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Electron-radiation interaction in a Penning trap: Beyond the dipole approximation

Ana M. Martins,1 Stefano Mancini,2 and Paolo Tombesi2

1Centro de Fisica de Plasmas, Instituto Superior Te´cnico, P-1096 Lisboa Codex, Portugal
2Dipartimento di Matematica e Fisica and Istituto Nazionale per la Fisica della Materia, Universita` di Camerino,

I-62032 Camerino, Italy
~Received 20 March 1998!

We investigate the physics of a single trapped electron interacting with a radiation field without the dipole
approximation. This gives physical insights in the so-called geonium theory.@S1050-2947~98!04610-1#

PACS number~s!: 42.50.Vk, 03.65.Bz, 42.50.Dv, 12.20.2m
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I. INTRODUCTION

Simple systems such as a single electron or an ion pro
a useful tool to investigate the fundamental laws of natu
Hence, in the past decades there has been increasing in
in trapping phenomena@1#. It is now routinely possible to
trap a single ion@2#, which would allow us to study quantum
electrodynamics when the trapped ion interacts with a ra
tion mode. On the other hand, the electron stored in a P
ning trap @3# permits accurate measurements too@4#. This
system has been called a geonium atom since it resemb
hydrogen atom, for which the binding for the electron is
an external apparatus residing on the earth@5#. The geonium
system was recently studied to implement some interes
quantum optics situations, such as quantum nondemoli
measurements@6# and the generation of nonclassical sta
@7#. Here, 100 years after the discovery of the electron,
would show quantum features of a trapped electron inter
ing with the radiation field, when no dipole approximation
made. It is well known that in the geonium system@5# the
motion of the electron can be separated into three indep
dent harmonic motions: axial, cyclotron, and magnetron. I
also well established that entangled systems are extrem
interesting for many purposes.

In the present work we propose a way of coupling t
three harmonic oscillators of the geonium system by sim
superposing a radiation field on the trapping fields. Mo
concretely, we show that when the trapped electron oscill
in a standing wave field, there could be linear or nonlin
coupling among the axial motion and the other motions,
though, in particular, we will consider only the axia
cyclotron interaction. Hence we shall present the more
mediate consequences of such an entanglement, suc
indirect measurements on the cyclotron mode. Then we s
investigate the generation of nonclassical features. Moreo
the analysis in all cases will be performed by taking in
account the environmental effects as well.

The paper is organized as follows: Section II is devoted
the description of the model. The first-order~linear! coupling
between axial and cyclotron motion is considered in Sec.
while in Sec. IV the second-order coupling is discussed
Sec. V we further discuss the possibility of generating n
classical states. Finally, we present conclusions in Sec.

II. MODEL

The geonium system consists@5# of an electron of charge
e and massm0 moving in a uniform magnetic fieldB, along
PRA 581050-2947/98/58~5!/3813~9!/$15.00
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the positivez axis, and a static quadrupole potential

V̂5V0

x̂21 ŷ222ẑ2

4d2
, ~1!

whered characterizes the dimension of the trap andV0 is the
potential applied to the trap electrodes@5#. In this work, in
addition to the usual trapping fields, we embed the trap
electron in a radiation field of vector potentialÂext . To sim-
plify our presentation, we assume thea priori knowledge of
the electron spin@8#. Neglecting all spin-related terms, th
Hamiltonian for the trapped electron can then be written
the quantum counterpart of the classical Hamiltonian

Ĥ5
1

2m0
F p̂2

e

c
ÂG2

1eV̂, ~2!

wherec is the speed of light and

Â5
1

2
r̂3B̂1Âext , ~3!

where r̂[( x̂,ŷ,ẑ) and p̂[( p̂x ,p̂y ,p̂z) are, respectively, the
position and the conjugate momentum operators of the e
tron.

The motion of the electron in the absence of the exter
field Âext is the result of the motion of three harmonic osc
lators@5#; the cyclotron, the axial and the magnetron, whi
are well separated in the energy scale~gigahertz, megahertz
and kilohertz, respectively!. This can be easily understood b
introducing the ladder operators

âz5Am0vz

2\
ẑ1 iA 1

2\m0vz
p̂z , ~4!

âc5
1

2FAm0vc

2\
~ x̂2 i ŷ !1A 2

\m0vc
~ p̂y1 i p̂x!G , ~5!

