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Hylleraas-type calculations of the relativistic corrections for the ground state of the lithium atom
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Calculations of the principal Breit-Pauli relativistic corrections for the ground-state energy of the lithium
atom have been carried out. The corrections have been determined using first-order perturbation theory. Only
the non-fine-structure components of the Breit-Pauli Hamiltonian in the infinite nuclear mass approximation
are considered. The wave function employed is an extensively optimized large-scale Hylleraas-type expansion.
Comparisons are made with the few available relativistic corrections for the lithium atom that are available in
the literature. A reevaluation of the first ionization potential for the ground state of Li is presented.
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[. INTRODUCTION tions for the ground state of Li. While this procedure is
somewhatad hog a validation of the approach, at least for
The purpose of this work is to report high-precision esti-the relativistic kinetic-energy mass contribution, is given in
mates of the principal relativistic corrections to the ground-[1]. There it is pointed out that Chung’s core-corrected value
state energy of the lithium atom. There has been considefor this contribution is in relatively close agreement with the
able recent interest in the high-precision determination ofesult from more precise calculations. The results of the cal-
various properties of the ground and excited states of théulations reported herein will validate Chung's approach for
lithium atom and members of its isoelectronic serigsse the other Breit-Pauli relativistic corrections.
[1,2] for recent reviews The principal(non-fine-structure Other than Chung's calculatiof8], no works are known
Breit-Pauli relativistic corrections to the energy levels are &0 the authors where all the principal Breit-Pauli energy cor-

notable omission from the long list of properties that haverections are evaluated with reasonable precision for the
been calculated to high precision. ground state of the lithium atom. High-precision estimates of

A know|edge of precise values of these corrections is im-some of the individual Breit-Pauli relativistic corrections to

portant for several reasons. A valuable check on the qualitjhe energy can be found in the literat@-15. The main
of ab initio calculations on three-electron atoms can be madéeason that all the contributions have received very little at-
by evaluating the first ionization potential of the system. Thetention can be traced to the rather recalcitrant integration
experimental first ionization potential for the lithium atom is Problems that emerge. This facet of the problem will be dis-
available for comparison with a relative accuracy of 0.11cussed below in detail.
ppm. To obtain a match between theory and experiment at
this level of accuracy requires rather precise estimates of the Il. THEORY
relativistic corrections to the ground-state energies of both Li
and Li". The availability of precise estimates for the Breit- ~ The Breit-Pauli Hamiltonian discussed in this work is
Pauli corrections would also be of value as benchmarks for
other types of relativistic calculations, such as multiconfigu- Hrer= Hmasst Henot Heep ™ Hssct Hoo, (1)
ration Dirac-Fock and relativistic many-body perturbation
theory methods. In addition, if high-precision values for thewhere the various terms in E¢L) are given in atomic units
relativistic corrections to the energy levels are available, therfa.u) by
it is possible to assess indirectly, in a semiempirical fashion,
the expected size of the QED contributions to the various a?
ionization potentials. Himass= — 5 > v 2

For the doublet states of three-electron atomic systems,
almost all the available published work on precise relativistic
calculations has been carried out by Chung and co-workers .
[3—6] using the configuration-interactigq€l) technique. For Heno=32 @ ZTFZ o(ry), (3
the lithium atom, Chund3] has carried out calculations of
the relativistic corrections for the ground-state energies of

both Li and Li*. For Li* he was able to compare his ClI _ ) -

results with the earlier high-precision Hylleraas calculations Hego= —ma ,21 JE>| a(rij), (4)
of Pekerig 7,8]. The difference between the ClI and the Hyl-

leraas results for L'i was adopted as a core-correction con- 5 3 3

tribution for each of the calculated Breit-Pauli contributions. Howm — 8ma S S s.s8(r) )
These corrections were then incorporated into the calcula- ssc” 3 &S
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TR AN V2 The integral problems become extremely severe when the

