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Four-atom systems may soon be subject to state-to-state reactive scattering calculations and understanding
body frames and their singularities will be an important part of this effort. This paper examines body frames in
four-atom systems, building on a geometrical analysis of the nine-dimensional configuration space and the
six-dimensional internal space. Kinematic rotations are an important tool in this analysis. A central role is
played by the “kinetic cube,” the space of all asymmetric top shapes related by kinematic rotations. The
singularities, multiple branches, and connectivity of the principal axis frame are examined in detail and related
to the topology of the kinetic cube. The principal axis frame has singularities on all symmetric top shapes, both
oblate and prolate, of both chiralities. A version of the Eckart frame, however, has singularities only on prolate
symmetric top shapes of one chirality. Frame singularities are inevitable in the four-body problem and no other
frame has a smaller singular set than the Eckart frd®#050-294®8)07211-4

PACS numbds): 34.50-s, 31.15-p, 02.40-k

[. INTRODUCTION frame that places the singular surface outside the physically
interesting regiopy but any internal wave function that

This paper is the second in a series concerning bodgrosses the singular surface will itself become singular on the
frames and their singularities in the quantum dynamics oburface.
n-particle systems. The first of these paptk concerning The practical importance of the frame singularities will
body frames in the three-body problem, is necessary backsecome apparent as soon as anyone computes an actual in-
ground for the present paper, which focuses on the four-bodternal wave function withtJ#0 for a four-atom system that
problem. The meaning of frame singularities, their effect onoccupies a sufficiently large portion of the internal space.
internal wave functions, their topological inevitability, and That the frame singularities have not been noted previously
the latitude one has in moving them around in the internaln four-atom systems is due to several circumstances. First, if
space are all exemplified by the three-body case and are di§=0, then frame singularities do not cause singularities in
cussed in Refl1]. Many of the facts presented in Rgt] on  the internal wave function. Of course, the conditiba 0 is
body frames in the three-body problem are familiar to pracimore common in the literature than in the real world. Next,
titioners in the field, although our geometrical perspective issmall-amplitude vibrations about a noncollinear equilibrium
almost completely different. In the four-body problem, how-in many cases do not explore enough of the configuration
ever, the whole complex of issues surrounding frames andpace to run into frame singularities and the same is true for
their singularities is much less well explored. some types of large amplitude motion. As for collinear equi-

Recently, serious consideration has been given to the posbria, in the four-body problem there are always frame sin-
sibility of four-atom, state-to-state reactive scattering calcu-gularities in the neighborhood of such shapes. These singu-
lations [2,3]. Even three-atom scattering calculations arelarities can be avoided by modifying the usual formalism of
highly nontrivial and the step up to the four-body case is arames and Euler angles, as in tm®w) standard analysis of
long one. Bound-state calculations are easier, mainly becaus®atson[4]. However, as we show below, the surface of
bound-state wave functions occupy a smaller portion of thérame singularities in the four-body problem extends from
configuration space than scattering wave functions. Howthe collinear manifold out to infinity and so always exists in
ever, whenever any wave function in the four-body problemregions where the standard collinear analysis is not useful.
whether bound or unbound, occupies a sufficiently large porAs explained in Refl1], the situation in the three-body prob-
tion of the configuration space, it will be necessary to dealem is different and not as serious, because frame singulari-
with frame singularities. For example, we will show in this ties need not occur at collinear shapes, nor is there any sin-
paper that in the four-body problem with its six-dimensionalgular manifold extending out from the collinear shapasly
internal space all definitions of body frames possess singuhe three-body collision is attached to the manifold of frame
larities on the three-dimensional manifold of collinear singularities and that manifold, the “string,” can be placed
shapes, as well as on a four-dimensional surface that ema the nonphysical region
nates from this manifold. The latter surface can be moved Although there are many ways to define a body frame, in
around by changing to a different body frame, but it cannothe case of the four-body problem the principal axis frame
be eliminated. If a wave function is restricted to a sufficientlyhas been a popular choice in many works going back over
small region of the internal space, it may be possible to avoidhe last 30 year§3,5-9,14. This is presumably because the
the surfaces on which the frames are sing(arto choose a principal axis frame emerges naturally out of the singular
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value decomposition of the matrix of space-referred Jacobspaces involved in the four-body problem. Such mathemati-
vectors (which is Fg in the notation explained below; the cal methods have not been frequently applied in molecular
decomposition i¥=RAK", whereR is the external rotation physics, although their use in other areas of physics and ap-
defining the Euler angles in the principal axis framds the ~ plied mathematics is common. We have tried to make this
diagonal matrix of singular values, aidis a kinematic ro- ~Paper self-contained by providing two mathematical appen-
tation). Partly for this reason, this paper devotes special atdixes. Some familiarity with the elements of abstract group

tention to the principal axis frame. However, the principaltheory is assumethotions such as cosets and conjugate sub-
axis frame is multiple valued or if forced to be single valued9"0UPS as well as some basic facts about the continuous
it has branch cuts and associated discontinuities. Moreovef©UPS S@) and SQ3) (such as the fact that they are mani-

its singular surface is not of the minimal size that can b olds_; of dimensiona_lity one and thre_e respectiyely
achieved with other frames. Clearly, it is important that the, Fmally, we mentlgn that we consider only the_case4
question of frames and their singularities be addressed frofy thiS paper, nom=5. This is because there is already
a general standpoint, not just in the case of the principal axiB!€nty to say about four-body problems and also becéfose
frame. scattering problems, at leagpractical, numerical calcula-
The singular value decomposition just alluded to is part oftions for the cas@=5 are a much more remote possibility
what might be called the analytical or coordinate-based perhan the case=4. _ _ , _
spective on then-body problem. This is a perspective in The organization of th|s paper is as follqws. Section Il is
which the properties of the internal wave equation or wave? Short section discussing the configuration space for the
function are transcribed into some coordinate system anfPUr-body problem and the grougiexternal and kinematic
expressed in terms of equations involving numbers, varifotations that act on it. Section Ill is another short section
ables, matrices, etc. In Réfl] and this paper we are empha- discussing the mterna_l or shape space f_or the fo_ur-bod)_/ prob-
sizing a different perspective, the geometrical one. In tha€™M and useful coordinate systems defined on it. Section IV
geometrical perspective, we view the properties of framesdiscusses the action of kinematic rotations on the four-body
wave functions, etc., in terms of curves and surfaces in th&n@pe space and analyzes in detail the three cases of asym-
internal space. Both perspectives are important, but the ge®?€tic, symmetric, and spherical tops. Special attention is
metrical one grows in significance as the dimensionalities ofIVeN t0 the kinematic orbits in the case of the asymmetric
the spaces involved gets larger. In particular, the four-bodyPS (the kinetic cubg This space is shown to be either the
problem involves spaces of relatively high dimensionality,SPace of cosets of 3@ with respect to the subgroujthe
where a geometrical approach is most helpful. For example/i€rgruppé of diagonal, proper orthogonal matrices or of
the space of asymmetric top shapes in the four-body problerg(2) With respect to the eight-element quaternion subgroup
that are related by kinematic rotations is the space we call th@nd its topology is examined carefully. Section V is devoted
kinetic cube; it is a three-dimensional manifold with a non-{© the principal axis frame and its properties: its multiple
trivial topology, which we discuss quite carefully below. For branches and their connectivity under continuous deforma-

another example, in previous work by some of the presentﬂons of shape, the restr_iction to g_single branch by means of
authors[10], it has been shown that the exit channels inbranch cuts, and the discontinuities across the branch cuts.
four-body collinear scattering reactions can be arranged on We find that the jumps in the principal axis frame on going
certain two-dimensional spher&%), whose significance in around closed loops in the internal space are directly related
the internal space is discussed bélow. to the topological properties of the kinetic cube. In Sec. VI

In the course of writing this paper we discovered that toV& €xamine the smgularltlgs of the principal axis frame,
fully explore body frames in the four-body problem it was which occur at qll symmetric top shapes, both oblate and
necessary to delve deeper into the structure of the interndirolate. We also introduce a version of the Eckart frame that
space than has been done before and especially to make &S Singularities on a smaller subset of the internal space
tensive use of kinematic rotations. Although kinematic rota-\Na@n the principal axis frame, namely, on the prolate sym-
tions have been used for many years, it would seem that if?€!ic tops of one chirality only. We discuss the relation of
many people’s minds they are restricted to the discrete set §f€S€ singular sets to the phenomenon of string singularities
transformations that map one exit channel into anotber N the field of magnetic monopoles and indicate why no
one choice of Jacobi vectors to anothén this work, how- frame has singularities on a s_maller_subset of the internal
ever, we have been more interested in the continuous groufP@ce than the Eckart frame. Finally, in Sec. VIl we present
of kinematic rotations and its geometrical relation to the in->0Me conclusions and thoughts about future work. Three ap-
ternal space. We feel we have revealed some of the mysterié’\?nd'xeS are also supplied. Appendix A explains the concept
of the kinematic rotations, but that other applications remairP! 9roup actions, which is central to the development of the
to be developed, such as to models of polyatomic dynamicBrésent paper, and Appendix B concerns the various spaces
in which motions are constrained to consist of pure kinehat occur in the main body of the paper and the standard
matic rotations. For example, in some cases reaction paths [fathematical notation for them. Finally, Appendix C con-
pseudorotational motions are approximately of this kind.l2ins some material moved from the main body of the paper
Certainly kinematic rotations provide a relatively different fOr PUrposes of continuity of flow.
perspective on such problems and allow one to visualize and
formulate questions in a different way.

This paper involves mathematical methods of a more geo-
metrical character than those used in Ré&f. on the three- The configuration space in the four-body problem, after
body problem, as is appropriate for the higher-dimensionathe elimination of the center-of-mass degrees of freedom, is

1. CONFIGURATION SPACE AND GROUP ACTIONS
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TABLE |. Orbits and their isotropy subgroups for the action of pne-to-one correspondence with rotatiorR e SO(3);
external rotations on the configuration space of the four-body prObequivaIentIy, the Euler angles of those rotations can be used

lem. as coordinates along the orbit. This is what is always done in
_ — i practice in defining the external Euler angles. In this case,

Case Orbit  Orbit dimension Isotropy subgroup yhe orhit is a three-dimensional surface that is a copy of

noncollinear S@8) 3 n SQO(3). That is, the orbit is diffeomorphitsee Appendix B

collinear s? 2 sSqa2) to S(I3).. ' . . .

four-body collision one point 0 s@) If Q is a collinear configuratioiall three Jacobi vectors

are parallel, but at least one is nonvanishjrtgen rotations
about the axis of collinearity do nothing to the configuration.
i , In this case, the isotropy subgroup @fis SQ2), the sub-

9 ) H

the spacel”, on which the nine components of the three o015 of rotations about a fixed axis, which are proper or-
mass-weighted Jacobi vectors,, @=1,2,3, are coordi- h,qana| transformations in the plane perpendicular to the
nates. As in Ref[1], we use ars subscript to indicate the .5 It is obvious geometrically that the orbit of a collinear

space or in_ert!al frame components of a v_ector or tensor an@onfiguration under the external rotation group(S8ds the
use greek indiceg, B, etc., to label Jacobi vectors. We de- two-sphereS? (this notation is explained in Appendix)B

fine the Jacobi vectors in the usual way by linking particle 1o .5, ise 4 rotation can only change the direction of collinear-

to 2, then these to 3, and then linking the first three 0 paryy and the final configuration is uniquely specified by a unit

ticle 4. All other choices of Jacobi vectors are related to thig,qior indicating that direction. The same fact can be ex-

choice by constant kinematic rotatiorislefined momen-  aqqeq in the language of quotient spaces, explained in Ap-
tarily). As in Ref.[1], we represent a point of configuration pendix A; the points of the orbit can be placed in one-to-one

space byQ={rsa}. correspondence with the left cosets of (80within SQ(3)

We introduce th? ¥3 matri(iesFS, Ts, andJ, defined by anq a5 proved in Appendix B, the space of these cosets is
Fsia=rlsai» Ts=FsFs, andJ=F.F, respectively, where the <,

t superscript is the matrix transpose dmell,2,3 stands for

X,¥,z. These are the obvious generalizations of E@s?), , SQB)

(2.8), and(2.11) of Ref.[1] to the case of four particles. The S :m- 2.1
matrix Fg simply contains the three Jacobi vectors in its three

columns and therefore it labels a point of configuration spaceinally, if Q is the four-body collisior(all three Jacobi vec-
equally as well as the symb@. We call T the moment tors vanish, then the isotropy subgroup is all of &%) and
tensor and) the Jacobi dot product tensor, the latter becauséhe orbit is just a pointthe four-body collision itse)f
Jup=Tsa'Tsg- As in Eq. (2.9 of Ref. [1], the moment of Next we introduce kinematic rotations and their action on
inertia tensorwith respect to the space frajnigl is related  configuration space. The kinematic group, which wagZ0

to the moment tensor bylg= (tr T¢)I—Ts. As proved in Ref.  in the three-body problem, is $8) in the four-body prob-
[13], the three(necessarily non-negativeigenvalues offs  lem. As an abstract group, the kinematic group is the same as
and those ofl are identical. We call these three eigenvaluesthe external rotation group, but the action is differentKif

N1, Ay, and\s; they are related to the eigenvalues of the e SO(3), then the action oK on Q=1{r,,} is given by
moment of inertia tensofq,u0,13 by Eq. (2.10 of Ref.

