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Electron capture and excitation in proton-Na20 collisions at low velocities
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We present a many-electron theoretical study of electron capture and excitation in collisions of H1 with
Na20 clusters for impact energies 40–500 eV. The collision is treated semiclassically using the independent-
electron model, and the cluster is described in the framework of the Kohn-Sham formalism with a local-density
approximation which includes exchange, correlation, and a self-interaction correction. We have found that
capture cross sections are;(225)310214 cm2 and dominate in the above energy range. In contrast with
ion-atom collisions, excitation cross sections are comparable to the former, and multiple processes such as
capture excitation cannot be neglected at low velocities. From the analysis of the vacancies originated in the
collision, we have evaluated the energy deposited in the cluster, which is an essential parameter in the study of
cluster fragmentation.@S1050-2947~98!08406-6#

PACS number~s!: 36.40.Sx, 34.70.1e
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I. INTRODUCTION

Cluster research is a rapidly growing field in which ma
branches of physics and chemistry are involved@1–3#. In the
early stages of this field, a crucial problem was to determ
the structure and static properties of clusters. But, in the
few years, these investigations are turning to the study
dynamical aspects that may probe their properties and
lead to the discovery of new interesting phenomena and
plications@4–11#. At present, free clusters of a well define
number of alkali-metal atoms are experimentally availa
@3#, which opens up the way for aclean and meaningful
study of their interactions with atoms, molecules, and s
faces. As an example, recent experimental work@12,13# has
shown that low energy collisions of metal clusters w
highly charged ions is an efficient way to produce positiv
charged clusters. An interesting application of this techniq
is the formation of clusters with critical charge-size rati
which lead to fragmentation. There are several mechani
that can lead to the formation of positively charged clust
by ion impact: single and multiple capture, single and m
tiple ionization, capture ionization, capture excitation, e
All these processes have been extensively studied in
atom collisions, but very little is known about them in io
cluster collisions. We know, for instance, that single-elect
capture dominates ion-atom collisions at low impact velo
ties ~i.e., when the projectile velocity is smaller than that
target electrons!, but can one use ion-atom intuitions to an
lyze ion-cluster collisions? Is electron capture an effici
way to create positively charged clusters? Are there o
processes competing efficiently with electron captu
Which are the relevant impact energy ranges?

The aim of the present work is to find answers to the
questions and to provide quantitative cross sections for e
tron capture and excitation in the low impact energy ran
581050-2947/98/58~1!/367~10!/$15.00
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For this purpose, we have chosen the simplest ion, H1, and a
medium-size closed-shell metal cluster, Na20. Since there
are 20activeelectrons in Na20, one must use a truly many
electron time-dependent theory. The easiest way to ach
this goal is to work in the framework of the independen
electron model~IEM!. A sample of results obtained within
this model will be presented elsewhere@14#. In the present
paper we develop the theory in detail and present a syst
atic study of electron capture and excitation in H11Na20
collisions for impact energies between 40 and 500 eV.

When using the IEM, the first problem is to build realist
one-electron potentials that take into account the effect o
the electrons. In most previous works~see, e.g.,@15#!, this
kind of collision has been investigated using simple pheno
enological cluster potentials. However, isolated Na20 clusters
can be accurately described using density functional~DF! or
Hartree-Fock~HF! theories@2,16#. Hence it seems desirabl
that dynamical studies make use of the latter high-qua
potentials. Since closed-shell metal clusters are practic
spherical, the problem has the same global symmetry a
ion-atom collisions. Consequently, the language and te
niques to be used in the study of H1-Na20 collisions will be
close to the ones used in ion-atom collisions. The sec
problem is to evaluate cross sections that are directly m
surable in experiments. As the number of active electronN
is very large, many different processes are possible. H
ever, experiments do not provide information on a sin
final N configuration but on a series of states in which so
levels are occupied irrespective of the occupation of the r
For instance, it seems possible to design experiments to
tect the number of captured electrons and the final stat
the projectile, but it seems very unlikely that the experime
provide detailed information about electrons remaining in
cluster. Consequently, all those processes leading to
same final state of the projectile will contribute to the me
367 © 1998 The American Physical Society



a

ain
al
e
la

vi
se
nc

m
in
th

e-
om
ou

e
a
rm
d-
rre
f

a

tim

a

o-

le
xe
s

ci

g
n

th
c-
th
e

o
o

d
e
.

je
ic

nd-
tal
is

r
n-

le

n

ro-
rm

m
not

ex-
tion
ew
on
the

oth
ters

368 PRA 58POLITIS, HERVIEUX, HANSSEN, MADJET, AND MARTI´N
sured cross section. This corresponds to what has been c
in the literature aninclusivecross section@17,18#.

