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We have developed an approach to study doubly excited Rydberg states of atoms or ions with two optically
active electrons outside an ionic closed-shell core. The interaction between the core and one valence electron
is modeled by an accurate semiempirical pseudopotential. For any given parity and total angular momentum,
single configuration Hartree-Fock calculations are performed to build a basis set of numerical two-electron
wave functions. Configuration-interaction calculations then provide the energy positions of the correlated states
and their compositions in terms of the single configuration basis set. Atomic properties, such as autoionization
linewidths, can be derived. Results concerning neutral barium are reported to illustrate the approach. They are
compared with available experimental and theoretical data, and discussed. Energy positions of the bound and
autoionizingd=0 even-parity and =1 odd-parity states of barium below thd 8D, threshold are predicted
as well as associated autoionization linewidths. The symmemigal(n=7—11), 7p?, and &? configura-
tions are also studied. The overall agreement is satisfactory and especially good for high-lying doubly excited
Rydberg state4.51050-294®8)04911-7

PACS numbe(s): 31.15.Ne, 31.25.Jf, 32.16f, 32.80.Dz

I. INTRODUCTION as the eigenchanndR-matrix theory combined with the
MQDT [8]. One interesting property of doubly excited

To treat the many-e|ectron prob|em' maﬂb initio ap- states, when coupled to the continuum, is their abl'lty to
proaches have been based on the Hartree-Fock approximdutoionize. As autoionization is mainly induced by the di-

tion [1]. For heavy systems, these approaches are numer(?_Iectronic Coulomb repulsion, it is essential to account for
cally complex and time con'suming, even with the help 0fthe electronic correlations to describe this process properly.

modern supercomouters. As manv electrons lie in closel this respect, simple independent-particle models are irrel-
P P : y vant. Another interesting problem is the perturbation of Ry-

shells and play a minor role in comparison with the valencgjperg series by bound doubly excited states, which has been
electrons, several methods have been developed in which thgtensively analyzed by means of MQDT.

effects of these shells are replaced by an effective interaction The computational method is outlined in Sec. IIl. We first

[2]. These methods have been proven to be competitive an@duce the complex atom with two active electrons to a
to provide even better results thai initio approaches in three-body problem where the core-valence interaction is de-
many areas of physics. In this paper we present an approaderibed by a semiempirical pseudopotential depending on a
using such an effective interaction combined with thefew parameters, and which cannot support any core electron

configuration-interactioCl) framework to study atoms or bound statéSec. Il A\. For any given parity and total angu-
ions with two optically active electrons outside an ionic lar momentum, a basis set of two-electron wave functions is

closed-shell core. A number of calculations of this type have?u'It by successive numerical integrations of the single con-
been proposed befof@—6], which mainly dealt with low- figuration Hartree-Fock equatlomSec: Il B. Each basis set

, ’ is then used to perform a CI calculation that accounts for the
lying energy levels of two-electron atoms. Our approach USeg,|| yalence-valence correlations. Obviously, as the core
numerical Hartree-Fock two-electron wave functions to perstates are not explicitly involved, the number of needed con-
form CI calculations in the spirit of Ref3]. Usually one figurations is efficiently reduced. The Cl calculation provides
carries out Cl calculations using either numerical one-the positions of the energy levels and their compositions in
electron wave functions or trial analytical basis sets. In outerms of the single configuration Hartree-Fock wave func-
approach, we expect that high-lying energy levels will betions(Sec. Il Q. We conclude Sec. Il by showing how some
predicted and identified without encountering linear depenatomic properties can be derived in this framewg8ec.
dence problems in the CI matrix and with a tractable numbeH D). Section Ill is devoted to the presentation of some re-
of functions. Our main purpose is to show that this approachsults for bound and autoionizing states in neutral barium in
which combines generality, simplicity, and accuracy at thePrder to demonstrate the effectiveness of our approach. Com-

same time, can provide reliable spectroscopic information of@"isons and discussions are made concerning the energy po-
a large energy scale, including highly excited states sitions and the autoionization linewidths. We draw conclu-

Alkaline-earth atoms are examples of two-electron sys-Slons in Sec. IV.

tems that have attracted a lot of attention during the past two
. . Il. THE MODEL
decades. This was connected with the development of new
experimental laser techniques and successful applications of In this section, we sketch out the main features of our
the multichannel quantum-defect thedQDT) [7] as well  model. The formalism used here is suitable either for nonrel-
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ativistic calculationgcarried out inLS coupling or, by in- 1s,, andK; their number. Then, in a pseudopotential ap-
cluding the spin-orbit interaction implicitly, for semirelativ- proach, we impose that the number of nodes ofrtheadial

istic calculationgcarried out inLSJor jj couplings. function of the valence electron is given loy-1—-1-K;.
Consequently, the lowest valence state of a givembital
A. Semiempirical pseudopotential has no node, ensuring that none of the solutions of the

Hamiltonian in Eq.(1) with the pseudopotentidd (r) in Eq.
(2) is a core electron wave function. Therefore, the short-
range potential in Eq4) accounts mainly for the incomplete
screening of the nucleus chargdy theN core electrons for
ny l-orbital value of the valence electron and also for the
antisymmetrical effects due to the Pauli principle fefL.
Consequently, fol<L, the short-range potential must be
repulsive. In fact, in order to increase the accuracy of our
approach, two analytical forms OIFR(r) have been used,
h=—1A+U(r), (1) depending on the value of We choose [§,q) =(2,0) if |
<L in Eq. (4) so that the leading Gaussian term is repulsive
whereU(r) is a pseudopotential that represents the interacprovideda,>0. Forl >L we choose §§,q) =(1,1) in Eq.(4)
tion between the valence electron and the core. We choosghere the leading term of this potential accounts for the par-
the following explicit form: tial screening of the nucleus charge, and weaset—N to
fulfill the asymptotic condition

Z-N °° |
U(r)=———+V(0)+ 2, VD) 2 fim)(im], 0 7
_ _ @ v ©

We consider an atom or an igk consisting of a nucleus
of chargeZ surrounded byN + 2 electronsN of them form-
ing a closed-shell polarizable cofé™ with the nucleus. We
suppose that no excited core configuration is embedded i
the spectrum of the systed* composed of one valence
electron and the ionic cor&?*. We begin with our nonrel-
ativistic Hamiltonian forA*. It simply reads(atomic units
are used throughout Sec) Il

where This analytical form of the short-range potential forL was
found well suited to represent the double-valley potential
VIR(r) = — i(f(r))z &) e_xperienced by the lowestorbitals in Bd, as a result of a
or4 ' fine balance between the Coulomb attraction and the cen-
trifugal barrierl (1+1)/2r? [12]. The parameters,, b, ¢,
exp(— BirP) a_nd B, are dgtermined for each value lo$o that thg- Schro
. (4) dinger equation solved for the valence electron gives the ob-
servedspin-averagedspectrum ofA™. Practically, two pa-
rameters are used to fit exactly the two lowest levels bf a
series while the others are adjusted to predict the next levels
the most accurately in the root-mean-square sense.