VJ rlj (rlj VI)VJ . . .
+ 3 . (6) expectation values of two of the Breit-Pauli operatblis,ss

ij andH, are evaluated using Hylleraas-type wave functions.
The electron-nuclear Darwin term, the electron-electron Dar-
win term, and the spin-spin contact interaction present no
special difficulties. These latter three contributions all sim-
plify to the integrals given in Eq(9) with the condition
I,m,n=—1. The matrix elements of the kinetic-energy mass
operator can all be reduced to integrals of the form given in
Eq. (9), but the constraint,m,n=—1 no longer applies. The
required integrals for the kinetic-energy mass correction and
the electron-electron orbit interaction includmtegrals hav-
%g at least one of the factoism,n=—2. On the surface,
. “this might seem like a relatively minor change from the pre-
tions. vious cases, but the difficulties introduced can be appreciated

The individual contributions are evaluated using first- : ; 2741
order perturbation theory. The wave function employed isby noting the form for the expansion of ;" [41-44. The

based on the Hylleraas expansion appearance qf a Iogarit.hm factor in th_e expansiorr[g‘f
greatly complicates the integral evaluations.
N Three-electron integrals with,,” factors[42,44—49 have
y=A> C 1 PuXp (7)  received far less study than the other cases mentioned above.
u=1 The additionall integrals that must be evaluated can be di-

. . . vided into three casesi) those having=—-2 andm,n=
where A is the three-electron antisymmetriz&?,, are the —_ 4 and notboth odd, (ii) | integrals havingl=—2 and

variationally determined expansion coefficients, &hdes- .\~ _1 andboth odd and(iii) I=—2 andm=—2. Al

ignates the number of basis functions employed. Theyner integrals can be reduced to one of these three cases by
Hylleraas-type basis terms, are functions of _the electron- using the symmetry implicit in Eq9). For casi), effective
nuc_lear ¢i) and electron-electronr(j) separations and are ,.ihods were developed by Kirg2] to deal with these
defined by integrals several years ago. A large number of integrals of
this type can be reduced to integrals that arise in the relativ-
bu(T1:72.73.723. 31,7 12) istic problem for two-electron systems. The latter integrals
= rlap g Kup My Nag = aur1=Bura=vurs. @) are m_L_Jch easier to ev_aluate ar_ld hgve been well gtl_Jdied. The
1727372331712 case(ii) integrals, which are significantly more difficult to
valuate than the cag® integrals, were considered [A42].
everal different approaches have now been developed to
deal with these integralgt3—49, but these methods do not
yield the precision levels that can be obtained for the ¢gse
| integrals. Caseiii) integrals are the most difficult to re-
Using the form of the nonrelativistic Hamiltonian written solve. Although methods to evaluate cage) have been
in Hylleraas coordinates, it is not difficult to show that the discussed in the literatuf@4,46, the precision available is
matrix elements needed for the eigenvalue and eigenfunctiosomewhat limited. Casé8) and(iii) in particular have been
determination all simplify to sets of integrals of the form  a major bottleneck to carrying out relativistic calculations
with Hylleraas-type expansions. If the most general Hyller-

3 3
1 2
Hoo=2= o?
00 261’21; rij r

Hhassrepresents the kinetic-energy mass correctitgyp is
the electron-nuclear Darwin terii,zcp denotes the electron-
electron Darwin termHggcis the spin-spin contact interac-
tion, andH,, designates the electron-electron orbit interac-
tion. In Egs.(2)—(6), the fine-structure constant is denoted by
a. 4r) is a Dirac delta functions; is an electron spin op-
erator, andZ is the nuclear charge. Only the non-fine-
structure contributions have been shown in Eg. In addi-
tion to these terms, there are fine-structure contributions th
include spin-orbit, spin-other-orbit, and spin-spin interac

The Hylleraas approach that we employed is described i
Refs.[9-13].

