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Configuration-interaction Hartree-Fock calculations for two-electron atoms
using a pseudopotential

L. Féret and J. Pascale
Commissariat a` l’Energie Atomique, Service des Photons, Atomes et Mole´cules, Centre d’Etudes de Saclay,

91191 Gif-sur-Yvette Cedex, France
~Received 5 February 1998!

We have developed an approach to study doubly excited Rydberg states of atoms or ions with two optically
active electrons outside an ionic closed-shell core. The interaction between the core and one valence electron
is modeled by an accurate semiempirical pseudopotential. For any given parity and total angular momentum,
single configuration Hartree-Fock calculations are performed to build a basis set of numerical two-electron
wave functions. Configuration-interaction calculations then provide the energy positions of the correlated states
and their compositions in terms of the single configuration basis set. Atomic properties, such as autoionization
linewidths, can be derived. Results concerning neutral barium are reported to illustrate the approach. They are
compared with available experimental and theoretical data, and discussed. Energy positions of the bound and
autoionizingJ50 even-parity andJ51 odd-parity states of barium below the 5d 2D5/2 threshold are predicted
as well as associated autoionization linewidths. The symmetricalns2 (n57211), 7p2, and 6d2 configura-
tions are also studied. The overall agreement is satisfactory and especially good for high-lying doubly excited
Rydberg states.@S1050-2947~98!04911-7#

PACS number~s!: 31.15.Ne, 31.25.Jf, 32.10.2f, 32.80.Dz
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I. INTRODUCTION

To treat the many-electron problem, manyab initio ap-
proaches have been based on the Hartree-Fock approx
tion @1#. For heavy systems, these approaches are num
cally complex and time consuming, even with the help
modern supercomputers. As many electrons lie in clo
shells and play a minor role in comparison with the valen
electrons, several methods have been developed in whic
effects of these shells are replaced by an effective interac
@2#. These methods have been proven to be competitive
to provide even better results thanab initio approaches in
many areas of physics. In this paper we present an appr
using such an effective interaction combined with t
configuration-interaction~CI! framework to study atoms o
ions with two optically active electrons outside an ion
closed-shell core. A number of calculations of this type ha
been proposed before@2–6#, which mainly dealt with low-
lying energy levels of two-electron atoms. Our approach u
numerical Hartree-Fock two-electron wave functions to p
form CI calculations in the spirit of Ref.@3#. Usually one
carries out CI calculations using either numerical on
electron wave functions or trial analytical basis sets. In
approach, we expect that high-lying energy levels will
predicted and identified without encountering linear dep
dence problems in the CI matrix and with a tractable num
of functions. Our main purpose is to show that this approa
which combines generality, simplicity, and accuracy at
same time, can provide reliable spectroscopic information
a large energy scale, including highly excited states.

Alkaline-earth atoms are examples of two-electron s
tems that have attracted a lot of attention during the past
decades. This was connected with the development of
experimental laser techniques and successful application
the multichannel quantum-defect theory~MQDT! @7# as well
PRA 581050-2947/98/58~5!/3585~12!/$15.00
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as the eigenchannelR-matrix theory combined with the
MQDT @8#. One interesting property of doubly excite
states, when coupled to the continuum, is their ability
autoionize. As autoionization is mainly induced by the d
electronic Coulomb repulsion, it is essential to account
the electronic correlations to describe this process prope
In this respect, simple independent-particle models are ir
evant. Another interesting problem is the perturbation of R
dberg series by bound doubly excited states, which has b
extensively analyzed by means of MQDT.

The computational method is outlined in Sec. II. We fi
reduce the complex atom with two active electrons to
three-body problem where the core-valence interaction is
scribed by a semiempirical pseudopotential depending o
few parameters, and which cannot support any core elec
bound state~Sec. II A!. For any given parity and total angu
lar momentum, a basis set of two-electron wave function
built by successive numerical integrations of the single c
figuration Hartree-Fock equations~Sec. II B!. Each basis se
is then used to perform a CI calculation that accounts for
full valence-valence correlations. Obviously, as the c
states are not explicitly involved, the number of needed c
figurations is efficiently reduced. The CI calculation provid
the positions of the energy levels and their compositions
terms of the single configuration Hartree-Fock wave fun
tions ~Sec. II C!. We conclude Sec. II by showing how som
atomic properties can be derived in this framework~Sec.
II D !. Section III is devoted to the presentation of some
sults for bound and autoionizing states in neutral barium
order to demonstrate the effectiveness of our approach. C
parisons and discussions are made concerning the energ
sitions and the autoionization linewidths. We draw conc
sions in Sec. IV.

II. THE MODEL

In this section, we sketch out the main features of o
model. The formalism used here is suitable either for non
3585 ©1998 The American Physical Society
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3586 PRA 58L. FÉRET AND J. PASCALE
ativistic calculations~carried out inLS coupling! or, by in-
cluding the spin-orbit interaction implicitly, for semirelativ
istic calculations~carried out inLSJ or j j couplings!.

A. Semiempirical pseudopotential

We consider an atom or an ionA consisting of a nucleus
of chargeZ surrounded byN12 electrons,N of them form-
ing a closed-shell polarizable coreA21 with the nucleus. We
suppose that no excited core configuration is embedde
the spectrum of the systemA1 composed of one valenc
electron and the ionic coreA21. We begin with our nonrel-
ativistic Hamiltonian forA1. It simply reads~atomic units
are used throughout Sec. II!

h52 1
2 D1U~r !, ~1!

whereU(r ) is a pseudopotential that represents the inter
tion between the valence electron and the core. We cho
the following explicit form:

U~r !52
Z2N

r
1VLR~r !1(

l 50

`

Vl
SR~r ! (

m52 l

l

u lm&^ lmu,

~2!

where

VLR~r !52
a

2r 4
„f ~r !…2, ~3!

Vl
SR~r !5~al1blr 1clr

2!
exp~2b l r

p!

r q
. ~4!

Besides the Coulomb term, the pseudopotential in Eq.~2! has
been conveniently divided into a long-range~LR! local part
and a short-range~SR! semilocal part. ‘‘Semilocal’’ meansl
dependent,l being the orbital quantum number of the v
lence electron. This feature increases the flexibility of
pseudopotential and hence its ability to describe accura
the short-range interactions, the character of which is es
tially nonlocal.

The long-range part in Eq.~3! is a polarization term tha
arises because the core loses its spherical symmetry
respect to the frozen-core approximation: the electric fi
created by the valence electron polarizes the core and
modifies the potential that the valence electron actually
periences. This term can be seen as a core-valence co
tion potential for nonpenetrating orbits. Higher-order pol
ization terms exist@9# but the static dipole polarizability o
the corea is responsible for the largest part of the correctio
The cutoff function f in Eq. ~3! prevents the polarization
potential from diverging at smallr by making it tend towards
zero inside the core. We choose the quite arbitrary fo
r 3/(r 31r c

3) inspired from Sienkiewicz and Baylis@10#,
wherer c is approximately the radius of the core. Many p
pers have been written about the derivation of this polar
tion term and its influence upon energies and oscilla
strengths@11#. To be consistent, the multipole operators ha
to be corrected as well.