VR =(a+br+cr? ;
]

Besides the Coulomb term, the pseudopotential in(Bchas
been conveniently divided into a long-ran@eR) local part

and a short-rangeSR) semilocal part. “Semilocal” means This technique can easily be extended to account for the
dependent] being the orbital quantum number of the va- gnin_orhit interaction'SO) and other minor splitting effects,

lence electron. This feature increases the flexibility of the,nich appear of importance in heavy atopdsL3. Since we
pseudopotential and hence its ability to describe accuratelyc, 5 pseudopotential, we cannot express the spin-orbit in-

the short-range interactions, the character of which is essefs action by its usual explicit form. Its radial contribution

tially nonlocal. _ _ o indeed includes the first derivative of the potential, which is
_The long-range part in Ed3) is a polarization term that 1ot correct in the pseudopotential approach. Therefore, we

arises because the core loses its spherical symmetry withoo; the splitting effects of the spin-orbit interaction implic-

respect to the frozen-core approximation: the electric f|elqt|y. As this is essentially a short-range interaction, we

created by the valence electron polarizes the core and thla‘;]ange our semilocal potential, which then reftia 3]
modifies the potential that the valence electron actually ex- '

periences. This term can be seen as a core-valence correla- w© 1+1/2 j
tion potential for nonpenetrating orbits. Higher-order polar- > ; ViR > ljm)(1jm|. (6)
ization terms exisf9] but the static dipole polarizability of 1=0 j=[1-1/2 m=-]

the corea is responsible for the largest part of the correction. ) s )
The cutoff functionf in Eq. (3) prevents the polarization The (.j)-dependent parameters of thé;(r) potential
potential from diverging at smailby making it tend towards [Written similarly to Eq.(4)] are calculated to provide the
zero inside the core. We choose the quite arbitrary fornPbservedine-structurespectrum ofA*. We can recover the
r3/(r3+r§) inspired from Sienkiewicz and Bayli§10], radial cont_rlbutlon of the spin-orbit interaction mentioned
wherer . is approximately the radius of the core. Many pa-2above, which readgl4]
pers have been written about the derivation of this polariza- 1
tion term and its influence upon energies and oscillator SO,y — SR _\SR
strengthg 11]. To be consistent, the multipole operators have Vi) I+ 1/2[V,'|+1,2(r) Vi1 (1)) @)
to be corrected as well.

Let L be the largest value of theorbitals corresponding We verify that thej-dependent potentiaV~ on the one
to the occupied states of the cof€™ in its ground state hand, and the nonrelativistic potentl\a(FR associated with
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TABLE |. Ba' pseudopotential parameterk=0 for spin- TABLE Ill. Some lifetimes in B4.
averaged levelk=1 for j=1+1/2, andk=—1 for j=1—-1/2.
Level This work Experiment Other calc. Units
| k a b c B
6 2Py, 5.97 6.27-0.25% 6.386"° 10°° s
0 0 8.58 0.00 —0.730 0.384 6.312-0.016° 6.39¢ 10°° s
1 0 9.10 —3.07 0323 0270 6 2Py, 7.54 7.74-0.402 7.993° 10° s
1 8.90 —3.08 0.314 0.250 7.92+0.08¢° 7.99¢ 10°° s
-1 9.00 -284 0.303  0.300 5 2p,, 33.22 47.6:16.0° 38.7° s
2 0 0.80 —1.48 0.076 0.380 32.0+5.09 37.2¢ s
1 080 —1.42 0.049 0380 5 2Dy, 73.94 79.84.6" 85.5P s
-1 0.80 -1.53 0.070 0.390 83.7¢ S
=3 0 —54.0 52.6 —49.9 2.492
1 -540 527  —495 2486  Referencdls
1 540 504 502 2.499 cReference{24]. Semiempirical model.
Referencd 19].
YReferencd 25]. Relativistic many-body calculations.
®Referencd 20].

the spin-orbit potentia¥;*° on the other hand, both give very 'Referencd?21].
similar fine-structure levels, the latter, however, being9Referencd?22].
slightly less accurate. "Referencd 23].
We have determined the parameters of the nonrelativistic
potential and of thg-dependent potential for the singly ion- 1 1 1
ized barium atom Ba (Z=56,N=54, andL=2). We have H=-3A)+U(1)-5A(2)+U(2)+ T,
chosen the values=10.61 given by Johnsoet al.[15] for voe
the static dipole polarizability and.=1.924 given by Des- a ~ A
claux [16] for the core radius, which is somewhat arbitrary - Wf(rl)f(rz)cos{rl- ra). ®
but this parameter has negligible effects on the results. Table 12
| presents the parameters resulting from the fit for both po+

tentials. The largest discrepancy betwe_en the predicted Ieveﬂg,g]' the importance of which has been pointed out in Ref.
and experimeni17] never exceeds 2 cnt for any value of [26]. The problem is then to solve the Sctilger equation

n andl. The accuracy of this pseudopotential has been fur-

he last term in Eq(8) is a three-body polarization potential

ther tested by calculating some oscillator strengths and life- H|W)=E|W). (9
times of Ba with thej-dependent potential. Tables Il and IlI
present our results for the lowest excited levels of Bam- To proceed, we build a basis set of numerical two-

pared with experimental dafd8-23 and with other theo- electron wave functions for any given parity and total

retical calculations[24,25. Our oscillator strengths lie angular momentumJ in the self-consistent mean-field

within the experimental error bars. Our lifetimes appearHartree-Fock approximation_ Le,t,?llllnzlz be one of these

somewnhat underestimated. Nevertheless the relative errggaye functions characterized by the two-electron configura-

does not exceed 7% in the worse case and we are confidefign n,|,n,l, and a set of quantum numbeds In the non-

in the accuracy of our pseudopotential. relativistic casdi.e., excluding the spin-orbit interactipthe
Russell-SaundersS coupling scheme is appropriate so that
Q=(wLMSMy). The energy levels are therefaréndepen-

B. Single configuration Hartree-Fock basis sets dent and we use our nonrelativistic pseudopotential. In the
i . ) semirelativistic case, we adopt the coupling scheme
Now that the pseudopotentia)(r) in Eq. (2) is com-  — (i i,JM,) along with thej-dependent pseudopotential
pletely defined, we turn to the resolution of the three-bodyang add the quantum numbersandj, to characterize the
system. The Hamiltonian of the systefris then written configuration completely. We can also carry out calculations

whereL and S are coupled to givel, and the spin-orbit
interaction is treated as a perturbation in a way we will detail

TABLE Il. Some oscillator strengths in Ba
later on.

