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Internal spaces, kinematic rotations, and body frames for four-atom systems
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Four-atom systems may soon be subject to state-to-state reactive scattering calculations and understanding
body frames and their singularities will be an important part of this effort. This paper examines body frames in
four-atom systems, building on a geometrical analysis of the nine-dimensional configuration space and the
six-dimensional internal space. Kinematic rotations are an important tool in this analysis. A central role is
played by the ‘‘kinetic cube,’’ the space of all asymmetric top shapes related by kinematic rotations. The
singularities, multiple branches, and connectivity of the principal axis frame are examined in detail and related
to the topology of the kinetic cube. The principal axis frame has singularities on all symmetric top shapes, both
oblate and prolate, of both chiralities. A version of the Eckart frame, however, has singularities only on prolate
symmetric top shapes of one chirality. Frame singularities are inevitable in the four-body problem and no other
frame has a smaller singular set than the Eckart frame.@S1050-2947~98!07211-4#

PACS number~s!: 34.50.2s, 31.15.2p, 02.40.2k
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I. INTRODUCTION

This paper is the second in a series concerning b
frames and their singularities in the quantum dynamics
n-particle systems. The first of these papers@1#, concerning
body frames in the three-body problem, is necessary ba
ground for the present paper, which focuses on the four-b
problem. The meaning of frame singularities, their effect
internal wave functions, their topological inevitability, an
the latitude one has in moving them around in the inter
space are all exemplified by the three-body case and are
cussed in Ref.@1#. Many of the facts presented in Ref.@1# on
body frames in the three-body problem are familiar to pr
titioners in the field, although our geometrical perspective
almost completely different. In the four-body problem, ho
ever, the whole complex of issues surrounding frames
their singularities is much less well explored.

Recently, serious consideration has been given to the
sibility of four-atom, state-to-state reactive scattering cal
lations @2,3#. Even three-atom scattering calculations a
highly nontrivial and the step up to the four-body case i
long one. Bound-state calculations are easier, mainly bec
bound-state wave functions occupy a smaller portion of
configuration space than scattering wave functions. Ho
ever, whenever any wave function in the four-body proble
whether bound or unbound, occupies a sufficiently large p
tion of the configuration space, it will be necessary to d
with frame singularities. For example, we will show in th
paper that in the four-body problem with its six-dimension
internal space all definitions of body frames possess sin
larities on the three-dimensional manifold of colline
shapes, as well as on a four-dimensional surface that e
nates from this manifold. The latter surface can be mo
around by changing to a different body frame, but it can
be eliminated. If a wave function is restricted to a sufficien
small region of the internal space, it may be possible to av
the surfaces on which the frames are singular~or to choose a
PRA 581050-2947/98/58~5!/3718~21!/$15.00
y
f

k-
y

n

l
is-

-
s

d

s-
-

e
a
se
e
-
,
r-
l

l
u-

a-
d
t

id

frame that places the singular surface outside the physic
interesting region!, but any internal wave function tha
crosses the singular surface will itself become singular on
surface.

The practical importance of the frame singularities w
become apparent as soon as anyone computes an actu
ternal wave function withJÞ0 for a four-atom system tha
occupies a sufficiently large portion of the internal spa
That the frame singularities have not been noted previou
in four-atom systems is due to several circumstances. Firs
J50, then frame singularities do not cause singularities
the internal wave function. Of course, the conditionJ50 is
more common in the literature than in the real world. Ne
small-amplitude vibrations about a noncollinear equilibriu
in many cases do not explore enough of the configura
space to run into frame singularities and the same is true
some types of large amplitude motion. As for collinear eq
libria, in the four-body problem there are always frame s
gularities in the neighborhood of such shapes. These sin
larities can be avoided by modifying the usual formalism
frames and Euler angles, as in the~now! standard analysis o
Watson @4#. However, as we show below, the surface
frame singularities in the four-body problem extends fro
the collinear manifold out to infinity and so always exists
regions where the standard collinear analysis is not use
As explained in Ref.@1#, the situation in the three-body prob
lem is different and not as serious, because frame singu
ties need not occur at collinear shapes, nor is there any
gular manifold extending out from the collinear shapes~only
the three-body collision is attached to the manifold of fram
singularities and that manifold, the ‘‘string,’’ can be place
in the nonphysical region!.

Although there are many ways to define a body frame
the case of the four-body problem the principal axis fra
has been a popular choice in many works going back o
the last 30 years@3,5–9,14#. This is presumably because th
principal axis frame emerges naturally out of the singu
3718 ©1998 The American Physical Society



o
e

a
a

ed
ve
b
he
ro
x

t o
e

in
v

an
ar
a-
th
e
th

ge
o

od
ty
pl
le
l th
n
or
e
in

on

to
s
rn
e
ta
t
t

ro
in
er
ai
i
e
s
d

nt
an

e

n

ati-
lar
ap-
his
en-
up
ub-
ous
i-

y

-
ty

is
the

n
rob-

IV
ody
sym-

is
tric
e

of
up
ed
le
a-

s of
uts.

ng
ted
VI
e,
nd
hat
ace
m-
of
ities
no
rnal
ent
ap-
ept

the
aces
ard
n-
per

ter
, is

PRA 58 3719INTERNAL SPACES, KINEMATIC ROTATIONS, AND . . .
value decomposition of the matrix of space-referred Jac
vectors ~which is Fs in the notation explained below; th
decomposition isFs5RLKt, whereR is the external rotation
defining the Euler angles in the principal axis frame,L is the
diagonal matrix of singular values, andK is a kinematic ro-
tation!. Partly for this reason, this paper devotes special
tention to the principal axis frame. However, the princip
axis frame is multiple valued or if forced to be single valu
it has branch cuts and associated discontinuities. Moreo
its singular surface is not of the minimal size that can
achieved with other frames. Clearly, it is important that t
question of frames and their singularities be addressed f
a general standpoint, not just in the case of the principal a
frame.

The singular value decomposition just alluded to is par
what might be called the analytical or coordinate-based p
spective on then-body problem. This is a perspective
which the properties of the internal wave equation or wa
function are transcribed into some coordinate system
expressed in terms of equations involving numbers, v
ables, matrices, etc. In Ref.@1# and this paper we are emph
sizing a different perspective, the geometrical one. In
geometrical perspective, we view the properties of fram
wave functions, etc., in terms of curves and surfaces in
internal space. Both perspectives are important, but the
metrical one grows in significance as the dimensionalities
the spaces involved gets larger. In particular, the four-b
problem involves spaces of relatively high dimensionali
where a geometrical approach is most helpful. For exam
the space of asymmetric top shapes in the four-body prob
that are related by kinematic rotations is the space we cal
kinetic cube; it is a three-dimensional manifold with a no
trivial topology, which we discuss quite carefully below. F
another example, in previous work by some of the pres
authors@10#, it has been shown that the exit channels
four-body collinear scattering reactions can be arranged
certain two-dimensional sphere (S2), whose significance in
the internal space is discussed below.

In the course of writing this paper we discovered that
fully explore body frames in the four-body problem it wa
necessary to delve deeper into the structure of the inte
space than has been done before and especially to mak
tensive use of kinematic rotations. Although kinematic ro
tions have been used for many years, it would seem tha
many people’s minds they are restricted to the discrete se
transformations that map one exit channel into another~or
one choice of Jacobi vectors to another!. In this work, how-
ever, we have been more interested in the continuous g
of kinematic rotations and its geometrical relation to the
ternal space. We feel we have revealed some of the myst
of the kinematic rotations, but that other applications rem
to be developed, such as to models of polyatomic dynam
in which motions are constrained to consist of pure kin
matic rotations. For example, in some cases reaction path
pseudorotational motions are approximately of this kin
Certainly kinematic rotations provide a relatively differe
perspective on such problems and allow one to visualize
formulate questions in a different way.

This paper involves mathematical methods of a more g
metrical character than those used in Ref.@1# on the three-
body problem, as is appropriate for the higher-dimensio
bi
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spaces involved in the four-body problem. Such mathem
cal methods have not been frequently applied in molecu
physics, although their use in other areas of physics and
plied mathematics is common. We have tried to make t
paper self-contained by providing two mathematical app
dixes. Some familiarity with the elements of abstract gro
theory is assumed~notions such as cosets and conjugate s
groups! as well as some basic facts about the continu
groups SO~2! and SO~3! ~such as the fact that they are man
folds of dimensionality one and three respectively!.

Finally, we mention that we consider only the casen54
in this paper, notn>5. This is because there is alread
plenty to say about four-body problems and also because~for
scattering problems, at least! practical, numerical calcula
tions for the casen>5 are a much more remote possibili
than the casen54.

The organization of this paper is as follows. Section II
a short section discussing the configuration space for
four-body problem and the groups~external and kinematic
rotations! that act on it. Section III is another short sectio
discussing the internal or shape space for the four-body p
lem and useful coordinate systems defined on it. Section
discusses the action of kinematic rotations on the four-b
shape space and analyzes in detail the three cases of a
metric, symmetric, and spherical tops. Special attention
given to the kinematic orbits in the case of the asymme
tops ~the kinetic cube!. This space is shown to be either th
space of cosets of SO~3! with respect to the subgroup~the
viergruppe! of diagonal, proper orthogonal matrices or
SU~2! with respect to the eight-element quaternion subgro
and its topology is examined carefully. Section V is devot
to the principal axis frame and its properties: its multip
branches and their connectivity under continuous deform
tions of shape, the restriction to a single branch by mean
branch cuts, and the discontinuities across the branch c
We find that the jumps in the principal axis frame on goi
around closed loops in the internal space are directly rela
to the topological properties of the kinetic cube. In Sec.
we examine the singularities of the principal axis fram
which occur at all symmetric top shapes, both oblate a
prolate. We also introduce a version of the Eckart frame t
has singularities on a smaller subset of the internal sp
than the principal axis frame, namely, on the prolate sy
metric tops of one chirality only. We discuss the relation
these singular sets to the phenomenon of string singular
in the field of magnetic monopoles and indicate why
frame has singularities on a smaller subset of the inte
space than the Eckart frame. Finally, in Sec. VII we pres
some conclusions and thoughts about future work. Three
pendixes are also supplied. Appendix A explains the conc
of group actions, which is central to the development of
present paper, and Appendix B concerns the various sp
that occur in the main body of the paper and the stand
mathematical notation for them. Finally, Appendix C co
tains some material moved from the main body of the pa
for purposes of continuity of flow.

II. CONFIGURATION SPACE AND GROUP ACTIONS

The configuration space in the four-body problem, af
the elimination of the center-of-mass degrees of freedom
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3720 PRA 58ROBERT G. LITTLEJOHNet al.
the spaceR9, on which the nine components of the thr
mass-weighted Jacobi vectorsr sa , a51,2,3, are coordi-
nates. As in Ref.@1#, we use ans subscript to indicate the
space or inertial frame components of a vector or tensor
use greek indicesa, b, etc., to label Jacobi vectors. We d
fine the Jacobi vectors in the usual way by linking particle
to 2, then these to 3, and then linking the first three to p
ticle 4. All other choices of Jacobi vectors are related to t
choice by constant kinematic rotations~defined momen-
tarily!. As in Ref. @1#, we represent a point of configuratio
space byQ5$r sa%.

We introduce the 333 matricesFs , Ts , andJ, defined by
Fsia5r sa i , Ts5FsFs

t , andJ5Fs
t Fs , respectively, where the

t superscript is the matrix transpose andi 51,2,3 stands for
x,y,z. These are the obvious generalizations of Eqs.~2.7!,
~2.8!, and~2.11! of Ref. @1# to the case of four particles. Th
matrix Fs simply contains the three Jacobi vectors in its th
columns and therefore it labels a point of configuration sp
equally as well as the symbolQ. We call Ts the moment
tensor andJ the Jacobi dot product tensor, the latter beca
Jab5r sa•r sb . As in Eq. ~2.9! of Ref. @1#, the moment of
inertia tensor~with respect to the space frame! Ms is related
to the moment tensor byMs5(tr Ts)I2Ts . As proved in Ref.
@13#, the three~necessarily non-negative! eigenvalues ofTs
and those ofJ are identical. We call these three eigenvalu
l1 , l2 , andl3 ; they are related to the eigenvalues of t
moment of inertia tensorm1 ,m2 ,m3 by Eq. ~2.10! of Ref.
@1#.

A point Q5$r sa% of configuration space is acted upon b
external rotations according tor sa8 5Rr sa , where R
PSO(3), which physically represents a rigid rotation of th
four-particle system. We will write this asQ85RQ for
short; see Eq.~2.1! of Ref. @1#. As in that paper,R ~in italics!
stands for an element of SO~3! as an abstract group andR ~in
sans serif! stands for the corresponding 333 matrix. In
terms of the matrixFs , the action of external rotations ca
also be writtenFs85RFs . Two configurations are considere
to have the same shape if and only if they are related
some proper external rotation. The description of rotat
orbits, fibers, and the fiber bundle can be taken over from
three-body case@1# almost word for word, but here we wil
take the opportunity to introduce and exemplify the langua
of group actions, orbits, and isotropy subgroups, which is
important for understanding the four-body problem. Th
language is explained in Appendix A.

The different cases are summarized in Table I. If the c
figuration Q is noncollinear, then the only rotation tha
leavesQ invariant is the identity, so the isotropy subgroup
Q is just the trivial subgroup$I% containing the identityI
PSO(3). Inthis case, the points of the orbit can be placed

TABLE I. Orbits and their isotropy subgroups for the action
external rotations on the configuration space of the four-body p
lem.