Let L be the largest value of thel orbitals corresponding
to the occupied states of the coreA21 in its ground state
in
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1S0 , and Kl their number. Then, in a pseudopotential a
proach, we impose that the number of nodes of thenl radial
function of the valence electron is given byn2 l 212Kl .
Consequently, the lowest valence state of a givenl orbital
has no node, ensuring that none of the solutions of
Hamiltonian in Eq.~1! with the pseudopotentialU(r ) in Eq.
~2! is a core electron wave function. Therefore, the sho
range potential in Eq.~4! accounts mainly for the incomplet
screening of the nucleus chargeZ by theN core electrons for
any l-orbital value of the valence electron and also for t
antisymmetrical effects due to the Pauli principle forl<L.
Consequently, forl<L, the short-range potential must b
repulsive. In fact, in order to increase the accuracy of
approach, two analytical forms ofVl

SR(r ) have been used
depending on the value ofl . We choose (p,q)5(2,0) if l
<L in Eq. ~4! so that the leading Gaussian term is repuls
providedal.0. For l .L we choose (p,q)5(1,1) in Eq.~4!
where the leading term of this potential accounts for the p
tial screening of the nucleus charge, and we setal52N to
fulfill the asymptotic condition

U~r ! ;
r→0

2
Z

r
. ~5!

This analytical form of the short-range potential forl .L was
found well suited to represent the double-valley poten
experienced by the lowestf orbitals in Ba1, as a result of a
fine balance between the Coulomb attraction and the c
trifugal barrierl ( l 11)/2r 2 @12#. The parametersal , bl , cl ,
andb l are determined for each value ofl so that the Schro¨-
dinger equation solved for the valence electron gives the
servedspin-averagedspectrum ofA1. Practically, two pa-
rameters are used to fit exactly the two lowest levels ofl
series while the others are adjusted to predict the next le
the most accurately in the root-mean-square sense.

This technique can easily be extended to account for
spin-orbit interaction~SO! and other minor splitting effects
which appear of importance in heavy atoms@4,13#. Since we
use a pseudopotential, we cannot express the spin-orbi
teraction by its usual explicit form. Its radial contributio
indeed includes the first derivative of the potential, which
not correct in the pseudopotential approach. Therefore,
treat the splitting effects of the spin-orbit interaction impli
itly. As this is essentially a short-range interaction, w
change our semilocal potential, which then reads@4,13#

(
l 50

`

(
j 5u l 21/2u

l 11/2

Vl j
SR~r ! (

m52 j

j

u l jm&^ l jmu. ~6!

The (l , j )-dependent parameters of theVl j
SR(r ) potential

@written similarly to Eq.~4!# are calculated to provide th
observedfine-structurespectrum ofA1. We can recover the
radial contribution of the spin-orbit interaction mentione
above, which reads@14#

Vl
SO~r !5

1

l 11/2
@Vl ,l 11/2

SR ~r !2Vl ,u l 21/2u
SR ~r !#. ~7!

We verify that the j-dependent potentialVl j
SR on the one

hand, and the nonrelativistic potentialVl
SR associated with
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PRA 58 3587CONFIGURATION-INTERACTION HARTREE-FOCK . . .
the spin-orbit potentialVl
SO on the other hand, both give ver

similar fine-structure levels, the latter, however, bei
slightly less accurate.

We have determined the parameters of the nonrelativ
potential and of thej-dependent potential for the singly ion
ized barium atom Ba1 (Z556,N554, andL52). We have
chosen the valuesa510.61 given by Johnsonet al. @15# for
the static dipole polarizability andr c51.924 given by Des-
claux @16# for the core radius, which is somewhat arbitra
but this parameter has negligible effects on the results. T
I presents the parameters resulting from the fit for both
tentials. The largest discrepancy between the predicted le
and experiment@17# never exceeds 2 cm21 for any value of
n and l . The accuracy of this pseudopotential has been
ther tested by calculating some oscillator strengths and
times of Ba1 with the j-dependent potential. Tables II and I
present our results for the lowest excited levels of Ba1 com-
pared with experimental data@18–23# and with other theo-
retical calculations@24,25#. Our oscillator strengths lie
within the experimental error bars. Our lifetimes appe
somewhat underestimated. Nevertheless the relative e
does not exceed 7% in the worse case and we are confi
in the accuracy of our pseudopotential.

B. Single configuration Hartree-Fock basis sets

Now that the pseudopotentialU(r ) in Eq. ~2! is com-
pletely defined, we turn to the resolution of the three-bo
system. The Hamiltonian of the systemA is then written

TABLE I. Ba1 pseudopotential parameters:k50 for spin-
averaged levels,k51 for j 5 l 11/2, andk521 for j 5 l 21/2.

l k a b c b

0 0 8.58 0.00 20.730 0.384
1 0 9.10 23.07 0.323 0.270

1 8.90 23.08 0.314 0.250
21 9.00 22.84 0.303 0.300

2 0 0.80 21.48 0.076 0.380
1 0.80 21.42 0.049 0.380

21 0.80 21.53 0.070 0.390
>3 0 254.0 52.6 249.9 2.492

1 254.0 52.7 249.5 2.486
21 254.0 52.4 250.2 2.499

TABLE II. Some oscillator strengths in Ba1.

Transition This work Experimenta Other calc.b

6 2P3/2-6
2S1/2 0.7585 0.74060.050 0.7143

6 2P3/2-5
2D3/2 0.0257 0.02560.003 0.0236

6 2P3/2-5
2D5/2 0.1535 0.14060.015 0.1403

6 2P1/2-6
2S1/2 0.3481 0.35060.025 0.3301

6 2P1/2-5
2D3/2 0.1179 0.10560.010 0.1099

aReference@18#.
bReference@24#. Semiempirical model.
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1

2
D~1!1U~1!2

1

2
D~2!1U~2!1

1

ur12r2u

2
a

r 1
2r 2

2
f ~r 1! f ~r 2!cos~ r̂1• r̂2!. ~8!

The last term in Eq.~8! is a three-body polarization potentia
@3,9#, the importance of which has been pointed out in R
@26#. The problem is then to solve the Schro¨dinger equation

HuC&5EuC&. ~9!

To proceed, we build a basis set of numerical tw
electron wave functions for any given parityp and total
angular momentumJ in the self-consistent mean-fiel
Hartree-Fock approximation. LetcV

n1l 1n2l 2 be one of these
wave functions characterized by the two-electron configu
tion n1l 1n2l 2 and a set of quantum numbersV. In the non-
relativistic case~i.e., excluding the spin-orbit interaction! the
Russell-SaundersLS coupling scheme is appropriate so th
V5(pLMSMS). The energy levels are thereforeJ indepen-
dent and we use our nonrelativistic pseudopotential. In
semirelativistic case, we adopt thej j coupling schemeV
5(p j 1 j 2JMJ) along with the j-dependent pseudopotenti
and add the quantum numbersj 1 and j 2 to characterize the
configuration completely. We can also carry out calculatio
where L and S are coupled to giveJ, and the spin-orbit
interaction is treated as a perturbation in a way we will de
later on.

In the Hartree-Fock approximation the two-electron wa
function is written as a combination of products of sing
particle functions as follows:

cV
n1l 1n2l 25A~@f1f2#V!, ~10!

where

fa5unal a&u l ama&usamsa
& aP$1,2% ~11!

TABLE III. Some lifetimes in Ba1.

