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Rabi resonances induced by an off-resonant, stochastic field

J. C. Camparo, J. G. Coffer, and R. P. Frueholz
Mail Stop M2-253, Electronics Technology Center, The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009
(Received 26 March 1998

When an atom interacts with a phase-fluctuating field of fairly arbitrary spectral character, the Fourier
spectrum of atomic population variations manifests a “bright line” at the atomic system’s Rabi frequency.
This bright line is termed a Rabi resonance. Here, we generalize our previous studies of this phenomenon by
considering the characteristics of the Rabi resonance when it is exciteddffri@sonanistochastic field. We
find both experimentally and theoretically tHatthe Rabi resonance occurs at the Radiationalfrequency,
Q=A%+ wzl, where A is the detuning andv, is the Rabi frequency(ii) that the strength of the Rabi
resonance is maximized whh| equalsw, , and(iii) that the strength of the Rabi resonance is an asymmetric
function of detuning[S1050-29478)03611-7

PACS numbgs): 42.50.Md, 42.50.Ar, 32.86:t

[. INTRODUCTION near the Rabi frequency. Though at a fundamental level
these two Rabi-resonance phenomena may be intimately

In previous work we investigated the response of an atomgonnected, representing the same intrinsic property of the
in terms of its Bloch-vector components, to a phase-atomic system, at the present time their exact relationship is
fluctuating field (PDP) [1] that was on resonance with an unclear.
atomic transition[2,3]. In those studies we found that an In the work to be discussed below, we generalize our
atom’s temporal response to a resonant PDF is essential@revious results on stochastic-field induced Rabi resonances
composed of just two components. On time scales long comby considering the temporal response of an atonoffe
pared to a Rabi period, an adiabatic component manifest&sonantstochastic fields. Examining the Fourier spectrum
itself in the instantaneous frame of field-atom interactions a®f the atomic population variations we find that the Rabi
a figure-eight pattern of the Bloch-vector trajectpdy. Ad-  resonance occurs at the Rabi nutational frequery,
ditionally, there is a nonadiabatic component in the atom’s= A%+ wzl, whereA is the field-atom detuning. This result
temporal response that manifests itself as enhanced atomi consistent with the findings of Andersenal. [6] regard-
population variations oscillating at the Rabi frequeney, ing fluorescence intensity fluctuations in a PDF, though our
similar to the oscillations of a damped, driven harmonic osstudies investigate the Rabi-resonance condition in much
cillator with its resonant frequency at; . These oscillations greater detail. Additionally, we have examined the strength
are a reflection of what has come to be called the “Rabiof the Rabi resonance as a function of detuning. As will be
resonance” of an atom. While the adiabatic figure-eightshown below, the strength of the Rabi resonance is maxi-
component is only readily apparent in the instantaneousized for|A|=w;, and it is an asymmetric function of de-
frame, the nonadiabatic component is principally associatetlining. In the following section, the theory of stochastic-
with atomic population variations, and therefore is un-field induced Rabi resonances is generalized to off-resonant
changed by the choice of reference frafne., instantaneous, excitation, and then in Secs. Il and IV an experiment is
rotating, or laboratory framje Consequently, the Rabi reso- described verifying certain key elements of the theory’s pre-
nance is easily accessible to experimental investigation, andictions.
has relevance to quantum electronic devices such as atomic
clocks, whose operation depends on atomic population varia-
tions.

Rabi-resonance phenomena can be observed experimen- As the starting point for our analysis, we employ the two-
tally in several ways. Cappeller and Muellg] first noted  |evel atom Bloch equations in the rotating frame. The equa-
the existence of Rabi resonances in experiments wifiiHg tions are the same as those used previo[@&)yexcept now
spin system, where the modulation frequency of a phasethe field detuning) is included(i.e., A= wfieig— ®atom) »
modulated, resonant field was tuned through the Rabi-
resonance condition. In their experiments, the Rabi reso- dXx
nance was manifested as a resonant enhancement in the —=—yX+AY—-w,Z cog0), (1a)
amplitude of population oscillations occurring at twice the dt
phase-modulation frequency. Our work manifests a Rabi-
resonance phenomenon in a very different fashion. An dy ,
atomic system interacts with lroadband field and as a qi- Y AX—eZ sin(9), (1b)
consequence the atom exhibits population fluctuations char-
acterized by a broadband of Fourier frequencies. A Rabi
resonance in our ex_periments is observed as a resonant en- d_Z: — W(Z—Zg)+ w1Y SiN(0)+ ;X cogh). (10
hancement of Fourier components whose frequencies are dt