Transition This work Experimerft  Other calc? In _the _Hartrfae-Fock approximation the two-electron wave
function is written as a combination of products of single
6 2Py,6 S, 0.7585 0.746:0.050 0.7143 particle functions as follows:
6 2Py,5 2Dy, 0.0257 0.0250.003 0.0236
| |
6 2Py5 2Ds, 0.1535 0.1480.015 0.1403 Yol "22= A([ d1b2l0), (10)
6 2Py,6 Sy, 0.3481 0.356:0.025 0.3301
6 2Py,5 2Dy, 0.1179 0.10%0.010 0.1099 where
%Referencd18].

bReferencd24]. Semiempirical model. $a=[nal a)|lama)|samsa> ae{l2 (12)
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is a one-electron spin orbital factorized in its radial, angularthat any fictive core state is automatically excluded from the
and spin parts. To fulfill the Pauli exclusion principle, the solutions in our pseudopotential framework. The system of

antisymmetrization operatod equalsl for equivalent elec-

coupled equationgl?) is solved by means of standard nu-

trons and (142)(1—P) for nonequivalent electrons, where merical techniques until self-consistency is reache@7.

P interchanges the electron space coordinates. The brackefée use the Numerov method with the same logarithmic grid
in Eq. (10) indicate that the spin orbitals are coupled accord-of r values for all functions to optimize the computational
ing to Q. The only unknown components to be calculatedtime. Treating the exchange potential explicitty makes the

are the two radial function& |n,l )= (1/r)P,(r). They are

equations inhomogeneous: numerical instabilities may occur

the solutions of a two-equation system obtained by means dfut they have always been overcome in our calculations.

a variational principle. By requiring that a small variation of

A basis setf{3} is built for any possible two-electron

the solution of Eq(9) leaves the energy stationary, we find configurationsm=n,l,n,l, (respectivelyn,l,jin,l,j,) be-
that each equation of the system has the following form inlonging to a given symmetr@ = 25*1L7 (respectively,]™)

LS coupling:
1.d?> 1,(l,+1) e
2dr +T+U|a(r)+v (r)—ea Pa(r)—O
(12
with
Z—-N
Ui (N==———+VRrO)+Vi(r) ae{12. (13

by successive self-consistent resolutions of the above system
(12). Practically, we restrict the number of such configura-
tions to a large numbeévl , , generally around 1000 per sym-
metry. It is important to recall that in the present approach a
semiempirical effective potential that describes thé?"
interaction is taken as ahdependent pseudopotential that
cannot support any core bound state. Howelrglependent
model potentials that support core bound states have been
often used in various studidsee, e.g.[5,8]). In principle,
there is no difficulty using such model potentials to construct
the Hartree-Fock basis set for the two active electrons. How-

In jj coupling, VSR is replaced by th¢-dependent pseudo- ever, because of the unrealistic core bound states, which are

potential Vl‘z j

j-dependent function. The Hartree-Fock potential operato

VHF is explicitly defined by

vHF(r>Pa<r>=; CYYi(b,b,r)Py(r)

+>, EXY(a,b,r)Py(r), (14)
k
where

Y(a,b,r)= f:ak(r,s) P.(s)Py(s)ds, a,be{l,2

(15
and
rk o
O19= 57~ Sa55 (D) (r<s) (163
k o
=1 Sagg(Dfs) (r=s). (16D

The Hartree-Fock potential E¢L4) is the sum of two terms,

the Coulomb potential and the exchange potenﬁéj and

defmed in Eq.(6) and P, then becomes a Predicted by the model potential, the Hartree-Fock valence

rbitals would have to be orthogonal to these core orbitals.
hese orthogonality constraints prevent us from using a
model potential in the present Hartree-Fock approach.

C. CI calculations

So far the Hartree-Fock approximation based upon an in-
dependent particle scheme neglects the major part of the cor-
relation between the two valence electrons. This can to some
extent be accounted for by configuration mixing, i.e., by
writing the most general correlated solution of Ef) as a
linear combination of the just above calculated single con-
figuration stateswe drop the() subscripk:

M
(W)= AMy" (17
m=1

Solving Eq.(9) is therefore equivalent to solving the follow-

ing generalized eigenvalue problem
(H—EO)A=0 (19

With  Hon e =(#"HIY™), O =(¥"¢™), and Ay,

=A"(m,m" {1, ... M}). After the diagonalization, the ei-

genvalues provide the energy spectrum of a given symmetry.
The corresponding eigenfunctions are obtained by projection

EQ are the corresponding angular coefficients, which arevnto the uncorrelated basis set. Therefore, the value of the

given by elementary angular algebra according(Xo To

dominant mixing coefficienh™ allows the identification of

derive the system of Eq$12), we require the usual normal- the states and of their perturbers in terms of the single con-
ization and orthogonality constraints on the radial functionsfiguration Hartree-Fock wave functions. Perturbed states are

so that a Lagrange multiplier appears wheneyetl,, n;
#n, in LS coupling, and;=1,, j1=]j,, ny#n, in jj cou-

pling. We also require that the radial functions have the cor-
rect number of nodes—|—1—K; in the pseudopotential

sense K, is the number ofl orbitals in the corgand the

correct asymptotic behaviors at origin and infinity. We recal

|ZS+1L7T

those for which several configurations appear with weights
of comparable magnitudes.

In the LS coupling scheme, the spin-orbit interaction can
be added as a perturbation before the diagonalization. To
proceed, we join all configurations of those symmetries
that may give the same total angular momentifim
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(e.g., to calculate th@=1° states we mix théP°, 3P°, and 2. Autoionization linewidths
3 . . .
D° statey. We then add the f°"°W'r_‘9 spin-orbit terms 10 gq far we have neglected the interaction of the states with
the Hamiltonian matrix elemen®m n : the continua. Not only the continua induce a shift of the
. energy levels, but also actual autoionizing states or reso-
(1//“|V,‘°’1°(r)ll-lervlszo(r)Iz-sz|wm ), (19  nances have been treated as quasibound states. This can be

circumvented perturbatively as developed by FE2&]. The
continua, however, are still coupled neither to each other nor
to any quasibound state. The formula for the linewigfthl

idth at half maximum of an autoionizing state according to
he Fermi ““golden rule” is then

whereviO is defined in Eq(7). Comparisons between the

results provided by thit SJ coupling scheme and those by
the jj coupling scheme allow one to appreciate the eventu
nonperturbative effects of the spin-orbit interaction.