Integration problems

1(i,j,k,1,m,n,a,b,c) aas expansion is employed, then both c@igeand casiii )
integrals arise.
:f rilrjzrgr'23r§’1rQze*arlfb’f‘”Sdrldrzdu, The obvious question to pose is: Is it possible, by judi-
cious selection of the basis functions, to avoid these difficult

(99 integral cases entirely? Deleting a number of basis functions
that have two or three odd entries fdy,,m, ,n,} allows the

with the conditionsl,m,n=—1. These integrals, the auxil- case(ii) and casdiii) | integrals to be avoided. The omission
iary functions on which they depend, and some related gerof basis functions having three odd entries fog,m, ,n,}
eralizations have been extensively investigated in the literahas an insignificant effect on the determination of a precise
ture[16—40. Effective numerical methods for the evaluation energy estimate or the calculation of a number of other prop-
of these integrals are well known. For an energy evaluationerties. The omission of basis functions with two odd entries
only I integrals withoneof the indiced,m,nequal to—1 are  for{l,,m,,n,} is more problematic, but it is still possible to
required. These integrals can be conveniently evaluated ugbtain reasonable levels of precision when a large basis set is
ing available algorithm$18,35,4Q. When two of thel,m,n  employed. It is possible to select the basis terms such that
indices are equal te-1 (a situation that arises for the evalu- cases(i)—(iii) | integrals do not arise; however, the energy
ation of the relativistic correctionsa much more effective obtained with a basis set of this design, even with several
approach to evaluate theseéntegrals is by the use of con- hundred terms included, is relatively poor. A compromise
vergence accelerator techniques, using a transformation preras selected in the present work, namely, that basis func-
cedure given by Pelzl and KinglO]. tions with two and three odd values for the indices
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{l,,m,.,n,} were excluded. This simplifies the integral ~ TABLE I. Ground-state energy of the lithium atofim a.u) as a
evaluations for the relativistic kinetic-energy mass correctiorfunction of the basis set size.
and the electron orbit-orbit correction since only céigel

integrals need to be evaluated. Nonrelativistic
For the evaluation of the electron-electron orbit interac-  « [EQ. (12)] No N energy

tion, in ad(ﬂtmn to thel' integral cases havmg one of 01 28 28 74771989
{IH,rr?M,nM}——Z, some integrals of the following form 2 72 100 7478007 7
anse: 200 —~7.478 0555
o 3 181 281 —7.478 057 4

|1(i,J',k,|,m,n,a,b,C)=J rirbr S i—rorha oy 400 —7.478 059 6

500 —7.478 059 76

X @ 8 —br2=Cragr dr,dry 600 —7.478 059 83

(10) 4 419 700 —7.478 059 89

and

is a high confidence that the global minimum has been lo-

o cated, but this is at the expense of requiring significant CPU

|2(i,j,k,l,m,n,a,b,c)=f rarbr(ra—r3rha frey resources. The global optimization procedure also gives an
indication of the plethora of false minima that occur for a

X @11~ br2=Cragr . dr,dr,. number of basis functions; the difference in energies between

(11) the false minima! an_d the global minima can (_)ften be sign_ifi-

cant. The optimization phase of the calculation was carried
The integrals defined in Eqg10) and (11) look at first ~ outin double precisiofwith a 32-bit word length The final
glance like they might be simple extensions of thetegrals ~ energy determination and the evaluation of the relativistic
defined in Eq.(9). This turns out not to be the case; the contributions were done after the matrix elements were re-
integrals|; and |, cannot be split into two parts, as the evaluated in quadruple precision.
separate integrals diverge. Different approaches to deal with The operators given in Eq$2) and (6) emphasize the
these more singular-looking integrals were investigated. Amear-nuclear region of configuration space. The variation
effective approach to evaluate these integrals involves workmethod leads to the most significant improvements in the
ing directly with the expansions of the factons ¢ r2)r,,> ~ wave function in a region furthefon averagg from _the
and (2-r2)r;2. The integralsl, and |, may both be nucleus than that emphasized Bfassand Ho,. Adding
evaluated rapidly and to high precision. A detailed discusi@rge numbers of more diffuse basis functions is likely to
sion of the evaluation of these integrals is given by Feld/mprove the convergence of the expectation values of the
mann, Pelzl, and King49]. aforementioned two operators, but at a somewhat slower

There are still several unresolved problems connected tepte.

the evaluation of some of the more difficult integrals. The
principal issue to resolve is the current inability to obtain Alternative forms for expectation values

high-precision results without significantly increasing the A considerable investment of labor and CPU resources

are in progress on some of the more obdurate integrals.  for the expectation values of the kinetic-energy mass correc-

tion and the electron-electron orbit interaction are straight-

[ll. COMPUTATIONAL PROCEDURE forward but rather tedious to evaluate. The final expressions