Case Orbit Orbit dimension Isotropy subgrou

noncollinear SO~3! 3 $I%
collinear S2 2 SO~2!

four-body collision one point 0 SO~3!
d
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one-to-one correspondence with rotationsRPSO(3);
equivalently, the Euler angles of those rotations can be u
as coordinates along the orbit. This is what is always don
practice in defining the external Euler angles. In this ca
the orbit is a three-dimensional surface that is a copy
SO~3!. That is, the orbit is diffeomorphic~see Appendix B!
to SO~3!.

If Q is a collinear configuration~all three Jacobi vectors
are parallel, but at least one is nonvanishing!, then rotations
about the axis of collinearity do nothing to the configuratio
In this case, the isotropy subgroup ofQ is SO~2!, the sub-
group of rotations about a fixed axis, which are proper
thogonal transformations in the plane perpendicular to
axis. It is obvious geometrically that the orbit of a colline
configuration under the external rotation group SO~3! is the
two-sphereS2 ~this notation is explained in Appendix B!,
because a rotation can only change the direction of colline
ity, and the final configuration is uniquely specified by a u
vector indicating that direction. The same fact can be
pressed in the language of quotient spaces, explained in
pendix A; the points of the orbit can be placed in one-to-o
correspondence with the left cosets of SO~2! within SO~3!
and, as proved in Appendix B, the space of these cose
S2,

S25
SO~3!

SO~2!
. ~2.1!

Finally, if Q is the four-body collision~all three Jacobi vec-
tors vanish!, then the isotropy subgroup is all of SO~3! and
the orbit is just a point~the four-body collision itself!.

Next we introduce kinematic rotations and their action
configuration space. The kinematic group, which was SO~2!
in the three-body problem, is SO~3! in the four-body prob-
lem. As an abstract group, the kinematic group is the sam
the external rotation group, but the action is different; ifK
PSO(3), then the action ofK on Q5$r sa% is given by

r sa8 5 (
b51

3

Kabr sb , ~2.2!

which is the obvious generalization of Eq.~2.2! of Ref. @1#.
We will also write this asQ85KQ; in terms of theFs ma-
trix, the action ~2.2! is Fs85FsK

t. In these equations,K
stands for an element of SO~3! as an abstract group,K for the
corresponding 333 matrix, Kab for the components of this
matrix, andKt for the transpose of this matrix.

The orbits of the kinematic action on configuration spa
are discussed in Appendix C in order not to interrupt the fl
of the presentation. However, the reader may wish to ret
to Appendix C after reading Sec. IV below, on the kinema
orbits in shape space.

III. SHAPE SPACE IN THE FOUR-BODY PROBLEM

Shape space is the space in which a single point re
sents an entire external rotation orbit in configuration spa
In the three-body problem, shape space is the quotient s
R6/SO(3),which is one-half ofR3; this fact was not proved
in Ref. @1# because it was assumed to be familiar to m
readers who have worked with three-body problems. In

b-
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four-body problem, shape space is the quotient sp
R9/SO(3),which turns out to beR6. It is not entirely trivial
to prove this, but a complete and careful proof is given
Ref. @13#; see also the work of Kuppermann@2,3#, who has
considered many of the same issues treated in Ref.@13#.

To say that shape space isR6 means that there exists a s
of six shape coordinates, each of which ranges from2` to
1`, such that there is a one-to-one correspondence betw
shapes~that is, external rotation orbits in configuratio
space! and coordinate sixtuplets. In the literature it is popu
to use other coordinate systems, usually containing so
kind of hyperspherical angles, which of course have fin
ranges. Such coordinates are potentially useful for numer
integration schemes, but usually are not so convenient
understanding the global topology and structure of sh
space. This is mainly because when the angular coordin
are at the ends of their ranges, they are not usually in o
to-one correspondence with shapes and the boundarie
these ranges correspond to surfaces in shape space w
different regions of that space join continuously to one
other. Thus it takes some extra effort to understand topol
cal questions in such a coordinate system. For this rea
we will begin our discussion of shape space with coordina
that make it evident that shape space isR6.

The theory of these coordinates is given in full detail
Ref. @13#. This theory relies on two theorems, proved in R
@13#. The first states that if two configurationsQ and Q8
have the sameJ tensor, then they are related by either
proper or an improper rotation. As we will say,Q and Q8
have the same shape modulo chirality. TheJ tensor is a
333, symmetric non-negative definite matrix. The seco
theorem states that every 333, symmetric non-negative defi
nite matrix is theJ tensor for some shape. More precise
the second theorem states that if such a matrix has non
determinant, then it corresponds to precisely two shape
nonzero volume and opposite chirality, whereas if its de
minant is zero, then it corresponds to precisely one shap
zero volume, that is, a planar shape.

We will not prove these theorems here, but simply n
that they are believable on several grounds. First, from
definition of J, it follows that

det J5V2, ~3.1!

whereV is the signed volume contained in the parallelepip
spanned by the Jacobi vectors,

V5det Fs5r s1•~r s23r s3!. ~3.2!

We will refer to shapes of positive or negative volume
shapes of positive or negative chirality, respectively, beca
the spatial inversion operation, which takes$r sa% into
$2r sa% or Fs into 2Fs , also takesV into 2V.

Next, it is not hard to see for the four-body problem th
knowledge of theJ tensor implies knowledge of the shap
modulo chirality, because from the Jacobi dot products
can find the dot products of the vectors connecting the p
ticles and from these the interparticle distances. Howe
the interparticle distances determine the shape of a tetr
dron modulo chirality.

These theorems suggest that we seek a parametrizati
theJ matrices. Since such matrices are symmetric, they h
ce
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six independent components; the following linear combin
tions of these components are convenient parameters:

w5r s1
2 1r s2

2 1r s3
2 , w35)r s2•r s3 ,

w15~)/2!~r s1
2 2r s2

2 !, w45)r s3•r s1 , ~3.3!

w25)r s1•r s2 , w55~1/2!~2r s1
2 2r s2

2 12r s3
2 !.

Note thatw5tr J5r2, wherer is the hyperradius, and tha
(w1 ,...,w5) specify the symmetric, traceless part ofJ. In
these equations,r sa5ur sau.

The six quantities (w;w1 ,...,w5) can be used locally as
coordinates on shape space for the four-body problem,
are not suitable globally, for three reasons. First, they do
distinguish shapes related by chirality; second, there are
ues of these coordinates that are not physically meanin
because they correspond toJ matrices that have negativ
eigenvalues; and third, the ranges of the coordinates
specify the boundaries of the physically meaningful reg
are not independent of one another.

These difficulties are analyzed in detail in Ref.@13#,
where it is shown that an alternative coordinate
(V;w1 ,...,w5) solves all the problems listed. In the coord
nate system (V;w1 ,...,w5), all six coordinates range from
2` to 1` and coordinate sixtuplets stand in precisely on
to-one correspondence with shapes. These coordinates
probably the best for understanding global topological qu
tions in the four-body shape space, although for other p
poses other coordinate systems are needed~and will be in-
troduced below!.

For example, we can visualize four-body shape space
illustrated in Fig. 1, in whichR6 is decomposed into slices o
constantV, each of which isR5, a five-dimensional hyper-
plane. TheV50 slice is the hyperplane containing the plan
shapes of zero volume, which separates the regionV.0 of
shapes of positive chirality from the regionV,0 of shapes
of negative chirality. Incidentally, this shows immediate
that in the four-body problem, one cannot pass continuou
from a shape of positive chirality to one of negative chiral

FIG. 1. The six-dimensional shape space for the four-body pr
lem may be visualized by taking slices at constantV, giving a series
of five-dimensional hyperplanes. The hyperplaneV50 contains the
planar shapes.
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3722 PRA 58ROBERT G. LITTLEJOHNet al.
without passing through a planar shape~a fact that can be
seen in other ways!. ~This statement does not hold forn
.4.) The volumeV corresponds most closely to the ar
coordinatew3 in the three-body problem~here the analogy is
stronger for the planar three-body problem, in whichw3 can
take on negative values! and the coordinates (w1 ,...,w5) in
the four-body problem are analogous to the coordina
(w1 ,w2) in the three-body problem.

IV. KINEMATIC ORBITS IN SHAPE SPACE

An idea developed by Zickendraht@5# and apparently re-
discovered several times since is to use the Euler angle
the kinematic rotations and some set of kinematic invaria
as coordinates on the shape space for the four-body prob
In light of the discussion of Appendix A, this idea obvious
involves the decomposition of shape space into the orbit
the kinematic group. In this section we will examine t
action of the kinematic group on shape space in detail.
first set up a suitable section of the kinematic fiber bun
~this concept is explained in Ref.@1#!, consisting~within an
R5 hyperplane at constantV) of a 60° sector in thew1-w5
plane, what we will call the principal sector. Next we class
the kinematic orbits themselves and show that they dep
on whether the shape is an asymmetric top, a symmetric
or a spherical top. Finally, we examine the kinematic or
for the asymmetric top in some detail because it is a sp
that is more difficult to visualize than the others. We call th
space the kinetic cube because it can be represented
cube in certain coordinate systems, with certain ‘‘glui
rules,’’ that is, identification of points on opposite faces.

A. A section of the kinematic fiber bundle

We begin by constructing a suitable section of the kin
matic fiber bundle, that is, a surface in shape space tha
tersects each kinematic orbit at one point. The kinem
action on configuration spaceFs85FsK

t for KPSO(3) im-
plies a certain kinematic action on shape space. This actio
captured by the transformation law for theJ tensor under
kinematic rotations,

J85KJKt, ~4.1!

which follows from the definition ofJ and implies that the
old and new coordinates (w;w1 ,...,w5) under a kinematic
rotation are related by a linear transformation. In fact,w
5r25tr J is invariant under kinematic rotations an
(w1 ,...,w5) transform according to thel 52 irreducible
representation of SO~3!, precisely as quadrupole mome
tensors transform under ordinary rotations. Thel 52 irre-
ducible representation is five dimensional and the matrix r
resenting the transformation of the coordinates (w1 ,...,w5)
is just the usualDmm8

2 matrix or rather this matrix reex
pressed in a nonstandard basis. The nonstandard basis is
venient for present purposes because the usual~spherical!
basis is complex. The particular linear combinations sho
in the definitions of (w1 ,...,w5) in Eq. ~3.3! were chosen to
be real and so that the transformation matrix@the five-
dimensional irreducible representative of SO~3!# would be
orthogonal. Apart from that, the choice was essentially a
s
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trary. Our paper@13# explains the group theory of the tran
formation ~4.1! ~why it contains thel 52 irreducible repre-
sentation, etc!. A different approach that reaches simil
conclusions has been given by Kuppermann@2,3#.

To visualize the action of the kinematic group on sha
space, we first note that the volumeV is a kinematic invari-
ant, V85det(Fs8)5det(FsK

t)5detFs5V, since detK51.
Therefore, the kinematic orbits are confined to the fiv
dimensional hyperplanesV5const illustrated in Fig. 1.
Within one of these hyperplanes, the five coordina
(w1 ,...,w5) transform linearly under kinematic rotations, a
was just mentioned; these coordinates by themselves ind
the shapes through which the kinematic orbit passes sincV
is given. Equivalently, theJ tensor by itself identifies a shap
on a constantV slice sinceV determines the chirality.

Now let q be a point in one of these hyperplanes, cor
sponding to someJ matrix, and consider the kinematic orb
passing throughq. Since every symmetric matrix can b
diagonalized by some orthogonal transformation, there c
tainly exists a point on the kinematic orbit with a diagonaJ
matrix. However, it follows from Eq.~3.3! that the diagonal
J matrices lie on the two-dimensional subspace of the fi
dimensional hyperplane given byw25w35w450, that is,
on thew1-w5 plane. Therefore, every kinematic orbit pass
through thew1-w5 plane. On this plane, theJ matrix is di-
agonal,

J5diag~l1 ,l2 ,l3!, ~4.2!

so the three Jacobi vectorsr sa are orthogonal there andla

5r sa
2 . Also, according to Eq.~3.3!, the eigenvalues are re

lated to the thew coordinates by

w15~)/2!~l12l2!,

w55~1/2!~2l12l212l3!. ~4.3!

The analog of thew1-w5 plane~at fixed V) in the four-
body problem is thew1 axis ~at fixedw3) for the three-body
problem; equivalently, the analog of the three-dimensio
w1-w5-V hyperplane in the four-body problem is thew1-w3
plane in the three-body problem. We recall that the lat
plane in the three-body problem is the one upon which
232 J tensor is diagonal and that each asymmetric top
nematic orbit intersects that plane at two points; for this r
son, we had to take a subset of that plane (w1.0 for the
planar three-body problem! in order to obtain a section of th
kinematic fiber bundle, that is, a surface that is intersec
only once by each kinematic orbit. We will now see th
analogs of these facts for the four-body problem.

We return to the four-body problem. All kinematic orbi
intersect thew1-w5 plane at least once, but in fact most
them pass through this plane more than once because d
ent diagonal matrices can be achieved by permuting the
genvalues. As a first case, suppose all three eigenvaluela
are distinct~an asymmetric top!. Then there are 3!56 dis-
tinct diagonal matrices that can be obtained by applying
nematic rotations to a givenJ matrix, according to Eq.~4.1!.
Therefore, the kinematic orbit passing through any asymm
ric top shape intersects thew1-w5 plane in six points. Next,
if two of the eigenvalues are equal and the third distinct~a
symmetric top, either oblate or prolate!, then there are three
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distinct permutations of the eigenvalues and each kinem
orbit passes through thew1-w5 plane at three points. Finally
if all three eigenvalues are equal~a spherical top!, the kine-
matic orbit intersects thew1-w5 plane at just one point~the
orbit is that one point!.