[1]. -

A point Q={r,,} of configuration space is acted upon by Msa™ 21 Kaglsg (2.2
external rotations according tal,=Rrs,, where R -

€ SO(3), which physically represents a rigid rotation of the which is the obvious generalization of EQ.2) of Ref.[1].
four-particle system. We will write this aQ'=RQ for e will also write this axQ’' =KQ; in terms of theF, ma-
short; see Eq2.1) of Ref.[1]. As in that paperR (in italics)  tix, the action (2.2) is F.=FK" In these equationsK
stands for an element of $8) as an abstract group a(in  stands for an element of $8) as an abstract groufs, for the
sans serjf stands for the correspondingx® matrix. In  corresponding % 3 matrix, K,z for the components of this
terms of the matrixs, the action of external rotations can matrix, andK! for the transpose of this matrix.

also be writterF¢=RFs. Two configurations are considered  The orbits of the kinematic action on configuration space
to have the same shape if and only if they are related byre discussed in Appendix C in order not to interrupt the flow
some proper external rotation. The description of rotatiorof the presentation. However, the reader may wish to return

orbits, fibers, and the fiber bundle can be taken over from they Appendix C after reading Sec. IV below, on the kinematic
three-body casgl] almost word for word, but here we will  orbits in shape space.

take the opportunity to introduce and exemplify the language
of group actions, orbits, and isotropy subgroups, which is so
important for understanding the four-body problem. This
language is explained in Appendix A. Shape space is the space in which a single point repre-
The different cases are summarized in Table I. If the consents an entire external rotation orbit in configuration space.
figuration Q is noncollinear, then the only rotation that In the three-body problem, shape space is the quotient space
leavesQ invariant is the identity, so the isotropy subgroup atR®/SO(3),which is one-half of®; this fact was not proved
Q is just the trivial subgroudl} containing the identityl in Ref. [1] because it was assumed to be familiar to most
e SO(3). Inthis case, the points of the orbit can be placed inreaders who have worked with three-body problems. In the

lll. SHAPE SPACE IN THE FOUR-BODY PROBLEM



PRA 58 INTERNAL SPACES, KINEMATIC ROTATIONS, AND . .. 3721

four-body problem, shape space is the quotient space 14
R%/SO(3),which turns out to b&i®. It is not entirely trivial
to prove this, but a complete and careful proof is given in
Ref. [13]; see also the work of Kuppermaig,3], who has

considered many of the same issues treated in [R&f. V>0
To say that shape spaceli§ means that there exists a set

of six shape coordinates, each of which ranges frem to

+00, such that there is a one-to-one correspondence between Planar Shapes

shapes(that is, external rotation orbits in configuration V=0

spacé and coordinate sixtuplets. In the literature it is popular
to use other coordinate systems, usually containing some
kind of hyperspherical angles, which of course have finite
ranges. Such coordinates are potentially useful for numerical V<o
integration schemes, but usually are not so convenient for :
understanding the global topology and structure of shape
space. This is mainly because when the angular coordinates
are at the ends of their ranges, they are not usually in one- FIG. 1. The six-dimensional shape space for the four-body prob-
to-one correspondence with shapes and the boundaries &M may be visualized by taking slices at constngiving a series
these ranges correspond to surfaces in shape space whéfdive-dimensional hyperplanes. The hyperplafe0 contains the
different regions of that space join continuously to one an-Planar shapes.

other. Thus it takes some extra effort to understand topologi- S )

cal questions in such a coordinate system. For this reasofiix independent components; the following linear combina-
we will begin our discussion of shape space with coordinate§ons of these components are convenient parameters:

that make it evident that shape spacéifs

The theory of these coordinates is given in full detail in W=rg+ro+ra, We=vrg e,
Ref.[13]. This theory relies on two theorems, proved in Ref.
[13]. The first states that if two configuratio® and Q’ wi=(V312)(r4—r%), Ws=V3rgrg, (3.3
have the samd tensor, then they are related by either a
proper or an improper rotation. As we will sa@, and Q’ Wo=V3rg T, Ws=(1/2)(—rZ—ri+2r%).

have the same shape modulo chirality. Theensor is a

3X3, symmetric non-negative definite matrix. The secondNote thatw=trJ=p?, wherep is the hyperradius, and that

theorem states that every<®, symmetric non-negative defi- (w,,...,ws) specify the symmetric, traceless part &f In

nite matrix is theJ tensor for some shape. More precisely, these equations,=|rs,|.

the second theorem states that if such a matrix has nonzero The six quantities\y;w,,...,ws) can be used locally as

determinant, then it corresponds to precisely two shapes @foordinates on shape space for the four-body problem, but

nonzero volume and opposite chirality, whereas if its deterare not suitable globally, for three reasons. First, they do not

minant is zero, then it corresponds to precisely one shape @fistinguish shapes related by chirality; second, there are val-

zero volume, that is, a planar shape. ues of these coordinates that are not physically meaningful
We will not prove these theorems here, but simply notebecause they correspond domatrices that have negative

that they are believable on several grounds. First, from theigenvalues; and third, the ranges of the coordinates that

definition of J, it follows that specify the boundaries of the physically meaningful region
o are not independent of one another.
detJ=V~, 3.1 These difficulties are analyzed in detail in Ré¢i3],

. . . , . where it is shown that an alternative coordinate set
whereV is the signed volume contained in the parallelepiped,,,. I Il the oroblems listed. In th rdi-
spanned by the Jacobi vectors, (Viwy, .. Ws) §o ves all the problems listed. € coo

nate systemV;w,...,ws), all six coordinates range from
V=detFs=rg-(roXrg). (3.2 ~ — to +o and coordinate sixtuplets stand in precisely one-
to-one correspondence with shapes. These coordinates are
We will refer to shapes of positive or negative volume asprobably the best for understanding global topological ques-
shapes of positive or negative chirality, respectively, becaustons in the four-body shape space, although for other pur-
the spatial inversion operation, which takés,,! into poses other coordinate systems are nedded will be in-
{—rs,} Or Fginto —F, also takes/ into —V. troduced below
Next, it is not hard to see for the four-body problem that For example, we can visualize four-body shape space as
knowledge of thel tensor implies knowledge of the shape, illustrated in Fig. 1, in whictR® is decomposed into slices of
modulo chirality, because from the Jacobi dot products ongonstantV, each of which isR®, a five-dimensional hyper-
can find the dot products of the vectors connecting the parplane. TheV=0 slice is the hyperplane containing the planar
ticles and from these the interparticle distances. Howevershapes of zero volume, which separates the relio® of
the interparticle distances determine the shape of a tetrahehapes of positive chirality from the regidf<0 of shapes
dron modulo chirality. of negative chirality. Incidentally, this shows immediately
These theorems suggest that we seek a parametrization tfat in the four-body problem, one cannot pass continuously
theJ matrices. Since such matrices are symmetric, they havifom a shape of positive chirality to one of negative chirality
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without passing through a planar shaf@efact that can be trary. Our papef13] explains the group theory of the trans-
seen in other ways (This statement does not hold for ~ formation(4.1) (why it contains the”=2 irreducible repre-
>4.) The volumeV corresponds most closely to the areasentation, efc A different approach that reaches similar
coordinatew; in the three-body problerthere the analogy is conclusions has been given by Kupperm§#j3g|.

stronger for the planar three-body problem, in whighcan To visualize the action of the kinematic group on shape
take on negative valugsnd the coordinatesn(,...,ws) in  space, we first note that the volurieis a kinematic invari-
the four-body problem are analogous to the coordinateant, V’=detF.)=detFK")=detF,=V, since deK=1.

(wq,w,) in the three-body problem. Therefore, the kinematic orbits are confined to the five-
dimensional hyperplane®/=const illustrated in Fig. 1.
IV. KINEMATIC ORBITS IN SHAPE SPACE Within one of these hyperplanes, the five coordinates

(wq,...,wg) transform linearly under kinematic rotations, as
An idea developed by Zickendraf] and apparently re- was just mentioned; these coordinates by themselves indicate

discovered several times since is to use the Euler angles i€ Shapes through which the kinematic orbit passes $ince
the kinematic rotations and some set of kinematic invariantsS 91ven- Equivalently, thd tensor by itself identifies a shape
as coordinates on the shape space for the four-body problefil? @ constanV’ slice sinceV determines the chirality.

In light of the discussion of Appendix A, this idea obviously ~NOW letq be a point in one of these hyperplanes, corre-
involves the decomposition of shape space into the orbits gfPonding to somd matrix, and consider the kinematic orbit
the kinematic group. In this section we will examine the Passing throughg. Since every symmetric matrix can be
action of the kinematic group on shape space in detail. wéiagonalized by some orthogonal transformation, there cer-
first set up a suitable section of the kinematic fiber bundid@inly exists a point on the kinematic orbit with a diagodal
(this concept is explained in RefL]), consisting(within an matrlx.. However, it follows _from E_q(3.3) that the dlagona!

RS hyperplane at constam) of a 60° sector in thav,-ws J.matnges lie on the two—Q|menS|onaI subspace of thg five-
plane, what we will call the principal sector. Next we classify dimensional hyperplane given by,=w;=w,=0, that is,

the kinematic orbits themselves and show that they depen@ thew:-ws plane. Therefore, every kinematic orbit passes
on whether the shape is an asymmetric top, a symmetric topirough thew;-ws plane. On this plane, th& matrix is di-

or a spherical top. Finally, we examine the kinematic orbitagonal,
for the asymmetric top in some detail because it is a space

that is more difficult to visualize than the others. We call this

space the kinetic cube because it can be represented bysg the three Jacobi vectors, are orthogonal there and,

cube in certain coordinate systems, with certain “gluing—;2  also, according to Eq(3.3), the eigenvalues are re-
rules,” that is, identification of points on opposite faces.  |5ia( to the thav coordinates by

J:diag)\l,)\z,)\s), (42)

A. A section of the kinematic fiber bundle Wy =(V3/2)(A1—\p),

We _beg|n by constructing a sunab]e section of the kmg- Ws=(1/2)(— Ny — Ao+ 2\3). 4.3
matic fiber bundle, that is, a surface in shape space that in-
tersects each kinematic orbit at one point. The kinematic The analog of thav;-ws plane(at fixed V) in the four-
action on configuration spade,=F¢K" for Ke SO(3) im-  body problem is thav, axis (at fixedws) for the three-body
plies a certain kinematic action on shape space. This action @groblem; equivalently, the analog of the three-dimensional
captured by the transformation law for tlletensor under w;-ws-V hyperplane in the four-body problem is thg-w;
kinematic rotations, plane in the three-body problem. We recall that the latter
. . plane in the three-body problem is the one upon which the
J'=KJK, (4.) 2% 2 J tensor is diagonal and that each asymmetric top ki-
nematic orbit intersects that plane at two points; for this rea-
which follows from the definition of] and implies that the o we had to take a subset of that plamg %0 for the
old and new coordinatesn;(w,...,Ws) under a kinematic pjanar three-body problenn order to obtain a section of the
rotation are related by a linear transformation. In fagt, kinematic fiber bundle, that is, a surface that is intersected
=p’=trJ is invariant under kinematic rotations and only once by each kinematic orbit. We will now see the
(wy,...,.ws) transform according to the’=2 irreducible  analogs of these facts for the four-body problem.
representation of S@), precisely as quadrupole moment e return to the four-body problem. All kinematic orbits
tensors transform under ordinary rotations. The 2 irre-  intersect thew,;-ws plane at least once, but in fact most of
ducible representation is five dimensional and the matrix repthem pass through this p|ane more than once because differ-
resenting the transformation of the coordinateg (.., Ws)  ent diagonal matrices can be achieved by permuting the ei-
is just the usuaIDfnm, matrix or rather this matrix reex- genvalues. As a first case, suppose all three eigenvalyes
pressed in a nonstandard basis. The nonstandard basis is came distinct(an asymmetric top Then there are 3+6 dis-
venient for present purposes because the u@mterical  tinct diagonal matrices that can be obtained by applying ki-
basis is complex. The particular linear combinations showmematic rotations to a givehmatrix, according to Eq4.1).
in the definitions of Wq,...,ws) in Eq. (3.3 were chosen to Therefore, the kinematic orbit passing through any asymmet-
be real and so that the transformation maftitke five- ric top shape intersects the;-ws plane in six points. Next,
dimensional irreducible representative of S0 would be if two of the eigenvalues are equal and the third distifact
orthogonal. Apart from that, the choice was essentially arbisymmetric top, either oblate or prolate¢hen there are three
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distinct permutations of the eigenvalues and each kinematic Ws
orbit passes through the;-ws plane at three points. Finally,
if all three eigenvalues are equa spherical top the kine- v I
matic orbit intersects the/;-wsg plane at just one pointhe 0O o
orbit is that one point x x

To obtain a useful section of the kinematic fiber bundle, vox x I
we require a surface that intersects each kinematic orbit only wr
once. Taking first the case of asymmetric tdpl three ei-
genvalues unequalwe can achieve a unique diagodaha- / \
trix by requiring that the eigenvalues be in a descending p P
order A ;>\,>\3=0. However, by Eq(4.3), we see that a S
A1>N, whenw;>0 and\,>\ 3 whenws<—w, /v3. These
conditions restrict us to the region labeled | in Fig. 2, a 60° b0
sector lying between polar anglés= —90° and = —30°. _ _ o _
We will call this region theundamental sectaand take it to FIG. 2. The section of the kinematic fiber bundle is setthe
be the section of the kinematic fiber bundle in the four-body/Undamental sectgiin the wy-ws plane. The interior of this sector

contains asymmetric tops; the six intersections of an asymmetric

problem. Also illustrated are five other sectors, labeled ”_top kinematic orbit with thav,-ws plane are labeleek. The radial