Level This work Experiment Other calc. Units

6 2P3/2 5.97 6.2760.25a 6.386b 1029 s
6.31260.016c 6.39d 1029 s

6 2P1/2 7.54 7.7460.40a 7.993b 1029 s
7.9260.08e 7.99d 1029 s

5 2D5/2 33.22 47.0616.0f 38.7b s
32.065.0g 37.2d s

5 2D3/2 73.94 79.864.6h 85.5b s
83.7d s

aReference@18#.
bReference@24#. Semiempirical model.
cReference@19#.
dReference@25#. Relativistic many-body calculations.
eReference@20#.
fReference@21#.
gReference@22#.
hReference@23#.
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3588 PRA 58L. FÉRET AND J. PASCALE
is a one-electron spin orbital factorized in its radial, angu
and spin parts. To fulfill the Pauli exclusion principle, th
antisymmetrization operatorA equals1 for equivalent elec-
trons and (1/A2)(12P) for nonequivalent electrons, wher
P interchanges the electron space coordinates. The brac
in Eq. ~10! indicate that the spin orbitals are coupled acco
ing to V. The only unknown components to be calculat
are the two radial functionŝr unal a&5(1/r )Pa(r ). They are
the solutions of a two-equation system obtained by mean
a variational principle. By requiring that a small variation
the solution of Eq.~9! leaves the energy stationary, we fin
that each equation of the system has the following form
LS coupling:

F2
1

2

d2

dr2
1

l a~ l a11!

2r 2
1Ul a

~r !1VHF~r !2eaGPa~r !50

~12!

with

Ul a
~r !52

Z2N

r
1VLR~r !1Vl a

SR~r ! aP$1,2%. ~13!

In j j coupling,Vl a
SR is replaced by thej-dependent pseudo

potential Vl aj a

SR defined in Eq.~6! and Pa then becomes a

j-dependent function. The Hartree-Fock potential opera
VHF is explicitly defined by

VHF~r !Pa~r !5(
k

CV
k Yk~b,b,r !Pa~r !

1(
k

EV
k Yk~a,b,r !Pb~r !, ~14!

where

Yk~a,b,r !5E
0

`

sk~r ,s!Pa~s!Pb~s!ds, a,bP$1,2%

~15!

and

sk~r ,s!5
r k

sk11
2dk1

a

r 2s2
f ~r ! f ~s! ~r<s! ~16a!

5
sk

r k11
2dk1

a

r 2s2
f ~r ! f ~s! ~r>s!. ~16b!

The Hartree-Fock potential Eq.~14! is the sum of two terms
the Coulomb potential and the exchange potential.CV

k and
EV

k are the corresponding angular coefficients, which
given by elementary angular algebra according toV. To
derive the system of Eqs.~12!, we require the usual norma
ization and orthogonality constraints on the radial functio
so that a Lagrange multiplier appears wheneverl 15 l 2 , n1
Þn2 in LS coupling, andl 15 l 2 , j 15 j 2 , n1Þn2 in j j cou-
pling. We also require that the radial functions have the c
rect number of nodesn2 l 212Kl in the pseudopotentia
sense (Kl is the number ofl orbitals in the core! and the
correct asymptotic behaviors at origin and infinity. We rec
r,

ets
-

of

n

r

e

s
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ll

that any fictive core state is automatically excluded from
solutions in our pseudopotential framework. The system
coupled equations~12! is solved by means of standard n
merical techniques until self-consistency is reached@1,27#.
We use the Numerov method with the same logarithmic g
of r values for all functions to optimize the computation
time. Treating the exchange potential explicitly makes
equations inhomogeneous: numerical instabilities may oc
but they have always been overcome in our calculations

A basis set$cV
m% is built for any possible two-electron

configurationsm5n1l 1n2l 2 ~respectively,n1l 1 j 1n2l 2 j 2) be-
longing to a given symmetryV5 2S11Lp ~respectively,Jp)
by successive self-consistent resolutions of the above sys
~12!. Practically, we restrict the number of such configu
tions to a large numberMV , generally around 1000 per sym
metry. It is important to recall that in the present approac
semiempirical effective potential that describes thee-A21

interaction is taken as anl-dependent pseudopotential th
cannot support any core bound state. However,l-dependent
model potentials that support core bound states have b
often used in various studies~see, e.g.,@5,8#!. In principle,
there is no difficulty using such model potentials to constr
the Hartree-Fock basis set for the two active electrons. H
ever, because of the unrealistic core bound states, which
predicted by the model potential, the Hartree-Fock vale
orbitals would have to be orthogonal to these core orbit
These orthogonality constraints prevent us from using
model potential in the present Hartree-Fock approach.

C. CI calculations

So far the Hartree-Fock approximation based upon an
dependent particle scheme neglects the major part of the
relation between the two valence electrons. This can to so
extent be accounted for by configuration mixing, i.e.,
writing the most general correlated solution of Eq.~9! as a
linear combination of the just above calculated single c
figuration states~we drop theV subscript!:

uC&5 (
m51

M

lmcm. ~17!

Solving Eq.~9! is therefore equivalent to solving the follow
ing generalized eigenvalue problem

~H2EO!L50 ~18!

with Hm,m85^cmuHucm8&, Om,m85^cmucm8&, and Lm
5lm(m,m8P$1, . . . ,M %). After the diagonalization, the ei
genvalues provide the energy spectrum of a given symme
The corresponding eigenfunctions are obtained by projec
onto the uncorrelated basis set. Therefore, the value of
dominant mixing coefficientlm allows the identification of
the states and of their perturbers in terms of the single c
figuration Hartree-Fock wave functions. Perturbed states
those for which several configurations appear with weig
of comparable magnitudes.

In the LS coupling scheme, the spin-orbit interaction c
be added as a perturbation before the diagonalization.
proceed, we join all configurations of those symmetr
2S11Lp that may give the same total angular momentumJp
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~e.g., to calculate theJ51o states we mix the1Po, 3Po, and
3Do states!. We then add the following spin-orbit terms t
the Hamiltonian matrix elementsHm,m8 :

^cmuVl 1
SO~r !l1•s11Vl 2

SO~r !l2•s2ucm8&, ~19!

whereVl a
SO is defined in Eq.~7!. Comparisons between th

results provided by thisLSJ coupling scheme and those b
the j j coupling scheme allow one to appreciate the even
nonperturbative effects of the spin-orbit interaction.

D. Calculation of atomic properties

We now have a knowledge of the atomic structu
through the correlated wave functions and the energy p
tions of the states. We will further characterize the states
determining their stability and their decay modes. Tw
atomic properties are implied in the calculation of lifetime
the radiative decay rate if the system emits one photon
the autoionization linewidth if the system emits one electr
In this subsection, we describe the principle of their calcu
tions.

1. Radiative decay rates

We restrict our approach to the electric dipole approxim
tion. As already noted, the electric dipole operatorD has to
be consistently modified as a result of the polarization eff
@11#:

D5r1F12
a

r 1
3

f ~r 1!G1r2F12
a

r 2
3

f ~r 2!G ~20!

with the notations of Eq.~3!. We hereafter employ the gaug
length form. Choosing two statesuC1& anduC2& of energies
E1>E2 belonging to symmetries with opposite parities, t
spontaneous dipole transition probabilityW and the oscillator
strengthF for the transition 1→2 are defined by

W5
4

3

1

g1

~E12E2!3

c3
S, ~21!

F5
2

3

1

g1
~E12E2!S. ~22!

c in Eq. ~21! is the speed of light and equals the inverse
the fine-structure constant in atomic units, i.e.,c'137.g1 is
the degree of degeneracy of the stateuC1&. The line strength
S is given by the reduced matrix element

S5u^C1uuDuuC2&u2 ~23a!