The paper is organized as follows. In Sec. II B we expl
the theory we have used to obtain the cluster potenti
namely, our implementation of the spherical jellium mod
using a local-density approximation with exchange, corre
tion, and a self-interaction correction~LDAXC-SIC! @16#—
the latter correction ensures the correct asymptotic beha
21/r of the potential, which is crucial in the present ca
because the capture process occurs mainly at large dista
The basic ingredients of the formalism ofinclusiveprobabili-
ties are presented in Sec. II C. In Sec. II D we briefly su
marize themolecularmethod, which has been widely used
ion-atom collisions and we have adopted here to solve
time-dependent Schro¨dinger equation. Our results are pr
sented and discussed in Sec. III. We end the paper with s
conclusions in Sec. IV. Atomic units are used through
unless otherwise stated.

II. THEORETICAL METHOD

A. General considerations

In this work we consider collision velocities in the rang
vcol;0.0420.14 a.u. These velocities are much smaller th
the orbital velocities of the cluster electrons near the Fe
level,vF;0.6 @16#. Hence, according to the theoretical mo
els used in ion-atom collisions, the present situation co
sponds to the low energy regime. It justifies the use o
molecular picture to analyze the collision dynamics.

We will see below that electron transfer takes place
large impact parameter (bmax;20230 a.u.!. At the impact
energies considered here, this corresponds to a collision
tcol;2bmax/vcol;(0.723.6)310214 s. The characteristic
time tv associated with the interaction between sodium
oms inside the cluster~period of vibration! is tv;10212 s
@19#. This time is very long compared totcol and, conse-
quently, the ionic background of the cluster will remain fr
zen during the collision.

Besides electron capture, the proton may lead to e
tronic excitations of the cluster. This excess energy rela
with a lifetime t rel;10213210212 s among the numerou
internal modes through electron-phonon coupling@20#.
When the energy deposit is larger than the lowest disso
tion energy, the cluster may dissociate later on. However,t rel
being much larger thantcol , dissociation processes resultin
from energy relaxation can be ignored during the collisio
Still, dissociation might be induced in frontal collisions wi
the projectile, but this possibility will not be taken into a
count in our model. This is not a serious drawback of
theory provided that the capture mechanism takes plac
long distances, as is the case for proton-Na20 collisions.

Finally, some comments are appropriate concerning p
sible plasmon excitation during the collision. The plasm
energy for Na20 is about 3 eV@16#. At the low collision
energy considered in this work, the frequency associate
tcol being much smaller than the plasmon frequency, th
will be no plasmon excitation during the collision process

B. Cluster description

The cluster is described in the spherical background
lium model. This model consists in replacing the real ion
lled
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core potential by a constant positive background correspo
ing to a uniformly distributed charge density. For a me
cluster havingA singly charged ionic cores, this potential
given by

Vjel~r !5H 2
A

2RC
F32S r

RC
D 2G for r<RC

2
A

r
for r .RC ,

~1!

where RC5A1/3r s and r s is the Wigner-Seitz radius. Fo
Na20, RC510.5 a.u. In the Kohn-Sham formulation of de
sity functional theory, the ground-state electronic densityrC
of anN-electron system is written in terms of single-partic
orbitalsf i :

rC~r !5(
i 51

N

r i~r !5(
i

uf i~r !u2. ~2!

These orbitals obey the Schro¨dinger equation

F2
1

2
¹21VKS~r !Gf i~r !5e if i~r !, ~3!

whereVKS(r ) is an effective single-particle potential give
by

VKS~r !5Vjel~r !1VH„rC~r !…1Vxc„rC~r !…, ~4!

whereVH„rC(r )… is the Hartree potential andVxc„rC(r )… the
exchange-correlation potential. Since the form ofVxc is not
known in general, several approximations have been p
posed in the literature. In this work, we have used the fo
obtained by Gunnarsson and Lundqvist@21# in the frame-
work of the local-density approximation~LDA !:

Vxc„rC~r !…52S 3rC~r !

p D 1/3

20.0333 lnS 11
11.4

r s~r ! D , ~5!