Vi, in Wh'Ch the ordering of t.he eigenvalues is permUted'half lines labeledP or O contain, respectively, the prolate and
The point marked by a cross in the fundamental sector reRsp|ate symmetric tops. The three intersections of an oblate symmet-
resents an initial point on an asymmetric top kinematic orbitiic top kinematic orbit with thev,-ws plane are labeled «; similarly
and the other points labeled by a cross, one in each sector,labels the prolate symmetric tops. The spherical top is at the
represent the other intersections of that kinematic orbit withorigin.
the w;-wg plane. One can show that such points are related
to one another by reflections in tve; axis and in the two ody problem, see the end of Sec. Il of Ref}). The analog
linesws=*w, /V3. of thls_ region for the four-body problem is the three-
Next we note that as we approach tive axis (the line dimensional wedgé5>§ R, thg Cartesian product of the fun-
w,;=0) from within the fundamental sector, we achieve adamental sectds in Fig. 2 with R, the Iatte_r representlng the
shape for which\;=\,>\4, which is an oblate symmetric Volume (-<V<=). The wedgeSXR is otherwise the
top (because these conditions imphg> w,= ). Thus the ~SPace of kinematic invariants; we will say more about it be-
negativews axis is a half line of oblate symmetric tops, as low.
are the other two half lines in the figure label@drotated by
+120° from this one. An oblate symmetric top shape is in- B. Kinematic orbits in shape space
dicated by a closed circle, as are the other two intersections Next we examine the nature of the kinematic orbits,
with the w;-ws plane of the kinematic orbit passing through which are generated by allowing all kinematic rotations to
this shape. Similarly, as we approach the limg=  act on points of the fundamental sectorcluding its edges,
—w; /v3 from within the fundamental sector, we achieve theif we want the symmetric and spherical top#/e do this by
condition A;>\,=\3, which defines a prolate symmetric first finding the isotropy subgroups for the various cases.
top (because these conditions imply,;<u,=pu3z). The  SinceV is fixed, a shape is uniquely identified by tde
three half lines labele® in the figure, related to one another tensor, which transforms according to E4.1). It suffices to
by 120° rotations, are the half lines of prolate top shapesfind the isotropy subgroups for points on the section since
The asterisk in the figure represents a prolate symmetric toghe isotropy subgroups at different points on an orbit are just
shape and the kinematic orbit passing through this shapeonjugate subgroups and are identical as abstract giseps
intersects thav,-wsg plane in two other points, also labeled Appendix A). Therefore, we choose a point on the section,
by an asterisk. Finally, the origin of the;-ws plane is a whereJ is diagonal and the eigenvalues are in descending
spherical top(all three eigenvalues equathe orbit of this  order. The different cases are summarized in Table IlI; we
point intersects thev,-ws plane in a single pointthe origin  now discuss the cases in detail.
itself). We begin with the asymmetric tops. Since all eigenvalues
The general picture of the kinematic section presented bgre unequal, there are only four kinematic rotations that
Fig. 2 is independent of the value 9f but if V=0 there is leaved invariant under the transformatiqd.1), namely, the
one further comment. In this case, siné&=\;\,\; and the  proper orthogonal matrices that are diagonal. These matrices
(necessarily non-negatiyeigenvalues are in descending or- form a group that we denote by,,
der in the fundamental sector, it follows that=0 in this ) o ) )
sector. This means that on the half line of prolate shapes at TABLE Il. Orbits and_thelr isotropy subgroups for the kinematic
polar angle ofé= —30°, we have\;>\,=\3=0, which is action on shape space in the four-body problem.
the condition for a collinear configuration. Likewise, the
other two half lines labeledP are collinear configurations

Case Orbit Orbit dimension Isotropy subgroup

within the hyperplane/=0. asymmetric top  SCB)/V, 3 V,
For the three-body problem in space, a section of the kisymmetric top RP2 2 02)
nematic fiber bundle is the regiom; ,w;>0 of thew;-w3  spherical top one point 0 909

plane (or the regionw;>0 in the case of the planar three-
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100 /1 0 O0\/-10 0\ /-1 O
v,={[0 1 0|]|l0 -1 oflo0 1 o]0 -1 0¢, (4.4)
001 \o o -1/\o o -1/\0 o0 1

which as an abstract group is the viergrugpea,b,c}, with  the size of the whole group manifold, with certain rules for
the multiplication lawa?=b%=c?=e, ab=ba=c, etc. We identifying points on the boundaries of the region.

will also write this group as We turn now to the symmetric tops. To be specific let us
take a prolate symmetric top, whodeensor on the section
Va={1,K1(7),Ka(m),Ka( )}, (4.9  nas the form
where the notation indicates rotations about the1,2,3 J=diag A1, A5 \>), 4.7

“axes” by an angle ofw [as matrices, these are the same as

Ry(7), etc., but the notation is changed to indicated that theyhat is, with\,=\5. When this] is acted upon by kinematic
are used as kinematic rotatidn3he viergruppe is the isot- rotations according to E4.1), the proper orthogonal matri-
ropy subgroup of the kinematic action on an asymmetric tojresK that leave it invariant have the form

and therefore the kinematic orbits for asymmetric top shapes

are copies of (diffeomorphic t9 the quotient space o 0 0

SO(3)N,. This quotient space is a three-dimensional space K=| 0 Sy Sp, 4.9
with a nontrivial topology, which is analyzed in more detail

below. 0 Sun S»

For now, however, we simply comment on the analog of > ; ;
the space S(3)/V, for the three-body problem. In the three- wheres (the 2x2 matrix on the lower diagonabelongs to

body problem. action of the kinematic grofisee Eq.(2.6) O(2) and c=detS=*1. Such matriceK form a faithful
of Ref.[1]] on an asymmetric top has a two-element isotrop representation of (2), so the isotropy subgroup is(2) as an

Yabstract group. A similar argument applies to oblate symmet-
tsﬁbgm;p“t’h_ I}:[;Na Slfbgroutp of S@). As ‘iﬂ absltt(alc;t gtr'oup, ric tops; the isotropy subgroup is agaif2pas an abstract
IS '5’2/ 2, (N€ two-elemen gro_u{;e,a} with muftiplication group. Therefore, the kinematic orbits of symmetric top con-
law a“=e. The kinematic rotation-1e SO(2) corresponds

to a kinematic angle o= 7 in the language of Ref1] and, figurations are copies of the quotient space

as indicated in Fig. 3 of that reference, the period of the SO3)

kinematic orbits in shape space ¢s= 7. The orbits them- WIRPZ, (4.9
selves are circles, that is, copies®t From another point of

view, these orbits should be copies of the quotient spac§here the identification witfRP2 (and the notation for the
SO(2)/Z,, as indeed they are, since &Ditself is the circle gz projective spacBP?) is explained in Appendix B.

S', and the quotient operation in question is equivalent t0 | three-body scattering problems, it is well known that
identifying antipodal points on the circlgoints with coor- there are three exit channels that can be associated with three
dinates¢ and ¢+ ). That is, the quotient space is the real points on a circle. This circle can be identified as a kinematic
projective spaceRP*, which otherwise is a circle again, orbit in the three-body shape space of an asympige
since it is the same as a half circle with end points identifiedhyperradiug collinear state, that is, a large circle centered on

Altogether, we have the origin in thew;-w, plane. The kinematic rotations that
sq2) s connect the points on this_circle are the same ones tha}t con-
= —Rpl=gt (4.6 nect the three usual choices of Jacobi coordinates in the
Zy 7y three-body problem, each of which is particularly convenient

for the kinematic orbits of asymmetric tops in the three—bodyforlgeasl cglrte)br}guassyr/)rggltiggg osrﬁgsv\llg zgsee)élttu((:j?: g rt]ﬁzle' Wo-

prokk))_lem. 't_'hOV\:fV?r'.mla sgnser':_hi f_mal C|r83e|fs onl_y h‘;l]f t fragment exit channels and the kinematic rotations connect-
as big as the first circle 30), which is a way of saying tha ing them in collinear four-body scattering problems. In that

the period Of. the Kinematic orblts. in shape space iastead work it was found that there are 14 two-fragment exit chan-
of 27. In a similar manner, we will see below that the space

. e : i : nels, which can be arranged as points on a certain sphere
SO(3)N, can be identified with a region of S8) that is 1/4 (S?) and connected by kinematic rotations. The arrangement

of points is particularly symmetric in the case of equal
masses. Refereng#0] generalized the well known facts just
> > mentioned regarding three-body exit channels, although it
was still restricted to collinear problems. It turns out that
when we extend the work of Ref10] to four-body scatter-
ing in three spatial dimensions, the 14 exit channels become
FIG. 3. The fundamental region for tessellating the plane is noseven pairs of antipodal points on the same two-sphere as in
unique. Similarly, the fundamental region within @Drepresent- the collinear case. Equivalently, these seven pairs of antipo-
ing the quotient space $3)/V, is not unique. dal points can be seen as seven points in the sfde
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TABLE lll. Spaces of different kinds of tops in the four-body initial point, the other thre&’s will also sweep out small
problem. The first in each entry in column 2 stands for the vol- regions about their initial points. As we increase the size of
umeV, which ranges from- to +. For the asymmetric top, the - yegjon swept out byK,, it will eventually bump into the
spaceS is the 60° principal S(_actor in tmza/l-w5 plane (interior regions being swept out by the oth€s. When this happens,
only). There are two symmetric top regiofsblate and prolale o o6 moving in that direction, but continue to expand the

both described by the second line; the sphdeis the set of posi- initial reqion in directions that are not vet covered by th
tive numbers, standing for the radial lines at the edges of the prin- al regio ections that are not yet covered by the

cipal sector(omitting the origin. For the spherical tops, the nota- other K,S' We keep this up until the entire group, manifold
tion R® stands for a single poirithe first indicating the vertex of the SO3) is covered by onéand only ong of the fourK's. The
principal sector and the second indicating that the kinetic orbit ig'€gion covered byK; will then be 1/4 of the entire group

just a single point manifold and can be taken as a “fundamental region” for
representing the space of cosets. Then points in the funda-
Top Space Dimension mental region stand in one-to-one correspondence with

points of S@3)/V,. One must be careful with boundary

asymmetric RXSX ?O(S)Qﬂl 6 points, however, because there will be gluing rules indicating
symmetric RXR OXR'E 4 how boundary points are to be identified in order to represent
spherical RXR"XR 1 a unique point of the quotient space @M/V,.

The construction just given can be described by saying
that we have tessellated 8 into four identical pieces that
which because of Eq4.9) is now recognized as the kine- fill up the whole group manifold with no overlap. For com-
matic orbit of a symmetric top. Symmetric top orbits appearparison, we note that the ordinary tessellation of the plane by
here because two-fragment asymptotic states are collineghit squares can be regarded as the process of replicating the
and therefore prolate symmetric tops. fundamental regior(a given unit squadeby the group of

Finally, in the case of a spherical top, tietensor is a integer displacements in theandy directions and that the
multiple of the identity matrix, so all kinematic rotations fundamental region itself can be regarded as the quotient
leave J invariant according to Eq(4.1). In this case, the space resulting from dividing the plane by this group. This
isotropy subgroup is all of S@) and the kinematic orbit is example also makes it clear that the fundamental region is
Just a point. not unique; two possible fundamental regions are illustrated

Altogether, we find that a five-dimensioniat slice of the  in Fig. 3, which differ from one another in that some territory
four-body shape space at constsntan be decomposed into has been borrowed by the fundamental region from its neigh-
the product of the interior of the fundamental sed@r60°  bor on one side and symmetricallynder a group operation
sectoy times the space S3)/V,, plus two copiesoblate  abandoned on the other side. The situation is similar with
and prolatg of a radial half line(the two sides of the funda- SO(3)MN/,; the fundamental region is not unique, but can be
mental sectartimes the spac&P?, plus a single poinfthe  defined in many ways. The tessellation of the plane illus-
spherical top. All these are glued smoothly together to form trates another point, which is that while the fundamental re-
R5. This decomposition applies in particular to the hyper- gion (say, a unit square in the planepresents the quotient
plane of planar shaped/E0), so the collinear configura- space point for point, it does not accurately represent the
tions, which lie in this hyperplane, can be represented as #pology of the quotient space, unless some gluing rules are
single radial half line times the spad&P2. Counting the adopted. For example, points on opposite sides of the funda-
dimension contained in the volumg we see that the space mental square represent only one point in the quotient space
of asymmetric tops is six dimensional, that of symmetricand points near points on opposite sides, while not close to
tops is four dimensional, and that of spherical tops is onene another in the plane, actually are close to one another in
dimensional. These spaces are summarized in Table Ill. Fthe quotient space. Therefore, we must glue opposite sides of
nally, the space of collinear shapes is three dimensional. the fundamental region together to represent the topology of
the quotient space accurately. In this way, we see that the
o quotient space is actually a two-torus, a compact manifold