II. THEORY
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In these expressions, the transverse and longitudinal relaxadiabatic variations. This prompts a perturbation approach to
ation rates have been equalizéa., v,=y,=17, as would the analysis of Egs(3) in which the nonadiabatic fluctua-

be appropriate in magnetic resonance experimedtss the tions are treated as a perturbation to the primary response
value of the population imbalance between the two statefduced by the adiabatic phase variations. Each Bloch vector
(with Z, its value in the absence of the electromagneticcomponent is therefore written in the form

field), while X and Y correspond to the imaginary and real © "

parts of the atomic coherence, respectively, @i the C(t)=C7(t) +&eC(1), ®

field's instantaneous phase in the rotating frame. We are Palihere the superscripts on the Bloch-vector components indi-
ticularly interested in the behavior @ for comparison with P P P

. : L ate their order in the perturbation expansion. Inserting Eq.
the experimental results, and while the analysis is best pelc— X . .
formed in the instantaneous frame, the transformation fro >) and Eq.(4) into Eqs.(3) yields the zeroth- and first-order

the rotating to the instantaneous frame has no effecZ.on ti(')cr)]cshtgfgtt%re?g?rﬁnons of motion. The zeroth-order equa-
Applying the following transformation equations to the ap-

propriate Bloch vector components, (0) _
ax7_ yX O 4 da_ad'a+ A) YO 4,70 (63
Xinst= €O 6) X0+ SIN(0) Y o1, (29 dt dt
inst= —Si + dy® d6.q
Yinst Sin(0) Xort €0 0) Y g, (2b) it - _ ,yY(O)_ _d‘r;d'a+A X(O), (6b)
results in the three instantaneous frame Bloch-vector equa-
tions: dz©®
i i 5= 2020+ 0X, (60
dt dt while the first-order equations are
dy do (1) .
FTIRRAGN IFTREY b (3b) dij(t =—yXD1 ﬂ”uﬂ Y=,z
dz (0)
G- YZ-ZoteiX. (30) +YOX 27af; cog2mfit+yy), (78
(For ease of notation we have dropped the instantaneous dy®w d6.4ia
St ) : =y | 222 A x(D)
frame subscript, it being understood in all the following ex- TR dt
pressiong.Note that the principal simplification of the Bloch
equations in the instantaneous frame is that the field’s phase _ w(0)
variation now appears directly as a multiplicative factor X©% 2maf; cog2nfit+y),  (7b
rather than the argument of a transcendental fundtign
As in our previous work, the phase variations are written dzv w "
as the sum of adiabatic and nonadiabatic components: dat YL+ 01X (70
o(t) = Hadia(t)+82 asin( 27 t+ ), 4) As anticipated, the first-order equations provide insight into

the behavior of the atomic system at Fourier frequencies near
o ) to or greater than the Rabi frequency.
where 0,4{t) corresponds to all phase variations with Fou- |, order to simplify the first-order equations, several ap-
rier frequenciesf ,qia, less than the Rabi frequency, and the proximations may be made. First, since the Rabi frequency is

sum is over the Fourier frequencids, in the vicinity of the  mych greater than the relaxation rate, Etx) becomes
Rabi frequency and higher. Thi are random and uniformly

distributed phases between 0 and, 2he parametes repre- dz® "
sents the mean amplitude of the Fourier components near the dt =w X', (8)
Rabi frequency, and tha; reflect the specific variations in
Fourier amplitudes and are associated with the power spe@ifferentiation of Eq.(7a), followed by the insertion of Egs.
tral density of phase variations. In the present case, the Foys) and(7b), then results in a second-order differential equa-
rier frequencies associated with the adiabatic phase variapn for X(1,
tions, while less than the Rabi frequency, are greater than the
atom’s intrinsic relaxation ratey. Consequently, the relative d2x®  dx® 2 )
magnitudes of the key frequencies and rates in the present a2 Ty gr T(@TteX
problem arey<2#f 4.<w;<2wf;. These relationships re-
flect the experimental conditions to be discussed subse-
qguently, and allow several simplifications in the following
analysis.