where r s(r )5@3/4prC(r )#1/3 is the local Wigner-Seitz ra-
dius. For a neutral cluster, the asymptotic behavior ofVKS is
given by the exchange contribution toVxc , which behaves at
large distance asrC(r )1/3. As a consequence, the Kohn-Sha
potentialVKS decreases exponentially to zero, i.e., it does
reproduce the correct 1/r asymptotic behavior. This problem
does not appear in Hartree-Fock theory, because the HF
change potential exactly compensates the self-interac
term contained in the Hartree potential. Following Perd
and Zunger@22#, we have added a self-interaction correcti
~SIC! that restores the correct asymptotic behavior of
potential~we will call this method LDAXC-SIC!. This pro-
cedure has been successfully applied to the study of b
ground- and excited-state properties of small metal clus
@16,23–25#. The corrected Kohn-Sham potentialVSIC

i is then
given by

VSIC
i ~r !5Vjel~r !1E @rC~r 8!2r i~r 8!#dr 8

ur2r 8u
1Vxc@rC~r !#

2Vxc@r i~r !#, ~6!
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PRA 58 369ELECTRON CAPTURE AND EXCITATION IN PROTON- . . .
wherer i is the i single-particle density defined in Eq.~2!. It
is easy to check that, as in HF theory, the resulting poten
has the correct 1/r behavior at large distances. Notice al
that theVSIC

i potential is now explicitly state dependent. Fi
ure 1 shows a comparison between the original LDAXC p
tential and the calculatedVSIC

i potentials for the occupied
orbitals 1s, 1p, 1d, and 2s of Na20. The corresponding en
ergy eigenvalues are given in Table I.

Similarly to Koopman’s theorem in HF theory, the ener
of the highest occupied~HO! orbital resulting fromexact
Kohn-Sham calculations is an excellent approximation to
cluster ionization potential. In fact, it is also a good appro
mation for theapproximateLDAXC-SIC theory, as illus-
trated by the good agreement between the 2s energy reported
in Table I ~3.84 eV! and the experimental ionization pote
tial ~3.77 eV! @26#. This means that the eigenvalue a
eigenfunction associated to the HO orbital can be interpre
as the particle energy and wave function, respectively.
though this cannot be proved for other Kohn-Sham eigen
ues and eigenfunctions~see Ref.@2# for a detailed discus-
sion!, one can expect, however, this interpretation to prov
reasonable approximations to the actual single-particle p
erties. This is supported by the fact that most of the collis
dynamics occurs far from the cluster surface, where theVSIC

i

FIG. 1. Comparison between theVSIC
i potentials, the LDAXC

one, and the average potentialVC ~see text!. The figure also shows
the function21/R.

TABLE I. Eigenenergies~atomic units! of the occupied single-
particle states of Na20 calculated in the local-density approximatio
with exchange, correlation, and self-interaction correction. The
ergies^e& are those obtained by using the average potential of
~7!.

Orbital e j ^e j&

1s 20.233 20.230
1p 20.199 20.200
1d 20.159 20.163
2s 20.141 20.150
al

-

e
-

d
l-
l-

e
p-
n

potentials do not differ appreciably from the HF ones. This
clearly shown in Fig. 1 forr .9 a.u. In fact, the state
dependentVSIC

i potentials can be replaced in this region by
common average potential

VC~r ![^VSIC~r !&5
1

N(
k

VSIC
k ~r !nk , ~7!

where the summation is performed over all occupied orbi
andnk denotes the number of electrons in subshellk. It can
be seen in Table I that the single-particle energies resul
from this average potential are practically identical to tho
obtained with the state-dependent potentialsVSIC

i . As we
will see in the next section, the scattering problem is grea
simplified by using the same effective potential for all acti
electrons, since the single-particle orbitals are orthogo
and the total Hamiltonian can be written as a sum over id
tical single-particle Hamiltonians.

TheVC potential of the isolated cluster has been obtain
numerically using Eqs.~3!, ~6!, and ~7!. For practical rea-
sons, we have fittedVC to an analytical function. More spe
cifically, we have rewritten the potential in the followin
way:

VC~r !5 lim
«→0

H VC~r !Q«~r !2
1

r
@12Q«~r !#J , ~8!

whereQ« is a ‘‘step’’ function fulfilling

Q«~r !.H 1, r ,r 02«

0, r .r 01«.
~9!

For Na20, we have chosenr 0525 a.u. Then, for a smal
enough«, we have least-squares fitted the two functio
Q«VC and Q« , using a linear combination of 30 Gaussia
functions placed on the cluster center. The resulting ana
cal potential is identical to the one shown in Fig. 1 to
precision of 1026. The advantage of such a procedure is th
all matrix elements involvingVC and the Gaussian-type or
bitals ~GTO! used to describe the compound syste
(Na20-H)1 ~see Sec. II D! can be performed analytically.