C. Space S@3)/V, the kinetic cube with no boundary. Similarly, S()/V, is a compact, three-

We now analyze more closely the kinematic orbits ofdimensional manifold with no boundary.
asymmetric tops, which are diffeomorphic to &)/V,. In earlier work[11], one of us(M.R.) has shown that in
This is otherwise the space of left cosets Vf [in the  coordinates we calk=(r,,7,,73), the fundamental region
3X 3 representatiofd.4)] within SO(3), that is, the space of of SQ(3) is a cube. We will call this space the kinetic cube.
sets of proper orthogonal matrices of the formRecently Kuppermanf3] has also identified the fundamen-
(K1,K2,K3,Ky,), where theK's are related byK;=K;V for  tal region as a cube in Euler angle coordinates. These two
someVeV,. To repeat the logic that leads to these cosetscubes in the respective coordinate spaces do not represent the
all four of these kinematic rotations have the same effect oisame region on S@) because the mapping between the two
a diagonal asymmetric tapmatrix according to Eq4.1), so  sets of coordinates is nonlinear and a cube in one coordinate
any one of the four serves to label points on the asymmetrispace does not map onto a cube in the other. It must be that
top kinematic orbit. To reduce this to a description involvingthe two corresponding regions on the group manifold are
only a single matrix, we proceed as follows. We start withrelated to one another as are the fundamental regions in Fig.
one value ofK;, from which the three otheK’'s can be 3, but we have not attempted to prove this in detail. Kupper-
determined, producing altogether four points insidg3af mann’s fundamental region is given by=@y, 8, y<  in the
we allow K; to range over a small region surrounding theusual («,8,y) Euler angle coordinates; actually, the corre-
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sponding region on S@) is not a smooth distortion of a
cube because the anglesand y are not unique wherB
=0,7 (only a+ vy has meaning wheg=0 and onlya— vy
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Equation(4.11) is most easily proved in terms of spinor
rotations, that is, elements of &). We call on the follow-
ing basic facts connecting %8 and SU2). Corresponding

wheng= ). In effect, two faces of Kuppermann’s cube areto every R(n,¢) e SO(3) there are two spinor rotations in
pinched into a line. , | SU(), U(n,6) and U(n,6+2m), which differ only by a

Kuppermann’s cube construction makes it easy to see th%‘ign. These are defined by
the fundamental region is in fact 1/4 of &), but makes it
hard to determine the gluing rules at the boundaries of the
region and hence the topology. Another difficulty is that
Kuppermann’s cube positions the identity rotation at a corner
of the fundamental region, instead of in the center; this in
particular makes it hard to study the &psubgroup of ro-
tations about thex axis, which is important for the connec-
tivity of the principal axis frame. These difficulties are re-
lated to the usual drawbacks of the Euler angles as
coordinate system on $8) [the three angles are unsym-
metrical among themselves, some angles are undefined at t
end points of the ranges, the coordinate system is singular at
the identity element, and §@ subgroups do not have a
simple representatign

The 7 coordinates are better for these purposes. Thes
coordinates are defined as follows. We parametrize a prop

rotation by its axis1 and angles, denoting the corresponding
matrix by R(n, 6). The axisn ranges over the unit sphes?

and the angle range is<09<. Points f1,6) stand in one-
to-one correspondence wiRe SO(3), except whend=0,

where R(n,0) is independent ofi, and except ford=

whereR(n,7)=R(—n, ). Thus, if we writedn as a vector oA
in R®, we see that S@) can be identified with a region that approach m, writing n,=e and making the notational
is the solid interior of a sphere iR® with radius ofm, with ~ changesr,— 7 and7— 7. Then we have

antipodal points on the surface of the sphere identified. This
is the standard construction that makes it clear that350
diffeomorphic to RP® (the “northern hemisphere” ofs®
with gluing rules at the “equator”; see Appendix)BThe
identity matrix is at the origin and the $2) subgroups rep- This is the equation we must use when right multiplying by

resenting rotations about an axisire represented by straight elements oV, [see Eq.(4.4)] since these contain rotations
lines passing through the origin and connecting antipodalPy an angle ofm.
points on the surface. In particular, the @Dsubgroups of It is now straightforward to show that the cubel
rotations about the, y, andz axes are just the three coor- <71,72,73<+1 in 7space is the fundamental region for the
dinate axes irgn space. quotient operation S@)/V,. In detail, this involves show-
In terms of this construction, thecoordinates are defined N9 that if K(7) lies in the interior of the cube, then the other
by three rotations of the forr{V for V e V, lie outside the cube
and if (K{,K,,K3,K,) are any four rotations related by right
multiplication by elements o¥,, that is,K;=K;V for some
VeV,, then at least one of them lies either in the interior or
on the surface of the cube. The proof of these facts using Eq.

The mapping fromon space tor space pushes the surface of (4.19 is straightforward gnd will nqt be given here', partly
the sphere to infinity; thus points efspace stand in one-to- Pecause a more compelliigeometrical argument will be
one correspondence with rotations, except whenr; such ~ 9iven momentarily. In any case, the regigm|<1, i
rotations are not representedsrspace. The main advantage = 1,23, is the kinetic cube in thecoordinategsee Fig. 4.

of the = coordinates is that is it relatively easy to find the The identity e SO(3) is at the originr=0 and rotations

coordinates of the product of two rotations, given the coor2bout thex, y, andz axes run along the, 7,, and 7,
dinates of the two rotations themselves. ExplicitlyRfz)  coordinate axes. These rotations hit the walls of the cube at

=R(7)R(7), then anglesf= = 7/2 and puncture its six faces in their centers.
On the boundaries of the cube, there is more than one
point corresponding to a given coset, which is to say that
there are gluing rule@dentifications of points on the bound-
ary) that are needed to make the correspondence one to one.
The analogous formula in Euler angle coordinates is quitéConsider first the face atr;=—1. When a point =
unpleasant. =(71,72,—1) on this face is right multiplied by;(w),

=cos§—|(n- G)Smf

(4.12

- ion-o
U(n,8)=exp — 5

0
=COS§(1—iT~ o), (4.13
#hereo are the Pauli matrices. To find thee SO(3) asso-
ﬁieated with a giverlJ e SU(2), we may use thiormula

1
Rijzitr(uwiuaj). (4.14
fh the expressiot(n, ), n ranges over the unit sphes?
nd 0<p<2m7. The correspondence between (8JJand
SQ(3) given by Eq.(4.14) is a group representation, that is, if
U, and U, correspond toR; and R, by Eq. (4.14), then
U,U, corresponds t&R;R,. Finally, Eq.(4.1]) follows eas-
ily by multiplying U(n;,6,) andU(n,,6,) and using Egs.
(4.10 and (4.13.
We return to Eq(4.11) and allow the second angt to

e+ rxe

(4.15

7= =
7€

N 0

=N tani. (4.10

B ’Tl+ 72+ ’Tlx T

(4.11

1-7'm
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FIG. 4. The fundamental region of $8)/V, is the cube| ;|
<1 in the 7 coordinates.

corresponding t@=(0,0,1), then according to E¢4.15 it

is mapped onto£,,— 74,1). That is, the face at;=—1 is
mapped onto the face ag=+1 with a rotation by angle
— /2 about ther; axis. In reference to Fig. 5, we see that
the faceABCD is identified with the fac& GHE. Precisely

analogous statements apply to the other axes and produce t

identificationSAEFB=HGCD andBFGC=EHDA. These

rules in turn imply an identification of the edges, which are

identical in triplets; these ardB=FG=HD, BC=GH
=EA, CD=HE=FB, andDA=EF=GC. The edge iden-

tifications are indicated in Fig. 5 by the numbers 1,2,3,4°
with arrows indicating the directions. Finally, the vertices are

identified four at a time, witA=F=H=C andB=G=D
=E.

The kinetic cube acquires an interesting and highly sym-
9 g ghy sy J]‘f’ﬁ, which is tangential to the “north pole.” By comparing

metrical representation when expressed in terms of spin
rotations[that is, when “lifted” into SU?2)]. For this pur-
pose it is best to use the Cayley-Klein parameters fo{f25U
which we define by writing

(4.19

where x=(x1,X,,X3). Then the conditionsUTU=1 and
detU=1 are equivalent to3+ x5+ x3+x5=1. This shows
that SU2) is diffeomorphic toS®, the unit sphere in the

U=Xy—iX- o,

1 G
§ 2
: 4
3V *~—— 79
' 1
. 2
2 B -------- P C
71
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FIG. 6. The three-spher8® is the group manifold S(2), to
which the hyperplan&?® is tangent at the “north pole’N. The
elementU e SU(2) is projected from the origin onto the tangent
plane atP. The = coordinates ofJ are the coordinates &% in the
tangent hyperplane.

four-dimensional spac&* in which (xq,X;,X,,X3) are coor-
dinates. The identity matrix & SU(2) is at the “north pole”

ith coordinates(1,0,0,0, the “equator” with coordinates

X1,X2,X3) contains all rotations by an angle of and the
“south pole” with coordinates {1,0,0,0) is the matrix
—1eSU(2). If Re SO(3) then the twdJ matrices corre-
sponding toR according to Eqs(4.13 and(4.14 have co-
rdir;ategxi} and{—x;}, that is, they lie on antipodal points
of S°.

Now consider the construction illustrated in Fig. 6, in
which a pointU e SU(2) (a point onS°®) is projected(as
seen from the originonto the three-dimensional hyperplane

Egs. (4.13 and (4.16, we have xp=cos@2) and x

=n sin(¢/2) for the coordinates o), in terms of the axis
and angle. By scaling the four-vectaxy(x) by 1/cos@/2),

we obtain a point on the tangent plane with coordinétes),
where 7 is given by Eq.(4.10. Thus we see that the
(71,72,73) coordinates of a rotation are the same as the
Cayley-Klein coordinatesx,x,,Xs) in the R® hyperplane
tangent to the north pole. This makes it obvious why the
coordinates diverge for rotations by an anglemfbecause
the correspondingy matrices are on the “equator.”

Now it is easy to see what spinor rotations correspond to
the kinetic cube. We simply construct the cupg|<1, i
=1,2,3, in the hyperplane tangent to the north pole and then
let a point such a® in Fig. 6 run over the interiofor face$
of this cube. As it does, the poitit in the figure fills in the
region(or its boundaryin SU(2) in which the coordinates
have the specified ranges. This region is centered on the
north pole. There is an antipodal but otherwise identical re-
gion centered on the south pole; taken together, these two
regions constitute the lift into S@) of the kinetic cube in
SQO(3), that is, the set of spinor rotations that project onto the
kinetic cube according to Ed4.14).

The meaning of these regions$i is made more clear by
Fig. 7, which is a sphere inscribed in a cube and is supposed
to suggest the three-sphe®&inscribed in the four-cubéhe

FIG. 5. Opposite faces of the kinetic cube are identified with alatter being the unit cube in four dimensignghe four-cube
/2 rotation. Similarly, edges are identified in triplets and verticesis described byx|<1,i=0,1,2,3, and the inscribed three-
four at a time. The arrows indicate the direction of identification of sphereS® is tangential to the faces of this four-cube at eight
the edges. points, where the four coordinates take on the vatiéson



3728

FIG. 7. A two-sphere inscribed in a three-cube suggests a thre

sphereS? inscribed in a four-cube. The four-cube has eight faces,

£

each of which is an ordinary three-cube, which project onto eigh
identical regions ofS®. These regions can be identified with the

coset space S2)/Vg, which is the same as the coset space

SO(3)N,, the kinetic cube.

the four coordinate axes. The eight faces of this four-cu
are ordinary three-cubes, of which the kinetic cube in th
tangential hyperplane illustrated in Fig. 6 is one. All eight
three-cubes are identical and share all of their fdoedinary
squares or two-cubgsvith one another. When these eight
three-cubes are projected or@das illustrated in Fig. 6, they
produce eight identical, three-dimensional region§irthat
tessellates®.
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kinematic orbits in these two spaces is important in under-
standing the connectivity of the principal axis frame, which
is our next subject.

V. PRINCIPAL AXIS FRAME

In this section we study the principal axis frame and its
multiple branches in the four-body problem. In a sense, the
analysis is a straightforward generalization of the work pre-
sented in Ref[1] on the three-body problem, but it is nec-
essary to invoke a more formal language because of the more
exotic spaces that are involved. We begin by examining the
24 branches of the principal axis frame and the “frame

roup” of rotations that connects them. Next we study how
one branch, continuously tracked around a closed loop in
hape space, may end on another branch when the shape
returns to its initial value. We show that the “frame jump”
must be an element of the viergrupple and that it has a
simple dependence on the initial branch. Next we study the
dependence of the frame jump on the loop itself. As in the

pdhree-body problem, we show that the connectivity of the
eorincipal axis frame can be determined by loops generated

from kinematic rotations alone. This leads us into the homo-
topy group of the kinetic cube, that is, the classes of topo-
logically equivalent curves, which we are able to translate
into principal axis frame jumps. Finally, we show how

branch cuts may be introduced into the kinetic cube to define

a single-valued principal axis frame and we show how the

Furthermore, these eight regions are mapped into one arq_iscontinuities across the branch cuts may be computed.

other by the eight element subgroup of @)) which is the
lift of V,, regarded as a subgroup of &) that is, those

spinor rotations that correspond to the ordinary rotations in

V, according to Eqs(4.13 and (4.14). This eight element
group is the set of spinor rotatiods: 1,= U, (), =U(m),
+=U,(m)}, which we will denote byg. It is otherwise the
quaternion group, the eight-element grodpx1,+i,*xj,
+k} with multiplication lawi?=j?=k?=—1, ij = —ji =k,

etc. It is easy to show that any one of the eight spinor rota

tions in Vg (on right multiplication simply permutes the
eight regions among themselves. Thus any one of these r
gions can be taken as the fundamental region fof3Yg.
When these regions are projected onto(®CGaccording to
Eq. (4.14), they project in antipodal pairs onto the four re-
gions in the tessellation of S@). In particular, the pair cen-
tered on the north and south pol@s the +x, axis) project
onto the kinetic cube, the fundamental region of(SpV,.