âm5
1

2FAm0vc

2\
~ x̂1 i ŷ !2A 2

\m0vc
~ p̂y2 i p̂x!G , ~6!

where the indicesz, c, andm stand for axial, cyclotron, and
magnetron respectively. The above operators obey the c
mutation relation@ âi ,âi

†#51, i 5z,c,m. The angular fre-
quencies are given by
3813 ©1998 The American Physical Society
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vz5A eV0

m0cd2
, vc5

eB

m0c
, vm'

vz
2

2vc
. ~7!

So whenÂext50, the Hamiltonian~2! simply reduces to

Ĥ5\vzS âz
†âz1

1

2D1\vcS âc
†âc1

1

2D2\vmS âm
† âm1

1

2D .

~8!

Instead, when the external radiation field is a standing w
along thez direction~with frequencyV and wave vectork)
and circularly polarized in thex-y plane@9#, we have

Âext5$2 i @aeiVt2a* e2 iVt#

3cos~kẑ1f!,@aeiVt1a* e2 iVt#cos~kẑ1f!,0%.

~9!

In such a case, for frequenciesV close tovc , we can neglect
the slow magnetron motion and the Hamiltonian~2! becomes

Ĥ5\vzS âz
†âz1

1

2D1\vcS âc
†âc1

1

2D
1\@e* âce

iVt1eâc
†e2 iVt#cos~kẑ1f!

1\x cos2~kẑ1f! ~10!

where

e5ueueiw5S 2e3B

\m0
2c3D 1/2

a, x5
e2

\m0c2
uau2, ~11!

and the phasew is the phase of the applied radiation fie
~i.e., arga). The other phasef defines the position of the
center of the axial motion with respect to the standing wa
The third and fourth terms on the right-hand side of t
Hamiltonian~10! describe the nonlinear interaction betwe
the trapped electron and the standing wave, which gives
to a coupling between the axial and the cyclotron moti
whose effect will be analyzed in the following sections.
the usual Penning traps the quantityk^ ẑ& can reach values up
to approximately 0.1@5#, when V'vc . This leads us to
explore the physics beyond the usual dipole approxima
for the cosine term in Eq.~10!. The cosine factor cos(kẑ
1f) can be split as

cos~kẑ1f!5cosf cos~kẑ!2sinf sin~kẑ! ~12!

and two typical situations corresponding tof50 and f
5p/2 can be easily exploited. By making the usual dipo
approximation these two cases correspond to a mere dri
term on the cyclotron motion (f50) or to no effect at all
(f5p/2).

In the following sections the behavior of the trapped el
tron in these two paradigmatic limits is studied. All the oth
possible values off will give rise to combinations of thes
two cases and can be easily studied. We further note tha
last term in Eq.~10! can be neglected since the paramet
~11! are such thatx/ueu'ueu/vc .
e

.

se
,

n

ng

-
r

he
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III. THE CASE OF f5p/2

In this section we consider the casef5p/2. Developing
sin(kẑ) in a power series and keeping only the first-order te
we can approximate the Hamiltonian~10! by

Ĥ5\vzS âz
†âz1

1

2D1\vcS âc
†âc1

1

2D
1\@e* âce

iVt1eâc
†e2 iVt#kẑ. ~13!

In the case of perfect resonanceV5vc and in a frame ro-
tating at that angular frequency we get the solution

ẑ~ t !5@ ẑ~0!2ueukX̂w#cos~vzt !

1
1

mvz
p̂z~0!sin~vzt !1ueukX̂w , ~14!

p̂z~ t !5 p̂z~0!cos~vzt !2mvz@ ẑ~0!2A2ueukX̂w#sin~vzt !,
~15!

where we have introduced the cyclotron quadrature

X̂w5
âce

iw1âc
†e2 iw

A2
. ~16!

Equation~15! suggests an indirect way to determine t
probability distribution for the cyclotronic quadratur
P(Xw). We recall that in the geonium system the measu
ments are performed only on the axial degree of freedom
to the nonexistence of good detectors in the microwave
gime. The oscillating charged particle induces alternat
image charges on the electrodes, which in turn cause an
cillating current to flow through an external circuit. The cu
rent will be proportional to the axial momentump̂z ; hence a
measurement of this current will also give the value of t
quadratureX̂w . Measurements when the standing wave
‘‘off’’ should be done preventively to set the initial cond
tions. Then repeated measurements lead to the desired s
tics P(Xw). If the procedure is further repeated for seve
values of the phasew, we obtain the set of marginal prob
abilitiesP(X,w), which allows the tomographic imaging o
the quantum state of the cyclotron mode@10#.