To obtain a useful section of the kinematic fiber bund
we require a surface that intersects each kinematic orbit o
once. Taking first the case of asymmetric tops~all three ei-
genvalues unequal!, we can achieve a unique diagonalJ ma-
trix by requiring that the eigenvalues be in a descend
order l1.l2.l3>0. However, by Eq.~4.3!, we see that
l1.l2 whenw1.0 andl2.l3 whenw5,2w1 /). These
conditions restrict us to the region labeled I in Fig. 2, a 6
sector lying between polar anglesu5290° andu5230°.
We will call this region thefundamental sectorand take it to
be the section of the kinematic fiber bundle in the four-bo
problem. Also illustrated are five other sectors, labeled
VI, in which the ordering of the eigenvalues is permute
The point marked by a cross in the fundamental sector
resents an initial point on an asymmetric top kinematic o
and the other points labeled by a cross, one in each se
represent the other intersections of that kinematic orbit w
the w1-w5 plane. One can show that such points are rela
to one another by reflections in thew5 axis and in the two
lines w556w1 /).

Next we note that as we approach thew5 axis ~the line
w150) from within the fundamental sector, we achieve
shape for whichl15l2.l3 , which is an oblate symmetric
top ~because these conditions implym3.m15m2). Thus the
negativew5 axis is a half line of oblate symmetric tops, a
are the other two half lines in the figure labeledO, rotated by
6120° from this one. An oblate symmetric top shape is
dicated by a closed circle, as are the other two intersect
with thew1-w5 plane of the kinematic orbit passing throug
this shape. Similarly, as we approach the linew55
2w1 /) from within the fundamental sector, we achieve t
condition l1.l25l3 , which defines a prolate symmetr
top ~because these conditions implym1,m25m3). The
three half lines labeledP in the figure, related to one anothe
by 120° rotations, are the half lines of prolate top shap
The asterisk in the figure represents a prolate symmetric
shape and the kinematic orbit passing through this sh
intersects thew1-w5 plane in two other points, also labele
by an asterisk. Finally, the origin of thew1-w5 plane is a
spherical top~all three eigenvalues equal!; the orbit of this
point intersects thew1-w5 plane in a single point~the origin
itself!.

The general picture of the kinematic section presented
Fig. 2 is independent of the value ofV, but if V50 there is
one further comment. In this case, sinceV25l1l2l3 and the
~necessarily non-negative! eigenvalues are in descending o
der in the fundamental sector, it follows thatl350 in this
sector. This means that on the half line of prolate shape
polar angle ofu5230°, we havel1.l25l350, which is
the condition for a collinear configuration. Likewise, th
other two half lines labeledP are collinear configurations
within the hyperplaneV50.

For the three-body problem in space, a section of the
nematic fiber bundle is the regionw1 ,w3.0 of the w1-w3
plane ~or the regionw1.0 in the case of the planar three
tic
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body problem, see the end of Sec. II of Ref.@1#!. The analog
of this region for the four-body problem is the thre
dimensional wedgeS3R, the Cartesian product of the fun
damental sectorS in Fig. 2 withR, the latter representing th
volume (2`,V,`). The wedgeS3R is otherwise the
space of kinematic invariants; we will say more about it b
low.

B. Kinematic orbits in shape space

Next we examine the nature of the kinematic orbi
which are generated by allowing all kinematic rotations
act on points of the fundamental sector~including its edges,
if we want the symmetric and spherical tops!. We do this by
first finding the isotropy subgroups for the various cas
Since V is fixed, a shape is uniquely identified by theJ
tensor, which transforms according to Eq.~4.1!. It suffices to
find the isotropy subgroups for points on the section sin
the isotropy subgroups at different points on an orbit are
conjugate subgroups and are identical as abstract groups~see
Appendix A!. Therefore, we choose a point on the sectio
whereJ is diagonal and the eigenvalues are in descend
order. The different cases are summarized in Table II;
now discuss the cases in detail.

We begin with the asymmetric tops. Since all eigenvalu
are unequal, there are only four kinematic rotations t
leaveJ invariant under the transformation~4.1!, namely, the
proper orthogonal matrices that are diagonal. These matr
form a group that we denote byV4 ,

FIG. 2. The section of the kinematic fiber bundle is sectorI ~the
fundamental sector! in the w1-w5 plane. The interior of this secto
contains asymmetric tops; the six intersections of an asymme
top kinematic orbit with thew1-w5 plane are labeled3. The radial
half lines labeledP or O contain, respectively, the prolate an
oblate symmetric tops. The three intersections of an oblate sym
ric top kinematic orbit with thew1-w5 plane are labeled • ; similarly
* labels the prolate symmetric tops. The spherical top is at
origin.

TABLE II. Orbits and their isotropy subgroups for the kinemat
action on shape space in the four-body problem.

Case Orbit Orbit dimension Isotropy subgrou

asymmetric top SO(3)/V4 3 V4

symmetric top RP2 2 O~2!

spherical top one point 0 SO~3!
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V45H S 1 0 0

0 1 0

0 0 1
D ,S 1 0 0

0 21 0

0 0 21
D ,S 21 0 0

0 1 0

0 0 21
D ,S 21 0 0

0 21 0

0 0 1
D J , ~4.4!
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which as an abstract group is the viergruppe$e,a,b,c%, with
the multiplication lawa25b25c25e, ab5ba5c, etc. We
will also write this group as

V45$I,K1~p!,K2~p!,K3~p!%, ~4.5!

where the notation indicates rotations about thea51,2,3
‘‘axes’’ by an angle ofp @as matrices, these are the same
Rx(p), etc., but the notation is changed to indicated that th
are used as kinematic rotations#. The viergruppe is the isot
ropy subgroup of the kinematic action on an asymmetric
and therefore the kinematic orbits for asymmetric top sha
are copies of ~diffeomorphic to! the quotient space
SO(3)/V4 . This quotient space is a three-dimensional sp
with a nontrivial topology, which is analyzed in more deta
below.

For now, however, we simply comment on the analog
the space SO(3)/V4 for the three-body problem. In the three
body problem, action of the kinematic group†see Eq.~2.6!
of Ref. @1#‡ on an asymmetric top has a two-element isotro
subgroup$I,2I%, a subgroup of SO~2!. As an abstract group
this is Z2 , the two-element group$e,a% with multiplication
law a25e. The kinematic rotation2IPSO(2) corresponds
to a kinematic angle off5p in the language of Ref.@1# and,
as indicated in Fig. 3 of that reference, the period of
kinematic orbits in shape space isf5p. The orbits them-
selves are circles, that is, copies ofS1. From another point of
view, these orbits should be copies of the quotient sp
SO(2)/Z2 , as indeed they are, since SO~2! itself is the circle
S1, and the quotient operation in question is equivalent
identifying antipodal points on the circle~points with coor-
dinatesf andf1p). That is, the quotient space is the re
projective spaceRP1, which otherwise is a circle again
since it is the same as a half circle with end points identifi
Altogether, we have

SO~2!

Z2
5

S1

Z2
5RP15S1 ~4.6!

for the kinematic orbits of asymmetric tops in the three-bo
problem. However, in a sense the final circleS1 is only half
as big as the first circle SO~2!, which is a way of saying tha
the period of the kinematic orbits in shape space isp instead
of 2p. In a similar manner, we will see below that the spa
SO(3)/V4 can be identified with a region of SO~3! that is 1/4

FIG. 3. The fundamental region for tessellating the plane is
unique. Similarly, the fundamental region within SO~3! represent-
ing the quotient space SO(3)/V4 is not unique.
s
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the size of the whole group manifold, with certain rules f
identifying points on the boundaries of the region.

We turn now to the symmetric tops. To be specific let
take a prolate symmetric top, whoseJ tensor on the section
has the form

J5diag~l1 ,l2 ,l2!, ~4.7!

that is, withl25l3 . When thisJ is acted upon by kinematic
rotations according to Eq.~4.1!, the proper orthogonal matri
cesK that leave it invariant have the form

K5S s 0 0

0 S11 S12

0 S21 S22

D , ~4.8!

whereS ~the 232 matrix on the lower diagonal! belongs to
O~2! and s5detS561. Such matricesK form a faithful
representation of O~2!, so the isotropy subgroup is O~2! as an
abstract group. A similar argument applies to oblate symm
ric tops; the isotropy subgroup is again O~2! as an abstrac
group. Therefore, the kinematic orbits of symmetric top co
figurations are copies of the quotient space

SO~3!

O~2!
5RP2, ~4.9!

where the identification withRP2 ~and the notation for the
real projective spaceRP2) is explained in Appendix B.

In three-body scattering problems, it is well known th
there are three exit channels that can be associated with
points on a circle. This circle can be identified as a kinema
orbit in the three-body shape space of an asymptotic~large
hyperradius! collinear state, that is, a large circle centered
the origin in thew1-w2 plane. The kinematic rotations tha
connect the points on this circle are the same ones that
nect the three usual choices of Jacobi coordinates in
three-body problem, each of which is particularly convenie
for describing asymptotic states in one exit channel.

In a previous publication@10# we have studied the two
fragment exit channels and the kinematic rotations conn
ing them in collinear four-body scattering problems. In th
work it was found that there are 14 two-fragment exit cha
nels, which can be arranged as points on a certain sp
(S2) and connected by kinematic rotations. The arrangem
of points is particularly symmetric in the case of equ
masses. Reference@10# generalized the well known facts jus
mentioned regarding three-body exit channels, althoug
was still restricted to collinear problems. It turns out th
when we extend the work of Ref.@10# to four-body scatter-
ing in three spatial dimensions, the 14 exit channels beco
seven pairs of antipodal points on the same two-sphere a
the collinear case. Equivalently, these seven pairs of ant
dal points can be seen as seven points in the spaceRP2,

t
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which because of Eq.~4.9! is now recognized as the kine
matic orbit of a symmetric top. Symmetric top orbits appe
here because two-fragment asymptotic states are colli
and therefore prolate symmetric tops.

Finally, in the case of a spherical top, theJ tensor is a
multiple of the identity matrix, so all kinematic rotation
leave J invariant according to Eq.~4.1!. In this case, the
isotropy subgroup is all of SO~3! and the kinematic orbit is
just a point.

Altogether, we find that a five-dimensionalR5 slice of the
four-body shape space at constantV can be decomposed int
the product of the interior of the fundamental sector~a 60°
sector! times the space SO(3)/V4 , plus two copies~oblate
and prolate! of a radial half line~the two sides of the funda
mental sector! times the spaceRP2, plus a single point~the
spherical top!. All these are glued smoothly together to for
R5. This decomposition applies in particular to theR5 hyper-
plane of planar shapes (V50), so the collinear configura
tions, which lie in this hyperplane, can be represented a
single radial half line times the spaceRP2. Counting the
dimension contained in the volumeV, we see that the spac
of asymmetric tops is six dimensional, that of symmet
tops is four dimensional, and that of spherical tops is o
dimensional. These spaces are summarized in Table III.
nally, the space of collinear shapes is three dimensional

C. Space SO„3…/V4, the kinetic cube

We now analyze more closely the kinematic orbits
asymmetric tops, which are diffeomorphic to SO(3)/V4 .
This is otherwise the space of left cosets ofV4 @in the
333 representation~4.4!# within SO~3!, that is, the space o
sets of proper orthogonal matrices of the for
(K1 ,K2 ,K3 ,K4), where theK’s are related byKi5KjV for
someVPV4 . To repeat the logic that leads to these cos
all four of these kinematic rotations have the same effect
a diagonal asymmetric topJ matrix according to Eq.~4.1!, so
any one of the four serves to label points on the asymme
top kinematic orbit. To reduce this to a description involvi
only a single matrix, we proceed as follows. We start w
one value ofK1 , from which the three otherK’s can be
determined, producing altogether four points inside SO~3!. If
we allow K1 to range over a small region surrounding t

TABLE III. Spaces of different kinds of tops in the four-bod
problem. The firstR in each entry in column 2 stands for the vo
umeV, which ranges from2` to 1`. For the asymmetric top, the
spaceS is the 60° principal sector in thew1-w5 plane ~interior
only!. There are two symmetric top regions~oblate and prolate!,
both described by the second line; the spaceR1 is the set of posi-
tive numbers, standing for the radial lines at the edges of the p
cipal sector~omitting the origin!. For the spherical tops, the nota
tion R0 stands for a single point~the first indicating the vertex of the
principal sector and the second indicating that the kinetic orbi
just a single point!.

Top Space Dimension

asymmetric R3S3SO(3)/V4 6
symmetric R3R13RP2 4
spherical R3R03R0 1
r
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initial point, the other threeK’s will also sweep out small
regions about their initial points. As we increase the size
region swept out byK1 , it will eventually bump into the
regions being swept out by the otherK’s. When this happens
we stop moving in that direction, but continue to expand
initial region in directions that are not yet covered by t
other K’s. We keep this up until the entire group manifo
SO~3! is covered by one~and only one! of the fourK’s. The
region covered byK1 will then be 1/4 of the entire group
manifold and can be taken as a ‘‘fundamental region’’ f
representing the space of cosets. Then points in the fun
mental region stand in one-to-one correspondence w
points of SO(3)/V4 . One must be careful with boundar
points, however, because there will be gluing rules indicat
how boundary points are to be identified in order to repres
a unique point of the quotient space SO(3)/V4 .