1—‘02277'|<\P£:1|H_Eaﬂ|\Pc>|2 (249
D. Calculation of atomic properties " 5
We now have a knowledge of the atomic structure =2 2‘? AT H = E 1| W) (24b)
through the correlated wave functions and the energy posi- me1 o8

tions of the states. We will further characterize the states bY ) ) o

determining their stability and their decay modes. Twoln these expressiond,) is an autoionizing state of the sys-
atomic properties are implied in the calculation of lifetimes: temA above the first ionization threshold with an enekgy.
the radiative decay rate if the system emits one photon an@iheoretical¥,) andE, are known from Sec. Il Cl¥) is
the autoionization linewidth if the system emits one electronan open channel of autoionization expressed as

In this subsection, we describe the principle of their calcula-
tions. prineip W) =A([ ppdcla). (25

where ¢, is a one-electron bound state belonging to the dis-

crete spectrum oA™ with an energys,, and ¢, is a one-
We restrict our approach to the electric dipole approxima=lectron continuum wave function to be determined. These

tion. As already noted, the electric dipole operdiohas to  two spin orbitals are coupled according & in order to

be consistently modified as a result of the polarization effecprovide the symmetry of¥,). With the notations of Eq.

[11]: (11), the radial part of the continuum wave function is the

solution of the following equation:

1. Radiative decay rates

o o
D=ry| 1-=f(ry) |+r12 1——3f(rz)] (20) 1d2 lg(ls+1) k2

r r - 4 cc = HF oy -

1 2 5 dr2+ " +U, (r)+V7(r) 5 P.(r)=0.
with the notations of Eq(3). We hereafter employ the gauge (26)

length form. Choosing two staté¥;) and|V,) of energies
E,=E, belonging to symmetries with opposite parities, the
spontaneous dipole transition probabilMyand the oscillator
strengthF for the transition -2 are defined by

VHF(r) has the same form as in E€L4) and contains the
radial part of¢, . k?/2 is the energy of the free electron so
that E,=¢,+k?/2. A Lagrange multiplier is added when
necessary in Eq26). The integration of Eq(26) is carried
41 (E,~E,)?° out by means of a procedure given by Barmtal.[29]. The
=-_ 1—23, (21) knowledge ofP.(r) completely determinek . in Egs.(24)
30; cd and other derived properties as the autoionization lifetime
7,=1/(Z.I';) where the sum runs over all open channels

21 |W.). We also have a direct determination of the branching
F= 3 E(El_ E,)S. (22 ratios into the various open channels.
c in Eq. (21 is the speed of light and equals the inverse of . RESULTS IN NEUTRAL BARIUM
the fine-structure constant in atomic Units, |(B7, 13791 is We have app“ed our model to neutral barium. As it is a
the degree of degeneracy of the stakig). The line strength  heavy alkaline-earth atonZ& 56), we are likely to appre-
Sis given by the reduced matrix element ciate relativistic and correlation effects. The excitation ener-
gies of the core electrons are supposed to be much larger
S=[(W,]|D||¥,)|? (2339  than those of the valence electrons so that our model can be
applied confidently. Besides, there is no experimental evi-
M1 Mp ) 12 dence of quartet states in the spectrum of B8arium is
= > AIAS (DI s )] . (23 also interesting in that it has a number of doubly excited
m=1m'=1 states below the first ionization limit that perturb thend

Rydberg series. Moreover, a large number of experiments
The spontaneous radiative lifetime of the stpg) is then  and theoretical calculations have been carried out so that we
7,=1/(ZW) where the sum runs over all accessible statehiave numerous data to compare with.
|¥,) according to the selection rules. We have calculated the energy positions of even- and
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odd-parity states with total angular momentuhranging TABLE IV. Energy positions (cm?) of the bound]=0 even-
from 0 to 4. In most cases, we have restricted the basis sepgity levels of barium. Level designations come from our calcula-
to all series converging below the7onization threshold, so tions.

that our results are certainly reliable concerning ttsa 6

5dnl, and 6onl series. In the literature, extensive data about-€Ve! This work Experiment
series lying above the ¥ ionization threshold are scarce. LSJ )
One can find almost extensive experimental data and MQD2 1 280 173 0

studies(associated or not with thB-matrix theory of the 542 3p 24713 24575 23209

6snl, 5d_nll, and enl s_erigs. I_n ggnergl, they provide en- 5T IS 26393 26 506 o5 870
ergy positions and autoionization linewidths. Fewer data are———1q 29 447 29321 28 230
available for the gnl, 6dnl, 4fnl, and 7nl series. In order <8s Is 34 656 34597 34379
to shorten the presentation of our calculations, we focus O > 3p 35 836 35878 34492
theJ=0 even-parity and=1 odd-parity states of the bound GETFS 37326 37308 37239
6snl series and of the autoionizingdhl series. We present 3
our results concerning the symmetriced®, 7p?, and &2 M 38192 38059 37678
configurations as well. The calculations not reported in this10s 1S 38677 38737 38664
paper for other symmetries and for other series, thal6 5d6d °S 39258 39333 38924
series in particular, show about the same overall agreemeff11s S 39791 39783 39672
with experimental measurements. These unpublished calc§s12 'S 40289 40281 40234
lations are available upon request from the authors. 6s13s 'S 40650 40645 40618
Data are given at 1-cit precision, which may be con- 6sl4s 'S 40912 40909 40892
sidered as our method precision limit presently. We follow6s15s 'S 41107 41104 41093
the experimental order for the relative positions of the level$sliés 'S 41256 41253 41248
so that eventual misplacements may occur in the reporte@isl7s 'S 41371 41369 41362
theoretical values. The energies are given with respect to thed7d 3P 41851 41673 41444
experimental ground state, which lies at 122721.15 tm &s18 'S 41 463 41 460 41 463
[30,31 below the double-ionization limit. Level designa- 6s19s 'S 41537 41533 4153%
tions, however, come from our calculations if not stated oth6s20s S 41598 41593 4159%
erwise. They are in most cases identical to the labels ass25s 1s 41782 41784 41784
signed by the MQDT analyses generally connected to thgs3os 1s 41870 41871 41870
experimental measurements in the.pgpers citeq as referencg§35s 1g 41919 41920 41919
and often confirmed by more sophisticatdnatrix studies.  gg405 1s 41 949 41 949 41 949
Aga_un, in or_der to shorten the tables, hlgh-lymg membgrs 0kg47d 1s 42539 42 680 42379
a given series are not all presented but written from five to———
five. *Referencd 17].
bJ. Verge, private communication cited in RéB3].
A. Bound 6snl series ZReference{SZ].
Referencq 33].