For realistic phase fluctuations, the adiabatic phase varia-
tions typically have larger Fourier amplitudes than the non-

d
=45 | YO 2maficos2mti+ )

—XOAY 27a;f,cod 2afit+ ). 9
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[In obtaining Eq(9) we neglected the term in Eq.(7b), the dz’

6,4ia t€rm in the derivative of Eq.7a), and we assumed that dat
A%+ 7> 6,4i,.] Equation(9) indicates thaX*) responds

to the PDF like a damped, driven harmonic oscillator, whosdifferentiation of Eq.(118 followed by substitution of Egs.

resonant frequency is the Rabi nutational frequen@y, (110 and(11g results in the following differential equation

=/A%+ 2. Note that when the detuning is set equal tofor X’ with y small,

zero, the resonant frequency is just the Rabi frequency as 42X’ dx’ A6+ 426,

observed in our previous investigatidiZg. Since the driving oty —— + QX = AXeI 202 | yeq —_—ade

frequencies in Eq(9) are greater than or equal to the Rabi dt dt dt dt

frequency, theX?) response as a function of Fourier fre-

quency will have a resonance line shape akin to that of &gain we obtain a damped, driven harmonic-oscillator equa-
h_arm_onlg oscillator. In conjunction W'.th EQB_), this co_nclu- tion with the Rabi nutational frequency as the resonance fre-
sion implies that the atomic population will also display a uency. However, for this zeroth-order response all Fourier
resonant response for Fourier frequencies approximatel omponents associated with the driving terms on the right-
equal to the Rabi nutational frequency. Though some distorg o side of Eq(12) are well below the resonance fre-
tion of the "pure” harmonic—ospillator resonance line Shapequency. Consequently, the response6fto the PDF is like
shou_ld .be expected given .the integration implied by @, a stiff spring, simply proportional to the driving terms. Ad-
qual'ltat|vely we gxpet_:t th|§ to have a small effect, as th?ditionally, the relative magnitudes of all the parameters in
Rabi-resonance linewidth is much narrower than the Rab'fhe problem indicate that the term on the right-hand side of

res_(r)r?:ngtfe%zr:;]ero?etﬂ:e2{‘2’& resonance can be examine g. (12) containingY®?is dominant. The temporal behavior
through the behavior of the zeroth-order Bloch-vector com- f X" may therefore be described approximately as
ponents, as these determine the strength of the “force” ex- Y d20, 4
citing the Rabi resonance. However, E(), including the X'=qg2 g2 (13
equations describing the motion é{t) and 6(t), are non-
linear. To proceed, we therefore augment our perturbatioteading to
expansion with a linearization of the zeroth-order equations
in the vicinity of their equilibrium point. Within this addi- (0= AwiZ dz@adia_ Ywi1Zo (14
tional, linear approximation we can investigate the dynamics - 04 dt? 02 -
of the X(® and Y(®© components, and thereby the strength of
the force exciting the Rabi resonan¢ghe linearization pro-  Combining Eq.(13) with Eqg. (11b) yields an expression for
cedure is described in Ref4], and will not be repeated the zeroth-order behavior of(t):
here) The relevant results are the linearized differential .
- 0,2 A2,

equations for the zeroth-order Bloch-vector components, and YO = L1700, adia, o (15)
their equilibrium valuegi.e., X% Y®9 andZz®9). 0? 02z " YWada):

Since the relaxation rate is much smaller than the Rabi-

frequency and field-frequency detuning, the equilibrium val- Equations(14) and(15) can now be substituted back into

X1, However, as the Fourier componentatwill dominate
the forcing function on the right-hand side of E®), the