We now consider the effects of the thermal dampi
through the resistance of the external circuit connected w
the measurement apparatus. In such a case the equatio
motion for the axial degree of freedom become

dẑ

dt
5

p̂z

m0
, ~17!

dp̂z

dt
52vz

2m0ẑ2
gz

m0
p̂z2A2\kueuX̂w1 ĵ, ~18!

where the noise termĵ(t) is that of Johnson noise with ex
pectation values^ĵ(t)&50 and ^ĵ(t) ĵ(t8)&52gzkBTd(t
2t8), the damping constantgz is proportional to the readou
resistor,kB is the Boltzmann constant, andT is the equilib-
rium temperature.

By using the Fourier transforms, we immediately obta
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p̃z~v!5
A2\kueuX̃w~v!2 j̃~v!

v22vz
22 ivgz /m0

; ~19!

hence the correlation

^ p̃z~v! p̃z~2v!&

5
2~\kueu!2^X̃w~v!X̃w~2v!&1^j̃~v!j̃~2v!&

uv22vz
22 ivgz /m0u2

.

~20!

Equation~20! imposes some limits on the observability
nonclassical effects on the cyclotron motion; in fact, t
added thermal noise should be much less than the cyclo
vacuum noise for the chosen frequency, i.e.,gzkBT
!(\kueu)2.

IV. THE CASE OF f50

Let us consider now the case off50. Keeping only
terms up to the second order inkẑ, the Hamiltonian~10!
reduces to

Ĥ5\vzS âz
†âz1

1

2D1\vcS âc
†âc1

1

2D
1\@e* âce

iVt1eâc
†e2 iVt#F12

k2ẑ2

2
G , ~21!

which clearly shows the nonlinear coupling as a conseque
of the higher-order expansion with respect to the case of
preceding section. We study the general case includ
losses. The latter are present in the axial degree of free
once the connection with the external circuit is establish
as pointed out in Sec. III. Instead, the noise on the cyclot
degree of freedom could arise, e.g., from radiative damp
~though it can be strongly reduced with an appropriate t
geometry!.

Hence, by starting from the Hamiltonian~21!, we obtain
the quantum stochastic differential equations

dâc

dt
52 iDâc2

gc

2
âc2 i e~12k2Ẑ2!1Agcâc

in , ~22!
on

ce
e
g
m

d,
n
g
p

dâc
†

dt
5 iDâc

†2
gc

2
âc

†1 i e* ~12k2Ẑ2!1Agc@ âc
in#†,

~23!

dẐ

dt
5vzP̂z , ~24!

dP̂z

dt
52vzẐ12k2~e* âc1eâc

†!Ẑ1 f 2
gz

m0
P̂z2Ĵ,

~25!

whereD5vc2V, f is a driving term for the axial motion

gc is the cyclotron damping constant, andâc
in ,Ĵ are the

noise terms~we shall consider the situation where only th
vacuum contributes to the cyclotron noise!. We have intro-
duced the scaled variables Ẑ5Am0vz /\ ẑ, P̂z

5A1/\m0vzp̂z , Ĵ5A1/\m0vzĵ, and k25\k2/2m0vz .
From Eq. ~25! we can see that the cyclotron quadratu
causes a shift of the resonant frequency of the axial mot
so its indirect measurement is feasible.

The system of equations~22!–~25! can be linearized
around the steady state@11#. The stationary valuesāc , Z̄,
and P̄Z can be obtained from

052S gc

2
1 iD D āc2 i e~12k2Z̄2!, ~26!

052S gc

2
2 iD D āc* 1 i e* ~12k2Z̄2!, ~27!

05vzP̄Z , ~28!

052@vz22k2~e* āc1eāc* !#Z̄1 f . ~29!