The construction just given can be described by say
that we have tessellated SO~3! into four identical pieces tha
fill up the whole group manifold with no overlap. For com
parison, we note that the ordinary tessellation of the plane
unit squares can be regarded as the process of replicatin
fundamental region~a given unit square! by the group of
integer displacements in thex andy directions and that the
fundamental region itself can be regarded as the quot
space resulting from dividing the plane by this group. Th
example also makes it clear that the fundamental regio
not unique; two possible fundamental regions are illustra
in Fig. 3, which differ from one another in that some territo
has been borrowed by the fundamental region from its ne
bor on one side and symmetrically~under a group operation!
abandoned on the other side. The situation is similar w
SO(3)/V4 ; the fundamental region is not unique, but can
defined in many ways. The tessellation of the plane illu
trates another point, which is that while the fundamental
gion ~say, a unit square in the plane! represents the quotien
space point for point, it does not accurately represent
topology of the quotient space, unless some gluing rules
adopted. For example, points on opposite sides of the fun
mental square represent only one point in the quotient sp
and points near points on opposite sides, while not clos
one another in the plane, actually are close to one anothe
the quotient space. Therefore, we must glue opposite side
the fundamental region together to represent the topolog
the quotient space accurately. In this way, we see that
quotient space is actually a two-torus, a compact manif
with no boundary. Similarly, SO(3)/V4 is a compact, three-
dimensional manifold with no boundary.

In earlier work@11#, one of us~M.R.! has shown that in
coordinates we callt5(t1 ,t2 ,t3), the fundamental region
of SO~3! is a cube. We will call this space the kinetic cub
Recently Kuppermann@3# has also identified the fundamen
tal region as a cube in Euler angle coordinates. These
cubes in the respective coordinate spaces do not represen
same region on SO~3! because the mapping between the tw
sets of coordinates is nonlinear and a cube in one coordi
space does not map onto a cube in the other. It must be
the two corresponding regions on the group manifold
related to one another as are the fundamental regions in
3, but we have not attempted to prove this in detail. Kupp
mann’s fundamental region is given by 0<a,b,g<p in the
usual ~a,b,g! Euler angle coordinates; actually, the corr
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sponding region on SO~3! is not a smooth distortion of a
cube because the anglesa and g are not unique whenb
50,p ~only a1g has meaning whenb50 and onlya2g
whenb5p). In effect, two faces of Kuppermann’s cube a
pinched into a line.

Kuppermann’s cube construction makes it easy to see
the fundamental region is in fact 1/4 of SO~3!, but makes it
hard to determine the gluing rules at the boundaries of
region and hence the topology. Another difficulty is th
Kuppermann’s cube positions the identity rotation at a cor
of the fundamental region, instead of in the center; this
particular makes it hard to study the SO~2! subgroup of ro-
tations about thex axis, which is important for the connec
tivity of the principal axis frame. These difficulties are r
lated to the usual drawbacks of the Euler angles a
coordinate system on SO~3! @the three angles are unsym
metrical among themselves, some angles are undefined a
end points of the ranges, the coordinate system is singul
the identity element, and SO~2! subgroups do not have
simple representation#.

The t coordinates are better for these purposes. Th
coordinates are defined as follows. We parametrize a pro
rotation by its axisn̂ and angleu, denoting the correspondin
matrix byR(n̂,u). The axisn̂ ranges over the unit sphereS2

and the angle range is 0<u<p. Points (n̂,u) stand in one-
to-one correspondence withRPSO(3), except whenu50,
where R(n̂,0) is independent ofn̂, and except foru5p,
whereR(n̂,p)5R(2n̂,p). Thus, if we writeun̂ as a vector
in R3, we see that SO~3! can be identified with a region tha
is the solid interior of a sphere inR3 with radius ofp, with
antipodal points on the surface of the sphere identified. T
is the standard construction that makes it clear that SO~3! is
diffeomorphic to RP3 ~the ‘‘northern hemisphere’’ ofS3

with gluing rules at the ‘‘equator’’; see Appendix B!. The
identity matrix is at the origin and the SO~2! subgroups rep-
resenting rotations about an axisn̂ are represented by straigh
lines passing through the origin and connecting antipo
points on the surface. In particular, the SO~2! subgroups of
rotations about thex, y, andz axes are just the three coo
dinate axes inun̂ space.

In terms of this construction, thet coordinates are define
by

t5n̂ tan
u

2
. ~4.10!

The mapping fromun̂ space tot space pushes the surface
the sphere to infinity; thus points oft space stand in one-to
one correspondence with rotations, except whenu5p; such
rotations are not represented int space. The main advantag
of the t coordinates is that is it relatively easy to find th
coordinates of the product of two rotations, given the co
dinates of the two rotations themselves. Explicitly, ifR(t)
5R(t1)R(t2), then

t5
t11t21t13t2

12t1•t2
. ~4.11!

The analogous formula in Euler angle coordinates is q
unpleasant.
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Equation~4.11! is most easily proved in terms of spino
rotations, that is, elements of SU~2!. We call on the follow-
ing basic facts connecting SO~3! and SU~2!. Corresponding
to every R(n̂,u)PSO(3) there are two spinor rotations
SU~2!, U(n̂,u) and U(n̂,u12p), which differ only by a
sign. These are defined by

U~ n̂,u!5expS 2
iun̂•s

2
D 5cos

u

2
2 i ~ n̂•s!sin

u

2
~4.12!

5cos
u

2
~12 i t•s!, ~4.13!

wheres are the Pauli matrices. To find theRPSO(3) asso-
ciated with a givenUPSU(2), we may use theformula

Ri j 5
1

2
tr~U†s iUs j !. ~4.14!

In the expressionU(n̂,u), n̂ ranges over the unit sphereS2

and 0<u<2p. The correspondence between SU~2! and
SO~3! given by Eq.~4.14! is a group representation, that is,
U1 and U2 correspond toR1 and R2 by Eq. ~4.14!, then
U1U2 corresponds toR1R2 . Finally, Eq.~4.11! follows eas-
ily by multiplying U(n̂1 ,u1) and U(n̂2 ,u2) and using Eqs.
~4.10! and ~4.13!.

We return to Eq.~4.11! and allow the second angleu2 to
approach p, writing n̂25ê and making the notationa
changest1→t andt→t8. Then we have

t852
ê1t3ê

t•ê
. ~4.15!

This is the equation we must use when right multiplying
elements ofV4 @see Eq.~4.4!# since these contain rotation
by an angle ofp.

It is now straightforward to show that the cube21
<t1 ,t2 ,t3<11 in t space is the fundamental region for th
quotient operation SO(3)/V4 . In detail, this involves show-
ing that if K~t! lies in the interior of the cube, then the oth
three rotations of the formKV for VPV4 lie outside the cube
and if (K1 ,K2 ,K3 ,K4) are any four rotations related by righ
multiplication by elements ofV4 , that is,Ki5KjV for some
VPV4 , then at least one of them lies either in the interior
on the surface of the cube. The proof of these facts using
~4.15! is straightforward and will not be given here, part
because a more compelling~geometrical! argument will be
given momentarily. In any case, the regionut i u<1, i
51,2,3, is the kinetic cube in thet coordinates~see Fig. 4!.
The identity IPSO(3) is at the origint50 and rotations
about thex, y, and z axes run along thet1 , t2 , and t3
coordinate axes. These rotations hit the walls of the cub
anglesu56p/2 and puncture its six faces in their center

On the boundaries of the cube, there is more than
point corresponding to a given coset, which is to say t
there are gluing rules~identifications of points on the bound
ary! that are needed to make the correspondence one to
Consider first the face att3521. When a point t
5(t1 ,t2 ,21) on this face is right multiplied byK3(p),



at

e

re

,4
re

m
in

s

in

e
g

the

to

hen

the
re-
two

the

sed

-
ht

h
e
o

nt

PRA 58 3727INTERNAL SPACES, KINEMATIC ROTATIONS, AND . . .
corresponding toê5(0,0,1), then according to Eq.~4.15! it
is mapped onto (t2 ,2t1,1). That is, the face att3521 is
mapped onto the face att3511 with a rotation by angle
2p/2 about thet3 axis. In reference to Fig. 5, we see th
the faceABCD is identified with the faceFGHE. Precisely
analogous statements apply to the other axes and produc
identificationsAEFB5HGCD andBFGC5EHDA. These
rules in turn imply an identification of the edges, which a
identical in triplets; these areAB5FG5HD, BC5GH
5EA, CD5HE5FB, andDA5EF5GC. The edge iden-
tifications are indicated in Fig. 5 by the numbers 1,2,3
with arrows indicating the directions. Finally, the vertices a
identified four at a time, withA5F5H5C and B5G5D
5E.

The kinetic cube acquires an interesting and highly sy
metrical representation when expressed in terms of sp
rotations@that is, when ‘‘lifted’’ into SU~2!#. For this pur-
pose it is best to use the Cayley-Klein parameters for SU~2!,
which we define by writing

U5x02 ix•s, ~4.16!

where x5(x1 ,x2 ,x3). Then the conditionsU†U51 and
detU51 are equivalent tox0

21x1
21x2

21x3
251. This shows

that SU~2! is diffeomorphic toS3, the unit sphere in the

FIG. 4. The fundamental region of SO(3)/V4 is the cubeut i u
<1 in thet coordinates.

FIG. 5. Opposite faces of the kinetic cube are identified wit
p/2 rotation. Similarly, edges are identified in triplets and vertic
four at a time. The arrows indicate the direction of identification
the edges.
the

,

-
or

four-dimensional spaceR4 in which (x0 ,x1 ,x2 ,x3) are coor-
dinates. The identity matrix 1PSU(2) is at the ‘‘north pole’’
with coordinates~1,0,0,0!, the ‘‘equator’’ with coordinates
(0,x1 ,x2 ,x3) contains all rotations by an angle ofp, and the
‘‘south pole’’ with coordinates (21,0,0,0) is the matrix
21PSU(2). If RPSO(3) then the twoU matrices corre-
sponding toR according to Eqs.~4.13! and ~4.14! have co-
ordinates$xi% and$2xi%, that is, they lie on antipodal point
of S3.

Now consider the construction illustrated in Fig. 6,
which a pointUPSU(2) ~a point onS3) is projected~as
seen from the origin! onto the three-dimensional hyperplan
R3, which is tangential to the ‘‘north pole.’’ By comparin
Eqs. ~4.13! and ~4.16!, we have x05cos(u/2) and x
5n̂ sin(u/2) for the coordinates ofU, in terms of the axis
and angle. By scaling the four-vector (x0 ,x) by 1/cos(u/2),
we obtain a point on the tangent plane with coordinates~1,t!,
where t is given by Eq. ~4.10!. Thus we see that the
(t1 ,t2 ,t3) coordinates of a rotation are the same as
Cayley-Klein coordinates (x1 ,x2 ,x3) in the R3 hyperplane
tangent to the north pole. This makes it obvious why thet
coordinates diverge for rotations by an angle ofp, because
the correspondingU matrices are on the ‘‘equator.’’

Now it is easy to see what spinor rotations correspond
the kinetic cube. We simply construct the cubeuxi u<1, i
51,2,3, in the hyperplane tangent to the north pole and t
let a point such asP in Fig. 6 run over the interior~or faces!
of this cube. As it does, the pointU in the figure fills in the
region~or its boundary! in SU~2! in which thet coordinates
have the specified ranges. This region is centered on
north pole. There is an antipodal but otherwise identical
gion centered on the south pole; taken together, these
regions constitute the lift into SU~2! of the kinetic cube in
SO~3!, that is, the set of spinor rotations that project onto
kinetic cube according to Eq.~4.14!.

The meaning of these regions inS3 is made more clear by
Fig. 7, which is a sphere inscribed in a cube and is suppo
to suggest the three-sphereS3 inscribed in the four-cube~the
latter being the unit cube in four dimensions!. The four-cube
is described byuxi u<1, i 50,1,2,3, and the inscribed three
sphereS3 is tangential to the faces of this four-cube at eig
points, where the four coordinates take on the values61 on

a
s
f

FIG. 6. The three-sphereS3 is the group manifold SU~2!, to
which the hyperplaneR3 is tangent at the ‘‘north pole’’N. The
elementUPSU(2) is projected from the origin onto the tange
plane atP. Thet coordinates ofU are the coordinates ofP in the
tangent hyperplane.
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the four coordinate axes. The eight faces of this four-cu
are ordinary three-cubes, of which the kinetic cube in
tangential hyperplane illustrated in Fig. 6 is one. All eig
three-cubes are identical and share all of their faces~ordinary
squares or two-cubes! with one another. When these eig
three-cubes are projected ontoS3 as illustrated in Fig. 6, they
produce eight identical, three-dimensional regions inS3 that
tessellateS3.

Furthermore, these eight regions are mapped into one
other by the eight element subgroup of SU~2!, which is the
lift of V4 , regarded as a subgroup of SO~3!, that is, those
spinor rotations that correspond to the ordinary rotations
V4 according to Eqs.~4.13! and ~4.14!. This eight element
group is the set of spinor rotations$61,6Ux(p),6Uy(p),
6Uz(p)%, which we will denote byV8 . It is otherwise the
quaternion group, the eight-element group$61,6 i ,6 j ,
6k% with multiplication law i 25 j 25k2521, i j 52 j i 5k,
etc. It is easy to show that any one of the eight spinor ro
tions in V8 ~on right multiplication! simply permutes the
eight regions among themselves. Thus any one of these
gions can be taken as the fundamental region for SU(2)/V8 .
When these regions are projected onto SO~3! according to
Eq. ~4.14!, they project in antipodal pairs onto the four r
gions in the tessellation of SO~3!. In particular, the pair cen
tered on the north and south poles~on the6x0 axis! project
onto the kinetic cube, the fundamental region of SO(3)/V4 .
In summary, we have found another representation of
kinetic cube as a space of cosets, this time the cosets o
quaternion group within SU~2!. This is indicated by the
equation

SO~3!

V4
5

SU~2!

V8
. ~4.17!