=—yZ'+w X", (119

(12

Z
Xe0= _ 7?212 0, (1039 Bloch-vector behavior can be analyzed semiquantitatively by
considering just this one Fourier component. Normalizing
the differential equation so that the forcing function has units
Aw Z of X, Eq. (9) then becomes
yel— Q12 0 (10b) q.(9)
! dzx<l>+ y dx® + XV = ZoA sinf(Qt+
. o2 a2 o2 at =—agZoA sin( ¥a)
eq (A%+y%)Z, (169
with
The linearized zeroth-order differential equations are now .
written in terms of a primed set of variables which have been A= @18 | Abagia (16b)
shifted from the unprimed values by the component equilib- Q? Q% |

rium values(e.g., X' =X —xe9), 3
(We have again ignored terms of and 6,4,.) Since the
dx’ d 64 amplitude of the force term on the right-hand side of Eq.
W=—7X'+AY'—wlz'+quW7 (11a (163 determines the magnitude of'Y), conditions that
maximize this amplitude must also maximize the strength of
) the Rabi resonance as indicated by Eg). The amplitude
a’_ V' AX — X d0adia (11  for the force temfi.e., Eq.(16b)] is therefore a measure of
dt Y dt ’ the Rabi resonance’s strength, and this is plotted in Fig. 1 for
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FIG. 1. Theoretical Rabi-resonance strength as a function of
normalized detuning. FIG. 2. Optical-pumping/magnetic-resonance experimental ar-

rangement as described in the text. The VCXO had a bandwidth of

. : . approximately 10 kHz and a transfer function-e794 Hz/V. The
two different values off,q,. Note that the Rabi-resonance pangwidth of the spectrum analyzer was 25 kHz.

strength is zero foA =0, and that it is an asymmetric func-
tion of detuning with the greater Rabi-resonance strengthyiqqe
corresponding tQuselg<waom The detuning that results in g
the maximum Rabi-resonance strenghh,.,, can be deter-

laser (~3 mW) was tuned to the Rb
2p,,,—5 2S;(F=2) transition[8], and was attenuated by
; e ; a 2.7 optical density filter before passing through the reso-
mined by finding the extremum of E¢L6b) as a function of  5nce cell. The propagation direction of the laser was along
detuning, and this is found to occur Whfliya=w; . the cavity axis; it entered the cavity through a 1.14-cm-diam
Application of straightforward analytical techniques and ort, and its transmission through the vapor was monitored
judicious approximations has resulted in a simple descriptioyith g Si photodiode.
of the two-level atom's response to a nonresonant, phase- | the absence of resonant microwaves, optical pumping
fluctuating field. The three principal predictions of our theo- o4, ced the density of atoms in the absorbing sfate,
retical analysis may be briefly summarized as folloGisthe g 25, (F=2)], and consequently increased the amount of
center frequency of the Rabi resonance will equal the Rabjgnt transmitted through the vapor. However, when the mi-
nutational frequency; (ii) the Rabi resonance’s maximum crowave field in the cavity was resonant with tH&b 0-0
amplitude will occur when the absolute value of the detu”ingnyperfine transition, atoms returned to thé% (F =2)
equals the Rabi frequency, afid) the maximum amplitude  ata from the §51,/2(F=1) state, thereby reducing the