For the bound states we give the results for our two poseReferencd34].
sible coupling schemes. Barium bound states are tradition-

ally written in theL S notation we follow here, though it has are low-lying members of series converging to higher ioniza-
appeared that some perturbers are better described ifj the tion thresholds, it is important to include high-lying series in
coupling scheme. Bound doubly excited states are underlineghe calculation in order to decrease their energy with respect
in the tables. to the ground state. These remarks about the design of our
) basis sets are applicable to all our calculations. The observa-
1. J=0 even-parity states tions and the MQDT analysis of Aymaet al. [33], con-
Table IV presents the energy positions of the0 even-  firmed by theR-matrix study of Greene and Aym§B5], are
parity states below the first ionization threshold atquite well reproduced for thesihs (n=16) series, which is
42034.90 cm* [31]. Experimental data come from several @most pure(more than 95% Six doubly excited bound
papers17,32—34. These calculations were carried out with states are identified. Thed? 'S, (5d2,,) state is strongly
about 860 configurations ihSJ coupling (including all se- mixed to the &7s state: these two levels have about 45% of
ries below the @ threshold and 680 injj coupling (all ~ 6s7s and 35% of &2 characters, the first one having a little
series below the 5, threshold in order to reach the best more of 5% character. We then follow experimef7] to
estimation for the barium ground state. Thi coupling  assign these two levels. Though better defiéd%) and
scheme appears the most efficient for this purposedominant, the 86d 'S, (5ds,6ds,) labeled state contains
122548 cm?instead of 122721 cimt for the experimen- a significant percentage ofsf0s and 611s characters
tal ground state. Adding more configurations has negligibld40%) as also predicted by the MQDT analysis of Aymar
effects on the ground state and on the high-lying members at al. [33]. The 5d7d 'S, (5ds,7ds;,) state is spread out
the 6snsseries. Conversely, the resultslisJ coupling are  over the &ngn=12) series but does not perturb it strongly.
not much affected if we include all series below thp 9 It is found just above the first ionization limit as found ex-
threshold in the calculation only. For the perturbers, as theyperimentally[34]. The 62 S, (6p§,2) state is not bound
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and lies much higher in energy: at 49 044 ¢hin LSJ TABLE V. Energy positions (cm') of the bound)=1 odd-
coupling and 48641 cit in jj coupling, i.e., higher than parity levels of barium. Level designations come from Refs.
the 5dnd series. This state was experimentally measured de7.:38.

about 44 800 cm! [36]. This was confirmed by Greene and
Aymar [35]. The triplet perturbers are well defined and pre-
dicted at the right place, except the&d 3Py (5dz,7ds)) LSJ i
state which is found around=28 in LSJ coupling andn

Level This work Experimertt

=22 in jj coupling, while experiment found it around 6s6p °P 12683 13014 12637
n=18[33]. 6s6p P 19617 18638 18 06D
5d6p °D 24724 24797 24192

2. J=1 odd-parity states 5dép °P 26 435 26526 25702

Table V presents the energy positions of the1l odd- 5dép P 29702 29521 28552
parity states below the first ionization threshold. Experimen8s7p °P 30946 30988 30818
tal data come from Refg§17,37,38. We have used about 6s7p 'P 33748 33828 32547
600 configurations in both calculatioiall series below the 6s8p 3P 35720 35736 35669
7p threshold. There are two 8np series converging to the 6sgp 1p 36 206 36047 35893
first ionization limit. These series are perturbed by eleversy7, 3p 36 670 36 700 36496

bound dpu_bly e>§cited states. For the states presented hersed—m 3p 37314 37331 36 990
the persisting disagreement between our two calculatio

(LSJandjj coupling schemgsalong the series reflect the s9p zp 37948 37909 37775
large mixing between the perturbers and the members of th@sop °P 37964 37986 37937
series. In our calculations, the series are better characteriz&d7p P 39018 39006 38500
in LSJ coupling than injj coupling because the admixture 6s10p °P 39175 39189 39160
between 6,,np;;, and 6s,,Np3;, is very large due to the 6s10p P 39663 39685 39312
competition between configuration mixing and spin-orbit ef-5q4f 3p 40377 39958 39893
fects. We recall that iL.SJ calculations, spin-orbit effects gs11p 3p 39916 39919 39916
are treated pertur_bat|ve_ly so that this treatment may be quegs11p 1p 40111 40179 39982
tionable here. Higher in the energy spectrujp, labeled 6s12p 3P 40 402 40 409 40396

states tend to be pure and the discrepancies between the two

calculations are damped as expected theoretically. Notatio 12p 'P 40456 40486 40429
in Table V come from the MQDT study of Rei37], which ~ 5d4f °P 40628 40721 40663
have been confirmed by hyperfine structure measuremenés13p °P 40740 40742 40732
[39]. R-matrix calculations for thd=1 odd-parity states can 5d4f P 40633 40836 40737
be found in Ref[40]. Our two calculations cannot account 6s13p P 40815 40760 40765
for the crossing of the quantum defects between the singlejyg, 3p 41012 41033 40 894
and triplet states opserved experimentally in R§H,38] . 6sl4p °P 40981 40972 40974
aroundn=23. Our triplet states compare well with experi- sldp P 41020 40985 40991
ment forn=15, whereas our singlet states seem to converge s

more slowly towards the experimental values. This is cer2d8p P 41364 41464 41097
tainly due to the perturbers: theP term perturbers are 6s15p °P 41160 41153 41160
spread out over a large energy range and perturb mainly thés15p ‘P 41185 41169 41184
6snp P series. In particular, this is the case of the6s20p °P 41618 41619 41616
5d8p 'P state, which lies astride the first ionization limit 6s20p P 41622 41626 41618
[41]. It is found above the first ionization limit in both cou- gso5p 1p 41793 41793 41790
pling schemes and we have calculated an autoionization I|n(=6-525p 3p 41791 41791 41799

width of about 240 cm®. Besides, the $np 3P series is

1
less perturbed. We give oyj labels for the 814f perturb- 6s30p 3P 41876 41876 e
ers, which differ from those of the MQDT analysis of Ref. 6s30p °P 41875 41875 41875
[37]: 5d4f 3D is closer to HyAfs,, 5d4f 3P to  5d8p P 42504 42695 42012
5dsAfs,, and H4f 1P to 5dsAf7,. aReferencd37).
bReferencd 17].
B. Autoionizing 5dnl series ‘Referencd 38].

