ve
component is therefore written in the form

C~ t !5C~0!~ t !1«C~1!~ t !, ~5!

where the superscripts on the Bloch-vector components i
cate their order in the perturbation expansion. Inserting
~5! and Eq.~4! into Eqs.~3! yields the zeroth- and first-orde
Bloch vector equations of motion. The zeroth-order eq
tions take the form

dX~0!

dt
52gX~0!1S duadia

dt
1D DY~0!2v1Z~0!, ~6a!

dY~0!

dt
52gY~0!2S duadia

dt
1D DX~0!, ~6b!

dZ~0!

dt
52g~Z~0!2Z0!1v1X~0!, ~6c!

while the first-order equations are

dX~1!

dt
52gX~1!1S duadia

dt
1D DY~1!2v1Z~1!

1Y~0!( 2pai f i cos~2p f i t1c i !, ~7a!

dY~1!

dt
52gY~1!2S duadia

dt
1D DX~1!

2X~0!( 2pai f i cos~2p f i t1c i !, ~7b!

dZ~1!

dt
52gZ~1!1v1X~1!. ~7c!

As anticipated, the first-order equations provide insight in
the behavior of the atomic system at Fourier frequencies n
to or greater than the Rabi frequency.

In order to simplify the first-order equations, several a
proximations may be made. First, since the Rabi frequenc
much greater than the relaxation rate, Eq.~7c! becomes

dZ~1!

dt
>v1X~1!. ~8!

Differentiation of Eq.~7a!, followed by the insertion of Eqs
~8! and~7b!, then results in a second-order differential equ
tion for X(1),

d2X~1!

dt2
1g

dX~1!

dt
1~D21v1

2!X~1!

5
d

dt S Y~0!( 2pai f icos~2p f i1c i ! D
2X~0!D( 2pai f icos~2p f i t1c i !. ~9!
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@In obtaining Eq.~9! we neglected theg term in Eq.~7b!, the
üadia term in the derivative of Eq.~7a!, and we assumed tha
AD21v1

2@ u̇adia.# Equation~9! indicates thatX(1) responds
to the PDF like a damped, driven harmonic oscillator, who
resonant frequency is the Rabi nutational frequency,V
[AD21v1

2. Note that when the detuning is set equal
zero, the resonant frequency is just the Rabi frequency
observed in our previous investigations@2#. Since the driving
frequencies in Eq.~9! are greater than or equal to the Ra
frequency, theX(1) response as a function of Fourier fr
quency will have a resonance line shape akin to that o
harmonic oscillator. In conjunction with Eq.~8!, this conclu-
sion implies that the atomic population will also display
resonant response for Fourier frequencies approxima
equal to the Rabi nutational frequency. Though some dis
tion of the ‘‘pure’’ harmonic-oscillator resonance line sha
should be expected given the integration implied by Eq.~8!,
qualitatively we expect this to have a small effect, as
Rabi-resonance linewidth is much narrower than the Ra
resonance center frequency.

The strength of the Rabi resonance can be exam
through the behavior of the zeroth-order Bloch-vector co
ponents, as these determine the strength of the ‘‘force’’
citing the Rabi resonance. However, Eqs.~6!, including the
equations describing the motion ofu(t) and u̇(t), are non-
linear. To proceed, we therefore augment our perturba
expansion with a linearization of the zeroth-order equati
in the vicinity of their equilibrium point. Within this addi-
tional, linear approximation we can investigate the dynam
of theX(0) andY(0) components, and thereby the strength
the force exciting the Rabi resonance.~The linearization pro-
cedure is described in Ref.@4#, and will not be repeated
here.! The relevant results are the linearized different
equations for the zeroth-order Bloch-vector components,
their equilibrium values~i.e., Xeq, Yeq, andZeq).

Since the relaxation rate is much smaller than the Ra
frequency and field-frequency detuning, the equilibrium v
ues take on relatively simple forms:

Xeq52
gv1Z0

V2 , ~10a!

Yeq5
Dv1Z0

V2 , ~10b!

Zeq5
~D21g2!Z0

V2 . ~10c!

The linearized zeroth-order differential equations are n
written in terms of a primed set of variables which have be
shifted from the unprimed values by the component equi
rium values~e.g.,X8[X(0)2Xeq),

dX8

dt
52gX81DY82v1Z81Yeq

duadia

dt
, ~11a!

dY8

dt
52gY82DX82Xeq

duadia

dt
, ~11b!
e
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dZ8

dt
52gZ81v1X8. ~11c!