5U (
m51

M1

(
m851

M2

l1
ml2

m8^c1
muuDuuc2

m8&U2

. ~23b!

The spontaneous radiative lifetime of the stateuC1& is then
t r51/((W) where the sum runs over all accessible sta
uC2& according to the selection rules.
al

i-
y

:
nd
.
-

-

t

f

s

2. Autoionization linewidths

So far we have neglected the interaction of the states w
the continua. Not only the continua induce a shift of t
energy levels, but also actual autoionizing states or re
nances have been treated as quasibound states. This c
circumvented perturbatively as developed by Fano@28#. The
continua, however, are still coupled neither to each other
to any quasibound state. The formula for the linewidth~full
width at half maximum! of an autoionizing state according t
the Fermi ‘‘golden rule’’ is then

Gc52pu^CauH2Ea1uCc&u2 ~24a!

52pU (
m51

Ma

la
m^ca

muH2Ea1uCc&U2

. ~24b!

In these expressionsuCa& is an autoionizing state of the sys
temA above the first ionization threshold with an energyEa .
TheoreticaluCa& andEa are known from Sec. II C.uCc& is
an open channel of autoionization expressed as

uCc&5A~@fbfc#V!, ~25!

wherefb is a one-electron bound state belonging to the d
crete spectrum ofA1 with an energy«b , andfc is a one-
electron continuum wave function to be determined. Th
two spin orbitals are coupled according toV in order to
provide the symmetry ofuCa&. With the notations of Eq.
~11!, the radial part of the continuum wave function is th
solution of the following equation:

F2
1

2

d2

dr2
1

l c~ l c11!

2r 2
1Ul c

~r !1VHF~r !2
k2

2 GPc~r !50.

~26!

VHF(r ) has the same form as in Eq.~14! and contains the
radial part offb . k2/2 is the energy of the free electron s
that Ea5«b1k2/2. A Lagrange multiplier is added whe
necessary in Eq.~26!. The integration of Eq.~26! is carried
out by means of a procedure given by Barnettet al. @29#. The
knowledge ofPc(r ) completely determinesGc in Eqs. ~24!
and other derived properties as the autoionization lifeti
ta51/((cGc) where the sum runs over all open chann
uCc&. We also have a direct determination of the branch
ratios into the various open channels.

III. RESULTS IN NEUTRAL BARIUM

We have applied our model to neutral barium. As it is
heavy alkaline-earth atom (Z556), we are likely to appre-
ciate relativistic and correlation effects. The excitation en
gies of the core electrons are supposed to be much la
than those of the valence electrons so that our model ca
applied confidently. Besides, there is no experimental e
dence of quartet states in the spectrum of Ba1. Barium is
also interesting in that it has a number of doubly excit
states below the first ionization limit that perturb the 6snl
Rydberg series. Moreover, a large number of experime
and theoretical calculations have been carried out so tha
have numerous data to compare with.

We have calculated the energy positions of even- a
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odd-parity states with total angular momentumJ ranging
from 0 to 4. In most cases, we have restricted the basis
to all series converging below the 7p ionization threshold, so
that our results are certainly reliable concerning the 6snl,
5dnl, and 6pnl series. In the literature, extensive data ab
series lying above the 7p ionization threshold are scarce
One can find almost extensive experimental data and MQ
studies~associated or not with theR-matrix theory! of the
6snl, 5dnl, and 6pnl series. In general, they provide e
ergy positions and autoionization linewidths. Fewer data
available for the 7snl, 6dnl, 4f nl, and 7pnl series. In order
to shorten the presentation of our calculations, we focus
theJ50 even-parity andJ51 odd-parity states of the boun
6snl series and of the autoionizing 5dnl series. We presen
our results concerning the symmetricalns2, 7p2, and 6d2

configurations as well. The calculations not reported in t
paper for other symmetries and for other series, the 6pnl
series in particular, show about the same overall agreem
with experimental measurements. These unpublished ca
lations are available upon request from the authors.

Data are given at 1-cm21 precision, which may be con
sidered as our method precision limit presently. We follo
the experimental order for the relative positions of the lev
so that eventual misplacements may occur in the repo
theoretical values. The energies are given with respect to
experimental ground state, which lies at 122 721.15 cm21

@30,31# below the double-ionization limit. Level designa
tions, however, come from our calculations if not stated o
erwise. They are in most cases identical to the labels
signed by the MQDT analyses generally connected to
experimental measurements in the papers cited as refere
and often confirmed by more sophisticatedR-matrix studies.
Again, in order to shorten the tables, high-lying members
a given series are not all presented but written from five
five.

A. Bound 6snl series

For the bound states we give the results for our two p
sible coupling schemes. Barium bound states are tradit
ally written in theLS notation we follow here, though it ha
appeared that some perturbers are better described in thj j
coupling scheme. Bound doubly excited states are underl
in the tables.

1. J50 even-parity states

Table IV presents the energy positions of theJ50 even-
parity states below the first ionization threshold
42 034.90 cm21 @31#. Experimental data come from sever
papers@17,32–34#. These calculations were carried out wi
about 860 configurations inLSJ coupling ~including all se-
ries below the 7g threshold! and 680 in j j coupling ~all
series below the 9p3/2 threshold! in order to reach the bes
estimation for the barium ground state. Thej j coupling
scheme appears the most efficient for this purpo
122 548 cm21 instead of 122 721 cm21 for the experimen-
tal ground state. Adding more configurations has negligi
effects on the ground state and on the high-lying member
the 6snsseries. Conversely, the results inLSJ coupling are
not much affected if we include all series below the 9p
threshold in the calculation only. For the perturbers, as t
ts
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are low-lying members of series converging to higher ioni
tion thresholds, it is important to include high-lying series
the calculation in order to decrease their energy with resp
to the ground state. These remarks about the design of
basis sets are applicable to all our calculations. The obse
tions and the MQDT analysis of Aymaret al. @33#, con-
firmed by theR-matrix study of Greene and Aymar@35#, are
quite well reproduced for the 6sns (n>16) series, which is
almost pure~more than 95%!. Six doubly excited bound
states are identified. The 5d2 1S0 (5d5/2

2 ) state is strongly
mixed to the 6s7s state: these two levels have about 45%
6s7s and 35% of 5d2 characters, the first one having a litt
more of 5d2 character. We then follow experiment@17# to
assign these two levels. Though better defined~40%! and
dominant, the 5d6d 1S0 (5d5/26d5/2) labeled state contain
a significant percentage of 6s10s and 6s11s characters
~40%! as also predicted by the MQDT analysis of Aym
et al. @33#. The 5d7d 1S0 (5d5/27d5/2) state is spread ou
over the 6sns(n>12) series but does not perturb it strongl
It is found just above the first ionization limit as found e
perimentally@34#. The 6p2 1S0 (6p3/2

2 ) state is not bound

TABLE IV. Energy positions (cm21) of the boundJ50 even-
parity levels of barium. Level designations come from our calcu
tions.