. . are too lengthy to reproduce here. The original formulas

Ioin—rTe ;’nvgx?]gfngmg deer:op:gydegﬁnwjj l;:onstructed in the fOI'Were worked out by hand and then later evaluated using the
9 ' y symbolic capabilities ofIATHEMATICA . In order to check the

O=i,+], K+ Amn,. (12) resul_ts, an alternative approach was employed. For the

kinetic-energy mass correction we have

Basis functions were then added in terms of increasing pow-

ers ofw, =0, 1, 2, 3, and 4, except terms wigh=0 and 1 (Humasd = —
were added in a nonsequential fashion at the start of the basis

expansion. The number of terms included for each value of )

w, N, is shown in Table I. Four repetitions of each basisand this can be recast as
function were included fow=0, 1, 2, and 3; fow =4, four

to five repetitions were employed. The repeats were added in
clusters in a manner intended to avoid problems associated
with linear dependence in the basis set. For each term added,
the exponent sdtw,, ,3,,,v,} was determined using a global Equations(13) and (14) should yield identical results, even
optimization approach. A stochastic procedure was used tfor an approximate eigenfunction. It actually turns out that
locate the minima for a reasonably sized grid of the exponenEq. (14) is much easier to work with and most of the calcu-
set{a,,B, v, This approach has the advantage that therdations were done with this form. However, a number of

3

> (WIV) (13)

o2
8 =1

3
> (VEYIVEY). (14

i=1

aZ
<Hmas§: -y
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TABLE Il. Breit-Pauli relativistic contributions to the ground-state energy of the lithium aiona.u).

Number

of basis

functions (H masé < H END> < H EED> <H SSC} <H 00) < H rel>

28 —41712%10°° 3.4691%10° —-95675%10°° 19135104 —2.4120x10° —6.3060810 4

100 —418394K10°° 3.4744%10° —9.2124%10°° 1.8424%10°% —2.3318410° —6.40656<10 4
200 —4.1827%10°% 3.47350<10°° —9.1239(x10° > 1.8247&10* —2.3218410°° —6.4120%10°*
281 —41832%10°° 347374 10°° —9.12130<10°° 1.82426K10°% —2.3213510°° —6.414810°*
400 —41830810°° 3.47365x10°° —9.11473%10°° 1.82295%10°4 —2.32031x10°° —6.41490x10°*
500 —418301x10°% 3.47361x10°° —9.11456<10°° 1.82291X10°% —2.3202%10°° —6.4145410°*
600 —41830510°° 3.4736%10°° —9.1143%10°° 1.8228% 104 —2.3202410°° —6.4147%10°*
700 —4.1830810°° 3.47364x10°° —9.11361x10°° 1.8227X10% —2.3201810° —6.41504 104

checks were made using E(.3). The set of integrals that V. DISCUSSION

arise when the expectation value Hf, . is evaluated is
quite different for the two forms. This is rather easy to see,
for Eq. (14) involves noé-function evaluations, but the ex- ~ The comments on the convergence characteristics are
pansion Ofvl4 does lead to such terms. Much more Singu|ar-based on the results presented in Table Il. The convergence
looking integrals can also arise when Ef3) is employed. ~ Of the expectation value digyp is relatively smooth, but not
For the electron-electron orbit interaction, the expectatiofhonotonic. The final value reported in Table Il is in close

value can be written as the expectation valuéigf given in ~ agreement with other high-precision estimates of this quan-
Eq. (6), or as the alternative form tity [9—11,14, the most precise of which leads to the value

(Henp) =3.47366(1x 10 2 a.u.[14].
3 3 The convergence patterns for the expectation values of
_ Heep andH gscbehave similarly, with the convergence being
_1 2 1 EED SSC
(Hog =z ;1 JE>. [l Vi Vil g) approximately monotonic. It is straightforward to show, us-
ing the spin eigenfunction given in E¢P), that