We turn now to the autoionizing states of neutral barium,“Reference41].
i.e., the states lying above the first ionization limit. They are
characterized by an autoionization linewidth that can be calsplitting of the 3 orbital. According to this remark and
culated as described in Sec. Il D 2. Thérd series are con- since we ourselves observed large discrepancies between our
verging either to the & 2D, or to the 5 ?Dg, threshold  LSJ calculations and experiment, we only present gur
lying at 46908.75 cm! and 47709.724 cm', respec- results in the following tables. In general, one or more Ryd-
tively [17]. It has been recognized that thj¢ coupling berg series are converging to thds5 limit and are interact-
scheme is more appropriate to account for the spin-orbiing with each other and also with the low-lying members of
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TABLE VI. Energy positions and widths (cit) of the autoion-  only one ClI calculation is required to explore a large part of
izing J=0 even-parity levels of barium below thel5°Ds, thresh-  the spectrum. In the present energy range, there are two in-
old. Level designations come from our calculations. teracting series: &s,n;ds;, and 5gn,ds,. Our calcula-
tions give the correct arrangement of the states and a satis-
factory estimation of their energies. Oup® 'S, state,
however, does not appear in this energy rafas noticed

Level This work Experimertt
Energy Width Energy Width

5d5,8d3/ 43445 78 43282 8.6 above though it ought to be herg6]. This may come from
5dg/,8ds), 44236 30 44117 6.0 the finite size of our basis set and the lack of continuum type
503,903, 44 490 115 44 324 wave functions. Ther,=7-14 members of thedy;,n,ds,
50,1003/, 45009 10.9 44956 13.6 series are embedded in theln ds, series and in this
505,905/, 45 266 59 range ofn, values, these states are more and more diluted in
50s,11d5, 45 462 44 45 398 11.7 the high-lying membgrs of theda,n,ds, Series. Then,
504,120, 45718 39 45 692 3.9 =13 state even disappears but strongly perturbs the
5ds,10ds), 45 862 32 45791 6.9 5d3/2n1d3/2 states Wltm]_: 26—30 The eﬁ.eCt of thls missing
5d3,13d5), 45965 36 45918 4.4 stat_e', as can be observed in Table VI, is to shift the energy
5dly,14d ) 46 103 91 46 080 positions of the next calculated levels belo_vy the experimen-
503,150, 26211 0.09 46198 f[al measurements Whereas_the energy positions of the preced-
50lq,,1 1)y 46276 24 46922 ing calculated Ievels_are lying above_ the experimental ones.
The 5d5/,14d5,, state is correctly predicted below the second
5ds/,16d5 46336 22 46 309 N i ; o
5dy,17d,, 46 403 8.7 46388 ionization limit. Ho_vvever,_we do not_pr_actlcally see its in-
fluence upon the first series as we limit our calculations to
5018, 46461 2.3 46452 the 5d;.40d,, state, whereas the dg,l4dg, state lies
53,190, 46508 0.03 46501 around the 85,60d5, state according to experiment. The
5dg,120s, 46543 >.8 46513 3.9 members of a same series appear strongly mixed to each
50322003, 46573 12.7 46552 other, particularly the members of thed&n,ds, series
503,213, 46602 10.1 46 589 above the threshold. However, there is no difficulty labeling
503220, 46630 6.3 46621 the states, except in the region of thds512ds, perturber
5d3,23d3, 46 655 3.7 46648 concerning the 8;,n,ds, States wittn,; = 18—22. Our labels
5d3,24d 3, 46 677 2.0 46671 are then identical to those of R¢#2], which come from the
5d3/,25d3), 46 696 0.8 46 692 empirical MQDT analysis of Aymaet al. [43], later con-
5d3/,26d3, 46712 0.1 46708 firmed by theR-matrix study of Greene and AymdB5].
5ds/,13d5, 46723 Referencd4?2] gives a few experimental linewidths that are
5d5,,27d5), 46 727 0.03 46729 also reported in Table VI though this experiment was not
5d3,28d3/, 46740 0.53 46 741 designed to give accurate linewidths. These do not compare
503,293/ 46751 14 46753 well with our results. What can be said in general is that our
504,300 3, 46761 2.1 46 764 calculations seem to overestimate the linewidths. The most
55,3503/ 46 802 1.7 interesting point is that our results account for the interfer-
504,400, 46 829 0.6 ence effect between the two series as reported by Neukam-
50s,14ds), 46 850 14 46 887 mer et al. [44] and Van Woerkomet al. [45]. This effect
50s,150s/, 46 954 141 47015 leads to the existence of long-living states near each per-
5d¢,2005 47 330 36 47 354 26 tyrber(|.e., states with very §mall Ilne_W|dthand to a varia-
5d¢,250z/, 47 484 15 47 494 tion of about three orders in magnitude of the linewidths
50,300/, 47560 7 47565 around the perturbers. We ref_er the _reader to Rdi$,45
50,350, 47604 15 47 606 gnd to Aymai{46] for an analysis of this effect. Though our
50 A0y 47631 05 linewidths are larger than those extrapolated from Refs.

[44,45, both effects are reproduced in our calculations as
aReferencd 42). shown in Table VI. Above the threshold, our too large line-

widths for the %l5;n,ds, series can be explained by the

. . strong mixing between a given state with the preceding one
the series converging to the nextigy, threshold. The over- this mixing itself is related to the missingd§,13d;,, state

Iaptp|.n9' oft.res?'nanc_ztsh aff?ctt; th? tenerﬂy tpotﬁltlto_ns and t oticed abovg The linewidths then decrease continuously as
autoionization finewidths of the states. Wote that in our apy,q high members of the series become pure.

proach the resonances are treated as quasibound states and
should be linked to their corresponding linewidths to present _
their real significance. 2. J=1 odd-parity states

Table VII presents the energy positions and widths of the
autoionizing J=1 odd-parity states below thed52Dg,
Table VI presents the energy positions and widths of thehreshold. Experimental data come from Ré#7,48. We
autoionizing J=0 even-parity states below thed5°Dg, have six interacting series: d5nip1, 5d3N5P30,
threshold. Experimental data come from RéR]. The basis  5d3,nsfsp, 5dspNaPap,  5dspnsfsn, and  Sgpngfos.
set used was the same as for the bound states. We recall tidembers of the Bs,onapsn, 5dspnsfsn, and Hgpngfz

1. J=0 even-parity states
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TABLE VII. Energy positions and widths (cnt) of the autoionizingl=1 odd-parity levels of barium below thed5?D, threshold.
Level designations come from Ref47,48.

Level This work Experimertt Level This work Experimertt
Energy Width Energy Width Energy Width Energy Width