of the Rahi resonance W.'” b_e larger with the fie_ld tunedamount of transmitted light. Since the degree of optical
helow resonance than W'th I t.uned to _frequen.ues abo‘.’?)umping was relatively low, microwave-induced changes in
resonance. In the following section we will describe experi-ha  atomic population distribution were proportional to
ments that confirm these expectations. changes in the transmitted laser light. Consequently, the
transmitted laser light was a measure of the atomic popula-
1. EXPERIMENT tion’s response to th_e f|.UC'[l..Iating miqrowave figld. Mqrgover,
due to the spatial distribution of optical pumping efficiency
The experimental arrangement is essentially the same agithin the resonance cell, most of the atomic signal was
that employed previously3]. As illustrated in Fig. 2, a reso- derived from the central portions of the cavity where the
nance cell containing isotopically puféRb and 10 torr of microwave magnetic-field strengthnd hence the Rabi fre-
N, was placed in a microwave cavity whoseglEmode was  quency was relatively constarf9].
resonant with the ground-state hyperfine transitioR’Bb at The microwaves were derived from a voltage-controlled-
6834.7 MHz. Specifically, the microwave field induced tran-crystal oscillator(VCXO) which had a modulation band-
sitions between theR=2mg=0)—(F=1mg=0) ground- width of 10 kHz [10], and the frequency of its output at
state Zeeman subleveld his is often referred to as the 0-0 ~107 MHz was multiplied up to 6.8 GHz before being am-
ground-state hyperfine transitiohe cylindrical cavity had plified by a 30 dB solid-state amplifier. The microwave
a radius of 2.8 cm and a length of 5 cm, and the resonancgower entering the cavity could be controlled with variable
cell filled the cavity volume. The loaded caviy was ap- attenuatorglabeled as—dB in Fig. 2, and these were cali-
proximately 400, though coating of the glass resonance cebrated to microwave Rabi frequency by measuring the line-
by a film of alkali metal during the experiments likely re- width of the hyperfine transition in the absence of ndkH.
duced this considerably. Braided windings wrapped aroundExtrapolating the linewidth measurements to zero micro-
the cavity heated the resonance celt82 °C, and the entire  wave power indicated that the intrinsic dephasing rate in our
assembly was centrally located in a set of three perpendiculaystem,y,, was approximately 40 Hz. The white-noise out-
Helmholtz coil pairs: two pairs zeroed out the Earth’s mag-put from a commercial synthesized function generator with a
netic field while the third pai{~1 G) provided a quantiza- 15 MHz bandwidth was added to a dc voltage in order to
tion axis for the atoms parallel to the microwave cavity's provide the VCXO'’s control voltage/.. The dc level oV,
cylindrical axis. Light from a linearly polarized 4Ba, _,As fixed the detuning between the average microwave frequency
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FIG. 3. Several examples of Rabi resonances as observed on the
spectrum analyzer for different values of the field detuning. The
Rabi frequency for this particular experiment was 950 Hz. For the
purposes of this plot, negative detunings were taken to imply neg
tive Fourier frequencies.

Rabi nutational frequency [kHz]

FIG. 4. Resonant frequency of the Rabi resonance versus the
%Rabi nutational frequency; differing symbols correspond to differ-
ent values of the Rabi frequency,: for gray diamondsw;

) ) =7540 Hz, for white circlesw;=3780 Hz, for gray triangles
and the 0-0 hyperfine resonance, and the noise generator pro-189o Hz, for white diamonds; =950 Hz, for black circlesv,

vided stochastic phase fluctuations. In contrast to our previ=475 Hz, for white triangless;=170 Hz, and for gray squares
ous studie$3], there was no “extra” adiabatic phase varia- »,=85 Hz. Since the amplitude of the Rabi resonance depends on
tion added to the control voltage. The only adiabatic phasehe relationship betweej| and w,, different combinations ofA|
variation was that arising from the broadband nature of thendw, were required to generate Rabi resonances with good signal-
stochastic phase fluctuations. to-noise characteristics.

The noise signal and dc voltage were summed in a pre-
amplifier with an adjustable bandwidth. The high-frequency
roll-off of the preamplifier, at 6 dB/octave, was set at 1 MHz,
so that the VCXO was the bandwidth-limiting element in the
microwave chain and hence determined the spectral cutoff of
the microwave field’'s frequency fluctuations. Consequently,
the frequency fluctuations associated with the microwave
field were white out to about 10 kHA2]. The amplitude of
the noise voltage could be adjusted in order to vary the stan-
dard deviation of the phase variations. However, for the
present experiments this noise voltage was kept at a fixed
value, so that the standard deviation of microwave frequency
fluctuations was 250 Hz.