C. Inclusive cross sections

As explained above, all cluster electrons are affected
to a good degree of approximation, the same average po
tial. Thus, for an isolated cluster, it is reasonable to use
independent-electron model. Here, we assume that the
is still valid in the presence of the proton potential. O
course, this is not completely true: the proton induces a
larization potential that affects each electron differently.
deed, as is well known, the projectile polarizes the clus
which in turn exerts an attractive force on the projectile. T
equivalent classical picture is given in electrostatics by
presence of an image charge@27#. Therefore the potentia
affecting a given electron will be affected by the polarizati
of the whole electronic cloud. However, since the lead
term of the polarization potential decreases as 1/R4, its rela-
tive importance decreases rapidly withR. Consequently, in
all dynamical calculations reported in this work we will us
the average potentialVC discussed in the preceding sectio

-
q.
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In the independent-electron approximation, the to
N-electron HamiltonianĤ is written as a sum of one
electron effective Hamiltonians,ĥ( i ),

Ĥ5(
i 51

N

ĥ~ i !. ~10!

The ĥ Hamiltonian is given by

ĥ52
1

2
¹21VP~ ur2Ru!1VC~r !, ~11!

whereVP is the proton Coulomb potential,VP521/ur2Ru,
andVC is the average potential defined in Eq.~7!. Notice that
the origin of electronic coordinates has been placed on
cluster center. The geometry of such a system is displaye
Fig. 2.

Now, we treat the collision in the framework of the im
pact parameter method~IPM!, i.e., the projectile follows a
straight line trajectory whereas the electrons are descr
quantum mechanically. In the IEM approximation, tw
equivalent methods can be used to solve theN-particle prob-
lem using a basis ofn one-electron spin orbitals (n.N). In
a ‘‘full’’ many-particle approach, one usually expands t
time-dependent wave function in terms of.(N

n ) Slater deter-
minants. The transition amplitudes are then the solution
.(N

n ) coupled differential equations. An alternative meth
is to consider the evolution of each electron independe
by solvingN one-electron problems which lead toN sets of
n one-electron amplitudes.N-electron amplitudes obtaine
in both ways are related exactly, but the second metho
computationally less involved@28#.

Let us assume that each electroni is initially in a f i(r )
spin orbital of energye i . Then, we have to solve a set ofN
time-dependent Schro¨dinger equations

FIG. 2. Geometry of the (H-Na20)
1 system.
l

e
in

ed

f

ly

is

ĥc i~r ,t !5 i
d

dt
c i~r ,t !, i 51, . . . ,N ~12!

where eachc i(r ,t) wave function is subject to the initia
condition

lim
t→2`

c i~r ,t !5f i~r !exp@2 i e i t# ~13!

and fulfills the orthogonality condition

^c i~r ,t !uc j~r ,t !&5d i j ~14!

for all t. The transition probability from a specific initia
configuration given by the Slater determinant (i 1 , . . . ,i N)
5if i 1

•••f i N
i to a specific final configuration

( f 1 , . . . ,f N)5if f 1
•••f f N

i is given by

Pf 1 , . . . ,f N
5 z^c i 1

•••c i N
,t51`u f 1••• f N& z2, ~15!

which is calledexclusive probability@29# and can be written
as a (N3N) determinant

Pf 1 , . . . ,f N
5det~gnn8!, n,n851, . . . ,N ~16!

wheregnn8 is the one-particle density matrix

gnn85^ f nur̂u f n8& ~17!

and r̂ is the density operator which accounts for the tim
evolution of the spin orbitals:

r̂~r ,r 8!5(
i 51

N

uc i~r ,t5`!&^c i~r 8,t5`!u. ~18!

As discussed in the Introduction, the experiments do
detect all the electrons at the end of the collision but o
some of them and possibly some vacancies. For this rea
it is more useful to evaluateinclusive probabilitiesthat can
be directly compared with experiment. The inclusive pro
ability Pf 1 , . . . ,f q

of finding q of the N electrons in the sub-

configuration (f 1 , . . . ,f q) while the remainingN2q elec-
trons occupy any other states is given by an ordered s
over all exclusive probabilities which include that subco
figuration:

Pf 1 , . . . ,f q
5 (

f q11,•••, f N

Pf 1 , . . . ,f N
, q,N ~19!

which from Eq.~16! is a sum of (N3N) determinants. How-
ever, using the closure relation and orthogonality of thec i
spin orbitals@see Eq.~14!#, it can be shown@18# that the
inclusive probability is given by the (q3q) determinant:

Pf 1 , . . . ,f q
5det~gnn8!, n,n851, . . . ,q, q,N.

~20!