5dg,5f s 42 425 45 42438 9.1° 50,1 7Par 46 287 0.65 46276 3.3

5d329p3p2 43007 4.0 42954 23° 5d3,17p 1y 46292 1.7 46 286

5d39p1/2 43200 71 43026 50,4%  5d,,9f, 46345 0.54 46 334 1.8

5ds5f 72 43 465 214 43258 26 5ds9f 7 46360 4.9 46338 0.7

5d55f 5/ 43298 3.2 43264 20,11 5q,,14fs, 46 346 0.46 46343 15

5d36f51 43834 25 43801 1.8 503,180/ 46371 0.86 46361 45

5ds29P32 44,068 57 43908 42° 5dy,180,, 46376 12 46371

5d3,10p37 44160 3.8 44128 14° 5d3,15f 51 46 419 0.24 46 416 1.3

503/,1001, 44414 255 44168 5° 50,1904/ 46438 0.93 46 429 5.5

55671 44709 63 44604 0.8 5d3,19P1) 46 442 0.1 46438

5ds56f5 44629 11 44614 4.4,2% 5ds/,13p3) 46 489 7.7 46 453

5d3p7 51 44 645 15 44638 74,438 5d.,16f, 46 477 0.86 46 476 1.7

5d3,11p3p 44 861 24 44833 17 53,2003/ 46 495 0.40 46486 5.4

5d3211py/ 44897 22 44 855 0.7,1%  5d,.20p,, 46500 4.2 46 495

5ds;10ps, 45220 81 45008 18" 5dg,10f 5, 46 605 0.78 46598 1.2

5d38fs5/ 45150 60 45168 29,18 5d,,10f,, 46613 0.88 46599 4.0

5d3212p3); 45320 0.65 45306 2.2 5ds/,14p3/ 46705 1.6 46683

5d3212p1p 45 366 53 45309 5ds,11f g/ 46797 0.93 46791 0.7

5ds/o7 f52 45454 1.8 45437 5ds,11f 75 46803 0.37 46793

5dsp7 71 45490 34 45441 70,25 50,,1504, 46 870 0.66 46 854

5d39fs5) 45554 11 45535 07,12  5d.,12f,, 46 943 1.7 46 940 4.0

5d3213p1/2 45645 0.8 45626 5dg,12f 75 46947 0.79

5d3213p3p2 45647 25 45637 14 5ds/,16p3/ 46998 0.81 46987

5ds;llps, 45780 44 45692 6.7 5dg,13f ) 47 056 2.0 47 055 23

5d3,10f g/ 45820 32 45797 17,18 5dg,13f, 47 060 0.86

5d3/,14p3); 45876 0.44 45863 2.2,2°0  5d.,17pap 47099 0.94 47091

5d3,14p1) 45894 22 45869 5dg,14f ) 47 146 2.3 47 145 2.0

5ds5.8f52 45982 15 45969 15 5ds,14f 75 47149 0.98

5ds58f 7 46011 0.98 45974 21 5ds5/,1803/, 47180 1.2 47174

5d3;,11f 5 45993 14 45991 1.8 5dg,15f 5/ 47219 2.6 47218 1.8

5d3,15p37 46 052 14 46 037 2.6 5ds,15f 7/ 47221 0.97

5d3215p1/2 46 056 3.9 46 048 5ds5/,1903/ 47 247 1.4 47241

5d5/212p3); 46211 31 46134 5ds/,16f 5/ 47278 2.8 47278 1.6

5d3,12f 55 46 142 0.3 46 139 1.8 5ds/,16f 7 47 280 0.94

5d3216p3/2 46 175 0.34 46173 31 55,2003/ 47301 1.5 47297

5d3/,16p1/2 46 185 7.2 46181

5d4,13f 5 46 259 2.5 46 252 15

3Referencd47].

bReferencq 48].

series withn,=9-15 andchs,ng=5-11 are embedded in the the same method but with a larger basis set, Aymar predicts
5d3,n| series converging to the second ionization limit. Ourit well at n=12 [49]. This feature has been related to the
calculated energies are in reasonable agreement with thEerturbation by the p,,,7s;/, state in Ref[48]. In our cal-
measurements of Gounaret al. [47] and we note a few culations, this configuration appears in the fourth position in
misplaced states pertaining to thésan,ps, and Hgngf7,  the ClI decomposition of the dypn,ps, States. The
series. The 85,n1p1» and Son,pa Series are mixed to-  5dgpnsfs, series is not perturbed except the statgs=8
gether and are interacting more and morenamcreases. and 10, which are strongly mixed to thed&,10ps, and
These two series are perturbed by members of th&ds,11p,, states, respectively. Perturbing&n,ps, states
5dsn4p3p0 Series, the Bs,n1pyy» Series being the most af- are very diluted and are not clearly identified foy<12.
fected one. We observe the smallest energy splitting betweesbove the second ionization limit, however, they become
the 5d3/,13p,, and 5d3,13p5), states. The eigenchan®l  almost pure. Perturbingds,ngf,, states are mixed to the
matrix study of Gounanet al. [47] predicted it forn=11  three S;.nl series, more than the perturbinglnsfs,
whereas it actually occurs far=12 experimentally. With states. These perturbers are better describg#t icoupling
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TABLE VIII. Energy positions(En,) and widths(Wid.) (cm™ 1) of thens® S, Wannier states of barium.

n This work? This work® Ref. [51] Ref.[52]

En. wid. En. Wwid. En. En. wid.
7 64 253 2111 64481 898 65 000 60575 13581
8 88627 171 88761 92 88483 83290 9025
9 100092 2632 100 215 1142 99 457 94 922 168
10 106 020 889 106 151 101 287
11 110516 704 110277
3 SJcoupling.
bj coupling.

so that we follow the labels given in Ref#7,48. Above  showing that the first state is closer to the? Tcharacter.
the second ionization limit, the two dg,nsfs, and  Amazingly, the &2 resonance appears narrow compared
5ds;ngf7, series are mixed together but are identifiablewith the others. This is probably due to the fact that this state
(67%-30%. Extracting even general trends is difficult as faris mainly composed of asymmetrical configurations, as
as the linewidths are concerned. They are either overesti,-pnp (n=8), contrary to the other resonances. This narrow
mated for most low-lying levels or underestimated for mostjinewidth is not confirmed by the work of Hahn and Nasser
high-lying levels. No really good agreement is then reacheds) conversely their 8 resonance is much narrower than

though they are of the same order of magnitude as the ohsrs This reflects the difficulty in calculating the widths of
served ones above the threshold. not well characterized states since many symmetrical, but

also asymmetrical, configurations are relevant. In this re-
C. Symmetrical ns?, 7p?, and 6d? configurations spect, we note that the basis sets used by Hahn and Nasser

. ' . : . 52] and their mixing coefficients are quite different from
Symmetrical configurations are present in our basis sets

well. These configurations are expected to exhibit large cor-

relation effects together with large resonance profiles. We R-matrix calculations for the i and & configurations
9 9 P " " are given in Ref[53]. We compare them with our results in
now present our results concerning the so-called Wanni

®fables IX and X, respectively. Thep? triplet stat

1 2 : : , pectively. Thep? triplet states are
nsz_ So states and theﬁ‘? and @i conflgur_atlons. NO ex- better characterized than the singlet states, which are
perimental data are available for these configuratitimsugh . ) . 21 :

the 7p? 3P, and 602 °F, states have been identified in Ref. strongly mixed to other conflgur?tlons. Thp® °5, state, in
[50]) due to their difficult optical characterization and their particular, is hidden by thed¥d S, state with a practically

: . equal weight(30%). The &? configurations are generally
very large width. We therefore compare our results with . 4 .
those obtained by other theoretical studies. better characterized than th@%configurationgbetween 57