YT T 7 T T T T ]

[0470-98]

Rabi-resonance strength [arb. units]

IV. RESULTS | | | | i | ! |
0
The basic experimental procedure amounted to fixing a -5 4 3-2-101 2 3 4 3
value for the Rabi frequency and detuning, and then measur- Microwave detuning [kHz]
ing the Fourier spectrum of population variatiof@s moni-

1.2
tored by the transmitted light intensjtpn a spectrum ana- | | ! ! | | !

lyzer. Figure 3 shows a typical set of Rabi resonances
obtained in our experiment for the casg =950 Hz, and
clearly demonstrates a change in the Rabi resonance’s
strength and center frequency with detuning. A more quan-
titative assessment of the Rabi-resonance condition’s depen-
dence on detuning is shown in Fig. 4, where the Rabi-
resonance center frequency is plotted as a function of Rabi
nutational frequency. Note that the relationship is linear, as
predicted theoretically, and that this linearity is maintained
for more than two orders of magnitude.

The change in strength of the Rabi resonance as a func-
tion of detuning is illustrated in Fig. 5, whefa) corresponds
to w;=950 Hz and(b) corresponds taw;=3780 Hz. The
solid line in the figure is simply an aid to guide the eye, as FIG. 5. Amplitude of the Rabi resonance as a function of mi-
Eq. (16b) is only valid in a semiguantitative sense. However,crowave field detuning fota) ;=950 Hz and(b) w;=3780 Hz.
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10000 - T T T vestigating Rabi resonances excited by off-resonant stochas-
tic fields. Our experiments are in very good agreement with
theoretical expectations. Specifically we have found hat
Rabi resonances occur at the Rabitational frequency,(}
=A%+ cuzl; (i) the strength of a Rabi resonance is maxi-
mized when the field-atom detuning equalg; and(iii) the
strength of a Rabi resonance is an asymmetric function of
() detuning.

Though interesting in its own right, the Rabi-resonance
phenomenon has application for the atomic stabilization of
4 electromagnetic field amplitudd 3]. Specifically, by phase
10 I TR S TV Y S B modulating a resonant field in the manner of Cappeller and

10 100 1000 10000 Mueller (CM) [5], it is possible to lock the Rabi frequency

o4 [Hz] (and hence field strengthto the phase-modulation fre-
uency. Since the phase-modulation frequency can be de-
ved from an ultrastable oscillatdie.g., an atomic cloogk
the resulting stabilized field can exhibit extremely low inten-
%ity noise, and moreover may be precisely tuned by varying
the phase-modulation frequency. With this application in
mind (and to the extent that the CM manifestation of the
Rabi-resonance phenomenon displays similar characteristics
0 our9, the present experiments show that fluctuations in

he field frequency will give rise to fluctuations in the Rabi-

1

1000

Apeai’2 [HZ]

100

FIG. 6. Defining the separation between extrema in curves Iike?i
that of Fig. 5 asApeq this graph plotsA ;.2 vs w, . Basically,
Apead? is @ measure of the detuning magnitude that maximizes th
strength of the Rabi resonance.

as predicted theoretically, the Rabi-resonance strength do
drop dramatically foA =0, and it is an asymmetric function
of detuning with larger Rabi-resonance strengths correspon

INg 10 wielg<waom Similar behavior was observed for all oo nance condition. In a field-strength feedback control

Rabi frequenmes. examined in our study. . loop these fluctuations in the Rabi-resonance condition
In order to estimate the magnitude of detuning that maxi-

mized the Rabi-resonance strenath. we used curves like thowould give rise to field strength instability. However, as the
Ized Ihe Rabl-res strengin, we used curves i Fesent work demonstrates, the Rabi-resonance condition is
shown in Fig. 5 and measured the separation between pea

: : ; efined by the Rabi nutational frequency, and for small de-
Apear- Half of this spacing may be taken as the detuning thag . N 21n, 2 '
peak =~ _
maximizes the Rabi resonance, and this is shown in Fig. 6 agnings 1=w,[11(A%2w1)]. Consequently, field fre

a function of Rabi frequency. The solid line corresponds rauency fluctuations would only affect field-strength stabili-

the theoretical prediction dfA.j=w,, and is verified by zation using Rabi resonances in a second-order fashion.
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