The inclusive probability for a configuration withq occupan-
cies andL2q holes, in terms of inclusive probabilities re
lated only to occupancies, is given by@18#
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Pf 1 , . . . ,f q

f q11 , . . . ,f L5Pf 1 , . . . ,f q
2 (

f q11

Pf 1 , . . . ,f q , f q11

1 (
f q11, f q12

Pf 1 , . . . ,f q , f q11 , f q12
•••

1~21!L2qPf 1 , . . . ,f q , f q11 , . . . ,f L
, ~21!

where occupancies are indicated by subscripts and vaca
by superscripts. The inclusive probabilities~20! and~21! are
associated to a sum of processes and take into accoun
Pauli exclusion principle. The one-particle density opera
~18! includes spin orbitals with both spin up (a) and down
(b). It can be formally written

r̂5 r̂a1 r̂b, ~22!

where the first operator is responsible for scattering oa
electrons and the second one forb electrons. In our descrip
tion, spin will be preserved during the collision because
neglect spin-orbit coupling. Thereforea spin orbitals will
not be coupled tob spin orbitals and, from Eq.~22!, we can
write

Pf 1 , . . . ,f l a
, f l a11 , . . . ,f l

5Pf 1 , . . . ,f l a

a Pf l a11 , . . . ,f l

b , ~23!

wherel a is the number of electrons with spina, andPa and
Pb are inclusive probabilities involvingra and rb, respec-
tively. Then, the inclusive probabilityPf 1 , . . . ,f q

f q11 , . . . ,f L defined in

Eq. ~21! can be obtained fromPa andPb probabilities. Spin
orbitals which are described by the same spatial part du
the collision lead to one-electron transition amplitudes wh
are identical. Therefore only one transition probability mu
be evaluated for each doubly occupied orbital.

D. The ‘‘molecular’’ method

The set of time-dependent Schro¨dinger equations~12! has
been solved by expanding the one-electron wave funct
c i(r ,t) in a basis of Born-Oppenheimer~BO! molecular
states$xk(r ,R)%:

c i~r ,t !5(
k

cik~ t !xk~r ,R!expF2 i E
0

t

Ek~R!dt8G , ~24!

where theEk energies are the BO adiabatic energies ass
ated to the$xk(r ,R)% states:

ĥxk~r ,R!5Ek~R!xk~r ,R!. ~25!

Equation~25! has been solved by expanding the BO state
a two-centeratomicbasis built from spherical GTOs as d
scribed in the Appendix. Notice that expansion~24! does not
include translation factors. Since the origin of electronic c
ordinates has been placed on the heaviest center~i.e., on the
Na20 cluster! and the collision velocities considered in th
work are rather small, we do not expect translation factor
be important for the present collisional study. Substitution
Eq. ~24! in the time-dependent Schro¨dinger equation~12!
leads to the system of coupled differential equations:
ies

the
r

e

g
h
t

s

i-

n

-

to
f

i
dcik

dt
5(

lÞk
K xkU2 i

d

dt Ux l L cil expF2 i E
0

t

~El2Ek!dt8G ,
~26!

where the coupling matrix elements^xku2 id/dtux l& have
the usual radial and rotational components in the molec
reference frame@30#. The use of the GTO basis ensures th
all the couplings can be evaluated analytically. The syste
of equations ~26! have been solved using the progra
SUPERPAMPA@31#.

III. RESULTS AND DISCUSSION

A. Adiabatic energies and couplings

We show in Fig. 3 the adiabatic potential energy curv
for the s and p states of the (Na20-H)1 molecule@see Eq.
~25!#, and in Fig. 4 a set of radial couplings that are relev

FIG. 3. Adiabatic potential energy curves of (H-Na20)
1. Full

lines: s states; dashed lines:p states. Curves for other symmetrie
are not shown because they correspond to states that are irrel
for the collisional study.

FIG. 4. Radial couplings between thej2,H state and the 2s, 1d,
and 1f states ofs symmetry.
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for the understanding of the dynamics. For simplicity, t
molecular orbitals are labeled using the separate ‘‘ato
~SA! notation~i.e., that corresponding to infinitely separat
H1 and Na20 or H and Na20

1). In the SA limit, hydrogen
orbitals include a subscript H, whereas cluster orbitals
not. It must be also noticed that the excited H orbitalsn
52,3, . . . ) are infact Stark hybrids due to the cluster ele
tric field. For the s(n52) orbitals of H, we will use
the notation j1,H5(2sH12p0,H)/A2 and j2,H5(2sH

22p0,H)/A2.
Figure 3 shows that thes molecular orbitals denoted 1s,

1p, 1d, and 2s ~i.e., those connected to the available e
trance channels! strongly interact with thes orbitals corre-
lated with then52 orbitals of hydrogen. The correspondin
radial couplings present maxima atR.20 a.u., thus showing
that capture to the H(n52) orbitals must take place far be
yond the cluster surface. The radial couplings betweenp
states~not shown! are important at smallerR ~see in Fig. 3,
for instance, that the avoided crossing between the 2pp,H
state and the 1dp one occurs atR.15 a.u.!. Therefore one
can expect the role of initially occupiedp states to be less
important than that ofs states, which is further supported b
the fact thats-p rotational couplings contributing to the cap
ture process are not important aroundR.20 a.u.