Level This work Experiment
LSJ j j

6s2 1S 280 173 0
5d2 3P 24 713 24 575 23 209a

5d2 1S 26 393 26 506 25 874b

6s7s 1S 29 447 29 321 28 230a

6s8s 1S 34 656 34 597 34 371c

6p2 3P 35 836 35 878 34 494a

6s9s 1S 37 326 37 308 37 234c

5d6d 3P 38 192 38 059 37 676a

6s10s 1S 38 677 38 737 38 664c

5d6d 1S 39 258 39 333 38 924c

6s11s 1S 39 791 39 783 39 672c

6s12s 1S 40 289 40 281 40 234c

6s13s 1S 40 650 40 645 40 618c

6s14s 1S 40 912 40 909 40 892c

6s15s 1S 41 107 41 104 41 093c

6s16s 1S 41 256 41 253 41 245d

6s17s 1S 41 371 41 369 41 362d

5d7d 3P 41 851 41 673 41 441d

6s18s 1S 41 463 41 460 41 468d

6s19s 1S 41 537 41 533 41 535d

6s20s 1S 41 598 41 593 41 596d

6s25s 1S 41 782 41 784 41 781d

6s30s 1S 41 870 41 871 41 870d

6s35s 1S 41 919 41 920 41 919d

6s40s 1S 41 949 41 949 41 949d

5d7d 1S 42 539 42 680 42 371e

aReference@17#.
bJ. Vergès, private communication cited in Ref.@33#.
cReference@32#.
dReference@33#.
eReference@34#.
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and lies much higher in energy: at 49 044 cm21 in LSJ
coupling and 48 641 cm21 in j j coupling, i.e., higher than
the 5dnd series. This state was experimentally measure
about 44 800 cm21 @36#. This was confirmed by Greene an
Aymar @35#. The triplet perturbers are well defined and pr
dicted at the right place, except the 5d7d 3P0 (5d3/27d3/2)
state which is found aroundn528 in LSJ coupling andn
522 in j j coupling, while experiment found it aroun
n518 @33#.

2. J51 odd-parity states

Table V presents the energy positions of theJ51 odd-
parity states below the first ionization threshold. Experim
tal data come from Refs.@17,37,38#. We have used abou
600 configurations in both calculations~all series below the
7p threshold!. There are two 6snp series converging to the
first ionization limit. These series are perturbed by elev
bound doubly excited states. For the states presented
the persisting disagreement between our two calculat
(LSJ and j j coupling schemes! along the series reflect th
large mixing between the perturbers and the members of
series. In our calculations, the series are better characte
in LSJ coupling than inj j coupling because the admixtur
between 6s1/2np1/2 and 6s1/2np3/2 is very large due to the
competition between configuration mixing and spin-orbit
fects. We recall that inLSJ calculations, spin-orbit effects
are treated perturbatively so that this treatment may be q
tionable here. Higher in the energy spectrum,j j labeled
states tend to be pure and the discrepancies between the
calculations are damped as expected theoretically. Notat
in Table V come from the MQDT study of Ref.@37#, which
have been confirmed by hyperfine structure measurem
@39#. R-matrix calculations for theJ51 odd-parity states can
be found in Ref.@40#. Our two calculations cannot accou
for the crossing of the quantum defects between the sin
and triplet states observed experimentally in Refs.@37,38#
aroundn523. Our triplet states compare well with expe
ment forn>15, whereas our singlet states seem to conve
more slowly towards the experimental values. This is c
tainly due to the perturbers: the1P term perturbers are
spread out over a large energy range and perturb mainly
6snp 1P series. In particular, this is the case of t
5d8p 1P state, which lies astride the first ionization lim
@41#. It is found above the first ionization limit in both cou
pling schemes and we have calculated an autoionization
width of about 240 cm21. Besides, the 6snp 3P series is
less perturbed. We give ourj j labels for the 5d4 f perturb-
ers, which differ from those of the MQDT analysis of Re
@37#: 5d4 f 3D is closer to 5d3/24 f 5/2, 5d4 f 3P to
5d5/24 f 5/2, and 5d4 f 1P to 5d5/24 f 7/2.

B. Autoionizing 5dnl series

We turn now to the autoionizing states of neutral bariu
i.e., the states lying above the first ionization limit. They a
characterized by an autoionization linewidth that can be
culated as described in Sec. II D 2. The 5dnl series are con-
verging either to the 5d 2D3/2 or to the 5d 2D5/2 threshold
lying at 46 908.75 cm21 and 47 709.724 cm21, respec-
tively @17#. It has been recognized that thej j coupling
scheme is more appropriate to account for the spin-o
at
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splitting of the 5d orbital. According to this remark and
since we ourselves observed large discrepancies betwee
LSJ calculations and experiment, we only present ourj j
results in the following tables. In general, one or more Ry
berg series are converging to the 5d3/2 limit and are interact-
ing with each other and also with the low-lying members

TABLE V. Energy positions (cm21) of the boundJ51 odd-
parity levels of barium. Level designations come from Re
@37,38#.

Level This work Experimenta

LSJ j j

6s6p 3P 12 683 13 014 12 637b

6s6p 1P 19 617 18 638 18 060b

5d6p 3D 24 724 24 797 24 192b

5d6p 3P 26 435 26 526 25 704b

5d6p 1P 29 702 29 521 28 554b

6s7p 3P 30 946 30 988 30 816b

6s7p 1P 33 748 33 828 32 547b

6s8p 3P 35 720 35 736 35 669

6s8p 1P 36 206 36 047 35 893b

5d7p 3D 36 670 36 700 36 496

5d7p 3P 37 314 37 331 36 990

6s9p 1P 37 948 37 909 37 775

6s9p 3P 37 964 37 986 37 937

5d7p 1P 39 018 39 006 38 500

6s10p 3P 39 175 39 189 39 160

6s10p 1P 39 663 39 685 39 312

5d4 f 3D 40 377 39 958 39 893

6s11p 3P 39 916 39 919 39 916

6s11p 1P 40 111 40 179 39 982

6s12p 3P 40 402 40 409 40 396

6s12p 1P 40 456 40 486 40 429

5d4 f 3P 40 628 40 721 40 663

6s13p 3P 40 740 40 742 40 732

5d4 f 1P 40 633 40 836 40 737

6s13p 1P 40 815 40 760 40 765

5d8p 3D 41 012 41 033 40 894

6s14p 3P 40 981 40 972 40 974

6s14p 1P 41 020 40 985 40 991

5d8p 3P 41 364 41 464 41 097

6s15p 3P 41 160 41 153 41 160

6s15p 1P 41 185 41 169 41 184

6s20p 3P 41 618 41 619 41 616

6s20p 1P 41 622 41 626 41 618

6s25p 1P 41 793 41 793 41 790

6s25p 3P 41 791 41 791 41 791c

6s30p 1P 41 876 41 876 41 874

6s30p 3P 41 875 41 875 41 875

5d8p 1P 42 504 42 695 42 012d

aReference@37#.
bReference@17#.
cReference@38#.
dReference@41#.
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the series converging to the next 5d5/2 threshold. The over-
lapping of resonances affects the energy positions and
autoionization linewidths of the states. Note that in our a
proach the resonances are treated as quasibound state
should be linked to their corresponding linewidths to pres
their real significance.

1. J50 even-parity states

Table VI presents the energy positions and widths of
autoionizing J50 even-parity states below the 5d 2D5/2
threshold. Experimental data come from Ref.@42#. The basis
set used was the same as for the bound states. We reca

TABLE VI. Energy positions and widths (cm21) of the autoion-
izing J50 even-parity levels of barium below the 5d 2D5/2 thresh-
old. Level designations come from our calculations.