The linearized system is then

d

dtS âc

âc
†

Ẑ

P̂z

D 5MS âc

âc
†

Ẑ

P̂z

D 1S Agcâc
in

Agc@ âc
in#†

0

2Ĵ

D , ~30!

where now the operators indicate the quantum fluctuati
with respect to the steady state and
M5S 2S gc

2
1 iD D 0 2i ek2Z̄ 0

0 2S gc

2
2 iD D 22i e* k2Z̄ 0

0 0 0 vz

22e* k2Z̄ 22ek2Z̄ 2vz12k2~e* āc1eāc* ! 2
gz

m0

D . ~31!
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The spectral matrix can be calculated as

S~v!5~ ivI2M !21D~2 ivI2MT!21, ~32!

whereI is the 434 identity matrix, the superscriptT denotes
the transpose, and

D5S 0 gc 0 0

0 0 0 0

0 0 0 0

0 0 0
gz

m0
Nth

D , ~33!

with Nth5kBT/\vz the number of thermal excitations.
The momentum correlation for the axial motion will b

S44; this quantity is plotted in Fig. 1. The dashed line rep
sents the resonance in the absence of coupling and the
line the resonance in the presence of it. The separation
tween peaks is proportional to the cyclotron quadrature
plitude. So it gives us an indirect value of that cyclotr
observable.

Furthermore, the variance for the amplitude cyclotr
quadrature is given by integrating the quantityS111S22
1S121S21, which is plotted in Fig. 2~dashed line!. The
figure also shows the variance for the orthogonal quadra
~solid line!. It can be seen that the system exhibits squeez
effects depending on the detuning. It is worth noting th
such effects are not very sensitive to thermal noise. The
bility of the system, for the values of parameters used
checked through the signs of the eigenvalues of the ma
M .

In this section and Sec. III we have shown that the ter
beyond the dipole approximation could play an importa
role and should not be neglected abruptly. As a matte
fact, we have presented a variety of effects~see, e.g., Figs. 1
and 2! that could be measured in common Penning traps
the following, we shall explore other possibilities.

FIG. 1. Spectrum of axial momentum forD51.53104 s21,
k251026, gc51.5 s21, gz /m0520 s21, ueu51.43104 s21, w
53p/4, f 51011 s21, andNth5103. The peak on the right repre
sents the resonance in the absence of coupling. The separatio
tween peaks is proportional to the cyclotron quadrature amplitu
-
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V. NONCLASSICAL STATES

We now demonstrate the generation of nonclassical
fects due to the nonlinearity induced by the Hamiltoni
~21!.

A. Central resonance

If we tune the standing wave at frequencyV5vc and
pass to the interaction picture, the Hamiltonian~21! simply
becomes

Ĥ5A2\ueuX̂cF12k2S âz
†âz1

1

2D G , ~34!

where we have disregarded the rapidly oscillating ter
âz

†e22ivzt and âze
2ivzt ~i.e., we made the rotating wave ap

proximation!. Starting from initial coherent states for bot
modes

uC~0!&5ua&c^ ub&z , ~35!

we obtain from the Hamiltonian~34! the state at the timet,

uC~ t !&5e2ubu2/2(
n50

`
bn

An!
uunt&c^ un&z , ~36!

whereun5 i ek2n. In writing the state~36! we have disre-
garded, for the sake of simplicity, the quantitya2 i e(1
2k2/2)t, which is common to each cyclotron compone
~this corresponds to an overall displacement in the cyclot
phase space!.

Therefore, the electron motion evolves classically as
mixture of coherent states. Thus, during the evolution,
nonclassical states of the electron are generated. Howe
because of the entanglement between the cyclotron and
axial degrees of freedom, it is possible to generate nonc
sical states of the cyclotron motion by performing con
tional measurements on the axial degree of freedom. In
ticular, a measurement of the axial current corresponds to
projection onto an eigenstateupz& of the axial momentum

be-
e.

FIG. 2. Variance for the cyclotron quadraturesXw50 ~dashed
line! andXw5p/2 ~solid line! as a function of the detuningD. The
values of other parameters are the same as in Fig. 1.
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uC~ t !&a f ter5N(
n50

` Fe2ubu2/2
bn

An!
^pzun&zG uunt&c^ upz&,

~37!

whereN is a normalization constant and̂pzun&z are the
harmonic oscillator wave functions in momentum space. I
immediately seen from the above expression that after
measurement the system is left in a superposition of cohe
cyclotronic states that could have nonclassical featu
Whenever the number of coherent states that are being
perposed is small, the states are known as Schro¨dinger cat
states@12#.

It is worth noting that the separation between the sup
posed coherent states is given byueuk2t and therefore it can
be made truly macroscopic by emphasizing the nonclass
ity ~by simply requiring thatueuk2t.1). However, one has
to be careful when satisfying the above condition since
also implies a strong excitation of the cyclotron motion~the
overall displacement that has been disregarded!, which in
turn could give rise to instabilities or even the loss of t
particle over the trap’s walls.