It must be pointed out that the energy spacing betw
cluster states is much smaller than that of hydrogen sta
This is crucial to understand the dynamics of the collisio
For instance, at low collision energies, this implies that
capture reaction must lead to the formation of H(n52) al-
most exclusively. Indeed, the energy scale used in Fig
shows that the H(1s) state lies far below in energy, so that
cannot be efficiently populated. Similar arguments apply
more excited states of H, and to cluster orbitals above
empty 2p one.

In view of the previous discussions, in this work we w
limit the expansion in Eq.~24! to the following molecular
states ofs symmetry: the two states dissociating into thej1,H
andj2,H states of H, the four states dissociating into occup
orbitals of the cluster, namely 1s, 1p, 1d, and 2s, and the
states dissociating into the empty 1f and 2p orbitals of the
cluster. This amounts to eight states. This minimal set
molecular states will allow us to describe the capture re
tion as well as cluster excitation.

B. Transition probabilities and cross sections

First we have evaluated the inclusive probabilitiesPj1,H

and Pj2,H
, which represent the probability of capture to t

j1,H andj2,H states of H, irrespective of the processes ex
rienced by the other electrons. These probabilities incl
electron capture and capture excitation. Thus the calcul
probabilities do not correspond to anexclusivesingle-capture
reaction, but to a sum of reactions whose common featur
to yield hydrogen atoms with at least one electron. As c
ture of more than one electron is very unlikely~it would lead
at most to the formation of H2, which is a weakly bound
negative ion!, Pj1,H

andPj2,H
can be interpreted as the pro

abilities of finding one electron in the projectile. In othe
words, we are assuming that double-capture and higher-o
capture cross sections are exactly zero. Nevertheless, a
’’

o
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n
s.
.
e

3
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f
c-

-
e

ed
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-

er
the

other multiple processes such as capture excitation and
tiple excitation are properly described in our model an
hence, they are included in the calculated inclusive probab
ties.

In Fig. 5 we have plottedbPj1,H
andbPj2,H

as functions

of b at several impact energies. It can be seen that the lar
contribution to the total capture cross section comes from
region aroundb;20230 a.u., which is far apart from the
cluster surface. In the same figure we have includedbP1 f
andbP2p , which are the probabilities of finding an excite
electron in the 1f and 2p orbitals, respectively. These prob
abilities are smaller thanbPj2,H

, but the largest contributions
to the excitation process come again from a region far fr
the cluster surface (b.20 a.u.!. These results support ou
assumption that capture and excitation reactions can be s
ied by neglecting fragmentation effects occurring at sh
impact parameters~frontal impact!.

We define now the total capture probabilityP̂n52,H
52(Pj1,H

1Pj2,H
). Although addition of two inclusive prob-

abilities may lead to overcounting in some cases@28#, this
problem does not exist here because the only configurat
included in bothPj1,H

and Pj2,H
are those with two or more

electrons on the projectile, which, as discussed above, ba
contribute to the total probability. The factor of 2 appea
because the captured electron can have eithera or b spin
components. Similarly, we define theexcitationprobabilities
as P̂i52Pi2(Pi)

2, wherei stands for either 1f or 2p. The
(Pi)

2 term, which corrects for overcounting, cannot be n
glected in the present case. The corresponding cross sec
have been evaluated using the formula

s i52pE
b0

`

bP̂idb, ~27!

whereb05RC . By using this lower limit for the integral, we

FIG. 5. Transition probabilitiesPj times b as functions ofb.
Full line: Pj2,H

; dashed line:Pj1,H
; line with open circles:P1 f ;

dotted line:P2p .
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assume that trajectories penetrating the cluster give ne
gible contributions to the cross sections. The calculated c
sections are shown in Fig. 6. The values of these cross
tions are much larger than those observed, for instance
H1-Na collisions@32,33# (;1.5310215 cm2 at 500 eV!. It
can also be seen that the capture cross section increase
idly up to E.200 eV and then remains almost flat. Th
behavior is qualitatively similar to that observed in H1-Na
collisions, but the flat region is reached much earlier in
present case. Thes1 f ands2p cross sections present simila
behaviors. In particular,s1 f is only two to three times
smaller thansn52,H. One must stress here that thes1 f and
s2p cross sections cannot be interpreted as pure excita
cross sections: these cross sections include contribut
from capture excitation. The importance of the captu
excitation mechanism is illustrated in Fig. 7 by compari