Level This work Experimenta

Energy Width Energy Width

5d3/28d3/2 43 445 78 43 282 8.6
5d5/28d5/2 44 236 30 44 117 6.0
5d3/29d3/2 44 490 115 44 324
5d3/210d3/2 45 009 10.9 44 956 13.6
5d5/29d5/2 45 266 59
5d3/211d3/2 45 462 44 45 398 11.7
5d3/212d3/2 45 718 3.9 45 692 3.9
5d5/210d5/2 45 862 32 45 791 6.9
5d3/213d3/2 45 965 36 45 918 4.4
5d3/214d3/2 46 103 9.1 46 080
5d3/215d3/2 46 211 0.09 46 198
5d5/211d5/2 46 276 24 46 222
5d3/216d3/2 46 336 22 46 309
5d3/217d3/2 46 403 8.7 46 388
5d3/218d3/2 46 461 2.3 46 452
5d3/219d3/2 46 508 0.03 46 501
5d5/212d5/2 46 543 5.8 46 513 3.9
5d3/220d3/2 46 573 12.7 46 552
5d3/221d3/2 46 602 10.1 46 589
5d3/222d3/2 46 630 6.3 46 621
5d3/223d3/2 46 655 3.7 46 648
5d3/224d3/2 46 677 2.0 46 671
5d3/225d3/2 46 696 0.8 46 692
5d3/226d3/2 46 712 0.1 46 708
5d5/213d5/2 46 723
5d3/227d3/2 46 727 0.03 46 729
5d3/228d3/2 46 740 0.53 46 741
5d3/229d3/2 46 751 1.4 46 753
5d3/230d3/2 46 761 2.1 46 764
5d3/235d3/2 46 802 1.7
5d3/240d3/2 46 829 0.6
5d5/214d5/2 46 850 14 46 887
5d5/215d5/2 46 954 141 47 015
5d5/220d5/2 47 330 36 47 354 2.6
5d5/225d5/2 47 484 15 47 494
5d5/230d5/2 47 560 7 47 565
5d5/235d5/2 47 604 1.5 47 606
5d5/240d5/2 47 631 0.5

aReference@42#.
he
-
and
t

e

hat

only one CI calculation is required to explore a large part
the spectrum. In the present energy range, there are two
teracting series: 5d3/2n1d3/2 and 5d5/2n2d5/2. Our calcula-
tions give the correct arrangement of the states and a s
factory estimation of their energies. Our 6p2 1S0 state,
however, does not appear in this energy range~as noticed
above! though it ought to be here@36#. This may come from
the finite size of our basis set and the lack of continuum ty
wave functions. Then257 –14 members of the 5d5/2n2d5/2
series are embedded in the 5d3/2n1d3/2 series and in this
range ofn2 values, these states are more and more dilute
the high-lying members of the 5d3/2n1d3/2 series. Then2
513 state even disappears but strongly perturbs
5d3/2n1d3/2 states withn1526–30. The effect of this missing
state, as can be observed in Table VI, is to shift the ene
positions of the next calculated levels below the experim
tal measurements whereas the energy positions of the pre
ing calculated levels are lying above the experimental on
The 5d5/214d5/2 state is correctly predicted below the seco
ionization limit. However, we do not practically see its in
fluence upon the first series as we limit our calculations
the 5d3/240d3/2 state, whereas the 5d5/214d5/2 state lies
around the 5d3/260d3/2 state according to experiment. Th
members of a same series appear strongly mixed to e
other, particularly the members of the 5d5/2n2d5/2 series
above the threshold. However, there is no difficulty labeli
the states, except in the region of the 5d5/212d5/2 perturber
concerning the 5d3/2n1d3/2 states withn1518–22. Our labels
are then identical to those of Ref.@42#, which come from the
empirical MQDT analysis of Aymaret al. @43#, later con-
firmed by theR-matrix study of Greene and Aymar@35#.
Reference@42# gives a few experimental linewidths that a
also reported in Table VI though this experiment was n
designed to give accurate linewidths. These do not comp
well with our results. What can be said in general is that o
calculations seem to overestimate the linewidths. The m
interesting point is that our results account for the interf
ence effect between the two series as reported by Neuk
mer et al. @44# and Van Woerkomet al. @45#. This effect
leads to the existence of long-living states near each
turber~i.e., states with very small linewidths! and to a varia-
tion of about three orders in magnitude of the linewidt
around the perturbers. We refer the reader to Refs.@44,45#
and to Aymar@46# for an analysis of this effect. Though ou
linewidths are larger than those extrapolated from Re
@44,45#, both effects are reproduced in our calculations
shown in Table VI. Above the threshold, our too large lin
widths for the 5d5/2n2d5/2 series can be explained by th
strong mixing between a given state with the preceding
~this mixing itself is related to the missing 5d5/213d5/2 state
noticed above!. The linewidths then decrease continuously
the high members of the series become pure.

2. J51 odd-parity states

Table VII presents the energy positions and widths of
autoionizing J51 odd-parity states below the 5d 2D5/2
threshold. Experimental data come from Refs.@47,48#. We
have six interacting series: 5d3/2n1p1/2, 5d3/2n2p3/2,
5d3/2n3f 5/2, 5d5/2n4p3/2, 5d5/2n5f 5/2, and 5d5/2n6f 7/2.
Members of the 5d5/2n4p3/2, 5d5/2n5f 5/2, and 5d5/2n6f 7/2
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TABLE VII. Energy positions and widths (cm21) of the autoionizingJ51 odd-parity levels of barium below the 5d 2D5/2 threshold.
Level designations come from Refs.@47,48#.

Level This work Experimenta Level This work Experimenta

Energy Width Energy Width Energy Width Energy Width

5d3/25 f 5/2 42 425 45 42435b 9.1b

5d3/29p3/2 43 007 4.0 42 954b 23 b

5d3/29p1/2 43 200 71 43 026 5.0, 4.6b

5d5/25 f 7/2 43 465 214 43 258 26
5d5/25 f 5/2 43 298 3.2 43 264 20, 11b

5d3/26 f 5/2 43 834 2.5 43 801 1.8
5d5/29p3/2 44 068 57 43 909b 42 b

5d3/210p3/2 44 160 3.8 44 126b 14 b

5d3/210p1/2 44 414 255 44 163b 5 b

5d5/26 f 7/2 44 709 63 44 604 0.8
5d5/26 f 5/2 44 629 1.1 44 614 4.4, 2.2b

5d3/27 f 5/2 44 645 1.5 44 638 7.4, 4.3b

5d3/211p3/2 44 861 2.4 44 833 1.7
5d3/211p1/2 44 897 22 44 855 0.7, 1.4b

5d5/210p3/2 45 220 81 45 008b 18 b

5d3/28 f 5/2 45 150 60 45 168 2.9, 1.8b

5d3/212p3/2 45 320 0.65 45 306 2.2
5d3/212p1/2 45 366 53 45 309
5d5/27 f 5/2 45 454 1.8 45 437
5d5/27 f 7/2 45 490 34 45 441 7.0, 2.5b

5d3/29 f 5/2 45 554 11 45 535 0.7, 1.2b

5d3/213p1/2 45 645 0.8 45 626
5d3/213p3/2 45 647 2.5 45 637 1.4
5d5/211p3/2 45 780 44 45 691b 6.7b