3 3 s 3
<'—1jz>is'sj§(rij)>:_%<,_ljz>i 5(rij)>v 17

A. Convergence characteristics and literature comparisons

_<rﬁa(1+rij'Vi)¢//|rij'le//>]- (15

For an application of this identity to the corresponding prob-
lem for the ground state of the helium atom $86]. Both o
the expectation value shown in E45) and the expectation Which implies

value of Eq.(6) were evaluated as a check on each calcula-
tion. (Hsso=—2(Hgep)- (18

Both (Hsso and(Hggp) were computed separately to check
IV. RESULTS for possible roundoff errors and to confirm that Etg) was

The energies obtained with the different size basis sets ars,8atisfied. The similarity of the observed convergence behav-
tabulated in Table I. The final energy is approximately 0.4, r for (Hsso and(Heep) results directly from the connec-

X . ion given in Eg.(18). An estimate forxH and(H
uhartree above the best previous estimate of the ground—stai%n ge determi?]éd zrom the high-preéisi%sn&resulsfoEEtﬁe ox.

energy[14] (see[1] for an extensive tabulation of previous ; 3 .
calculations of this quantijy In Table Il the convergence of pﬁg?};?&?;;ﬂ%gﬁ&& g;viesn_bg %%”Sg?gy'){gl‘?;‘%
the five contributions determined from the operators define 14], and the final value reported in Table Il is about 0.08%

in Egs. (2)—(6) are shown as a function of the size of theI A ibl lanation f f th tributi
basis sets employed. fower. possible explanation for one of the contributing

The scale factor, defined by actors for the slower convergence obseryed(fdgsc) and
(Hgep) may be the omission of basis functions where two of
the set{l,,m,,n, } are both odd values. Some of these

(V) terms, particularly for smaller values a@f [see Eq.(12)],
n=- ﬁ (16)  would be expected to play a more important role for obtain-

ing precise expectation values such(asr;;)).

The expectation value ofl s displays a convergence
where(V) and(T) are the potential energy and kinetic en- behavior that is clearly not monotonic, while the conver-
ergy, respectively, was also calculated for each wave funcgence of the expectation value bf,, exhibits monotonic
tion. For the final 700-term wave function employegl, characteristics. Both of these expectation values are expected
=1.000 000 1, which is very close to the resylt=1, ex- to be more sensitive to the behavior of the wave function in
pected on the basis of the virial theorem for an exact wavéhe region of configuration space fairly close to the nucleus.
function. Since the wave functions were determined using the standard
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TABLE lll. Contributions (in absolute a.i.to the first ionization potential of the lithium atom.

Energy contribution Lit(1s?) Li(1s%2s)

Enr —7.279 913 412 669 3059 —7.478 060 32@®)¢
Egonr 0.000 569 303 9P 0.000 584 799 4@)°
Esus 0.000 022 588 91(2)° 0.000 023 593 7"
Erel —0.000 628 865 1887)° —0.000 641 5(8)7
AEgep —0.000 001 ()"
theoreticall | 0.198 141 91)
experimental ; 0.198 142 0R)'

%From Ref.[51].

bEvaluated from results in Ref51] using the mass information given in Sec. V B.
‘Evaluated from results in Reff51] and the value of the fine-structure constant given in R&5].
9From Ref.[14].

®Evaluated from results in Reff14] using the mass information given in Sec. V B.
fEvaluated from results in Reff52].

9Present work.

PFrom Refs[53,54.

iFrom Ref.[57].

implementation of the variation method, where the important l,=E(Li*)—E(Li), (20)
focus is the region of configuration space near but not too

close to the nucleus, it should be expected it and where Ef(Li*) and Eq(Li) denote the total energy of the