Differentiation of Eq.~11a! followed by substitution of Eqs.
~11b! and~11c! results in the following differential equation
for X8 with g small,

d2X8

dt2
1g

dX8

dt
1V2X85DXeq

duadia

dt
1Yeq

d2uadia

dt2
.

~12!

Again, we obtain a damped, driven harmonic-oscillator eq
tion with the Rabi nutational frequency as the resonance
quency. However, for this zeroth-order response all Fou
components associated with the driving terms on the rig
hand side of Eq.~12! are well below the resonance fre
quency. Consequently, the response ofX8 to the PDF is like
a stiff spring, simply proportional to the driving terms. Ad
ditionally, the relative magnitudes of all the parameters
the problem indicate that the term on the right-hand side
Eq. ~12! containingYeq is dominant. The temporal behavio
of X8 may therefore be described approximately as

X85
Yeq

V2

d2uadia

dt2
, ~13!

leading to

X~0!>
Dv1Z0

V4

d2uadia

dt2
2

gv1Z0

V2 . ~14!

Combining Eq.~13! with Eq. ~11b! yields an expression fo
the zeroth-order behavior ofY(t):

Y~0!>
v1Z0

V2 FD2
D2u̇adia

V2 1guadiaG . ~15!

Equations~14! and~15! can now be substituted back int
Eq. ~9! to obtain an explicit expression for the force drivin
X(1). However, as the Fourier component atV will dominate
the forcing function on the right-hand side of Eq.~9!, the
Bloch-vector behavior can be analyzed semiquantitatively
considering just this one Fourier component. Normalizi
the differential equation so that the forcing function has un
of X(1), Eq. ~9! then becomes

1

V2

d2X~1!

dt2
1

g

V2

dX~1!

dt
1X~1!52aVZ0A sin~Vt1cV!

~16a!

with

A5
v1D

V2 F12
Du̇adia

V2 G . ~16b!

~We have again ignored terms ofg and üadia.) Since the
amplitude of the force term on the right-hand side of E
~16a! determines the magnitude ofX(1), conditions that
maximize this amplitude must also maximize the strength
the Rabi resonance as indicated by Eq.~8!. The amplitude
for the force term@i.e., Eq.~16b!# is therefore a measure o
the Rabi resonance’s strength, and this is plotted in Fig. 1
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two different values ofu̇adia. Note that the Rabi-resonanc
strength is zero forD50, and that it is an asymmetric func
tion of detuning with the greater Rabi-resonance stren
corresponding tovfield,vatom. The detuning that results in
the maximum Rabi-resonance strength,Dmax, can be deter-
mined by finding the extremum of Eq.~16b! as a function of
detuning, and this is found to occur whenuDmaxu5v1.

Application of straightforward analytical techniques a
judicious approximations has resulted in a simple descrip
of the two-level atom’s response to a nonresonant, ph
fluctuating field. The three principal predictions of our the
retical analysis may be briefly summarized as follows:~i! the
center frequency of the Rabi resonance will equal the R
nutational frequency; ~ii ! the Rabi resonance’s maximum
amplitude will occur when the absolute value of the detun
equals the Rabi frequency, and~iii ! the maximum amplitude
of the Rabi resonance will be larger with the field tun
below resonance than with it tuned to frequencies ab
resonance. In the following section we will describe expe
ments that confirm these expectations.

III. EXPERIMENT

The experimental arrangement is essentially the sam
that employed previously@3#. As illustrated in Fig. 2, a reso
nance cell containing isotopically pure87Rb and 10 torr of
N2 was placed in a microwave cavity whose TE011 mode was
resonant with the ground-state hyperfine transition of87Rb at
6834.7 MHz. Specifically, the microwave field induced tra
sitions between the (F52,mF50) – (F51,mF50) ground-
state Zeeman sublevels.~This is often referred to as the 0-
ground-state hyperfine transition.! The cylindrical cavity had
a radius of 2.8 cm and a length of 5 cm, and the resona
cell filled the cavity volume. The loaded cavityQ was ap-
proximately 400, though coating of the glass resonance
by a film of alkali metal during the experiments likely re
duced this considerably. Braided windings wrapped aro
the cavity heated the resonance cell to;32 °C, and the entire
assembly was centrally located in a set of three perpendic
Helmholtz coil pairs: two pairs zeroed out the Earth’s ma
netic field while the third pair~;1 G! provided a quantiza-
tion axis for the atoms parallel to the microwave cavity
cylindrical axis. Light from a linearly polarized AlxGa12xAs