5d3/210f 5/2 45 820 32 45 797 1.7, 1.3b

5d3/214p3/2 45 876 0.44 45 863 2.2, 2.1b

5d3/214p1/2 45 894 22 45 869
5d5/28 f 5/2 45 982 15 45 969 1.5
5d5/28 f 7/2 46 011 0.98 45 974 2.1
5d3/211f 5/2 45 993 1.4 45 991 1.8
5d3/215p3/2 46 052 1.4 46 037 2.6
5d3/215p1/2 46 056 3.9 46 048
5d5/212p3/2 46 211 31 46 134
5d3/212f 5/2 46 142 0.3 46 139 1.8
5d3/216p3/2 46 175 0.34 46 173 3.1
5d3/216p1/2 46 185 7.2 46 181
5d3/213f 5/2 46 259 2.5 46 252 1.5

5d3/217p3/2
46 287 0.65 46 276 3.3

5d3/217p1/2 46 292 1.7 46 286
5d5/29 f 5/2 46 345 0.54 46 334 1.8
5d5/29 f 7/2 46 360 4.9 46 338 0.7
5d3/214f 5/2 46 346 0.46 46 343 1.5
5d3/218p3/2 46 371 0.86 46 361 4.5
5d3/218p1/2 46 376 1.2 46 371
5d3/215f 5/2 46 419 0.24 46 416 1.3
5d3/219p3/2 46 438 0.93 46 429 5.5
5d3/219p1/2 46 442 0.1 46 438
5d5/213p3/2 46 489 7.7 46 453
5d3/216f 5/2 46 477 0.86 46 476 1.7
5d3/220p3/2 46 495 0.40 46 486 5.4
5d3/220p1/2 46 500 4.2 46 495
5d5/210f 5/2 46 605 0.78 46 598 1.2
5d5/210f 7/2 46 613 0.88 46 599 4.0
5d5/214p3/2 46 705 1.6 46 683
5d5/211f 5/2 46 797 0.93 46 791 0.7
5d5/211f 7/2 46 803 0.37 46 793
5d5/215p3/2 46 870 0.66 46 854
5d5/212f 5/2 46 943 1.7 46 940 4.0
5d5/212f 7/2 46 947 0.79
5d5/216p3/2 46 998 0.81 46 987
5d5/213f 5/2 47 056 2.0 47 055 2.3
5d5/213f 7/2 47 060 0.86
5d5/217p3/2 47 099 0.94 47 091
5d5/214f 5/2 47 146 2.3 47 145 2.0
5d5/214f 7/2 47 149 0.98
5d5/218p3/2 47 180 1.2 47 174
5d5/215f 5/2 47 219 2.6 47 218 1.8
5d5/215f 7/2 47 221 0.97
5d5/219p3/2 47 247 1.4 47 241
5d5/216f 5/2 47 278 2.8 47 278 1.6
5d5/216f 7/2 47 280 0.94
5d5/220p3/2 47 301 1.5 47 297

aReference@47#.
bReference@48#.
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series withn459 –15 andn5 ,n655 –11 are embedded in th
5d3/2nl series converging to the second ionization limit. O
calculated energies are in reasonable agreement with
measurements of Gounandet al. @47# and we note a few
misplaced states pertaining to the 5d5/2n4p3/2 and 5d5/2n6f 7/2
series. The 5d3/2n1p1/2 and 5d3/2n2p3/2 series are mixed to
gether and are interacting more and more asn increases.
These two series are perturbed by members of
5d5/2n4p3/2 series, the 5d3/2n1p1/2 series being the most a
fected one. We observe the smallest energy splitting betw
the 5d3/213p1/2 and 5d3/213p3/2 states. The eigenchannelR-
matrix study of Gounandet al. @47# predicted it forn511
whereas it actually occurs forn512 experimentally. With
r
he

e

en

the same method but with a larger basis set, Aymar predi
it well at n512 @49#. This feature has been related to th
perturbation by the 6p1/27s1/2 state in Ref.@48#. In our cal-
culations, this configuration appears in the fourth position
the CI decomposition of the 5d3/2n2p3/2 states. The
5d3/2n3f 5/2 series is not perturbed except the statesn358
and 10, which are strongly mixed to the 5d5/210p3/2 and
5d5/211p3/2 states, respectively. Perturbing 5d5/2n4p3/2 states
are very diluted and are not clearly identified forn4<12.
Above the second ionization limit, however, they becom
almost pure. Perturbing 5d5/2n6f 7/2 states are mixed to the
three 5d3/2nl series, more than the perturbing 5d5/2n5f 5/2
states. These perturbers are better described injk coupling
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TABLE VIII. Energy positions~En.! and widths~Wid.! (cm21) of the ns2 1S0 Wannier states of barium.

n This worka This workb Ref. @51# Ref. @52#
En. Wid. En. Wid. En. En. Wid.

7 64 253 2111 64 481 898 65 000 60 575 13276531
8 88 627 171 88 761 92 88 483 83 290 9026425
9 100 092 2632 100 215 1142 99 457 94 922 106653
10 106 020 889 106 151 101 287
11 110 516 704 110 277

aLSJ coupling.
bj j coupling.
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so that we follow the labels given in Refs.@47,48#. Above
the second ionization limit, the two 5d5/2n5f 5/2 and
5d5/2n6f 7/2 series are mixed together but are identifiab
~67%–30%!. Extracting even general trends is difficult as f
as the linewidths are concerned. They are either overe
mated for most low-lying levels or underestimated for m
high-lying levels. No really good agreement is then reach
though they are of the same order of magnitude as the
served ones above the threshold.

C. Symmetrical ns2, 7p2, and 6d2 configurations

Symmetrical configurations are present in our basis set
well. These configurations are expected to exhibit large c
relation effects together with large resonance profiles.
now present our results concerning the so-called Wan
ns2 1S0 states and the 7p2 and 6d2 configurations. No ex-
perimental data are available for these configurations~though
the 7p2 3P2 and 6d2 3F2 states have been identified in Re
@50#! due to their difficult optical characterization and the
very large width. We therefore compare our results w
those obtained by other theoretical studies.

The Wannierns2 1S0 states have been studied by Aym
@51# by means of CI calculations in a finite-size box. W
report her work in Table VIII as well as the work of Hah
and Nasser@52#. Hahn and Nasser used a CI method
stricted to relevant configurations only. Their energies
Table VIII are their single configuration Hartree-Fock pr
dictions and the error bars account for the variation of
linewidths as their restricted basis set is modified. We n
that according to our linewidths, our energies are in go
agreement with the calculations of Aymar@51#. The ns2

states are not well defined since they are strongly mixed
other symmetrical configurations. The 7s2 character, in par-
ticular, can be ascribed to two successive states. To de
between the two, we have referred to ourj j calculation

TABLE IX. Energy positions and widths (cm21) of the 7p2

configuration of barium.

Term This work Ref.@53#

Energy Width Energy Width

1S0 80 566 303 79 849 270
3P0 77 099 135 76 807 172
3P1 77 194 136 76 904 145
3P2 77 394 143 77 097 169
1D2 78 611 1681 78 049 368
ti-
t
d
b-

as
r-
e
er

-
n

e
te
d

to

de

showing that the first state is closer to the 7s2 character.
Amazingly, the 8s2 resonance appears narrow compar
with the others. This is probably due to the fact that this st
is mainly composed of asymmetrical configurations,
7pnp (n>8), contrary to the other resonances. This narr
linewidth is not confirmed by the work of Hahn and Nass
@52#. Conversely their 9s2 resonance is much narrower tha
ours. This reflects the difficulty in calculating the widths
not well characterized states since many symmetrical,
also asymmetrical, configurations are relevant. In this
spect, we note that the basis sets used by Hahn and Na
@52# and their mixing coefficients are quite different fro
ours.