This finishes our discussion of the kinematic orbits
shape space. At this point the reader may wish to exam
Appendix C on the kinematic orbits in configuration spa
which of course project onto the kinematic orbits in sha
space when the external orientation~the position along the
rotation fibers! is thrown away. The interplay between th

FIG. 7. A two-sphere inscribed in a three-cube suggests a th
sphereS3 inscribed in a four-cube. The four-cube has eight fac
each of which is an ordinary three-cube, which project onto ei
identical regions ofS3. These regions can be identified with th
coset space SU(2)/V8 , which is the same as the coset spa
SO(3)/V4 , the kinetic cube.
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kinematic orbits in these two spaces is important in und
standing the connectivity of the principal axis frame, whi
is our next subject.

V. PRINCIPAL AXIS FRAME

In this section we study the principal axis frame and
multiple branches in the four-body problem. In a sense,
analysis is a straightforward generalization of the work p
sented in Ref.@1# on the three-body problem, but it is nec
essary to invoke a more formal language because of the m
exotic spaces that are involved. We begin by examining
24 branches of the principal axis frame and the ‘‘fram
group’’ of rotations that connects them. Next we study ho
one branch, continuously tracked around a closed loop
shape space, may end on another branch when the s
returns to its initial value. We show that the ‘‘frame jump
must be an element of the viergruppeV4 and that it has a
simple dependence on the initial branch. Next we study
dependence of the frame jump on the loop itself. As in
three-body problem, we show that the connectivity of t
principal axis frame can be determined by loops genera
from kinematic rotations alone. This leads us into the hom
topy group of the kinetic cube, that is, the classes of to
logically equivalent curves, which we are able to transl
into principal axis frame jumps. Finally, we show ho
branch cuts may be introduced into the kinetic cube to de
a single-valued principal axis frame and we show how
discontinuities across the branch cuts may be computed

A. Multiple branches of the principal axis frame

As in Ref. @1#, we consider the principal axis frame to b
defined only over the asymmetric top region of shape spa
where the principal axes of the body are unique apart fro
sign ~their directions! and their labelings (x, y, or z). These
ambiguities give rise to 24 principal axis frames, which is t
number of ways of orienting a right-handed frame alo
three orthogonal lines. See Fig. 4 of Ref.@1#. These 24
frames are related by a 24-element group of rotations, g
erated by products and powers ofRx(p/2), Ry(p/2), and
Rz(p/2). We will call this theframe groupand denote it by
F24; it is a subgroup of SO~3!. If we pick any one principal
axis frame and apply the 24 rotations of the frame group
it, all 24 principal axis frames are generated. It is easy to
why there are 24 frames; since the eigenvalues of the
ment tensor are distinct, there are 3!56 ways of permuting
them and once a permutation of eigenvalues has been
lected, there remain four rotations belonging to the vi
gruppeV4 , defined in Eq.~4.4!, which leave the ordering o
the eigenvalues invariant but flip the directions of some
the principal axes. The viergruppe we are referring to her
composed of external rotations, whereas earlier it was c
posed of kinematic rotations; as a subgroup of matrices
SO~3!, it is the same group.

Geometrically, the 24 branches of the principal axis fra
can be seen as 24 sections of the rotation fiber bundle, tha
24 six-dimensional surfaces in configuration spaceR9, each
of which cuts the rotation fiber in one point. See Fig. 5
Ref. @1#, which illustrates two of these sections. If we deno
the points of a fiber where these sections intersect it
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,
t
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Q1 ,...,Q24, then these points are related by elements of
frame group, that is,Qi5FQj for someFPF24.

Now we ask what happens as we continuously track
of the branches of the principal axis frame around a clo
loop in the asymmetric region of shape space. When
return to our original shape, will we return on the sam
branch of the principal axis frame or will there be a ‘‘jump
to another branch? More generally, which branches are
cessible by continuous tracking from a given initial branc
Are all 24 branches connected together or only some
them?~Actually, the word ‘‘jump’’ is misleading because th
entire process is one of continuous tracking; if we were
reverse the process, we would return to the original bran!

In fact, it is not hard to see that the branches are c
nected together in sets of at most four. This is because
moment of inertia tensor is diagonal at all points along
path of continuous tracking and its eigenvalues, which
distinct initially and can never cross one another during
tracking process~because that would take us outside t
asymmetric top region!, must necessarily return to the
original values and original sequence when we return to
original shape. Therefore, the frame itself must preserve
sequencing of the eigenvalues, so the frame jump must
long to the viergruppeV4 of matrices shown in Eq.~4.4!.
These matrices change only the signs of the eigenvecto
the moment of inertia tensor, not the eigenvalues. The v
gruppe~4.4! is a subgroup of the frame groupF24. Thus the
only nontrivial frame jumps that can occur on continuo
tracking are rotations byp about one of the three principa
axes. This is a believable conclusion, based on experie
with the three-body problem, where the only nontrivial fram
jump is a rotation byp about thez axis. The question re
mains, however, which closed curves in shape space
rise to which jumps.

Let us precisely define the frame jump on continuou
tracking the principal axis frame around a closed loop in
asymmetric top region of shape space as the rotation
maps the initial frame into the final frame or, equivalent
the initial configurationQi ~a branch of the principal axis
frame! to the final oneQf , both on the same rotation fibe
The frame jump must be an element ofV4 , in the represen-
tation given by Eq.~4.4! and it is a function of both the loop
and the initial branch.

However, the dependence on the initial branch is eas
determine. Suppose we choose two initial branches of
principal axis frameQi1 andQi2 , which are necessarily re
lated by some member of the frame group, say,Qi25FQi1
whereFPF24, and suppose that on tracking these aroun
closed loop we reach the final branchesQf 1 andQf 2 . Then
the frame jump of the first frame is the rotationVPV4 such
that Qf 15VQi1 . Now the two branches, which are relate
by F at the initial point, must be related by some member
the frame group at all points along the continuous tracki
However, since the tracking is continuous and the eleme
of the frame group are discrete, in fact the two branches m
be related by the sameF at all points along the continuou
tracking. In particular, we must haveQf 25FQf 1 ~at the final
point!. However, this impliesQf 25(FVF21)Qi2 . Here we
note thatV4 is a normal subgroup ofF24, which means that
FVF21 is a member ofV4 for all FPF24.
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In summary, if we pick one branch of the principal ax
frame as a reference and label the other branches by
elements ofF24 that map the reference into them and if w
determine the frame jumpVPV4 of the reference branch o
going around a loop in the asymmetric top region, then
frame jump on the branch labeled byF is FVF21PV4 .

B. Frame jump and homotopy classes of the kinetic cube

Next we determine how the frame jump depends on
closed loop in the asymmetric top region. We begin with t
basic topological fact~discussed in Ref.@1#! that the frame
jump must be the same for any two closed loops that can
continuously deformed into one another. In algebraic top
ogy @12#, two closed loops in some space~starting at a given
point! are said to behomotopicor to lie in the samehomo-
topy classif they can be continuously deformed into on
another. Thus we see that the frame jump is a function of
homotopy class that the loop in the asymmetric region
shape space belongs to. For comparison, we note that in
three-body problem, the homotopy classes of the asymme
top region of shape space are specified by the numbe
times the closed loop goes around thew3 axis; thus the ho-
motopy classes are labeled by a winding numbern, an inte-
ger that ranges from2` to 1`. Also, we recall that in the
three-body problem, all closed loops in the asymmetric
region could be continuously deformed into kinematic orb
so it sufficed to use only kinematic orbits to determine fra
jumps. In fact, the frame jump in the three-body proble
turned out to beRz(p)n5Rz(np).

Returning now to the four-body problem, suppose
start at some initial pointq0 in the asymmetric top region o
shape space and go around some closed loop and suppo
frame jump isV1PV4 . Then suppose we go around anoth
closed loop, again starting fromq0 , and suppose we find th
frame jumpV2 . Then according to the discussion in Se
V A, the frame jump on going around both loops in tande
is (V1V2V1

21)V15V1V2 . However, in algebraic topology
@12#, the catenation of two loops is regarded as the prod
of the loops and it is shown that this product respects hom
topy classes.~The productab of loop a times loopb, both
assumed to begin at the same point, is the loop obtained
going arounda first and thenb.) In other words, the homo
topy class of the product of loops is defined to be the prod
of the classes. Also, the inverse of a loop~going around in
the reverse direction! defines the inverse class. With the
definitions, one can show that the homotopy classes for
group, thefundamental groupof the manifoldM upon which
the loops are defined, denotedp1(M ) in standard notation.
For example, the fundamental group of the asymmetric
region in the three-body problem isZ, the group of integers
~winding numbers! under addition, and the fundament
group of any simply connected space~such asR3 or S2) is
the trivial group$e% since all loops can be contracted to
point. Thus, in the language of algebraic topology, we s
that the frame jump corresponding to the product of t
homotopy classes is the product of the frame jumps. In ot
words, we have established a group homomorphism betw
the fundamental group of the asymmetric top region and
groupV4 of frame jumps.
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It turns out in the four-body problem that every clos
loop in the asymmetric top region of shape space can
continuously deformed into a closed loop composed enti
of kinematic rotations. This is the obvious generalization
an analogous fact shown in Ref.@1# for the three-body prob-
lem and it shows that kinematic rotations alone suffice
determine the connectivity of the principal axis frame.
other words, one can ignore any variation in the kinema
invariants~the volumeV and the labelsw1 ,w5 of the kine-
matic orbit or any equivalent set of kinematic invariants su
as the eigenvaluesl i of the J tensor! when considering the
frame change around a closed loop. Only the variation in
kinematic Euler angles need be considered. Thus the fu
mental group of the asymmetric top region is the same as
fundamental group of the kinetic cubep1@SO(3)/V4#.

This property can be understood with reference to the
row of Table III, whereS is the interior of the 60° principa
sector of the kinematic section. A closed loop in the asy
metric top region of shape space can be thought of a
combination of a closed loop in the space of kinematic
variants~the wedgeR3S), with a closed loop in the kinetic
cube SO(3)/V4 . However, the wedge is simply connecte
so the part of the loop in this space~the variation in the
kinematic invariants! can be continuously deformed into
point, leaving only the variation in the kinetic cube.

Therefore, we need the homotopy classes and the c
multiplication law for the kinetic cube SO(3)/V4 . There are
two approaches to finding these. In one approach, we
drawing closed curves in the kinetic cube, paying attention
the gluing rules at the boundaries and simply experimen
find the homotopy classes and their multiplication law. T
process, illustrated in Fig. 8, is not rigorous, but in this ca
it is effective. The identity class consists of any curve th
can be contracted to a point, such as the curve that star
the identity elementK5I inside the cube and goes nowher
This is the classe in the second row of the figure. Anothe
closed curve, labeleda in the figure~first row!, starts at the

FIG. 8. By experimenting with closed curves in the kinetic cub
we can find the homotopy classes. The axes are assumed
aligned with the cube as in Fig. 5. The identity elemente contains
any curve that can be contracted to a point. Elementsa, b, andc
run along the subgroups of rotations along the 1, 2, and 3 a
respectively, starting at angle 0, going to angle2p/2, and then
passing from angle1p/2 back to angle 0. Curvesa2, b2, andc2

are homotopically equivalent. The homotopy classes turn ou
form the quaternion groupV8 .
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identity elementK5I, goes to the center of the facet15
21, which, according to the gluing rules, is the same po
as the center of the facet1511 and then returns to the
identity element. Because of the gluing rules, this curvea is
a closed curve in the kinetic cube. It cannot, however,
contracted to a point because if we move the point on
face, the point on the other face must move in such a wa
to satisfy the gluing rules. Thus there is no way to bring t
two end points together and the classa is distinct from the
classe. The curvea consists of kinematic rotations along th
‘‘ x axis’’ ~that is, the 1 axis!, with angles decreasing from
to 2p/2 and then from1p/2 back to 0. In a similar way we
construct curves or homotopy classesb andc, illustrated in
the figure, which run along they and z axes, respectively
with decreasing angles.

Further classes can be obtained by taking inverses, p
ucts, and powers of the ones found so far. For example,
inverse of curvea, call it 2a ~not shown in the figure!, is a
curve that goes in the opposite direction froma, that is, with
increasing angles; one can show that it is not homotopic
equivalent toa. Similarly, we obtain homotopy classes2b
and2c. The curvea2, obtained by followinga twice ~sec-
ond row of figure!, belongs to yet a new homotopy clas
which is distinct froma and the others mentioned so far; b
it turns out to be identical tob2 andc2 ~not illustrated in the
figure!. We will call this class2e5a25b25c2. With this
we have found all the homotopy classes~there are eight!.

The multiplication law is obtained by catenating curv
and continuously deforming the result. For example, we
show thatab5c, as illustrated in Fig. 9. In Fig. 9~a! we first
start at 0~the identity elementK5I in the kinetic cube!, go to
1 on thet1521 face, which is the same as 2, and th
return to 0. This is curvea. Next we go from 0 to 3, which
is the same as 4, and then return to 0. This is curveb and the
whole journey is the productab. In Fig. 9~b! we continu-
ously deform the product curve, retracting from 2 and 3
pull the middle away from 0. In Fig. 9~c! we have moved 1
down to the middle of the edget15t3521, which, accord-
ing to the gluing rules, forces 2~which is the same as 1! to
move horizontally to the middle of the edget1511, t25
21. The curve is still traversed in the order 0→152→3
54→0. In Fig. 9~d! we move 3 over to coincide with 2
which by the gluing rules forces 4 upward to the midpoint
the edget25t3511. Now all four points 1,2,3,4 are iden

,
be

s,

to

FIG. 9. Illustration of the class multiplication lawab5c.
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tical. Next we contract the small loop 2→352 to a point, so
the history of the product loop is 0→154→0. Finally, we
move 1 to the center of the bottom face, which forces 4
move to the center of the top face. The result~see Fig. 8! is
loop c. This proves thatab5c. We defined the loopsa, b,
andc to go in the direction of decreasing angles so that t
result would come out. In this manner we can fill out t
multiplication table for the homotopy classes of the kine
cube and we recognize it as the same as the quaterion g
V8 , with $6e,6a,6b,6c% identified with $61,6 i ,6 j ,
6k% for quaterions or$61,6Ux(p),6Uy(p),6Uz(p)% for
SU~2! matrices.