FIG. 1. Theoretical Rabi-resonance strength as a function
normalized detuning.
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diode laser ~;3 mW! was tuned to the Rb
5 2P1/2– 5 2S1/2(F52) transition@8#, and was attenuated b
a 2.7 optical density filter before passing through the re
nance cell. The propagation direction of the laser was al
the cavity axis; it entered the cavity through a 1.14-cm-di
port, and its transmission through the vapor was monito
with a Si photodiode.

In the absence of resonant microwaves, optical pump
reduced the density of atoms in the absorbing state@i.e.,
5 2S1/2(F52)#, and consequently increased the amount
light transmitted through the vapor. However, when the m
crowave field in the cavity was resonant with the87Rb 0-0
hyperfine transition, atoms returned to the 52S1/2(F52)
state from the 52S1/2(F51) state, thereby reducing th
amount of transmitted light. Since the degree of opti
pumping was relatively low, microwave-induced changes
the atomic population distribution were proportional
changes in the transmitted laser light. Consequently,
transmitted laser light was a measure of the atomic pop
tion’s response to the fluctuating microwave field. Moreov
due to the spatial distribution of optical pumping efficien
within the resonance cell, most of the atomic signal w
derived from the central portions of the cavity where t
microwave magnetic-field strength~and hence the Rabi fre
quency! was relatively constant@9#.

The microwaves were derived from a voltage-controlle
crystal oscillator~VCXO! which had a modulation band
width of 10 kHz @10#, and the frequency of its output a
;107 MHz was multiplied up to 6.8 GHz before being am
plified by a 30 dB solid-state amplifier. The microwav
power entering the cavity could be controlled with variab
attenuators~labeled as2dB in Fig. 2!, and these were cali
brated to microwave Rabi frequency by measuring the li
width of the hyperfine transition in the absence of noise@11#.
Extrapolating the linewidth measurements to zero mic
wave power indicated that the intrinsic dephasing rate in
system,g2 , was approximately 40 Hz. The white-noise ou
put from a commercial synthesized function generator wit
15 MHz bandwidth was added to a dc voltage in order
provide the VCXO’s control voltage,Vc . The dc level ofVc
fixed the detuning between the average microwave freque

of
FIG. 2. Optical-pumping/magnetic-resonance experimental

rangement as described in the text. The VCXO had a bandwidt
approximately 10 kHz and a transfer function of2794 Hz/V. The
bandwidth of the spectrum analyzer was 25 kHz.
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and the 0-0 hyperfine resonance, and the noise generator
vided stochastic phase fluctuations. In contrast to our pr
ous studies@3#, there was no ‘‘extra’’ adiabatic phase vari
tion added to the control voltage. The only adiabatic ph
variation was that arising from the broadband nature of
stochastic phase fluctuations.

The noise signal and dc voltage were summed in a p
amplifier with an adjustable bandwidth. The high-frequen
roll-off of the preamplifier, at 6 dB/octave, was set at 1 MH
so that the VCXO was the bandwidth-limiting element in t
microwave chain and hence determined the spectral cuto
the microwave field’s frequency fluctuations. Consequen
the frequency fluctuations associated with the microw
field were white out to about 10 kHz@12#. The amplitude of
the noise voltage could be adjusted in order to vary the s
dard deviation of the phase variations. However, for
present experiments this noise voltage was kept at a fi
value, so that the standard deviation of microwave freque
fluctuations was 250 Hz.

IV. RESULTS

The basic experimental procedure amounted to fixin
value for the Rabi frequency and detuning, and then mea
ing the Fourier spectrum of population variations~as moni-
tored by the transmitted light intensity! on a spectrum ana
lyzer. Figure 3 shows a typical set of Rabi resonan
obtained in our experiment for the casev15950 Hz, and
clearly demonstrates a change in the Rabi resonan
strength and center frequency with detuning. A more qu
titative assessment of the Rabi-resonance condition’s de
dence on detuning is shown in Fig. 4, where the Ra
resonance center frequency is plotted as a function of R
nutational frequency. Note that the relationship is linear,
predicted theoretically, and that this linearity is maintain
for more than two orders of magnitude.