Pj2,H
and Pj2,H

1 f 1 f̄ 2p2p̄ ~orbitals with and without bars corre

spond tob and a spin components, respectively!. As ex-
plained above, the first inclusive probability,Pj2,H

, includes

FIG. 6. Capture and excitation cross sections for H11Na20 col-
lisions.

FIG. 7. Comparison between the transition probabilitiesPj2,H

~full line! andPj2,H

1 f 1 f̄ 2p2p̄ ~dashed line!.
li-
ss
c-
in

rap-

e

on
ns
-

all processes leading to capture in thej2,H orbitals, in par-
ticular, all possible capture-excitation channels that can
described with our minimal basis. In contrast, captu

excitation channels are excluded inPj2,H

1 f 1 f̄ 2p2p̄ , because the

1 f and 2p orbitals remain empty. Then the difference b
tween these probabilities will be due to the captu
excitation mechanism. It can be seen in Fig. 7 that captu
excitation processes exist even at the lowest energy repo
in this work and that its relative importance increases w
impact energy. Thus, at variance with ion-atom collision
many-electron processes are important even at low imp
energies.

Another point of interest is to investigate the origin of th
vacancies produced by both capture and excitation me
nisms. This information can be very useful in estimating t
energy deposited in the cluster as a result of the collisi
Knowledge of the energy deposit is essential to determin
neutral and singly charged clusters remain stable after
collision or, on the contrary, they undergo fragmentation.
order to extract this information, we have evaluated the f
lowing inclusive probabilities: P1 f

j1,H ,j2,H , P1 f
j1,H ,j2,H,1s ,

P1 f
j1,H ,j2,H,1p , P1 f

j1,H ,j2,H,1d , and P1 f
j1,H ,j2,H,2s . The first one,

P1 f
j1,H ,j2,H , representspure 1 f excitation because projectil

orbitals remain empty; theP1 f
j1,H ,j2,H ,k probabilities represen

pureexcitation from a given initially occupied orbitalk. Fig-
ure 8 shows that, at low energies, excited electrons co
preferentially from the 2s orbital. At higher energies, contri
butions from the 1d and 1p orbitals become increasingl
important and, at 500 eV, formation of 2s and 1d holes is
equally probable. We can obtain similar informatio

for the captured electrons by comparingPj2,H

1 f 1 f̄ 2p2p̄ with

Pj2,H

1 f 1 f̄ 2p2p̄1s , Pj2,H

1 f 1 f̄ 2p2p̄1p , Pj2,H

1 f 1 f̄ 2p2p̄1d , and Pj2,H

1 f 1 f̄ 2p2p̄2s .

FIG. 8. Comparison between the transition probabilitiesP1 f

~full line! andP1 f
j1,Hj2,H ,k wherek51s ~dotted line!, k51p ~dashed

line!, k51d ~line with open triangles!, andk52s ~line with open
circles!.
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Figure 9 shows that captured electrons arise mainly from
2s orbital, even at high impact energies. Indeed, at 500
there are practically no 1s and 1p holes, and formation of
1d holes is still much less probable than formation ofs
holes.

C. Energy deposit

As mentioned above, when the collision is over, exci
clusters can relax their energy excess among the variou
ternal modes through electron-phonon coupling. If the
ergy excess is larger than the lowest dissociation energ
may induce fragmentation of the cluster. In order to anal
this possibility, we have evaluated the energy deposit a
given impact energy using the approximate formula:

E* 5

(
j

~s1 f , jDE1 f , j1s2p, jDE2p, j !

(
j

~s1 f , j1s2p, j !

, ~28!

where

s f , j52pE
b0

`

2bPf
j1,Hj2,H , j

~b!db, ~29!

DEf , j5e j2e f , f 51 f or 2p, and j stands for 1s, 1p, 1d,
and 2s. Figure 10 shows the calculated energy deposit a
function of impact velocity. The energy deposit ranges fro
1.1 eV to 1.4 eV, with a minimum aroundvcol50.07 a.u. At
higher energies,E* is roughly proportional to the collision
velocity, in agreement with the Lindhard model for collisio
velocities smaller than the Fermi velocity@34#.