A more efficient route to the same answer is to recogn
that any closed curve in SO(3)/V4 starting and ending at th
identity is the projection of a curve on SU(2)5S3 that starts
at the identity 1 and ends at some point on SU~2! that is
symmetrically related to the identity by some member ofV8 .
That is, the curve must end on a member ofV8 , regarded as
a subgroup of SU~2!. Furthermore, any continuous deform
tion of the closed curve in SO(3)/V4 , holding the starting
point fixed, must correspond to a continuous deformation
the curve in SU~2! that does not change the starting or en
ing points ~because that would create a curve that was
closed upon projection!. Furthermore, since SU(2)5S3 is
simply connected, any two curves that start and end at g
points can be continuously deformed into one anoth
Therefore, the homotopy classes of the kinetic cube can
placed in one-to-one correspondence with the elements oV8
and elements ofV8 can be used to label the homotop
classes. In fact, if we label the homotopy classes by the
verse of the element ofV8 upon which the curve in SU~2!
terminates, then it can be shown that class multiplication
equivalent to group multiplication withinV8 . We omit the
proof of this fact, which is straightforward. For example, t
curvea, which is closed in the kinetic cube, lifts into a curv
that starts at 1 and ends atUx(2p) in SU~2!. Therefore, we
would label curvea by the SU~2! matrix Ux(p) ~an element
of V8). Thus the fundamental group of the kinetic cube is
quaternion groupV8 ,

p1@SO~3!/V4#5p1@SU~2!/V8#5V8 . ~5.1!

One might say this equation is obvious: Since SU~2! is sim-
ply connected, any nontrivial topology comes from the qu
tient operation.

C. Frame jump as a function of the homotopy class

To return to the principal axis frame, we have now est
lished that the frame jump~an external rotation inV4) must
be a function of the homotopy class in the kinetic cub
which is labeled by a member ofV8 . Moreover, this function
must be a group homomorphism. RegardingV85$61,
6Ux(p),6Uy(p),Uz(p)% as a subgroup of SU~2! and V4
as a subgroup of SO~3! as in Eq.~4.4!, an obvious guess is
that the homomorphism is given simply by throwing aw
the 6 sign in the SU~2! matrices and keeping the axis an
the angle constant, to produce V4
5$I,Rx(p),Ry(p),Rz(p)%. We write R for these matrices
instead ofK because the frame jump is an external rotati
This mapping fromV8 to V4 is just the usual homomorphism
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between SU~2! and SO~3!, as expressed by Eq.~4.14!, re-
stricted to the subgroupV8 of SU~2!.

To prove this systematically, we proceed as follows. L
us choose a shapeq0 in the asymmetric top region of th
principal sector of the kinematic section~such as the point
marked by a cross in sector I in Fig. 2!, which will serve as
an initial condition for a kinematic orbit. We wish to choos
a principal axis frame on the external rotation fiber labe
by q0 and then to track this frame as we follow some clos
curve in the kinetic cube, representing a sequence of sh
that start and end atq0 . We must then find the jump in the
frame when the curve returns toq0 .

To choose a principal axis frame atq0 , we note first that
the J tensor is diagonal on the kinematic section@see Eq.
~4.2!#, so all three Jacobi vectors are orthogonal there and
squares of the Jacobi vectors are equal to the eigenva
l1 ,l2 ,l3 . Therefore, we choose a frame specified by
configurationQ05$r s0a%,

r s015a1x̂, r s025a2ŷ, r s035a3ẑ, ~5.2!

whereai
25l i anda1.a2.ua3u>0. This is the analog of Eq

~2.23! of Ref. @1#. We let a3 carry the sign ofV5a1a2a3
~the chirality!, much as we did witha2 in Eq. ~2.36! of Ref.
@1#. The set (a1 ,a2 ,a3) forms a convenient choice for th
kinematic invariants; we note thata3 is smooth asV crosses
from positive to negative values. The frame given by E
~5.2! is a principal axis frame.

One must not think that Eq.~5.2! defines a left-handed
frame whena3,0. It does not. In fact, it is impossible to
define a left-handed frame in the formalism of this pap
since a body frame is equivalent to a choice of a refere
point on an external rotation fiber and all such points
related by proper rotations. Whena3 is negative, the vector
r s30 simply points in the2z direction; the frame itself is
always right handed.

To track the principal axis frame continuously as w
change the shape we call on the fact discussed in Ref.@1#,
namely, that the kinematic orbits in configuration space
tomatically follow the principal axis frame. Suppose, for e
ample, that we wish to start at a shapeq0 in the kinematic
section and to go around the closed loop specified by2a,
which is labeled by the SU~2! matrix 2Ux(p)5Ux(2p)
PV8 . This loop runs in the opposite direction to the loopa
illustrated in Fig. 8. We obtain loop2a by letting the family
of kinematic rotationsKx(f) act on q0 , where2p/2<f
,p/2. The alternative range 0<f,p works just as well
since any two kinematic rotations related by an elemen
V4 @in this case we are thinking ofKx(p)# have the same
effect on a shape. Asf ranges from 0 top, we letKx(f) act
on the principal axis body frame~5.2! according to Eq.~2.2!,
which generates a continuous sequence of principal
frames. When f5p, we find Q15$r s1a%5Kx(p)Q0 ,
where

r s115a1x̂, r s1252a2ŷ, r s1352a3ẑ. ~5.3!

However, this is related to the original frame by the exter
rotationRx(p). In other words, we have

Kx~p!Q05Rx~p!Q0 , ~5.4!
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which should be compared with Eq.~2.12! of Ref. @1#.
Thus we have established that the homotopy class lab

by Ux(2p) corresponds to the external rotationRx(p).
Similarly, we find thatUx(p) corresponds to~the same!
Rx(p), 6Uy(p)5Uy(6p) corresponds toRy(p), etc. This
is precisely the homomorphism betweenV8 andV4 that we
guessed above.

In summary, homotopy classes6e, 6a, 6b, and6c in
Fig. 8 correspond respectively to frame jumpsI, Rx(p),
Ry(p), and Rz(p). This concludes our discussion of ho
the frame jump depends on the closed loop in the asymm
ric top region of shape space.

D. Branch cuts and a single-valued principal axis frame

The principal axis frame can be made single valued at
expense of introducing branch cuts in shape space. The e
of the branch cuts is to make the asymmetric top reg
simply connected, so a single-valued principal axis fra
can be defined. The frame is continuous as we move aro
in shape space, as long as we do not cross the branch
However, the frame~and any wave function withJÞ0 that is
referred to the frame! is discontinuous across the branch cu
so to use this construction it is important to know what t
discontinuities are.

In the three-body problem@1#, a convenient branch cut in
shape space is the regionw1,0 of thew1-w3 plane, which
is otherwise the surfacef56p/2. Heref is the kinematic
angle and the kinematic section~the surfacef50) is the
region w1.0 of the w1-w3 plane, as discussed in Ref.@1#.
The discontinuity in the frame as we cross the branch
may be defined as the external rotation that maps the
frame to the new one. In the three-body problem, this ro
tion is Rz(p) and is independent of the direction in which w
cross the branch cut@becauseRz(p)215Rz(p)#. We note
that in the three-body problem, the branch cut is a tw
dimensional surface in shape space that emanates from
one-dimensional line of singularities of the principal ax
frame, namely, thew3 axis.

In the four-body problem, we can make the asymme
top region simply connected by declaring that the surface
the kinetic cube is a branch cut. As noted previously,
space of kinematic invariants~the wedgeR3S; see Table
III ! is already simply connected, so to make the whole as
metric top region simply connected we need only make
kinetic cube simply connected. Topologically speaking,
surface of the kinetic cube is really the surface of a cu
when viewed as the boundary of the fundamental region
SO~3!, but because of the gluing rules it has a more com
cated topology when viewed as a subset of the kinem
orbit, that is, the space SO(3)/V4 .

The interior of the kinetic cube is a simply connect
region over which we can define a single-valued princi
axis frame. We do this by arbitrarily choosing one princip
axis frame at the center of the kinetic cube~where K5I,
representing a point on the fundamental sector of the k
matic section! and then by continuously tracking the fram
along curves that emanate from the center but do not c
the branch cuts on the faces of the cube. The frame we g
the end point of such a continuous tracking depends only
the end point and not on the path because the interior of
ed
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cube is simply connected and any two paths starting at
center and ending at the same point can be continuo
deformed into one another. Equation~6.1! below is an ex-
plicit expression for the principal axis frame constructed
this manner.

As in the three-body problem, we may define the disco
tinuity as we cross the branch cut as the external rotation
maps the old frame to the new one. This discontinuity is
function of where we are on the branch cut surface, not~as
above! of any loop or history that took us to where we ar
However, the discontinuity at a point on the branch cut c
be mapped into a frame jump associated with a closed lo
Consider Fig. 10, in which the square represents a s
through the kinetic cube and pointsA and B are just on
opposite sides of the branch cut~a face of the cube!. As seen
in the space SO(3)/V4 ~or, equivalently, in shape spac
along a kinematic orbit of the asymmetric top region!, the
motion fromA to B takes us back inside the kinetic cube
a pointB8, whose location can be determined by the glui
rules. In shape space, the pointsA andB5B8 are infinitesi-
mally close and effectively lie on the same external rotat
fiber, so it makes sense to talk about the external rotation
maps the~single-valued! principal axis frame atA to the
principal axis frame atB8. This is the discontinuity acros
the branch cut. However, it is also the frame jump associa
with the curve that begins on one face atB8 and passes
through the interior of the cube to the equivalent point~ac-
cording to the gluing rules! A on the opposite face. This
curve is closed in the kinetic cube, like the curvea in Fig. 8,
and since the principal axis frame is continuous in the in
rior of the cube, the frame jump~obtained by continuous
tracking! is the same as the discontinuity.

In this way we see that the frame discontinuity across
facest1561 of the kinetic cube isRx(p), the same as the
frame jump for loops6a. As in the three-body problem, th
frame discontinuity is independent of the direction in whi
we cross the branch cut. Similarly, the frame jumps acr

FIG. 10. The square represents a slice through the kinetic c
interpreted either as a region of SO~3! @the fundamental region un
der SO(3)/V4# or as the space of asymmetric tops related by ki
matic rotations. In the latter interpretation, there are gluing rule
the boundaries. As a region of SO~3!, A andB are nearby points on
opposite sides of the boundary of the fundamental region; in
space of asymmetric tops, pointB8 is the same asB, according to
the gluing rules. The curve passing between the boundary neaB8
to the boundary nearA is a closed loop in the space of asymmet
tops and the discontinuity in the principal axis frame on pass
from A to B is the same as the frame jump on going around t
closed loop.
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the facest2561 and t3561 are Ry(p) and Rz(p), re-
spectively.

This concludes our discussion of the multiple branches
the principal axis frame. In the next section we will study t
singularities of the principal axis frame and compare them
those of the Eckart frame.

VI. FRAME SINGULARITIES

The singularities of the principal axis frame in the fou
body problem occur at the symmetric top configuratio
both prolate and oblate, where the moment of inertia ten
is degenerate and its eigenframe is not unique~even modulo
the senses of the axes!. The character of the singularities
almost precisely as in the three-body problem, that is,
principal axis frame does not approach a unique value a
symmetric top configuration is approached and the der
tives of the principal axis frame with respect to shape
come infinite there.~One difference is that in the three-bod
problem, the principal axis frame is singular only at the o
late symmetric top configurations.!

One can define a version of the Eckart frame in the fo
body problem that is very similar to the Eckart frame d
cussed in Ref.@1# for the three-body problem. This Ecka
frame is well defined, single valued, continuous, and diff
entiable everywhere in shape space except at prolate s
metric top configurations of one chirality only. Thus the
are no issues of multiple branches, frame jumps, or fra
discontinuities with the Eckart frame. The singularities of t
Eckart frame are on a smaller subset of shape space
those of the principal axis frame; in fact, one can show t
no other frame has singularities on a smaller subset of sh
shape than the Eckart frame. In this section we elaborat
these facts.

A. Singularities of the principal axis frame

We begin by giving an explicit, parametric representat
of the principal axis frame over the asymmetric top region
shape space. We have already given an explicit expres
for a principal axis frame on the kinematic section, Eq.~5.2!.
This frame is easily extended to the entire asymmetric
region by applying kinematic rotations. We letq0 be a shape
on the kinematic section~the principal sector in Fig. 2!, we
let Q0 be the frame over this shape according to Eq.~5.2!,
and we writeQPA5KQ0 , q5Kq0 , whereKPSO(3) is a
kinematic rotation and where we attach aPA superscript to
the configurationQPA to indicate that it lies on the principa
axis section. If we parametrize points on the kinematic s
tion by the kinematic invariants (a1 ,a2 ,a3) and if we pa-
rametrize the kinematic rotations by kinematic Euler ang
(u1 ,u2 ,u3), then the Jacobi vectors ofQPA5$r sa

PA% are given
by

r sa
PA~a1 ,a2 ,a3 ;u1 ,u2 ,u3!5(

b
Kab~u1 ,u2 ,u3!abeb ,

~6.1!

whereeb , b51,2,3, represents the unit vectorsx̂,ŷ,ẑ. The
kinematic Euler angles can be replaced by other coordin
on SO~3!, such as thet coordinates, if desired. If a single
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valued principal axis frame is required, we can limit the k
nematic Euler angles@or other coordinates on SO~3!# to the
fundamental region of SO(3)/V4 , the kinetic cube. In Eq.
~6.1!, the coordinates ofq ~the shape coordinates! are nicely
broken up into three kinematic invariants~thea’s! and three
kinematic Euler angles~theu’s!, and the equation itself is an
explicit, parametric representation of the principal axis fra
in these shape coordinates. It is an obvious generalizatio
Eq. ~2.31! of Ref. @1#.