In summary, we have found another representation of th

kinetic cube as a space of cosets, this time the cosets of tkr

qguaternion group within S(@). This is indicated by the
equation

SQ3) SU?2)
V, Vg

(4.17)

This finishes our discussion of the kinematic orbits in

A. Multiple branches of the principal axis frame

As in Ref.[1], we consider the principal axis frame to be
defined only over the asymmetric top region of shape space,
where the principal axes of the body are unique apart from a
sign (their direction$ and their labelingsx, y, or z). These
ambiguities give rise to 24 principal axis frames, which is the
number of ways of orienting a right-handed frame along
three orthogonal lines. See Fig. 4 of R¢L]. These 24
frames are related by a 24-element group of rotations, gen-
rated by products and powers Bf(7/2), Ry (w/2), and
R,(7/2). We will call this theframe groupand denote it by
F,4; it is a subgroup of S@). If we pick any one principal
axis frame and apply the 24 rotations of the frame group to
it, all 24 principal axis frames are generated. It is easy to see
why there are 24 frames; since the eigenvalues of the mo-
ment tensor are distinct, there are=36 ways of permuting
them and once a permutation of eigenvalues has been se-
gcted, there remain four rotations belonging to the vier-
gruppeV,, defined in Eq(4.4), which leave the ordering of
the eigenvalues invariant but flip the directions of some of
the principal axes. The viergruppe we are referring to here is
composed of external rotations, whereas earlier it was com-
posed of kinematic rotations; as a subgroup of matrices in
SQO(3), it is the same group.

Geometrically, the 24 branches of the principal axis frame

shape space. At this point the reader may wish to examinean be seen as 24 sections of the rotation fiber bundle, that is,

Appendix C on the kinematic orbits in configuration space,

24 six-dimensional surfaces in configuration sp&ée each

which of course project onto the kinematic orbits in shapeof which cuts the rotation fiber in one point. See Fig. 5 of

space when the external orientatitthe position along the
rotation fiber$ is thrown away. The interplay between the

Ref.[1], which illustrates two of these sections. If we denote
the points of a fiber where these sections intersect it by
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Q1,...,.Q24, then these points are related by elements of the In summary, if we pick one branch of the principal axis
frame group, that isQ;=FQ); for someF e F,. frame as a reference and label the other branches by the
Now we ask what happens as we continuously track onelements of~,, that map the reference into them and if we

of the branches of the principal axis frame around a closedetermine the frame jumy e V, of the reference branch on
loop in the asymmetric region of shape space. When wegoing around a loop in the asymmetric top region, then the
return to our original shape, will we return on the sameframe jump on the branch labeled Byis FVF leV,.

branch of the principal axis frame or will there be a “jump”

to another branch? More generally, which branches are ac- B. Frame jump and homotopy classes of the kinetic cube

cessible by continuous tracking from a given initial branch? . .
Next we determine how the frame jump depends on the
Are all 24 branches connected together or only some of

them?(Actually, the word “jump” is misleading because the closed loop in the asymmetric top region. We begin with the

entire process is one of continuous tracking; if we were tobaSiC topological factdiscussed in Ref.1)) that the frame
reverse the process, we would return to the original branch.Jump must be the same_for any two closed loops th?ilt can be
In fact, it is not hard to see that the branches are Congontmuously deformed Into one another. In_algebralq topol-
nected together in sets of at most four. This is because th%gy[lz]’ two closed loops in some spa(aarting at a given

moment of inertia tensor is diagonal at all points along theoomt) are said to béomotopicor to lie in the saméiomo-

path of continuous tracking and its eigenvalues, which aréOpy classif they can be continuously deformed into one

ST . another. Thus we see that the frame jump is a function of the
distinct initially and can never cross one another during thehomotopy class that the loop in the asymmetric region of

tracking procesgbecause that would take us outside the . :
asymmetric top region must necessarily return to their shape space belongs to. For comparison, we note that in the
2 i three-body problem, the homotopy classes of the asymmetric

original shape. Therefore, the frame itself must preserve th%;]ferseg:gnclzfssg?gﬁpsggg: :rrc()eur?geﬂ(;glzgisb'ytrfgse tﬂ:n;?fr of

sequencing of the eigenvalues, so the frame jump must be- LT N
long to the viergruppe/, of matrices shown in Eqé4.4). motopy classes are labeled by a winding numiean inte

. : . r that ranges from-« to +o0. Also, we recall that in the
These matrices change only the signs of the eigenvectors . .
. . . . three-body problem, all closed loops in the asymmetric top
the moment of inertia tensor, not the eigenvalues. The vier-

gruppe(4.4) is a subgroup of the frame grotfiy,. Thus the region could be continuously deformed into kinematic orbits,
. 4.

I ) . so it sufficed to use only kinematic orbits to determine frame
only nontrivial frame jumps that can occur on continuous:;

tracking are rotations byr about one of the three principal jumps. In fact, the fr?me jump in the three-body problem
axes. This is a believable conclusion, based on experienddn€d out 10 D&R,(7)"=R,(v).
with the three-body problem, where the only nontrivial frame  R€tUrning now to the four-body problem, suppose we
jump is a rotation byr about thez axis. The question re- start at some initial poingy in the asymmetric top region of
mains, however, which closed curves in shape space givdhape space and go around some closed loop and suppose the
rise to which jumps. frame jump isV,; e V,. Then suppose we go around another
Let us precisely define the frame jump on continuouslyclosed loop, again starting frogy, and suppose we find the
tracking the principal axis frame around a closed loop in thdrame jumpV,. Then according to the discussion in Sec.
asymmetric top region of shape space as the rotation that A, the frame jump on going around both loops in tandem
maps the initial frame into the final frame or, equivalently,is (V,V,V; )V;=V,V,. However, in algebraic topology
the initial configurationQ; (a branch of the principal axis [12], the catenation of two loops is regarded as the product
frame to the final oneQs, both on the same rotation fiber. of the loops and it is shown that this product respects homo-
The frame jump must be an element\of, in the represen- topy classes(The productab of loop a times loopb, both
tation given by Eq(4.4) and it is a function of both the loop assumed to begin at the same point, is the loop obtained by
and the initial branch. going arounda first and therb.) In other words, the homo-
However, the dependence on the initial branch is easy tepy class of the product of loops is defined to be the product
determine. Suppose we choose two initial branches of thef the classes. Also, the inverse of a lo@wing around in
principal axis frameQ;; andQ;,, which are necessarily re- the reverse directiondefines the inverse class. With these
lated by some member of the frame group, RQy=FQ;;  definitions, one can show that the homotopy classes form a
whereF e F,,, and suppose that on tracking these around @roup, thefundamental groupf the manifoldM upon which
closed loop we reach the final branch@g andQ;,. Then  the loops are defined, denoted (M) in standard notation.
the frame jump of the first frame is the rotatidie V, such  For example, the fundamental group of the asymmetric top
that Q;;=VQ;1. Now the two branches, which are related region in the three-body problem % the group of integers
by F at the initial point, must be related by some member oftlwinding numbers under addition, and the fundamental
the frame group at all points along the continuous trackinggroup of any simply connected spa@aich ask® or S?) is
However, since the tracking is continuous and the elementthe trivial group{e} since all loops can be contracted to a
of the frame group are discrete, in fact the two branches mugdoint. Thus, in the language of algebraic topology, we see
be related by the sante at all points along the continuous that the frame jump corresponding to the product of two
tracking. In particular, we must ha@;,=FQ;, (at the final homotopy classes is the product of the frame jumps. In other
point). However, this impliexQ;,=(FVF 1)Q;,. Here we  words, we have established a group homomorphism between
note thatV, is a normal subgroup d¥,,, which means that the fundamental group of the asymmetric top region and the
FVF~!is a member ol/, for all Fe F,,. groupV, of frame jumps.



3730 ROBERT G. LITTLEJOHNEet al. PRA 58
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FIG. 8. By experimenting with closed curves in the kinetic cube, FIG. 9. lllustration of the class multiplication laab=c.

we can find the homotopy classes. The axes are assumed to be
aligned with the cube as in Fig. 5. The identity elemertontains identity elementK=1, goes to the center of the facg=
any curve that can be contracted.to a point. Elemants, andc — 1, which, according to the gluing rules, is the same point
run along the subgroups of rotations along the 1, 2, and 3 axegg he center of the face,=+1 and then returns to the
respectively, starting at angle 0, going to ang:rzlz, and then 40 nity element. Because of the gluing rules, this cunis
passing from_angl& W/.Z back to angle 0. Curves”, b7, andc a closed curve in the kinetic cube. It cannot, however, be
are homotopically equivalent. The homotopy classes turn out t%ontracted to a point because if we move the point on one
form the quaternion groug. . .

q grouvs face, the point on the other face must move in such a way as

y

It turns out in the four-body problem that every closedt0 satisfy the gluing rules. Thus there is no way to bring the
loop in the asymmetric top region of shape space can b0 end points together and the classs distinct from the
continuously deformed into a closed loop composed entirelglasse. The curvea consists of kinematic rotations along the
of kinematic rotations. This is the obvious generalization of ‘X axis” (that is, the 1 axis with angles decreasing from 0
an analogous fact shown in Rét] for the three-body prob- 10 — /2 and then fromt /2 back to 0. In a similar way we
lem and it shows that kinematic rotations alone suffice tgconstruct curves or homotopy classesndc, illustrated in
determine the connectivity of the principal axis frame. Inthe figure, which run along thg andz axes, respectively,
other words, one can ignore any variation in the kinematidvith decreasing angles.
invariants(the volumeV and the labelsv; ,ws of the kine- Further classes can be obtained by taking inverses, prod-
matic orbit or any equivalent set of kinematic invariants suchucts, and powers of the ones found so far. For example, the
as the eigenvalues; of the J tensoj when considering the inverse of curvea, call it —a (not shown in the figure is a
frame change around a closed loop. Only the variation in th€urve that goes in the opposite direction framthat is, with
kinematic Euler angles need be considered. Thus the fund#icreasing angles; one can show that it is not homotopically
mental group of the asymmetric top region is the same as thequivalent toa. Similarly, we obtain homotopy classesb
fundamental group of the kinetic cube[ SO(3)MV,]. and —c. The curvea?, obtained by followinga twice (sec-

This property can be understood with reference to the firsend row of figurg, belongs to yet a new homotopy class,
row of Table IIl, whereS is the interior of the 60° principal Which is distinct froma and the others mentioned so far; but
sector of the kinematic section. A closed loop in the asymit turns out to be identical tb? andc? (not illustrated in the
metric top region of shape space can be thought of as figure). We will call this class—e=a’=b?=c?. With this
combination of a closed loop in the space of kinematic in-we have found all the homotopy clasgéisere are eight
variants(the wedgeR X S), with a closed loop in the kinetic ~ The multiplication law is obtained by catenating curves
cube S@3)/V,. However, the wedge is simply connected, and continuously deforming the result. For example, we can
so the part of the loop in this spacthe variation in the show thatab=c, as illustrated in Fig. 9. In Fig.(8) we first
kinematic invariants can be continuously deformed into a start at O(the identity elemeniK=1 in the kinetic cubg go to
point, leaving only the variation in the kinetic cube. 1 on ther;=—1 face, which is the same as 2, and then

Therefore, we need the homotopy classes and the clagsturn to 0. This is curva. Next we go from 0 to 3, which
multiplication law for the kinetic cube S@)/V,. There are is the same as 4, and then return to 0. This is cbraad the
two approaches to finding these. In one approach, we stawhole journey is the produab. In Fig. (b) we continu-
drawing closed curves in the kinetic cube, paying attention t@wusly deform the product curve, retracting from 2 and 3 to
the gluing rules at the boundaries and simply experiment t@ull the middle away from 0. In Fig.(8) we have moved 1
find the homotopy classes and their multiplication law. Thedown to the middle of the edgs = 3= — 1, which, accord-
process, illustrated in Fig. 8, is not rigorous, but in this caseng to the gluing rules, forces @vhich is the same as) 1o
it is effective. The identity class consists of any curve thatmove horizontally to the middle of the edge=+1, 7,=
can be contracted to a point, such as the curve that starts atl. The curve is still traversed in the orde-ll=2—3
the identity elemenK=1 inside the cube and goes nowhere.=4—0. In Fig. 9d) we move 3 over to coincide with 2,
This is the clas® in the second row of the figure. Another which by the gluing rules forces 4 upward to the midpoint of
closed curve, labeled in the figure(first row), starts at the the edger,= 73=+1. Now all four points 1,2,3,4 are iden-
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tical. Next we contract the small loop23=2 to a point, so between S(P) and S@3), as expressed by E@4.14), re-
the history of the product loop is-81=4—0. Finally, we stricted to the subgroufg of SU(2).

move 1 to the center of the bottom face, which forces 4 to To prove this systematically, we proceed as follows. Let
move to the center of the top face. The regatie Fig. 8is  us choose a shapg, in the asymmetric top region of the
loop c. This proves thahb=c. We defined the loopa, b, principal sector of the kinematic sectigauch as the point
andc to go in the direction of decreasing angles so that thisnarked by a cross in sector | in Fig), 2vhich will serve as
result would come out. In this manner we can fill out thean initial condition for a kinematic orbit. We wish to choose
multiplication table for the homotopy classes of the kinetica principal axis frame on the external rotation fiber labeled
cube and we recognize it as the same as the quaterion groby go and then to track this frame as we follow some closed

Vg, with {*e,xa,=b,xc} identified with {x1,xi,*], curve in the kinetic cube, representing a sequence of shapes
=k} for quaterions of £ 1,=U,(7),=Uy(7),=U,(m)} for  that start and end a,. We must then find the jump in the
SU(2) matrices. frame when the curve returns tp .