The most efficient decay channel for a neutral cluster s
as Na20* is evaporation of a neutral monomer@35#. This cor-

FIG. 9. Comparison between the transition probabilit

Pj2,H

1 f 1 f̄ 2p2p̄ ~full line! and Pj2,H

1 f 1 f̄ 2p2p̄,k wherek51s ~dotted line!, k

51p ~dashed line!, k51d ~line with open triangles!, and k52s
~line with open circles!.
e
,

d
in-
-
it

e
a

a

h

responds to the lowest dissociation channel, whose disso
tion energy is 0.88 eV@35#. Consequently, excited Na20* clus-
ters resulting from the collision of Na20 with protons will
undergo dissociation into Na191Na. The corresponding
evaporation time can be estimated using the statistical m
of Weisskopf@36#, which leads totev;105 s. This means
that the excited cluster will remain stable for a long time.

We have not evaluated the energy deposited in Na20
1

clusters because it is much smaller than the correspon
dissociation energy, which is 0.85 eV. Indeed, Fig. 9 sho
that only a few Na20

1 clusters are produced in an excite
state. Moreover, these excited clusters have a hole in thed
orbital, so that the energy deposit is approximately given
e2s2e1d.0.4 eV, which is not enough to induce dissoci
tion. Consequently, positively charged clusters formed in
collision will remain stable.

IV. CONCLUSION

In this paper we have studied the collision between p
tons and Na20 clusters in the impact energy range 40–5
eV. The cluster has been described in the framework of
Kohn-Sham formalism using a local-density approximati
which includes exchange, correlation, and a self-interac
correction. The collision process has been treated semic
sically in the framework of the independent-electron mod
We have evaluated cross sections for capture and excita
that can be directly compared with experiments and take
account the many-particle aspect of the problem. Our res
show that electron capture is the dominant process in
whole energy range investigated here. The calculated c
section is of the order of (225)310214 cm2 and it is much
larger than the known cross sections for H1-Na collisions. It
includes the single-capture mechanism, but also capture
citation. The latter process is important even at low collisi
velocities. Cluster excitation is also a very important proc
since the corresponding cross sections are only two to th
times smaller than capture cross sections. This behavior
contrast with the one observed in ion-atom collisions. E
cited neutral clusters may undergo fragmentation when
energy excess is larger than the lowest dissociation ene
For this reason we have investigated the origin of the vac

FIG. 10. Energy deposit as a function of impact velocity.
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cies created during the collision and we have found that
energy deposit ranges from 1.1 to 1.4 eV. This suggests
Na20* mainly decays by ejecting one sodium atom and that
typical evaporation time is;105 s.

In summary, we have been able to characterize the
namics of H1-Na20 collisions and to provide cross section
and energy deposits of experimental interest. The pre
methodology will be used in the future to investigate co
sions involving more complicated clusters and other multi
charged ions.
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APPENDIX

Both cluster and hydrogen orbitals have been represe
in a basis of real spherical Gaussian-type orbitals:

wk j
l umu~r !5Nk jr

k exp~2a j r
2!Pl umu~u!cos~ umuf!, ~A1!

whereNk j is a normalization constant andPl umu is an asso-
ciated Legendre polynomial. For each GTO of a givenm, we
will use the notation (k,l ,a j ). The cluster basis include
.
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V
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re
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, Z

F.
e
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e
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nt
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e

ed

GTOs with l 50, 1, 2, and 3, andj 5 l andl 12. Namely, 15
(0,0,a j ), 15 (2,0,a j ), 15 (1,1,a j ), 15 (2,2,a j ), 8 (3,1,a j ),
and 8 (3,3,a j ) functions. Thea j exponents are given by th
formula a j50.005 3831.7( j 21), where j 51,2, . . . ,15 for
the former four groups andj 51,2, . . . ,8 for thelast two
groups. Hence the cluster basis amounts to 76s, 61p, 38d,
and 23w orbitals. This basis reproduces the orbital energ
of Table I up to six significant figures. The hydrogen basis
given in Table II and amounts to 29s, 14p, and 3d orbitals,
which lead to the exactn51 andn52 hydrogen energies up
to six significant figures.

TABLE II. Exponentsa j of GTO basis set used to describe th
atomic orbitals of hydrogen. See Eq.~A1! for notation.

l 50 l 51 l 50 l 52
k50 k51 k52 k52

0.0095 0.01 0.015 0.015
0.017 0.027 0.055 0.055
0.035 0.065 0.18 0.18
0.07 0.15
0.15 0.30
0.30 0.6
0.6 1.2
1.2 2.4
2.4 4.8
4.8 9.6
9.6
19.2
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