The change in strength of the Rabi resonance as a f
tion of detuning is illustrated in Fig. 5, where~a! corresponds
to v15950 Hz and~b! corresponds tov153780 Hz. The
solid line in the figure is simply an aid to guide the eye,
Eq. ~16b! is only valid in a semiquantitative sense. Howev

FIG. 3. Several examples of Rabi resonances as observed o
spectrum analyzer for different values of the field detuning. T
Rabi frequency for this particular experiment was 950 Hz. For
purposes of this plot, negative detunings were taken to imply ne
tive Fourier frequencies.
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FIG. 4. Resonant frequency of the Rabi resonance versus
Rabi nutational frequency; differing symbols correspond to diff
ent values of the Rabi frequency,v1 : for gray diamondsv1

57540 Hz, for white circlesv153780 Hz, for gray trianglesv1

51890 Hz, for white diamondsv15950 Hz, for black circlesv1

5475 Hz, for white trianglesv15170 Hz, and for gray square
v1585 Hz. Since the amplitude of the Rabi resonance depend
the relationship betweenuDu andv1 , different combinations ofuDu
andv1 were required to generate Rabi resonances with good sig
to-noise characteristics.

FIG. 5. Amplitude of the Rabi resonance as a function of m
crowave field detuning for~a! v15950 Hz and~b! v153780 Hz.
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as predicted theoretically, the Rabi-resonance strength
drop dramatically forD50, and it is an asymmetric functio
of detuning with larger Rabi-resonance strengths correspo
ing to vfield,vatom. Similar behavior was observed for a
Rabi frequencies examined in our study.

In order to estimate the magnitude of detuning that ma
mized the Rabi-resonance strength, we used curves like t
shown in Fig. 5 and measured the separation between pe
Dpeak. Half of this spacing may be taken as the detuning t
maximizes the Rabi resonance, and this is shown in Fig.
a function of Rabi frequency. The solid line corresponds
the theoretical prediction ofuDmaxu5v1, and is verified by
the measurements for more than an order of magnit
change in the Rabi frequency.

V. SUMMARY

In the investigation discussed here, we have theoretic
and experimentally expanded on our previous studies by

FIG. 6. Defining the separation between extrema in curves
that of Fig. 5 asDpeak, this graph plotsDpeak/2 vs v1 . Basically,
Dpeak/2 is a measure of the detuning magnitude that maximizes
strength of the Rabi resonance.
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vestigating Rabi resonances excited by off-resonant stoc
tic fields. Our experiments are in very good agreement w
theoretical expectations. Specifically we have found that~i!
Rabi resonances occur at the Rabinutational frequency,V
5AD21v1

2; ~ii ! the strength of a Rabi resonance is ma
mized when the field-atom detuning equalsv1 ; and~iii ! the
strength of a Rabi resonance is an asymmetric function
detuning.

Though interesting in its own right, the Rabi-resonan
phenomenon has application for the atomic stabilization
electromagnetic field amplitude@13#. Specifically, by phase
modulating a resonant field in the manner of Cappeller a
Mueller ~CM! @5#, it is possible to lock the Rabi frequenc
~and hence field strength! to the phase-modulation fre
quency. Since the phase-modulation frequency can be
rived from an ultrastable oscillator~e.g., an atomic clock!,
the resulting stabilized field can exhibit extremely low inte
sity noise, and moreover may be precisely tuned by vary
the phase-modulation frequency. With this application
mind ~and to the extent that the CM manifestation of t
Rabi-resonance phenomenon displays similar characteri
to ours!, the present experiments show that fluctuations
the field frequency will give rise to fluctuations in the Rab
resonance condition. In a field-strength feedback con
loop these fluctuations in the Rabi-resonance condit
would give rise to field strength instability. However, as t
present work demonstrates, the Rabi-resonance conditio
defined by the Rabi nutational frequency, and for small
tunings V>v1@11(D2/2v1

2)#. Consequently, field fre-
quency fluctuations would only affect field-strength stab
zation using Rabi resonances in a second-order fashion.
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