A more efficient route to the same answer is to recognize To choose a principal axis frame @§, we note first that
that any closed curve in @)/V, starting and ending at the the J tensor is diagonal on the kinematic secti@ee Eq.
identity is the projection of a curve on SU(2)8° that starts  (4.2)], so all three Jacobi vectors are orthogonal there and the
at the identity 1 and ends at some point on(3What is  squares of the Jacobi vectors are equal to the eigenvalues
symmetrically related to the identity by some membevgf  A;,\>,N3. Therefore, we choose a frame specified by the
That is, the curve must end on a membeigf regarded as configurationQy={rsy.},

a subgroup of S{2). Furthermore, any continuous deforma- R ~ R

tion of the closed curve in S@)/V,, holding the starting lsp1=aiX, [rgp=azy, [lgz=azz, (5.2
point fixed, must correspond to a continuous deformation of

the curve in SIR) that does not change the starting or end-wherea?=\; anda,>a,>|as|=0. This is the analog of Eq.
ing points (because that would create a curve that was not2.23 of Ref. [1]. We letas carry the sign ofV=a,a,a;
closed upon projection Furthermore, since SU(2S® is  (the chirality, much as we did witka, in Eq. (2.36) of Ref.
simply connected, any two curves that start and end at givefil]. The set &,,a,,a3) forms a convenient choice for the
points can be continuously deformed into one anotherkinematic invariants; we note that is smooth ad/ crosses
Therefore, the homotopy classes of the kinetic cube can bigom positive to negative values. The frame given by Eq.
placed in one-to-one correspondence with the elementg of (5.2) is a principal axis frame.

and elements ofVg can be used to label the homotopy = One must not think that Eq5.2) defines a left-handed
classes. In fact, if we label the homotopy classes by the inframe whenaz<<0. It does not. In fact, it is impossible to
verse of the element dfg upon which the curve in S@@) define a left-handed frame in the formalism of this paper
terminates, then it can be shown that class multiplication isince a body frame is equivalent to a choice of a reference
equivalent to group multiplication withivg. We omit the  point on an external rotation fiber and all such points are
proof of this fact, which is straightforward. For example, therelated by proper rotations. Whexy is negative, the vector
curvea, which is closed in the kinetic cube, lifts into a curve rg3y simply points in the—z direction; the frame itself is
that starts at 1 and ends @t (— 7) in SU(2). Therefore, we always right handed.

would label curvea by the SU2) matrix U,(7) (an element To track the principal axis frame continuously as we
of V). Thus the fundamental group of the kinetic cube is thechange the shape we call on the fact discussed in [R&f.
quaternion groufV/g, namely, that the kinematic orbits in configuration space au-
tomatically follow the principal axis frame. Suppose, for ex-
m1[SQA3)/V,4]= [ SU(2)/Vg] = V. (5.)  ample, that we wish to start at a shapein the kinematic

section and to go around the closed loop specified-tay

One might say this equation is obvious: Since(8Us sim-  which is labeled by the S@2) matrix —U,(7)=U,(—m)

ply connected, any nontrivial topology comes from the quo-€ Vs. This loop runs in the opposite direction to the loap

tient operation. illustrated in Fig. 8. We obtain loop a by letting the family

of kinematic rotationK,(¢) act onqg, where —7/2<¢

< /2. The alternative range<D¢<7 works just as well

since any two kinematic rotations related by an element of
To return to the principal axis frame, we have now estab/, [in this case we are thinking df,(=)] have the same

lished that the frame jumfan external rotation ivV,) must  effect on a shape. A% ranges from 0 tar, we letK,(¢) act

be a function of the homotopy class in the kinetic cube,on the principal axis body fram.2) according to Eq(2.2),

which is labeled by a member ¥f. Moreover, this function which generates a continuous sequence of principal axis

must be a group homomorphism. Regarding={+1, frames. When¢=m, we find Q;={rq.}=K(7)Qp,

*Uy(m),£Uy(7),U,(7)} as a subgroup of S@ andV,  where

as a subgroup of S@) as in Eq.(4.4), an obvious guess is

C. Frame jump as a function of the homotopy class

that the homomorphism is given simply by throwing away Fqi=aiX, Tep=—a5y, [g3= —agZ. (5.3
the = sign in the SW2) matrices and keeping the axis and
the angle constant, to produce V, However, this is related to the original frame by the external

={L,R«(7),Ry(7),R(m)}. We write R for these matrices rotationR,(). In other words, we have
instead ofK because the frame jump is an external rotation.
This mapping fronVg to V, is just the usual homomorphism Ky () Qo= Ry(7)Qp, (5.9
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which should be compared with E.12 of Ref.[1].

Thus we have established that the homotopy class labeled AlB
by U,(—m) corresponds to the external rotatid®y ().
Similarly, we find thatU,(w) corresponds tdthe samg
Ry(m), =U(m)=Uy (= m) corresponds t& (), etc. This
is precisely the homomorphism betwe¥p andV, that we
guessed above.

In summary, homotopy classese, =a, *b, and*+c in
Fig. 8 correspond respectively to frame jumpsR,(),

Ry(7), andR,(w). This concludes our discussion of how B
the frame jump depends on the closed loop in the asymmet-
ric top region of shape space. FIG. 10. The square represents a slice through the kinetic cube,

interpreted either as a region of @p[the fundamental region un-
der SO(3)¥,] or as the space of asymmetric tops related by kine-
matic rotations. In the latter interpretation, there are gluing rules at

The principal axis frame can be made single valued at théhe boundaries. As a region of &%), A andB are nearby points on
expense of introducing branch cuts in shape space. The effeepposite sides of the boundary of the fundamental region; in the
of the branch cuts is to make the asymmetric top regiorspace of asymmetric tops, poiBt is the same a8, according to
simply connected, so a single-valued principal axis framehe gluing rules. The curve passing between the boundaryBlear
can be defined. The frame is continuous as we move arouri@ the boundary neak is a closed loop in the space of asymmetric
in shape space, as long as we do not cross the branch cutps and the_ discontinuity in the princi_pal axis fra_me on passing
However, the framéand any wave function witd+ 0 that is from A to B is the same as the frame jump on going around that
referred to the framds discontinuous across the branch cuts,¢0S€d 100p-
so to use this construction it is important to know what the
discontinuities are. cube is simply connected and any two paths starting at the

In the three-body problerii], a convenient branch cut in center and ending at the same point can be continuously
shape space is the region <0 of thew;-w5 plane, which  deformed into one another. Equatig®.l) below is an ex-
is otherwise the surfacé=+ 7/2. Here ¢ is the kinematic  plicit expression for the principal axis frame constructed in
angle and the kinematic sectidthe surface¢=0) is the this manner.
regionw;>0 of thew,;-w; plane, as discussed in RéL]. As in the three-body problem, we may define the discon-
The discontinuity in the frame as we cross the branch cutinuity as we cross the branch cut as the external rotation that
may be defined as the external rotation that maps the olthaps the old frame to the new one. This discontinuity is a
frame to the new one. In the three-body problem, this rotafunction of where we are on the branch cut surface, (ast
tion isR,(7) and is independent of the direction in which we above of any loop or history that took us to where we are.
cross the branch cybecauseR,(m) 1=R,(m)]. We note However, the discontinuity at a point on the branch cut can
that in the three-body problem, the branch cut is a twobe mapped into a frame jump associated with a closed loop.
dimensional surface in shape space that emanates from t&ensider Fig. 10, in which the square represents a slice
one-dimensional line of singularities of the principal axisthrough the kinetic cube and poinfs and B are just on
frame, namely, thev; axis. opposite sides of the branch datface of the cube As seen

In the four-body problem, we can make the asymmetridn the space S(3)/V, (or, equivalently, in shape space
top region simply connected by declaring that the surface ofilong a kinematic orbit of the asymmetric top regiothe
the kinetic cube is a branch cut. As noted previously, themotion fromA to B takes us back inside the kinetic cube to
space of kinematic invariantéhe wedgeRX S; see Table a pointB’, whose location can be determined by the gluing
1) is already simply connected, so to make the whole asymrules. In shape space, the poidtsandB=B" are infinitesi-
metric top region simply connected we need only make themally close and effectively lie on the same external rotation
kinetic cube simply connected. Topologically speaking, thefiber, so it makes sense to talk about the external rotation that
surface of the kinetic cube is really the surface of a cubemaps the(single-valued principal axis frame atA to the
when viewed as the boundary of the fundamental region ifprincipal axis frame aB’. This is the discontinuity across
SQ(3), but because of the gluing rules it has a more complithe branch cut. However, it is also the frame jump associated
cated topology when viewed as a subset of the kinematiwith the curve that begins on one face Bt and passes
orbit, that is, the space $0)/V,. through the interior of the cube to the equivalent pdant-

The interior of the kinetic cube is a simply connectedcording to the gluing rulgsA on the opposite face. This
region over which we can define a single-valued principalcurve is closed in the kinetic cube, like the cuevén Fig. 8,
axis frame. We do this by arbitrarily choosing one principaland since the principal axis frame is continuous in the inte-
axis frame at the center of the kinetic cubghere K=1, rior of the cube, the frame jumfobtained by continuous
representing a point on the fundamental sector of the kinetracking is the same as the discontinuity.
matic sectiop and then by continuously tracking the frame In this way we see that the frame discontinuity across the
along curves that emanate from the center but do not crodacesr; = =1 of the kinetic cube iR,(), the same as the
the branch cuts on the faces of the cube. The frame we get #ame jump for loops-a. As in the three-body problem, the
the end point of such a continuous tracking depends only oframe discontinuity is independent of the direction in which
the end point and not on the path because the interior of thee cross the branch cut. Similarly, the frame jumps across

D. Branch cuts and a single-valued principal axis frame
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the facesr,=+1 and73==1 areRy(w) and R,(w), re- valued principal axis frame is required, we can limit the ki-
spectively. nematic Euler anglepor other coordinates on 8] to the

This concludes our discussion of the multiple branches ofundamental region of S@3)/V,, the kinetic cube. In Eq.
the principal axis frame. In the next section we will study the -1 the coordinates of (the shape coordinateare nicely

singularities of the principal axis frame and compare them t _roken up into three klnem,anc mvarlar(tsea_s) qnd th_ree
those of the Eckart frame. inematic Euler angleghe ¢'s), and the equation itself is an

explicit, parametric representation of the principal axis frame
in these shape coordinates. It is an obvious generalization of
VI. FRAME SINGULARITIES Eq. (2.3D) of Ref.[1].
The principal axis frame has singularities at all oblate

The singularities of the principal axis frame in the four- symmetric top shapes. We denote one of thesa gy, such
body problem occur at the symmetric top configurations, s the point marked by a closed circle in Fig. 2. Th’is point is

both prolate and oblate, where the moment of inertia tensogn the edge of the kinematic sectiéthe principal sector in
is degenerate and its eigenframe is not uni@@en modulo 9 P P

. .. . the figurg, at which the two largest eigenvalues dfare
the senses of the aYed'he character of the singularities is Z _ :
almost precisely as in the three-body problem, that is, th(—?qual')\1 Az, SO thata,=a,. The isotropy subgroup of

. . . his point contains the kinematic rotatiokg(¢), which are
pr|nC|paI'aX|s frame' doe; not approach a unique value aS ftations in the 1-2 plane. Now consider an asymmetric top
symmetric top configuration is approached and the deriv

. e . g aéhapeqo in the interior of the principal sector, which we
tives of the principal axis frame with respect to shape bejow to approach the poir,. By continuity, the kine-

come infinite there(One difference is that in the three-body atic rotationsKs(¢), which leave the poing,., invariant,
problem, the .principal a_xis fra_lme is singular only at the ob- st have only a small effect agy. In fact, asé ranges
late symmetric top configurations. between /2, the curve in shape space swept out by allow-
One can define a version of the Eckart frame in the fouring K,(¢) to act onqg is a small circle that contracts onto
body problem that is very similar to the Eckart frame dis-q, as q,—0,s. The principal axis frame is defined over

cussed in Ref[1] for the three-body problem. This Eckart this circle according to E¢(6.1) and is given explicitly by
frame is well defined, single valued, continuous, and differ-

entiable everywhere in shape space except at prolate sym- ref cos¢ —sing 0\ [ax
metric top configurations of one chirality only. Thus there  k_(4)Q,=| r&*| =| sing cos¢ 0| ay
are no issues of multiple branches, frame jumps, or frame rPA 0 0 1)\ as

S 3

discontinuities with the Eckart frame. The singularities of the
Eckart frame are on a smaller subset of shape space than
those of the principal axis frame; in fact, one can show that N -
no other frame has singularities on a smaller subset of shape =| asin ¢X+?2C°S By | 6.2
shape than the Eckart frame. In this section we elaborate on asz

these facts.

a,C0S X — a,sin Py

which may be compared to Eq2.31) of Ref. [1]. As qq
_ N o _ —(ost at fixed ¢, a;—a, and the principal axis frame ap-
A. Singularities of the principal axis frame proaches a definite limit, but one that depends¢oT here-

We begin by giving an explicit, parametric representationfore, the frame is singular aj,g;. A similar argument ap-
of the principal axis frame over the asymmetric top region ofPi€s to other oblate symmetric tops, obtained by applying
shape space. We have already given an explicit expressidfifématic rotations taj.s;; the only difference is that the
for a principal axis frame on the kinematic section, E52). Isotropy TSUbQFOUPS are conjugate to the one used i),
This frame is easily extended to the entire asymmetric toﬁis explained in Appendix A.