The Wigner function of the cyclotron state generated
conditional measurement can be written as

W~Q,P!5N 2(
m,n

cm* cnexpF2Q22P22
uzmu2

2
2

uznu2

2

1A2Q~zn1zm* !2A2iP~zn2zm* !2znzm* G ,
~38!

where the variablesQ,P are associated with the quadratur
X̂w50 and X̂w5p/2 , respectively, and

cn5e2ubu2/2
bn

An!
^pzun&z , ~39!

zn5unt. ~40!

In Fig. 3 we present the Wigner function of the cyclotro
state generated by the conditional measurement on the

FIG. 3. Wigner function of Eq.~38! plotted for the parameter
b51 and ek2t522.4i , after an axial momentum measureme
yielding the most probable value ofpz .
s
e
nt
s.
u-

r-

l-

it

y

ial

degree of freedom. The negative parts and several osc
tions show the nonclassicality of such a state.

We have considered the measurement process condi
ing the cyclotron state as instantaneous; however, it alw
takes a finite time, during which the system undergoes
back action of the measurement apparatus. To take into
count these effects we should adopt a precise Hamilton
model describing the measurement of the observablep̂z .
Nevertheless, from a phenomenological point of view,
can model the measurement process, performed on the
r̂(t)5uC(t)&^C(t)u, during a timet, as the transition

r̂~ t !→Trz@ r̂~ t1t!upz&^pzu#, ~41!

wherer̂(t1t) is obtained fromr̂(t) through free evolution
in a thermal bath~representing the back action of the me
surement apparatus on the system!, while the projector indi-
cates the output resulting at the end of the measurement@13#.

To evaluate the effects of the measurement on the cy
tron state we should calculate the reduced density oper
@the right-hand side of Eq.~41!#. Its corresponding Wigner
function is derived in Appendix A as

W~Q,P,t!5N 2(
m,n

bm

m!

~b* !n

n!
22~m1n!/2I m,n

3expF2Q22P22
uzmu2

2
2

uznu2

2

1A2Q~zm1zn* !2A2iP~zm2zn* !2zmzn* G ,
~42!

where

I m,n52nm! E dv exp$2@e22Gt

12Nth~12e22Gt!#v222iPzv%

3~2ve2Gt!n2mLm
n2m~2v2e22Gt!, n.m, ~43!

with Lm
n the associated Laguerre polynomials andG

5gz /m0 the effective axial damping constant.
The Wigner function~42! is plotted in Fig. 4 and shows

FIG. 4. Same as Fig. 3, but including the effects of the fini
time measurement. HereGt50.1 andNth510.
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the deleterious effects of finite-time measurement on
nonclassical state represented in Fig. 3. Of course, thes
fects strongly depend on the number of thermal excitati
Nth as well. Once the cat states are generated by the co
tional measurements, it would be possible to detect them
using indirect measurements as proposed in the previous
tions.

B. The sideband resonance

We now return to the Hamiltonian~21! to consider an-
other resonance, in this caseV5(vc22vz)2d, whered is
a small detuning~i.e.,d!vz) introduced for convenience. In
a frame rotating at frequencyvc2d, we then have

Ĥ5\dâc
†âc2\

ueuk2

2
(âcâz

†2
e2 iw1ac

†az
2eiw). ~44!

This is a trilinear Hamiltonian analogous to that studied
nonlinear optical processes such as parametric oscillatio
second harmonic generation@11#.

The equations of motion are

dâc

dt
52 idâc1 i

1

2
ueuk2âz

2 , ~45!

dâz

dt
5 i ueuk2âz

†âc ~46!

and, by adiabatic elimination of the cyclotron mode, we g

dâz

dt
5 i

ueu2k4

2d
âz

†âz
2 . ~47!

This equation corresponds to an effective Hamiltonian
the axial motion of the type

Ĥe f f52\
ueu2k4

4d
~ âz

†!2âz
2 , ~48!

which shows a well known Kerr-type nonlinearity. Hence w
should expect nonclassical effects, such as Schro¨dinger cat
states, when one starts from the initial conditions~35!, also
in the axial mode. In fact, the evolved axial state can
written as

uc~ t !&z5exp$ iG@~ âz
†âz!

22âz
†âz#t%ub&z , G5

ueu2k4

4d
.

~49!