The Wanniems® S, states have been studied by Aymar anq 88% and the larged is, the Iarger'the configuration
[51] by means of ClI calculations in a finite-size box. We weight. Comparing now the two theoretical approaches, we

report her work in Table VIII as well as the work of Hahn gtba stggve_rtr:l:t dﬁ?feergﬁite aigreeenrgrent 'Sogﬁi)cnhsedn;?/;rth:Xézgldest
and Nassef52]. Hahn and Nasser used a Cl method re-acg c.m*1 (for the 642 3P statgyv{/)hich s correct com-
stricted to relevant configurations only. Their energies in 0 '

Table VIII are their single configuration Hartree-Fock pre- pared with the linewidths. A larger difference is found for
the singlet states. However, the two theoretical results com-

dictions and the error bars account for the variation of the are well. according to the calculated linewidths. Amond the
linewidths as their restricted basis set is modified. We notf ’ 9 ) 9

that according to our linewidths, our energies are in goo riplet states, the spin-orbit splittings are well reproduced by

agreement with the calculations of AymEs1]. The ne E)eusruﬁgrturbatlon treatment as compared with Eenatrix

states are not well defined since they are strongly mixed to
other symmetrical configurations. The?7character, in par-
ticular, can be ascribed to two successive states. To decide TABLE X. Energy positions and widths (cn) of the 6d°
between the two, we have referred to qyr calculation  configuration of barium.

TABLE IX. Energy positions and widths (cnt) of the 7p? Term This work i Ref{53] .

configuration of barium. Energy Width Energy Width
15, 73345 2070 72600 1300

Term This work Ref[53] 3P, 72471 814 72120 930
Energy Width Energy Width 3p, 72542 838 72280 860

s, 80566 303 26849 270 sp, 72683 859 72363 800
3 D, 72814 1097 72582 815
PO 77099 135 76 807 172 3F2 72279 275 72 045 250
°Py 77194 136 76 904 145 3, 72356 284 72140 240
p, 77394 143 77097 169 3F, 72 460 297 72240 220

D, 78611 1681 78 049 368 G, 74072 2158 73 260 810
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D. Discussion IV. CONCLUSIONS

The preceding study has shown that our approach is able |n this paper, we have presented a general approach that
to give rather good estimations for the energy positions otombines a pseudopotential framework with the Hartree-
the 6snl and &nl series, considering the complexity of the Fock approximation followed by CI calculations. This ap-
spectra and the number of series and states involved in thgroach appears less accurate than empirical MQDT and
calculations. In most cases, the ClI approach combined witkigenchannelR-matrix theory but possesses other advan-
Hartree-Fock wave functions allows a straightforward identages. Empirical MQDT sometimes requires hyperfine struc-
tification of the states. As a general trend, the energy agredure measurements to reproduce the correct singlet-triplet ad-
ment between theory and experiment increases as the prindRixture and the identification of the perturbers is not
pal quantum number increases, i.e., we predict the energy @solutely reliable. Moreover, fitting the experimental en-
very excited states quite accurately. We, however, fail tof'9Y levels becomes a difficult task when many channels
predict the positions of the low-lying states, in particular, theNtéract. The eigenchanné&matrix theory combined with
symmetrical ones, with the same precision. The discrepari\-/lQDT has been proven to solve these problems. In this

cies often reach several hundreds of dmWe think that this ~ater framework, _the predic.tions are e;sentially limited by
comes from the lack of flexibility of our basis set, which usesthe size of the basis set required, which is often large, and the

! . . _restricted size of the reaction volume. Our approach needs
numerical Hartree-Fock wave functions. For the low-lying . .
: : . one CI calculation per symmetry only to provide a complete
states, our basis set is not rich enough to account for th

hol lation betw th Addi Hartree-F icture of an atomic or ionic spectrum over a large energy
whole correlation between them. INg More Hartree-roCh,nq9e. This can be done whatever the number of interacting

conﬁgurations cannot solve the problem, the CONVergencearies may be and without previous experimental informa-
being too slow or already reached. Another consequence ig,n Moreover, its effectiveness has been shown to calculate
that we do not predict exactly the position of the most ex-highly excited states of neutral barium with a reasonable ac-
cited perturbers in a series. Indeed, the first perturbers are &,racy. More generally, our results are in overall satisfactory
the right place because the first members of the perturbeggreement with the experimentally observed spectra. All Ry-
series are energetically well separated, while the next peidberg series of barium are well reproduced and their perturb-
turbers are often misplaced where this energy separation bers, though sometimes predicted a little too high in the series,
comes small. Our configuration-interaction calculation, how-are clearly identified. Symmetrical configurations are quite
ever, gives a good estimation of the mixing between thewell described too. In detailed comparisons, however, there
perturbers and the members of a given series and allows theire significant disagreements. More work is certainly needed
labeling without ambiguity. Adding pseudostates in the formto achieve a better accuracy, in particular, for the lowest
of Slater orbitals to the basis sets tends to improve the resulgfates, but also for the higher members of the series, where
for some low-lying states, confirming the preceding analysisan accuracy of 1 cm' is not enough to predict the correct
Calculations carried out with Bawave functions alone ap- effective quantum number, though this was not the main pur-
pear well suited for the low-lying states. These calculationsPose of this work. In some cases, our calculated linewidths
however, failed in describing the high-lying Rydberg states SNow poor agreement with experimental qa‘t‘a- This may”be
Bartschatet al. [54] have studied the autoionizing even- attributed either to the use of the Fermi “golden rule,

parity states below thepbsthreshold as intermediate states of which dpes hot couple the different continua, or 1o the en-
photoionization from the €6p P, state of barium by ergy misplacement of the perturbers. Completing and im-

means of Breit-PaulR-matrix calculations. Their results are proving our ba.sis §ets and treating the. continuum properly
: are the main directions for future investigations.

of comparable accuracy to ours. we pbserve that our mis- Application of this approach to the case of doubly excited
placed states with respect to the experimental order are 'degiates of multiply charged ioK9* (Ar®*, for exampl@ is
ticgl to. theirs, though the two theoretical frameworks are; progress. Such doubly excited statés are currently pro-
quite different. It was pointed out by Bartschat and Green%uced by double-electron capture in collisions X§fi*2)*

[55] that the discrepancies observed in this method comgyns with an atomic or molecular target. This field of re-
from the lack of continuum-continuum-like configurations in search is very active experimentally but often lacks data con-
the basis set. We recall that our approach neglects the integerning the autoionizing processes, in particular, when the
action with the continuum too and this may explain why ourtwo electrons ofX* are in closely related excitation de-

6p* 'S, state lies so high. This remark leads to discuss theyrees. This spectroscopic information is needed for a better
calculation of the linewidths. It seems that our first-orderynderstanding of ion-atom collisional mechanisms.

perturbation calculations are not reliable for every state of
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