The principal axis frame has singularities at all obla
symmetric top shapes. We denote one of these byqost , such
as the point marked by a closed circle in Fig. 2. This poin
on the edge of the kinematic section~the principal sector in
the figure!, at which the two largest eigenvalues ofJ are
equal, l15l2 , so thata15a2 . The isotropy subgroup o
this point contains the kinematic rotationsK3(f), which are
rotations in the 1-2 plane. Now consider an asymmetric
shapeq0 in the interior of the principal sector, which w
allow to approach the pointqost . By continuity, the kine-
matic rotationsK3(f), which leave the pointqost invariant,
must have only a small effect onq0 . In fact, asf ranges
between6p/2, the curve in shape space swept out by allo
ing K3(f) to act onq0 is a small circle that contracts ont
qost as q0→qost . The principal axis frame is defined ove
this circle according to Eq.~6.1! and is given explicitly by

K3~f!Q05S r s1
PA

r s2
PA

r s3
PA
D 5S cosf 2sin f 0

sin f cosf 0

0 0 1
D S a1x̂

a2ŷ

a3ẑ
D

5S a1cosf x̂2a2sin f ŷ

a1sin f x̂1a2cosf ŷ

a3ẑ
D , ~6.2!

which may be compared to Eq.~2.31! of Ref. @1#. As q0
→qost at fixed f, a1→a2 and the principal axis frame ap
proaches a definite limit, but one that depends onf. There-
fore, the frame is singular atqost . A similar argument ap-
plies to other oblate symmetric tops, obtained by apply
kinematic rotations toqost ; the only difference is that the
isotropy subgroups are conjugate to the one used in Eq.~6.2!,
as explained in Appendix A.

The prolate symmetric tops are similar, except for t
special treatment of the caseV50. Consider a prolate sym
metric top shapeqpst , such as the point marked by an aste
isk in Fig. 2, at which the two smallest eigenvalues ofJ are
equal,l25l3 . For V.0 this impliesa25a3.0 and forV
,0 it implies a252a35ua3u. We will defer the caseV
50 for a moment. Also, letq0 be an asymmetric top shap
nearqpst . Now the isotropy subgroup ofqpst contains the
kinematic rotationsK1(f), which sweep out a small circle
when acting onq0 . The principal axis frames defined ove
this circle are given by

K1~f!Q05S r s1
PA

r s2
PA

r s3
PA
D 5S 1 0 0

0 cosf 2sin f

0 sin f cosf
D S a1x̂

a2ŷ

a3ẑ
D

5S a1x̂

a2cosf ŷ2a3sin f ẑ

a2sin f ŷ1a3cosf ẑ
D . ~6.3!
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Whenq0→qpst , we havea2→ua3u, the limit of the frame is
f dependent, and we have a frame singularity of the sa
character as in the oblate case.

However, V50 implies a350, so atqpst we havea2
5a350, which is the condition for a collinear configuratio
It also means that as the limita2→ua3u50 is taken, the
configurationQPA5$r sa

PA% approaches a limit that is indepen
dent off. However, a collinear configuration cannot define
frame, so the principal axis frame must still be conside
singular at such configurations. In fact, the collinear confi
rations are singular in the strongest senses of any config
tions in the four-body problem, as we will see momentar

B. Eckart frame

We now introduce a version of the Eckart frame, clos
following the steps taken in Ref.@1#. The standard definition
of the Eckart frame in constraint form is given by Eq.~2.16!
of Ref. @1#. The definition involves an ‘‘equilibrium’’ con-
figurationQe5$r sea%, which we define as follows. First w
define an equilibrium shapeqe as a spherical top with hyper
radiusre.0, so thatV.0 andw15¯5w550 atqe . Next
we define a frameQe5$r sea% over qe by r se15kx̂, r se2

5kŷ, r se35kẑ, where k5re /). This is both an Eckart
frame and a principal axis frame. Next we letq0 be an arbi-
trary asymmetric top shape on the kinematic section and
define the frameQ05$r s0a% over q0 by Eq. ~5.2!. As noted
above, this is a principal axis frame, but it is also an Eck
frame, as follows immediately from the definition, Eq.~2.16!
of Ref. @1#. Next we define a frame over all of the asymme
ric top region by setting

QE5$r sa
E %5R~u1 ,u2 ,u3!QPA

5R~u1 ,u2 ,u3!K~u1 ,u2 ,u3!Q0 , ~6.4!

whereQPA is defined by Eq.~6.1! and the Euler anglesu i are
the same as in that equation~the kinematic and external Eu
ler angles are equal!. Equation ~6.4! should be compared
with Eq. ~2.24! of Ref. @1#. Finally, we show thatQE actually
is an Eckart frame relative to the equilibriumQe , following
Eqs.~2.28! and ~2.29! of Ref. @1#.

The Eckart frame defined by Eq.~6.4! is single valued
because the external rotation in Eq.~6.4! cancels out the
frame jump in the principal axis frame on going around a
closed loop in shape space. For example, the frame jum
going around homotopy classa is Rx(p), as noted above
but Eq.~6.4! supplies another factor ofRx(p), which cancels
the first.

The Eckart frame is also well defined and nonsingula
all oblate symmetric tops. To show this we apply Eq.~6.4! to
the principal axis frame over the small circle aboutqost ,
shown in Eq.~6.2!. This gives

r s1
E 5~a1cos2f1a2sin2f!x̂1~a12a2!sin f cosf ŷ,

r s2
E 5~a12a2!sin f cosf x̂1~a1sin2f1a2cos2f!ŷ,

r s3
E 5a3ẑ. ~6.5!
e
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Now whena1→a2 , the frame approaches a definite val
@the one given by Eq.~5.2!#, independent off, and there is
no singularity.

As for the prolate symmetric tops, the Eckart frame
well defined and nonsingular there only forV.0. We see
this by applying Eq.~6.4! to the principal axis frame over th
small circle aboutqpst , shown in Eq.~6.3!. This gives

r s1
E 5a1x̂,

r s2
E 5~a2cos2f1a3sin2f!ŷ1~a22a3!sin f cosf ẑ,

r s3
E 5~a22a3!sin f cosf ŷ1~a2sin2f1a3cos2f!ẑ.

~6.6!

If V.0, then asq0→qpst we havea2→a3 and the Eckart
frame approaches a limit independent off. In this case there
is no singularity. However whenV,0, a2→2a3 and the
limit of the Eckart frame does depend onf, producing a
singularity much like those of the principal axis frame at a
symmetric top configuration.

Altogether, we see that the Eckart frame has singulari
at the prolate symmetric top configurations of one chira
only (V<0). The singular set~the set of shapes upon whic
the frame is singular! is a four-dimensional surface in shap
space that begins on the three-dimensional surface of co
ear shapes and extends ‘‘downward’’ into regions of ne
tive V.

One approach to visualizing this singular set is Fig. 11
which the collinear shapes~the prolate symmetric tops o
zero volume! are represented by three radial half lines ins
the hyperplaneV50. More precisely, these three half line
are identified with the three half lines labeledP in Fig. 2 in
the hyperplaneV50, which are just the part of the space
collinear configurations that intersects thew1-w5 plane.~The

FIG. 11. The Eckart frame is singular on a four-dimension
surface that can be visualized as sheets hanging down from
collinear configurations into regions of negativeV. These sheets
~the singular set! consist of all prolate symmetric tops of one chira
ity only (V<0). The three radial half lines in the hyperplaneV
50 represent the collinear shapes, which are prolate symm
tops of zero volume, and are identified with the three half lines
Fig. 2.
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entire space of collinear configurations is obtained by allo
ing the kinematic rotations to act on one of the radial h
lines.!

The singular set for the Eckart frame may be said to
only 1/4 as large as the singular set for the principal a
frame because the latter frame is singular on both prolate
oblate symmetric top configurations of both chiralities. Th
there are frames for which the singular set is larger than
of the Eckart frame. However, there are no frames with
smaller singular set, as we will now argue. In particul
there are no frames that are free of singularities everywh

As in the three-body problem, the singular set in the fo
body problem can be moved to different regions of sha
space by means of gauge transformations~changes of body
frame!; for example, if the equilibrium point is chosen to b
a spherical top of negative volume, then the singular se
the Eckart frame will lie on prolate symmetric tops of po
tive chirality (V>0) and the sheets in Fig. 11 will exten
upward. Thus there is nothing intrinsically singular abo
prolate tops of negative chirality; frame singularities occ
there only for specific choices of frame.

On the other hand, the collinear shapes are singular fo
choices of frame and the singular set of any choice of fra
will be a surface that will include the collinear shapes.
effect, changes of frame can pivot the sheets in Fig. 11 ab
the collinear configurations or even bend them about,
never detach them from the collinear configurations. Th
we may call the collinear configurations the set of intrin
singularities~independent of choice of body frame!. This is
much as in the three-body problem~the planar three-body
problem forms a better analogy than the three-body prob
in space!, in which the singular set is a line~the string of the
monopole! emanating from the three-body collision, which
the intrinsically singular set. The three-body collision in t
three-body problem is analogous to the collinear configu
tions in the four-body problem and the string in the thre
body problem is analogous to the singular set in the fo
body problem. Notice that in both cases, the singular set
codimension 2, while the intrinsically singular set has co
mension 3.

In the three-body problem, the singular set~the string!
starts at the three-body collision and goes out to infinity. F
example, one can show that the string cannot simply ter
nate somewhere or turn around and reattach to the th
body collision. This is done by proving that the fiber bund
is nontrivial over any sphere in shape space of constant
perradius, no matter how large.

Similarly, in the four-body problem, the singular set
necessarily a four-dimensional surface that attaches to
three-dimensional manifold of collinear shapes and exte
to infinity in shape space. In this case the proof proceeds
first constructing a certain two-sphere in shape space tha
in a three-dimensional surface transverse to the th
dimensional surface of collinear shapes. This sphere
rounds the single collinear shape that lies in the transv
surface. Then the SO~3! fiber bundle of external rotations i
restricted to the lift of this sphere in shape space and
restricted bundle is proved to be nontrivial. Thus there is
least one point on the sphere where the gauge potential
be singular. By carrying out this construction for every c
linear shape, a four-dimensional singular set is genera
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The details of this proof involve standard techniques fro
the topology of fiber bundles, but they are outside the
tended scope of this paper. We will provide a complete pr
in future work.

VII. CONCLUSIONS

In the future we plan to write another paper on all types
singularities in the internal space of then-body problem, a
paper that will call on the general theory presented in t
paper but will be explicit about the various frames, coor
nate systems, and basis sets that are used in current pra
This paper will deal with other types of singularities besid
frame singularities. Based on conversations with researc
in the field, such a paper seems timely and desirable. T
paper will present another perspective on many of the iss
raised by Pack@15# and will also discuss the casesn54 and
n>5.

Finally, we will make some comments on the practic
impact of frame singularities for four-body quantum calcu
tions. These comments cannot be comprehensive bec
there are so many different approaches to such calculat
and, moreover, new methods may be invented in the fut
However, certain things can be said.

In some circumstances it may be that frame singulari
will not present serious difficulties. For example, if the exa
wave function is expanded in terms of some complete se
functions, which themselves are eigenfunctions of so
solvable problem, then those eigenfunctions will carry t
frame singularities.~The expansion coefficients will be jus
numbers and will be perfectly well behaved.! For example,
the basis functions might be hyperspherical harmonics
other eigenfunctions on the hypersphere. Even in this c
however, it will be important to know about the frame si
gularities, if only for working out the formulas for the exa
eigenfunctions or for purposes of display.

On the other hand, in the case of grid or related meth
~such as discrete variable representations or distribu
Gaussian bases!, the singularities, discontinuities, and oth
bad behavior of the internal wave function will have to
taken into account at the locations in the internal sp
where they occur. Or it may be necessary to use more t
one frame in different parts of the internal space. This la
possibility seems unattractive at first sight, but it might
workable if carefully done. In this regard, we may note th
the standard mathematical theory of fiber bundles requ
the use of overlapping patches on the base space, in wh
single gauge convention~the analog of a body frame in th
present context! is used in each patch. Only in this way ca
singularities be systematically avoided. If this construction
used, it will be necessary to change frames in the ove
regions.

Moreover, even if a basis set expansion is used, it w
still be necessary to deal with frame singularities if the ba
set itself is determined by some numerical method, as
common already in three-body work. This is because
frame singularities will appear in the basis functions and w
make trouble for the numerical methods used to determ
them.

Of course, if the wave function is localized in the intern
space, then it may be possible to choose a frame in which
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singularities exist outside the region where the wave func
is effectively nonzero. This commonly happens in thre
body scattering calculations of sufficiently low energy,
which the singularities of the principal axis frame on the li
of symmetric oblate top shapes lie deep in a classically
bidden region. It also commonly happens in bound-st
problems.

In any case, there can be no question that it is importan
know about the existence of frame singularities and to
careful about them. If they do make trouble, it will be im
portant to know the extent to which the singularities can
moved about and how their impact can be minimized. T
paper has provided the necessary foundation for underst
ing such problems.
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APPENDIX A: GROUP ACTIONS

The concepts of group actions, orbits, isotropy subgrou
quotient spaces, etc., are very useful in understanding
spaces that occur in then-body problem, especially whenn
.3. Quite generally, these concepts arise wherever the w
‘‘modulo’’ is used, as in ‘‘two configurations of the sam
shape are equal modulo a proper rotation’’ or ‘‘two config
rations with the sameJ tensor have the same shape, mod
chirality.’’