R-matrix calculations for the 7p2 and 6d2 configurations
are given in Ref.@53#. We compare them with our results i
Tables IX and X, respectively. The 7p2 triplet states are
better characterized than the singlet states, which
strongly mixed to other configurations. The 7p2 1S0 state, in
particular, is hidden by the 6d7d 1S0 state with a practically
equal weight~30%!. The 6d2 configurations are generall
better characterized than the 7p2 configurations~between 57
and 88%! and the largerJ is, the larger the configuration
weight. Comparing now the two theoretical approaches,
observe that the best agreement is reached for the tr
states. The difference in energy positions never exce
350 cm21 ~for the 6d2 3P0 state!, which is correct com-
pared with the linewidths. A larger difference is found f
the singlet states. However, the two theoretical results c
pare well, according to the calculated linewidths. Among
triplet states, the spin-orbit splittings are well reproduced
our perturbation treatment as compared with theR-matrix
results.

TABLE X. Energy positions and widths (cm21) of the 6d2

configuration of barium.

Term This work Ref.@53#
Energy Width Energy Width

1S0 73 345 2070 72 600 1300
3P0 72 471 814 72 120 930
3P1 72 542 838 72 280 860
3P2 72 683 859 72 363 800
1D2 72 814 1097 72 582 815
3F2 72 279 275 72 045 250
3F3 72 356 284 72 140 240
3F4 72 460 297 72 240 220
1G4 74 072 2158 73 260 810
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D. Discussion

The preceding study has shown that our approach is
to give rather good estimations for the energy positions
the 6snl and 5dnl series, considering the complexity of th
spectra and the number of series and states involved in
calculations. In most cases, the CI approach combined
Hartree-Fock wave functions allows a straightforward ide
tification of the states. As a general trend, the energy ag
ment between theory and experiment increases as the pr
pal quantum number increases, i.e., we predict the energ
very excited states quite accurately. We, however, fail
predict the positions of the low-lying states, in particular, t
symmetrical ones, with the same precision. The discrep
cies often reach several hundreds of cm21. We think that this
comes from the lack of flexibility of our basis set, which us
numerical Hartree-Fock wave functions. For the low-lyi
states, our basis set is not rich enough to account for
whole correlation between them. Adding more Hartree-Fo
configurations cannot solve the problem, the converge
being too slow or already reached. Another consequenc
that we do not predict exactly the position of the most e
cited perturbers in a series. Indeed, the first perturbers a
the right place because the first members of the pertur
series are energetically well separated, while the next
turbers are often misplaced where this energy separation
comes small. Our configuration-interaction calculation, ho
ever, gives a good estimation of the mixing between
perturbers and the members of a given series and allows
labeling without ambiguity. Adding pseudostates in the fo
of Slater orbitals to the basis sets tends to improve the res
for some low-lying states, confirming the preceding analy
Calculations carried out with Ba1 wave functions alone ap
pear well suited for the low-lying states. These calculatio
however, failed in describing the high-lying Rydberg stat

Bartschatet al. @54# have studied the autoionizing eve
parity states below the 6p threshold as intermediate states
photoionization from the 6s6p 1P1 state of barium by
means of Breit-PauliR-matrix calculations. Their results ar
of comparable accuracy to ours. We observe that our m
placed states with respect to the experimental order are i
tical to theirs, though the two theoretical frameworks a
quite different. It was pointed out by Bartschat and Gree
@55# that the discrepancies observed in this method co
from the lack of continuum-continuum-like configurations
the basis set. We recall that our approach neglects the in
action with the continuum too and this may explain why o
6p2 1S0 state lies so high. This remark leads to discuss
calculation of the linewidths. It seems that our first-ord
perturbation calculations are not reliable for every state
the investigated spectrum. Neglecting interactions with
continua and then possible destructive interferences
overestimate the widths in many cases. Too large mix
coefficients between two or more configurations with resp
to the actual wave function may enlarge the calculated li
widths as well~see the 5dnd, J50, series!. Very small line-
widths are difficult to reproduce numerically as noticed
some long-living 5dnd, J50, states. For more accurate ca
culations, it is desirable to introduce the continuum in a d
ferent way.
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IV. CONCLUSIONS

In this paper, we have presented a general approach
combines a pseudopotential framework with the Hartr
Fock approximation followed by CI calculations. This a
proach appears less accurate than empirical MQDT
eigenchannelR-matrix theory but possesses other adva
tages. Empirical MQDT sometimes requires hyperfine str
ture measurements to reproduce the correct singlet-triplet
mixture and the identification of the perturbers is n
absolutely reliable. Moreover, fitting the experimental e
ergy levels becomes a difficult task when many chann
interact. The eigenchannelR-matrix theory combined with
MQDT has been proven to solve these problems. In t
latter framework, the predictions are essentially limited
the size of the basis set required, which is often large, and
restricted size of the reaction volume. Our approach ne
one CI calculation per symmetry only to provide a comple
picture of an atomic or ionic spectrum over a large ene
range. This can be done whatever the number of interac
series may be and without previous experimental inform
tion. Moreover, its effectiveness has been shown to calcu
highly excited states of neutral barium with a reasonable
curacy. More generally, our results are in overall satisfact
agreement with the experimentally observed spectra. All R
dberg series of barium are well reproduced and their pertu
ers, though sometimes predicted a little too high in the ser
are clearly identified. Symmetrical configurations are qu
well described too. In detailed comparisons, however, th
are significant disagreements. More work is certainly nee
to achieve a better accuracy, in particular, for the low
states, but also for the higher members of the series, w
an accuracy of 1 cm21 is not enough to predict the correc
effective quantum number, though this was not the main p
pose of this work. In some cases, our calculated linewid
show poor agreement with experimental data. This may
attributed either to the use of the Fermi ‘‘golden rule
which does not couple the different continua, or to the e
ergy misplacement of the perturbers. Completing and
proving our basis sets and treating the continuum prop
are the main directions for future investigations.

Application of this approach to the case of doubly excit
states of multiply charged ionXq1 (Ar61, for example! is
in progress. Such doubly excited states are currently p
duced by double-electron capture in collisions ofX(q12)1

ions with an atomic or molecular target. This field of r
search is very active experimentally but often lacks data c
cerning the autoionizing processes, in particular, when
two electrons ofXq1 are in closely related excitation de
grees. This spectroscopic information is needed for a be
understanding of ion-atom collisional mechanisms.

ACKNOWLEDGMENTS

One of us ~J.P.! would like to gratefully acknowledge
Professor Y. Hahn for his contribution in the early stage
this work. The authors would like to thank Dr. M. Ayma
Professor P. Camus, and Dr. M. Poirier for helpful discu
sions. They are especially indebted to Dr. M. Aymar f
useful suggestions to improve the manuscript. They wo
like also to thank Professor T. F. Gallagher for a care
reading of the manuscript.



m

.

les

em
.
.

.
.

.
ys

,

,
.

l.

in

e

ev.

rb,

.

v.

oc.

O.

r.

ev.

.

o,

.

s.
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