It is easy to show that after a timet5p/2G the initial coher-
ent state evolves into a cat state of the type discussed in
@14#,

uc~ t5p/2G!&5
1

A2
@e2 ip/4u2 ib&1eip/4u ib&]. ~50!

This state shows interference in the phase space, which c
be detected by measuring an appropriate quadrature. Th
fore, by adjusting the initial conditions we may exploit th
axial momentum measurement to see such interference.
Wigner function of the state~50! results,
e
ef-
s
di-
y

ec-

or

t

r

e

ef.

uld
re-

he

W~Z,Pz!5
1

p
e2ubu22Z22Pz

2

3$e2ubu2cosh@2A2Pz Re~b!22A2Z Im~b!#

1eubu2sin@2A2Pz Im~b!12A2Z Re~b!#%,

~51!

and is represented in Fig. 5. The fact that only two coher
states are being superposed is evident from the two h
beside the central structure, which is different from the si
ation of Fig. 3, where more components contributes to
cat state.

Of course, we should deal again with the problem of m
surement, whose process renders the system open and h
the dissipation tends to eliminate out the nonclassical effe
To evaluate this phenomenon we switch off the nonlinea
at the time of cat generation and a subsequent free evolu
of the axial degree of freedom in a thermal bath, represen
the effects of the external readout circuit. If the latter take
time t, we have~see Appendix B!

W~Z,Pz ,t!5
1

2
e2ubu21b2/21b* 2/2

3$e2 Im~b!2
@ I 11I 2#2 ie22 Re~b!2

@ I 32I 4#%,

~52!

where

I i5
2

pA4AB2C 2
expFBD i

21CDiEi1AE i
2

4AB2C 2 G , i 51,2,3,4,

~53!

with

A5
1

G2
~e2Gt21!21112

Nth

G2
~12e22Gt!

28
Nth

G2
~12e2Gt!14

Nth

G
t, ~54!

B5e22Gt12Nth~12e22Gt!, ~55!

FIG. 5. Wigner function of the cat state~50! plotted forb52.
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C52
2

G
e2Gt~e2Gt21!24

Nth

G
~12e22Gt!

18
Nth

G
~12e2Gt!, ~56!

and

D
2
1572A2i Im~b!7

A2

G
i Re~b!e2Gt6

A2

G
i Re~b!12iZ,

~57!

D
4
3572A2 Re~b!6

A2

G
Im~b!e2Gt7

A2

G
Im~b!12iZ,

~58!

E
2
1572A2i Re~b!e2Gt22iPz , ~59!

E
4
3562A2 Im~b!e2Gt22iPz . ~60!

The Wigner function~52! is plotted in Fig. 6 and shows
that the cat state~50! is very sensitive to the noise induce
by the measurement.

VI. CONCLUSIONS

In conclusion, we have studied a trapped electron in
acting with a standing radiation field and have shown t
several interesting features can arise when the dipole
proximation is not invoked. First, the proposed model p
vides a method for indirect measurement on the cyclot
degree of freedom. In addition, the possibilities to gener
nonclassical states could be useful to test the linearity
quantum mechanics,@16# and to probe the decoherence of
mesoscopic system@17#. Furthermore, it is worth noting tha
the entanglement induced by the radiation field could also
used to explore the quantum logic possibilities of a trapp
electron system.

Hence the geonium system in such a configuration co
result as an alternative and/or a complement to other trap
systems. In addition, it has the advantage of involving
structureless particle, while, for example, an ion in a P
trap behaves as a two-level system only ideally. Moreov
considering the electron as an antiparticle, the model co

FIG. 6. Same as Fig. 5, but including the effects of the fin
time measurement. HereG56, t50.4, andNth510.
r-
t
p-
-
n
te
f

e
d

ld
ed
a
l
r,
ld

also be used to perform some fundamental tests of sym
try.