(Hy0) would exhibit a slower rate of convergence. A superior . : ; . N
approach would be to determine the wave function so thag_round state energies of Liand Li, respectivelyE+(Li) is

the variancer, defined by given by

0':<H12\1R>_<HNR>21 (19) ET(Li):ENR(Li)+EreI(Li)+EmasgLi)'ipEQED(Li)y (21)

is optimizeql. As the_approximate wave function apprqache%ith a similar expression foE(Li"). The first ionization
the exact eigenfunctiors— 0. An alternative strategy might potential can therefore be written as

be to augment the standard variation approach with the con-
straint that o also be optimized. Both these approaches
would lead to wave functions that provide a better descrip-
tion of configuration space close to the nucleus. Unfortu-
nately, such calculations would be prohibitively expensive in
terms of the CPU resources required. where the energy differences refer to temeutral species.
Because the convergence patterns for the individual con- In Table Il the most precise values for each energy con-
tributions to(H ) are not monotonic, it is rather difficult to tribution are collected, along with the available error esti-
arrive at reliable estimates for extrapolated values of thesgates[51-54. The value of the fine-structure constant has
expectation values, as the size of the basis set becomes inieen taken froni55] and the nuclear mass féti has been
nite. The approximate uncertainty for the final valudidf,)  taken from[56]. The specific mass shift correction has been
reported in Table |l is estimate@in par) on the basis of evaluated using
convergence trends, to be about 2-8 in the fifth significant
digit reported. “
Chung [3] reports the values(H a9+ {(Henp)= ™ 7.820 202 26) X 10 °,
—7.0942<10" % a.u. (in the present work we obtain
—7.0944< 10™4), (Heep) + (Hss) =9.1154x 10 ° a.u.
(9.1136<10°5), (Ho)=—2.3201x10 5 au. (-2.3202 Wwhere is the reduced magéor the isotope’Li) and ‘M is
X105, and (H,)=-6.4147x10 *“au. (-6.4150 the nuclear mass fofLi [ "M =7.014 358 4(5) amii56]].
X 10~ %). The final results reported in Table Il are in very The calculated ionization potential is observed to be in rather
close agreement with Chung’s results. This comparison proclose agreement with the available experimental r¢&lt
vides a validation of the core-correction strategy employedio convert the values df; to cm*, the conversion factor is
for the CI calculations carried out by Chung. 1 a.u. (absolute} 219 474.631 368 8(62) cm. Other re-
cent high-precision theoretical evaluationd ptan be found
in [3,14,58—6] and a summary of earlier results is given in
[1]. It is clear from the results presented in Table Il that a
The first ionization energy of the ground state of L, major part of the uncertainty in the theoretical determination
can be determined from the result of I, now resides with the QED contribution.

I1=Eng(Li +) —Enr(Li) +AE g+ AEpasst AEQEDv (22
22

B. The first ionization energy
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C. Further refinements tential of the lithium atom to seven digit precision. Improved

If some of the integration difficulties inherent in the calculation of the QED contribution t will be essential if
present approach can be resolved in a more effective manndfe precision of the theoretical determination of the ioniza-
it should be possible to improve the precision of the preseniion potential is to approach the precision level available
results for the various Breit-Pauli relativistic contributions. from experiment.
The obvious starting point is to make two improvements to Significant refinements to the present calculations will de-
the basis set. The first is to add more diffuse functigeems  pend on the development of improved methods to evaluate
with w>4). These basis functions would improve the preci-the most difficult integral cases that arise. Work is in
sion of the calculations, but at an expected slow rate of conprogress attempting to improve the evaluation procedures for
vergence. The second and more important improvemerthe most difficult integral cases.
would be to include those basis functions having two odds Note added in proofRecently the authors received un-
for the sef{l,m,n} for values ofw=2, 3, and 4. Inclusion of published work from Dr. Drake on relativistic and QED en-
these functions is expected to improve the precision level ogrgies in lithium, which has now been publishéd-C. Yan
several parts of the calculation. This is, however, at the cosind G. W. F. Draké63]). The work of Yan and Drakg63]
of dealing with a significant number of the most difficult 5150 evaluates the relativistic correction for the ground-state

integrals. Improved numerical evaluation procedures fOlnergy of Li, but using a much larger basis-set expansion.
these integrals would be of considerable value if the indi-

cated extensions of the proposed basis set were employed.
The next most significant refinement of the calculation
would be the incorporation of nuclear mass-dependent rela-

tivistic corrections(see[62]). Because of the high precision ) i ) ) i
of the experimental value of,, the largest of the Stone Financial support from the National Science Foundation
corrections would be expected to play a role in determiningCGrants Nos. PHYS-9004899, PHY-9300863, and PHYS-
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