If G is a group andM is a space, then anaction of G on
M is a representation ofG by means of transformation op
erators or mappings that mapM onto itself. These mapping
need not be linear~in any sense!. If g,hPG are group ele-
ments andTg ,Th the corresponding mappings, then we r
quire TgTh5Tgh . If x is a point of M and g is a group
element, thenTg causesx to get up and move to a~possibly!
new pointx8, which we denote byx85Tgx. The group ele-
mentg is conceptually distinct from the mappingTg , but we
can be sloppy with notation and write simplyx85gx. This is
what is done in the body of the paper when we writeQ8
5RQ @confusing the transformation operator on configu
tion space with the rotationRPSO(3) itself# or Q85KQ,
q85Kq, etc.

If x is a point of a spaceM upon which a groupG acts,
then the set of pointsx8 of M that can be reached fromx by
means of the operatorsTg is called theorbit of x under the
action of G. In other words, the orbit is the set$Tgxug
PG%, that is, the set of points swept out by letting all po
sible group elements act onx. Depending on circumstance
the orbit may be either a discrete set or a continuous one
something more complicated.

The orbits of a group action on a spaceM are disjoint
subsets of that space. That is, if any two orbits have
point in common, then they have all points in common a
are identical orbits; otherwise they are disjoint. This is i
portant because it means that a point ofM can be uniquely
identified by a label of the orbit in which it lies, plus a lab
indicating where it lies within that orbit. To prove this prop
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erty, supposex8 andy8 are on the orbits of pointsx andy,
that is, supposex85Tgx and y85Thy for some g,hPG.
Then supposex85y8. Then all points on they orbit belong
to thex orbit and, conversely, because ify95Tky for some
kPG, theny95TkTh21Tgx, etc.

The identity element~call it ePG) does nothing to any
point of M , that is,Tex5x for all xPM . However, depend-
ing on the pointx and the nature of the group action, the
may be other group elements that also leavex invariant. Let
g and h be two group elements that leavex invariant,Tgx
5x andThx5x. ThenTghx5TgThx5Tgx5x, so the prod-
uct gh also leavesx invariant. Thus the set of group ele
ments that leave a given pointx invariant forms a group, the
isotropy subgroupof G at x, which we denote byI x . In
general the isotropy subgroup depends onx. The isotropy
subgroup is the setI x5$gPGuTgx5x%.

One extreme case is when all group elements leav
point x invariant, so that the orbit ofx is just the pointx
itself andI x5G. Another extreme is when only the identit
ePG leavesx invariant, so thatI x5$e%, the trivial sub-
group. In this case the orbit is effectively a copy ofG be-
cause it is possible to place points of the orbit in one-to-o
correspondence with elements ofG ~that is,e↔x, g↔Tgx,
etc!. In this case one can use group elements as label
coordinates of points along the orbits~this is what is done
with the noncollinear orbits of the external rotations acti
on configuration space; the external Euler angles label
group element that identifies the orientation of the config
ration!. Intermediate cases are possible too, assumingG has
subgroups of intermediate size~that is, proper subgroups!. A
general rule is the larger the isotropy subgroup, the sma
the orbit, and conversely. This rule is clearly seen in Tab
I and II.

When two things are said to be equivalent modulo a c
tain property, it does not mean that they are equal, but
they would be equal if we ignored the certain property. Oft
the property in question is that of being related by a gro
action, that is, of lying on the same orbit of a group actio
For example, 3 and 18 are congruent modulo 5; this me
they are related by the discrete group of displacements
integer multiples of 5~they lie on the same orbit of this
group!. For another example, antipodal points of the tw
sphereS2 can be said to be equivalent modulo parity, that
they lie on the same orbit of the two-element group$I ,P%,
whereP is the parity or spatial inversion operator.

If the isotropy subgroupI x of a pointx is the trivial sub-
group$e%, then, as mentioned above, the points on the o
can be labeled or coordinated by group elementsg. If the
isotropy subgroupI x is not trivial, then the pointx is labeled
not only by the identity elemente but equally well by any
memberhPI x ~they all mapx to x). As for another point on
the orbit, say,x85Tgx for somegPG wherex8Þx, it can
be labeled byg, but equally well bygh for any hPI x . For
given gPG, the set$ghuhPI x% is a left coset ofI x in G.
Thus, in the general case of a nontrivial isotropy subgro
the points on the orbit can be labeled by, that is, placed
one-to-one correspondence with, the left cosets ofI x in G.

The cosets~both left and right! of a subgroupH of G are
disjoint subsets ofG that are themselves orbits of grou
actions. This is a useful point of view because it subsum
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the concept of cosets within the concept of group orbits
the case of right cosets the action is that ofH on G defined
by Thg5hg for hPH andgPG ~hereG has taken the role
of M andH that ofG). Thus the orbit ofg under this action
is the set$hguhPH%, which is a right coset ofH. The left
cosets are orbits of a different action ofH on G, defined by
Thg5gh21. To say that two elements ing belong to the
same~left or right! coset ofH means that they are equivale
modulo ~right or left! multiplication by some element ofH.

If a spaceM is acted upon by a groupG, we can create a
new space in which a single point represents an entire o
in M , that is, a set of points inM that are related by the
action of the group. This new space is thequotient spaceand
is denoted byM /G. The quotient space is only defined rel
tive to the particular action ofG on M , which must be un-
derstood when using the notationM /G.

Supposex and y are two points on the same orbit of
groupG acting onM and the two isotropy subgroups areI x
and I y . Then I x and I y are conjugate subgroups withinG,
that is, they are identical as abstract groups, but in gen
are different subgroups ofG. In fact, it is easy to show tha
if y5Tax for aPG, thenI y5aIxa

21. For example, the col-
linear configurations in Table I have the isotropy subgrou
SO~2! in SO~3!; these subgroups consist physically of t
rotations about the axis of collinearity. This axis is differe
for rotated configurations~different points on the orbitS2),
so the SO~2! subgroups are different, but these SO~2! sub-
groups are all conjugate to one another.

APPENDIX B: SPACES OCCURRING
IN THE FOUR-BODY PROBLEM

This appendix explains the standard mathematical n
tion for various spaces that occur in the four-body probl
and fills in a few other mathematical points that were used
the paper. The following mathematical spaces are use
this paper. The notationRn represents the usual space
n-tuples of real numbers. Then-sphereSn is the set of points
at unit distance from the origin inRn11. For example,S1 is
the circle andS2 the usual two-sphere. The set of intege
~positive, negative, and zero! is Z. The setZ2 stands for the
integers modulo 2, that is, the set$0,1%, which forms a group
under addition modulo 2. As an abstract group, it is the sa
as the two-element group$e,a% with multiplication law a2

5e.
Two spaces are said to be diffeomorphic if there exist

smooth, invertible mapping between them, for which the
verse map is also smooth. This means the two manifo
have the same topology and also~intuitively speaking! that
there are no kinks in the two manifolds or in the mappin
between them. In the body of Ref.@1# and this paper, some
times we say that the two manifolds are ‘‘copies’’ of ea
other when we mean that they are diffeomorphic.

The real projective spaceRPn is the quotient space
Sn/Z2 , that is, a point ofRPn can be identified with a pair o
antipodal points inSn. The spaceRP1 is the circle with
antipodal points identified, which is the same as a semici
with end points identified, which is the same as a cir
again. That is,S1/Z25S1. The spaceRP2 is an ordinary
two-sphereS2 with antipodal points identified, which is th
n
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same as a hemisphere with antipodal points on the equ
identified.

The groups SO~2!, SO~3!, O~2!, and SU~2! are standard
Lie groups that can also be viewed as manifolds. The gr
manifold SO~2! is the circleS1, SO~3! is the real projective
spaceRP3, and SU~2! is the three-sphereS3.

Now we will prove Eq.~2.1!, which says that the space o
left cosets of SO~2! in SO~3! is the two-sphereS2. Here
SO~2! is understood to be a subgroup of SO~3! consisting of
rotations about a fixed axis; we will work with thez axis.
First we note that two rotationsR1 ,R2PSO(3) belong to the
same left coset of SO~2! if R15R2S for someSPSO(2).
Also, a rotation is uniquely specified by its action on
orthonormal frame, that is, a rotation maps a fixed old fra
into a unique new frame, and a given new frame specifie
unique rotation.~Of course we are speaking of proper rot
tions and right-handed frames.! However, sinceS leaves the
z axis invariant, we see that two rotationsR1 andR2 belong-
ing to the same left coset map the oldz axis into the same
new z axis. Conversely, ifR1 andR2 produce the same new
z axis when acting on the old frame, thenR2

21R1 maps the
old z axis into itself, which means thatR2

21R15S for some
SPSO(2), sothat R1 andR2 belong to the same left cose
Therefore, the newz axes stand in one-to-one correspo
dence with the left cosets. However, the space of newz axes
is the space of unit vectors inR3, which isS2.

The proof of Eq.~4.9! is similar. Now we wish to con-
sider the subgroup O~2! of SO~3!, where the matrices be
longing to the representation of O~2! have the form indicated
in Eq. ~4.8!, that is, they are proper rotations in three dime
sions that either leave thex axis invariant or flip its sign. As
viewed in they-z plane, these rotations are either proper
improper orthogonal transformations. The argument is m
as in the preceding paragraph; two rotationsR1 ,R2
PSO(3) belong to the same left coset of O~2! if and only if
they map the oldx axis onto the same newx axis, with the
possibility of a reversal of the sense of this axis. Therefo
the space of cosets is the same as the space of lines pa
through the origin inR3, which isRP2.

APPENDIX C: KINEMATIC ORBITS
IN CONFIGURATION SPACE

In the three-body problem, we saw in Ref.@1# that for
asymmetric tops the~one-dimensional! kinematic orbits were
not tangential to the~three-dimensional! external rotation or-
bits; see Fig. 1 of Ref.@1#. To say this another way, if an
asymmetric top configurationQ is acted upon by three inde
pendent, infinitesimal external rotations, it generates th
vectors in configuration space that are tangential to the r
tion orbit; if it is acted upon by an infinitesimal kinemat
rotation, it generates another vector that is tangent to
kinematic orbit. For asymmetric tops, these four vectors~in
R6) are linearly independent, that is, for small kinema
angles, the kinematic orbit goes off in a direction that
independent of the rotations. However, for oblate symme
tops, we saw that the infinitesimal kinematic rotations a
tangential to the external rotation orbits. In fact, in this ca
the entire kinematic orbit lies within the rotation orbit. Th
appendix generalizes these facts to the case of the four-b
problem.
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First we classify the orbits. IfQ is a configuration in the
four-body problem, then the orbit ofQ under the kinematic
group is either SO~3!, S2, or a single point, according to
whetherQ is noncollinear, collinear, or the four-body coll
sion, exactly as indicated by Table I for the external ro
tions. This follows from the fact that there is a comple
mathematical symmetry between external rotations and k
matic rotations, most easily seen in terms of theFs matrix,
where external rotations act on thei 51,2,3 index and kine-
matic rotations act on thea51,2,3 index. Effectively, one
group acts on rows, the other on columns. However,
three cases, noncollinear, collinear, and four-body collisi
are equivalent tor>2, r 51, andr 50, respectively, where
r 5rankFs and the rank is the number of linearly indepe
dent rows or columns~it does not matter which!. Therefore,
the isotropy subgroup and the topology of the orbits dep
only on r and not on whether the group acts on the rows
columns ofFs .

This is to say that the external rotation orbit and the
nematic orbit of a given pointQ have the same topology an
in fact are diffeomorphic as submanifolds of configurati
space; they are not, however, the same submanifold in
eral. First consider the case of a noncollinear configurat
in which both orbits are three-dimensional copies of SO~3!.
If the configuration is an asymmetric top, then the three
rections tangential to the external rotation orbit and the th
directions tangential to the kinematic orbit are linearly ind
pendent~as vectors inR9). In other words, for asymmetric
tops, all three independent, infinitesimal kinematic rotatio
change the shape ofQ, that is, move us to a different rotatio
,
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fiber. This means that Fig. 1 of Ref.@1# is schematically
accurate for asymmetric top configurations in the four-bo
problem if the fibersFR and FK are interpreted as three
dimensional surfaces inR9. For symmetric tops~still noncol-
linear!, there is one infinitesimal kinematic rotation that
tangential to the external rotation orbit, and conversely; t
is equivalent to the fact that there is a one-parameter s
group of the kinematic group@an SO~2! subgroup# consisting
of kinematic rotations with the same effect onQ as an ex-
ternal rotation@in fact, an SO~2! subgroup of the externa
rotations#. Kinematic rotations in this subgroup do no
change the shape of the configuration~only its orientation!.
Finally, for the spherical top~still noncollinear!, the entire
external rotation orbit and kinematic rotation orbit@both cop-
ies of SO~3!# coincide, which follows from the fact that th
Fs matrix is a multiple of the identity in this case. In th
case, no kinematic rotation changes the shape.

Next, for collinear configurations, both the external ro
tion orbit and kinematic orbit of a given configurationQ are
two-spheresS2, but they are not identical two-spheres.
fact, the two two-dimensional tangent spaces to these t
spheres at the pointQ are linearly independent~they span
altogether a four-dimensional subspace ofR9). This means
that any infinitesimal kinematic rotation that movesQ does
so in such a way as to change the shape~the pointQ does not
simply move down its external rotation orbit!. Finally, for
the four-body collision, neither external nor kinematic rot
tions do anything toQ; both orbits consist of the single poin
Q itself.
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