Finally, based on these considerations, we conclude th
should be an interesting challenge to experimentally imp
ment this model. The realistic values of the parameters~see,
e.g., Ref.@5#! we have used yield that feasible with the actu
technology. The main problem could be represented by
low values ofNth in Sec. IV; however, to better evidence th
desired effects one could adjust the experimental setu
order to increase the inhomegeneity of the field experien
by the particle~to this end, we note that traps bigger than t
usual ones are available as well@18#!.
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APPENDIX A

We consider the position space matrix elements of
stater̂(t), i.e.,

c^Q1Yuz^Z8ur̂~ t !uZ9&zuQ2Y&c , ~A1!

and we denote them as̀(Z8,Z9) since the evolution will
take place only in axial space. The dependence on the cy
tron variables remains implicit. Then, with the aid of E
~36! we get

`~Z8,Z9!5(
m,n

CmCn* exp@2~Z821Z92!/2#Hm~Z8!Hn~Z9!,

~A2!

whereHm are the Hermite polynomials and

Cm5S 1

p D 1/4 1

A2mm!
e2ubu2/2

bm

Am!
^Q1Yuzm&, ~A3!

Cn* 5S 1

p D 1/4 1

A2nn!
e2ubu2/2

~b* !n

An!
^znuQ2Y&. ~A4!

The master equation for the free evolution in a thermal b
@15# has the corresponding partial differential equation
the probability`

]t`~Z8,Z9,t!5H i

2S ]2

]Z82
2

]2

]Z92D
2

G

2
~Z82Z9!S ]

]Z8
2

]

]Z9
D

2GNth~Z82Z9!2J `~Z8,Z9,t!, ~A5!

where we have setG5gz /m0 . Both the damping constan
and the time are scaled by the axial frequency, i.e.,G/vz
→G andtvz→t.
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The differential equation~A5! is considerably simplified
by the change of variables

Z85u1v, ~A6!

Z95u2v, ~A7!

leading to

]t`~u,v,t!5H i

2

]2

]u]v
2Gv

]

]v
24GNthv2J `~u,v,t!.

~A8!

By using the Fourier transform

`~u,v !5E dqe2iqu`̃~q,v !, ~A9!

Eq. ~A8! becomes

]`̃

]t
1~q1Gv !

]`̃

]v
524GNthv2`̃, ~A10!

which can be solved by the method of characteristics. T
solution takes the form

`̃~q,v,t!5`̃H q,F S v1
q

G De2Gt2
q

G G ,0J
3expH 22NthS v1

q

G D 2

~12e22Gt!

1
8Nth

G
qS v1

q

G D ~12e2Gt!J e24q2Ntht/G.

~A11!

In our case, from Eqs.~A2!, ~A6!, ~A7!, and~A9!,

`̃~q,v,0!

5Ap exp@2v22q2#

3H (
m,n

CmCn* 2nm!( 2v2 iq D n2m

Lm
n2m@2~v21q2!#

1 (
m5n

uCnu22nn!Lm@2~v21q2!#

1 (
m.n

CmCn* 2mn! ~2v2 iq !m2nLn
m2n@2~v21q2!#,

~A12!
e

results, whereLn
m indicates the associated Laguerre polyn

mials. Therefore, starting from the above expression, the
lution ~A11! can be easily constructed.

The Wigner function of the cyclotron state after a me
surement giving the resultpz ~or, equivalently,Pz) will be

W~Q,P,t!5N 2E dYc^Q1Yu

3z^Pzur̂~ t1t!uPz&zuQ2Y&ce
22iPY,

~A13!

whereN is the normalization constant needed after the p
jection. By inserting identities in terms of the set of stat
$uu6v&z%, with the aid of the Fourier transform~A9! we get

W~Q,P,t!5N 2E dYE dv`̃~0,v,t!e22ivPz22iY P.

~A14!

The dependence on the cyclotron variablesQ and Y is im-
plicitly on `. Hence, by performing the integration one a
rives at the expression~42!.

APPENDIX B

If t is the duration of the measurement, at the end of
measurement we have

W~Z,Pz ,t!5
1

pE dv^Z1vur̂z~t!uZ2v&e22iPzv

5
1

pE dv`~Z,v,t!e22iPzv

5
1

p2E dvE dq`̃~q,v,t!e22iPzv12iqZ,

~B1!

where `̃(q,v,t) is the same as in Eq.~A11!, but with the
initial condition determined by Eq.~50!,
`̃~q,v,0!5
1

2
e2ubu22q22v21b2/21b* 2/2$exp@2 Im~b!222A2i Im~b!q22A2i Re~b!v#

1exp@2 Im~b!212A2i Im~b!q12A2i Re~b!v#2 i exp@22 Re~b!222A2 Re~b!q12A2 Im~b!v#

1 i exp@22 Re~b!212A2 Re~b!q22A2 Im~b!v#%. ~B2!

Thus, by performing the double integral in Eq.~B1! we get the expression~52!.
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