. i . ) . The prolate symmetric tops are similar, except for the
region by apply_lng kln_e-mat|c rotations. we tﬁ be. a shape special treatment of the ca%=0. Consider a prolate sym-
on the kinematic sectiofthe _pr|n0|pal sector in Fig.)2we metric top shap@,e,. such as the point marked by an aster-
let Qo be the fré‘,[‘le over thls shape according to @2), isk in Fig. 2, at which the two smallest eigenvaluesidadre
and we writeQ""=KQq, q=Kdqg, whereKe SO(3) is a

kinematic rotation and where we attaclP# superscript to equal,Ap=A3. ForV>0 this impliesa,=as>0 and forV

. ) o oo e <0 it impli =—az=|ay. i
the configuratiorQPA to indicate that it lies on the principal _0 it implies a,=—ag=|a,|. We will defer the case/
i - ) . . ; =0 for a moment. Also, let|; be an asymmetric top shape
axis section. If we parametrize points on the kinematic sec-

tion by the kinematic invariantsag,a,,as) and if we pa- % dest- r’;‘)‘t’gié?];'s(o(gOpvyvhsigﬁiﬁg m(i)pjtt ;Ogrgf;ﬁ‘lsc}:‘cele

rametrize the kinematic rotations by kinematic Euler angleg . N cep ;

(01,0,,05), then the Jacobi vectors G@PA={rPA are given When_actmg Orgo . The principal axis frames defined over
L V2,73 sa this circle are given by

by
(PA 1 0 0 ax
rPA(ay,a,,a3;01,0,,03)= >, K, z(01,05,05)a.e | rPAl=] 0 — i Y
sa (81,82,83,01,07,03 > aplU1,02,03)35€8, Ki()Qo=| T2 | = COS¢ sin ¢ ayy
(6.1) res 0 sing cos¢ / \ayz

“an a,x
whereeg, f=1,2,3, represents the unit vectorg/,z. The !

kinematic Euler angles can be replaced by other coordinates =| @2C0S ¢}/—assin d’f - 6.3
on SA3), such as ther coordinates, if desired. If a single- a,sin ¢y+a5Ccos ¢z
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Whengo—qps, We havea,—|ag|, the limit of the frame is v
¢ dependent, and we have a frame singularity of the same
character as in the oblate case.

o : V=0

However, V=0 implies a;=0, so atq,s; we havea, >

=az=0, which is the condition for a collinear configuration. E
It also means that as the limi,—|as|=0 is taken, the
configuratiorQPAz{rEf} approaches a limit that is indepen-
dent of . However, a collinear configuration cannot define a
frame, so the principal axis frame must still be considered
singular at such configurations. In fact, the collinear configu-
rations are singular in the strongest senses of any configura-
tions in the four-body problem, as we will see momentarily.

B. Eckart frame

We now introduce a version of the Eckart frame, closely
following the steps taken in Refl]. The standard definition FIG. 11. The Eckart frame is singular on a four-dimensional
of the Eckart frame in constraint form is given by Eg.16) surface that can be visualized as sheets hanging down from the
of Ref. [1]. The definition involves an “equilibrium” con- coIIingar configuratiqns into regions of negative These sheets
figuration Qu={rse,}, which we define as follows. First we (the singular setconsist of all prolate symmetric tops of one chiral-

define an equilibrium shape, as a spherical top with hyper- ity only (V=<0). The three radial half lines in the hyperplaxe
radiusp,>0, so thatV>0 andw,="--=ws=0 atq,. Next =0 represent the collinear shapes, which are prolate symmetric
e ) e-

) n tops of zero volume, and are identified with the three half lines of
we define a frameQy={rge,} OVer ge by rge=kx, rge Fig. 2.

=ky, rsg=kz, wherek=p./v3. This is both an Eckart

frame and a principal axis frame. Next we tgf be an arbi-  Now whena;—a,, the frame approaches a definite value
trary asymmetric top shape on the kinematic section and Wihe one given by Eq(5.2)], independent of, and there is
define the frameQ,=1{rso,} Overqo by Eq.(5.2). As noted no singularity.

above, this is a principal axis frame, but it is also an Eckart As for the prolate symmetric tops, the Eckart frame is
frame, as follows immediately from the definition, E8.16  well defined and nonsingular there only fer>0. We see
of Ref.[1]. Next we define a frame over all of the asymmet-this by applying Eq(6.4) to the principal axis frame over the

ric top region by setting small circle abouty,s;, shown in Eq.(6.9). This gives
QE:{rsEa}:R(61162aa3)QPA E ~
I’sl=a1X,
=R(01,0,,03)K(01,05,03)Qq, (6.4

rE = (a,cofp+assirtg)y+(a,—as)sin ¢ cos ¢z,
whereQPA is defined by Eq(6.1) and the Euler angleg; are 2= (8205 p+25SIT )y + (8, ~ ag)sin ¢ cos

the same as in that equati¢ifie kinematic and external Eu-

ler angles are equal Equation (6.4) should be compared r&=(a,—az)sin ¢ cos gy -+ (a,sirfe+azcos ¢)z.
with Eq. (2.24) of Ref.[1]. Finally, we show thaQF actually (6.6)
is an Eckart frame relative to the equilibriu@y, following

Egs.(2.28 and(2.29 of Ref.[1]. If V>0, then asgy—qps; we havea,—az and the Eckart

The Eckart frame defined by E@6.4) is single valued frame approaches a limit independentgofin this case there
because the external rotation in E@.4) cancels out the is no singularity. However wheiW <0, a,— —as; and the
frame jump in the principal axis frame on going around anylimit of the Eckart frame does depend a@h) producing a
closed loop in shape space. For example, the frame jump ogingularity much like those of the principal axis frame at any
going around homotopy class is R,(w), as noted above, symmetric top configuration.
but Eq.(6.4) supplies another factor &,( ), which cancels Altogether, we see that the Eckart frame has singularities
the first. at the prolate symmetric top configurations of one chirality

The Eckart frame is also well defined and nonsingular apnly (V=0). The singular sefthe set of shapes upon which
all oblate symmetric tops. To show this we apply B8j4) to  the frame is singularis a four-dimensional surface in shape
the principal axis frame over the small circle abayt;,  space that begins on the three-dimensional surface of collin-
shown in Eq.(6.2). This gives ear shapes and extends “downward” into regions of nega-
tive V.

One approach to visualizing this singular set is Fig. 11, in
which the collinear shapeg&he prolate symmetric tops of
zero volume are represented by three radial half lines inside
rs,=(a,—ay)sin ¢ cos dX+ (a;Sinf ¢+ a,cofe)y, the hyperplane/=0. More precisely, these three half lines

are identified with the three half lines labelBdin Fig. 2 in
£ . the hyperpland&/=0, which are just the part of the space of
I's3=8asZ. (6.9 collinear configurations that intersects thg-ws plane.(The

rE =(a,co ¢+ a,sirg)x+ (a,—a,)sin ¢ cos ¢y,
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entire space of collinear configurations is obtained by allow-The details of this proof involve standard techniques from
ing the kinematic rotations to act on one of the radial halfthe topology of fiber bundles, but they are outside the in-
lines) tended scope of this paper. We will provide a complete proof
The singular set for the Eckart frame may be said to bdn future work.
only 1/4 as large as the singular set for the principal axis
frame because the latter frame is singular on both prolate and
oblate symmetric top configurations of both chiralities. Thus
there are frames for which the singular set is larger than that In the future we plan to write another paper on all types of
of the Eckart frame. However, there are no frames with asingularities in the internal space of thebody problem, a
smaller singular set, as we will now argue. In particular,paper that will call on the general theory presented in this
there are no frames that are free of singularities everywhergaper but will be explicit about the various frames, coordi-
As in the three-body problem, the singular set in the four-nate systems, and basis sets that are used in current practice.
body problem can be moved to different regions of shapd his paper will deal with other types of singularities besides
space by means of gauge transformati¢stsanges of body frame singularities. Based on conversations with researchers
frame); for example, if the equilibrium point is chosen to be in the field, such a paper seems timely and desirable. This
a spherical top of negative volume, then the singular set opaper will present another perspective on many of the issues
the Eckart frame will lie on prolate symmetric tops of posi- raised by Packl15] and will also discuss the cases-4 and
tive chirality (V=0) and the sheets in Fig. 11 will extend n=5.
upward. Thus there is nothing intrinsically singular about Finally, we will make some comments on the practical
prolate tops of negative chirality; frame singularities occurimpact of frame singularities for four-body quantum calcula-
there only for specific choices of frame. tions. These comments cannot be comprehensive because
On the other hand, the collinear shapes are singular for athere are so many different approaches to such calculations
choices of frame and the singular set of any choice of fram&nd, moreover, new methods may be invented in the future.
will be a surface that will include the collinear shapes. InHowever, certain things can be said.
effect, changes of frame can pivot the sheets in Fig. 11 about In some circumstances it may be that frame singularities
the collinear configurations or even bend them about, buwill not present serious difficulties. For example, if the exact
never detach them from the collinear configurations. Thusvave function is expanded in terms of some complete set of
we may call the collinear configurations the set of intrinsicfunctions, which themselves are eigenfunctions of some
singularities(independent of choice of body framélhis is  solvable problem, then those eigenfunctions will carry the
much as in the three-body proble(the planar three-body frame singularities(The expansion coefficients will be just
problem forms a better analogy than the three-body problemumbers and will be perfectly well behavedror example,
in space, in which the singular set is a linghe string of the the basis functions might be hyperspherical harmonics or
monopolé emanating from the three-body collision, which is other eigenfunctions on the hypersphere. Even in this case,
the intrinsically singular set. The three-body collision in the however, it will be important to know about the frame sin-
three-body problem is analogous to the collinear configuragularities, if only for working out the formulas for the exact
tions in the four-body problem and the string in the three-eigenfunctions or for purposes of display.
body problem is analogous to the singular set in the four- On the other hand, in the case of grid or related methods
body problem. Notice that in both cases, the singular set hasuch as discrete variable representations or distributed
codimension 2, while the intrinsically singular set has codi-Gaussian basgsthe singularities, discontinuities, and other
mension 3. bad behavior of the internal wave function will have to be
In the three-body problem, the singular g#éte string  taken into account at the locations in the internal space
starts at the three-body collision and goes out to infinity. Fomwhere they occur. Or it may be necessary to use more than
example, one can show that the string cannot simply termiene frame in different parts of the internal space. This latter
nate somewhere or turn around and reattach to the thre@ossibility seems unattractive at first sight, but it might be
body collision. This is done by proving that the fiber bundleworkable if carefully done. In this regard, we may note that
is nontrivial over any sphere in shape space of constant hythe standard mathematical theory of fiber bundles requires
perradius, no matter how large. the use of overlapping patches on the base space, in which a
Similarly, in the four-body problem, the singular set is single gauge conventiofthe analog of a body frame in the
necessarily a four-dimensional surface that attaches to thgresent contextis used in each patch. Only in this way can
three-dimensional manifold of collinear shapes and extendsingularities be systematically avoided. If this construction is
to infinity in shape space. In this case the proof proceeds bysed, it will be necessary to change frames in the overlap
first constructing a certain two-sphere in shape space that ligegions.
in a three-dimensional surface transverse to the three- Moreover, even if a basis set expansion is used, it will
dimensional surface of collinear shapes. This sphere sustill be necessary to deal with frame singularities if the basis
rounds the single collinear shape that lies in the transversget itself is determined by some numerical method, as is
surface. Then the S@) fiber bundle of external rotations is common already in three-body work. This is because the
restricted to the lift of this sphere in shape space and thiframe singularities will appear in the basis functions and will
restricted bundle is proved to be nontrivial. Thus there is amake trouble for the numerical methods used to determine
least one point on the sphere where the gauge potential mutstem.
be singular. By carrying out this construction for every col-  Of course, if the wave function is localized in the internal
linear shape, a four-dimensional singular set is generategpace, then it may be possible to choose a frame in which all

VIl. CONCLUSIONS
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singularities exist outside the region where the wave functiorerty, suppose’ andy’ are on the orbits of points andy,
is effectively nonzero. This commonly happens in three-that is, suppose’=Tyx andy’=Tgy for someg,heG.
body scattering calculations of sufficiently low energy, in Then suppos&’=y’. Then all points on thg orbit belong
which the singularities of the principal axis frame on the linetg the x orbit and, conversely, becauseyif=T,y for some
of symmetric oblate top shapes lie deep in a classically fory ¢ G, theny” =T, T,-1Tgx, etc.

bidden region. It also commonly happens in bound-state The jdentity elementcall it ee G) does nothing to any

prolblems. H b onthatitis oint of M, that is, Tox=x for all xe M. However, depend-
h any case, there can be no question that it Is important t g on the pointx and the nature of the group action, there

know about the existence of frame singularities and to b?nay be other group elements that also leavevariant. Let

careful about them. If they do make trouble, it will be im- andh be two aroup elements that leaxeinvariant. T
portant to know the extent to which the singularities can b group xanvariant, 1 gx
=x andTpx=X. ThenTyx=T T x=TgXx=X, so the prod-

moved about and how their impact can be minimized. This

paper has provided the necessary foundation for understanHSt 9h @lso leavesc invariant. Thus the set of group ele-
ing such problems. ments that leave a given poirtinvariant forms a group, the

isotropy subgroupof G at x, which we denote by, . In
general the isotropy subgroup dependsxorThe isotropy
subgroup is the sdt={ge G|Tyx=x}.

This work was supported by the U.S. Department of En- One extreme case is when all group elements leave a
ergy under Contract No. DE-AC03-76SF00098, by the Ital-point x invariant, so that the orbit ok is just the pointx
ian CNR and MURST, and by EU under TMR Contract No. itself andl,=G. Another extreme is when only the identity
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ERB-FMRX-CT96-0088. ee G leavesx invariant, so thatl,={e}, the trivial sub-
group. In this case the orbit is effectively a copy ®fbe-
APPENDIX A: GROUP ACTIONS cause it is possible to place points of the orbit in one-to-one

correspondence with elements @f(that is,e«x, g« TyX,

The concepts of group actions, orbits, isotropy subgroupsetc). In this case one can use group elements as labels or
guotient spaces, etc., are very useful in understanding theoordinates of points along the orbitthis is what is done
spaces that occur in the-body problem, especially whem  with the noncollinear orbits of the external rotations acting
> 3. Quite generally, these concepts arise wherever the wordn configuration space; the external Euler angles label the
“modulo” is used, as in “two configurations of the same group element that identifies the orientation of the configu-
shape are equal modulo a proper rotation” or “two configu-ration). Intermediate cases are possible too, assur@Girtas
rations with the samé tensor have the same shape, modulosubgroups of intermediate sizhat is, proper subgroupsA
chirality.” general rule is the larger the isotropy subgroup, the smaller

If G is a group andM is a space, then aactionof G on  the orbit, and conversely. This rule is clearly seen in Tables
M is a representation d& by means of transformation op- | and II.
erators or mappings that map onto itself. These mappings When two things are said to be equivalent modulo a cer-
need not be lineafin any sense If g,he G are group ele- tain property, it does not mean that they are equal, but that
ments andT 4, Ty, the corresponding mappings, then we re-they would be equal if we ignored the certain property. Often
quire T,T,=Tg. If x is a point ofM and g is a group the property in question is that of being related by a group
element, therT, causex to get up and move to @ossibly  action, that is, of lying on the same orbit of a group action.
new pointx’, which we denote by’ =Tgx. The group ele- For example, 3 and 18 are congruent modulo 5; this means
mentg is conceptually distinct from the mappifig, but we  they are related by the discrete group of displacements by
can be sloppy with notation and write simply=gx. Thisis  integer multiples of 5(they lie on the same orbit of this
what is done in the body of the paper when we wi@é  group. For another example, antipodal points of the two-
=RQ [confusing the transformation operator on configura-sphereS? can be said to be equivalent modulo parity, that is,
tion space with the rotatioRe SO(3) itsel]f or Q'=KQ, they lie on the same orbit of the two-element grduipP},

g’ =Kgq, etc. whereP is the parity or spatial inversion operator.

If x is a point of a spac# upon which a groufs acts, If the isotropy subgroup, of a pointx is the trivial sub-
then the set of points’ of M that can be reached fromby  group{e}, then, as mentioned above, the points on the orbit
means of the operatofR, is called theorbit of x under the ~can be labeled or coordinated by group elementsf the
action of G. In other words, the orbit is the segtrgx|g isotropy subgroup, is not trivial, then the poinx is labeled
e G}, that is, the set of points swept out by letting all pos-not only by the identity elemerg but equally well by any
sible group elements act on Depending on circumstances, memberhe |, (they all mapx to x). As for another point on
the orbit may be either a discrete set or a continuous one, dhe orbit, sayx’ =Tgx for somege G wherex’ #x, it can
something more complicated. be labeled byg, but equally well bygh for anyhel,. For

The orbits of a group action on a spabk are disjoint givenge G, the set{ghlhel,} is a left coset ofl, in G.
subsets of that space. That is, if any two orbits have ondhus, in the general case of a nontrivial isotropy subgroup,
point in common, then they have all points in common andthe points on the orbit can be labeled by, that is, placed in
are identical orbits; otherwise they are disjoint. This is im-one-to-one correspondence with, the left cosetk an G.
portant because it means that a pointvbfcan be uniquely The cosetgboth left and right of a subgrougH of G are
identified by a label of the orbit in which it lies, plus a label disjoint subsets ofG that are themselves orbits of group
indicating where it lies within that orbit. To prove this prop- actions. This is a useful point of view because it subsumes
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the concept of cosets within the concept of group orbits. Irsame as a hemisphere with antipodal points on the equator
the case of right cosets the action is thatbbn G defined identified.

by T,g=hg for he H andge G (hereG has taken the role ~ The groups S@), SQ3), O(2), and SU2) are standard

of M andH that of G). Thus the orbit ofy under this action Lie groups that can also be viewed as manifolds. The group
is the set{hg|lhe H}, which is a right coset oH. The left ~ manifold SG2) is the circleS, SQ(3) is the real projective
cosets are orbits of a different actiondfon G, defined by ~ SPaceRP®, and SU2) is the three-sphers®.

Thg=gh™%. To say that two elements ig belong to the Now we will prove Eq.(2.1), which says that the space of
same(left or right) coset ofH means that they are equivalent left cosets of S@) in SQ3) is the two-spheres”. Here
modulo (right or lef) multiplication by some element ¢f.  SO(2) is understood to be a subgroup of @Dconsisting of

If a spaceM is acted upon by a grou@, we can create a rqtations about a fixed axi.s; we will work with the axis.
new space in which a single point represents an entire orbftirst we note that two rotatior8; ,R, € SO(3) belong to the
in M, that is, a set of points iM that are related by the same left coset of S@) if R;=R,S for someSe SO(2).
action of the group. This new space is theotient spacand ~ Als0, a rotation is uniquely specified by its action on an
is denoted byM/G. The quotient space is only defined rela- _orthonormal frame, that is, a rotation maps a fixed old frame
tive to the particular action o& on M, which must be un- into @ unique new frame, and a given new frame specifies a
derstood when using the notatiof/G. unique rotation(Of course we are speaking of proper rota-

Supposex andy are two points on the same orbit of a tions and right-handed framéast-.lowevgr, sinceS leaves the
groupG acting onM and the two isotropy subgroups dre ~ Z axis invariant, we see that two rotatioRs andR, belong-
andl,. Thenl, andl, are conjugate subgroups with, ing to thg same left coset map the ddaxis into the same
that is, they are identical as abstract groups, but in gener&leWz axis. Conversely, iR, andR; producelthe same new
are different subgroups @. In fact, it is easy to show that Z axis when acting on the old frame, th& “R; maps the
if y=T.x for ae G, thenl,=al,a 1. For example, the col- old z axis into itself, which means th&tz‘lRlzs for some
linear configurations in Table | have the isotropy subgroupsSe SO(2), sothatR; andR, belong to the same left coset.
SQO?2) in SO(3); these subgroups consist physically of the Therefore, the newz axes stand in one-to-one correspon-
rotations about the axis of collinearity. This axis is differentdence with the left cosets. However, the space of newes

for rotated configuration&ifferent points on the orbig?),  is the space of unit vectors it®, which is S2.
so the S@2) subgroups are different, but these (8Dsub- The proof of Eq.(4.9) is similar. Now we wish to con-
groups are all conjugate to one another. sider the subgroup @) of SO(3), where the matrices be-

longing to the representation of(®) have the form indicated
in Eq. (4.8), that is, they are proper rotations in three dimen-
APPENDIX B: SPACES OCCURRING sions that either leave theaxis invariant or flip its sign. As
IN THE FOUR-BODY PROBLEM viewed in they-z plane, these rotations are either proper or
improper orthogonal transformations. The argument is much
This appendix explains the standard mathematical notags in the preceding paragraph; two rotatiof,R,
tion for various spaces that occur in the four-body probleme SO(3) belong to the same left coset of2Dif and only if
and fills in a few other mathematical pOintS that were used |Qhey map the ol axis onto the same new a_xiS, with the
the paper. The following mathematical spaces are used ipossibility of a reversal of the sense of this axis. Therefore,
this paper. The notatiolt” represents the usual space of the space of cosets is the same as the space of lines passing
n-tuples of real numbers. ThresphereS” is the set of points  through the origin ink3, which is RP2.
at unit distance from the origin iR"**. For exampleS' is
the circle andS? the usual two-sphere. The set of integers
(positive, negative, and zeres Z. The setZ, stands for the
integers modulo 2, that is, the €& 1}, which forms a group
under addition modulo 2. As an abstract group, it is the same In the three-body problem, we saw in R¢L] that for
as the two-element groufe,a} with multiplication lawa?  asymmetric tops théone-dimensionalkinematic orbits were
=e. not tangential to théthree-dimensionalexternal rotation or-
Two spaces are said to be diffeomorphic if there exists adits; see Fig. 1 of Refl1]. To say this another way, if an
smooth, invertible mapping between them, for which the in-asymmetric top configuratio® is acted upon by three inde-
verse map is also smooth. This means the two manifoldpendent, infinitesimal external rotations, it generates three
have the same topology and al@otuitively speaking that  vectors in configuration space that are tangential to the rota-
there are no kinks in the two manifolds or in the mappingstion orbit; if it is acted upon by an infinitesimal kinematic
between them. In the body of R¢fl] and this paper, some- rotation, it generates another vector that is tangent to the
times we say that the two manifolds are “copies” of eachkinematic orbit. For asymmetric tops, these four vectans
other when we mean that they are diffeomorphic. R®) are linearly independent, that is, for small kinematic
The real projective spac®&P" is the quotient space angles, the kinematic orbit goes off in a direction that is
S"/7Z,, that is, a point oRP" can be identified with a pair of independent of the rotations. However, for oblate symmetric
antipodal points inS". The spaceRP! is the circle with tops, we saw that the infinitesimal kinematic rotations are
antipodal points identified, which is the same as a semicircléangential to the external rotation orbits. In fact, in this case,
with end points identified, which is the same as a circlethe entire kinematic orbit lies within the rotation orbit. This
again. That is,S'/7,=S'. The spaceRP? is an ordinary appendix generalizes these facts to the case of the four-body
two-sphereS? with antipodal points identified, which is the problem.

APPENDIX C: KINEMATIC ORBITS
IN CONFIGURATION SPACE
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First we classify the orbits. IQ is a configuration in the fiber. This means that Fig. 1 of Refl] is schematically
four-body problem, then the orbit @ under the kinematic accurate for asymmetric top configurations in the four-body
group is either S@B), S?, or a single point, according to problem if the fiberskFz and F¢ are interpreted as three-
whetherQ is noncollinear, collinear, or the four-body colli- dimensional surfaces iR®. For symmetric topsstill noncol-
sion, exactly as indicated by Table | for the external rotadinean, there is one infinitesimal kinematic rotation that is
tions. This follows from the fact that there is a completetangential to the external rotation orbit, and conversely; this
mathematical symmetry between external rotations and kingg equivalent to the fact that there is a one-parameter sub-
matic rotations, most easily seen in terms of Eaematrix, group of the kinematic groufan SQ2) subgrouf consisting
whqre extgrnal rotations act on thg 1,2,3 index .and kine- ¢ kinematic rotations with the same effect @has an ex-
matic rotations act on the=1,2,3 index. Effectively, one iqrna rotation[in fact, an S@2) subgroup of the external
group acts on rows, the othe_r on columns. However’_thc?otationﬂ. Kinematic rotations in this subgroup do not
three cases, noncollinear, collinear, and four?body coII|S|onChange the shape of the configuratianly its orientation.
are equivalent to=2, r=1, andr=0, respectively, where Finally, for the spherical tofstill noncollineay, the entire

r=rankFg and the rank is the number of linearly indepen- . . . . : .
dent rows or columnt does not matter whigh Therefore, _external rotation orbit and kinematic rotation orflibth cop

the isotropy subgroup and the topology of the orbits depenﬁfs of S@3)] coincide, which follows from the fact that the

only onr and not on whether the group acts on the rows or S matrix is a multiple of the identity in this case. In this
columns ofF case, no kinematic rotation changes the shape.
s

This is to say that the external rotation orbit and the ki- Next, for collinear configurations, both the external rota-
nematic orbit of a given poir® have the same topology and tion orbit and kinematic orbit of a given_ configurati@hare
in fact are diffeomorphic as submanifolds of configurationtWo-spheresS?, but they are not identical two-spheres. In
space; they are not, however, the same submanifold in gefi@ct, the two two-dimensional tangent spaces to these two-
eral. First consider the case of a noncollinear configurationspheres at the poi® are linearly independerithey span
in which both orbits are three-dimensional copies of 0 altogether a four-dimensional subspaceRdj. This means
If the configuration is an asymmetric top, then the three dithat any infinitesimal kinematic rotation that mov@sdoes
rections tangential to the external rotation orbit and the threso in such a way as to change the shébe pointQ does not
directions tangential to the kinematic orbit are linearly inde-simply move down its external rotation orbitFinally, for
pendent(as vectors ink®). In other words, for asymmetric the four-body collision, neither external nor kinematic rota-
tops, all three independent, infinitesimal kinematic rotationdions do anything t@; both orbits consist of the single point
change the shape @, that is, move us to a different rotation Q itself.
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