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Order ma® contributions to ground-state hyperfine splitting in positronium
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A Bethe-Salpeter based bound-state formalism is applied to the calculation of recoil contributions of order
ma?® to hyperfine splitting in ground-state positronium. The calculation involves the numerical evaluation of
two- and three-photon exchange diagrams along with derivative terms and many-potential contributions. After
inclusion of all other contributions of the same order, a comparison with other calculations and experiment is
made.[S1050-294®8)02911-4

PACS numbgs): 36.10.Dr, 12.20.Ds, 31.15.Md, 31.30.Jv

INTRODUCTION very good agreement with NRQED for two-loop radiative
correctiong7,8], in this case the agreement with NRQED is
Because of the equality of the masses of the electron angoor: Specifically, our result of 1.82 MHz is almost three

positron and their pointlike nature, there exists only one exstandard deviations away from the Caswell-Lepage result of
pansion parameter for positronium, the fine-structure con3.120.66 MHz. An even stronger disagreement exists with
stanta. Corrections to the basic energy scale of a rydberg aréhe 7.033)-MHz result of Pachucki.
thus given ase’ Ry. Calculations of the =2 term were The plan of the paper is as follows. In Sec. | we first
made by Pirenné¢l] and Beretstetski and Landd@] and  briefly describe the bound-state formalism used. While the
completed by Ferrell3]. A few years after the development full calculation has been carried out only for ground-state
of the modern form of quantum electrodynamiQED), Ful-  hyperfine splitting, we present the energy shifts associated
ton and Martin[4] calculated the leading QED corrections with certain parts of the calculation, specifically derivative
with r=3. While logarithmic terms of the next higher order terms, many-potential terms, and one-photon exchange, for
were calculated for hyperfine structure in the 19f®sand  both the ground-state hyperfine interval and the singlet state,
for fine structure in the early 1990§], it is a remarkable Which is of course equivalent to evaluating the singlet and
fact that it has taken more than 40 years for the complet&iplet separately. We then specialize to hyperfine splitting
calculation of constant terms of ordet4 to be completed. for the remainder of the calculation, which involves the
Very recently, however, this has been achieved through thevaluation of two- and three-photon exchange diagrams.
calculation of three separate effects. The first is the evalualhis is a simpler calculation than calculating the singlet and
tion of two-loop radiative corrections to one-photon annihi-triplet separately, as a set of infrared sensitive effects con-
lation [7,8]. In Ref. [7] the calculation is carried out with nected with the Bethe logarithm cancel out. While we will
Bethe-Salpeter based techniques and is specific to grounfot present final results for the singlet, we discuss certain
state hyperfine splitting, the energy difference between th€omplications concerning the relation of the Bethe logarithm
triplet (1 3S;) and singlet (1S,) states. It is in excellent to the formalism in Sec. II. Finally, the present status of
agreement with the result of RéB], which is carried out in  theory and experiment is treated in Sec. IIl.
the framework of nonrelativistic QECNRQED) [9], and is

valid for all states. The second is the evaluation by Pachucki I. FORMALISM
[10], in an effective Hamiltonian approach, similar to ) _
NRQED, of recoil contributions of ordena®. However, in Because the Bethe-Salpeter method we use is a relatively

this case there is a significant disagreement with a previoustandard one, being a modification of that presented by
NRQED calculation[9] for hyperfine splitting. Finally, ra- Caswell and Lepaggl3], we describe it only briefly. The
diative recoil effects, which previously had been calculatedirst element of the formalism is the choice of propagator
only for ground-state hyperfine splittifd1], have been ex-

tended to all states by Pachucki and Karshenbdigj. 2@ &(po) - g - N
In this paper we present a calculation of recoil corrections So(P) == 20,—E [A+(P)y THIA-(P) (=¥
to positronium hyperfine splitting of ordena®. The calcu- (1)

lation involves the evaluation of derivative terms, many-

potential terms, two-photon exchange diagrams, and thre‘?—'lere wp= p2+m?, E is the total energy in the center of

photon exchange diagrams. While this same calculation Was$,ass. and the proiection operators are given b
carried out for arbitrary states by Pachufk0] in his effec- ' pro) P g y

tive Hamiltonian formalism, here we specialize to the ground 1
state, using the same Bethe-Salpeter formalism as that used A(p)==—[wp,*(m—17-p)7°]. 2
in Ref.[7]. However, while the use of this formalism led to - 20, P
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The lowest-order problem is defined in terms of the kernel _ 3
A Esmgleg _ ma6 (8)
d 64
K (o’ 20y 2m \Y%2 V(53
o(P",P)= wprtm/ oy +W (=DV(p"~p) for the singlet.

2 01(D) 01T The many-potential term arises from the formal form
5 2m 2wp |1ty [1_7’ } SKGSK, which comes from standard second-order
wpt+W wptm 2 2 ' Rayleigh-Schrdinger perturbation theory. In the present for-

3) malism, the reference Green’s function is directly propor-
tional to the nonrelativistic Coulomb Green's function,
which in momentum space breaks up naturally into a free
propagator, a one potential part in which free propagators

occur before and after a single interaction with the Coulomb
I Ao : : . .
V(p' —p)=— —n. (4) potential, (_':md a many potential part in V\_/hlch two or more
lp’—pl? Coulomb interactions take place. The first two terms are
combined with the two- and three-photon diagrams discussed

The factors involving # y° and 1- y,, which are close to below, leaving only the many-potential terdKGypdK.
unity for the electron and positron, respectively, in the non-Again leaving out the annihilation kernel, the only kernels
relativistic limit, play an important role in numerator simpli- that contribute to the order of interest are the difference of
fication when they surround Dirac propagators and togethe€oulomb photon exchange with the reference kernel, which
with the other factors in the kernel turn the set of ladderwe designate agK,, and transverse photon exchange, des-
diagrams with Dirac propagators into the nonrelativisticignated T. We then consider the combinatiod¥ - 6K,

Coulomb Green's function. With the above propagator andKy- T, T- 6Ky, andT-T. The first gives no contribution to

kernel, the ground-state wave function for the singletis  the hyperfine splitting and contributes

1 1 Wot o AERF( 8K o- 6K ) =0.000 44@na® 9
_ _ > p
P(p)=2m(po) @qﬁ(p) Zaop(an ) W,

to the singlet. The second and third, which are equal to one
another, sum to

HereW=E/2 andV(p’ —p) is the Coulomb potential,

X (p+m)(1+ ) ys(p—m) yo, (5)
) AENS(5Ko-T+T- 6Kg)=0.053 74Bna® (10)
wit
for hyperfine splitting and
R 8773/ ’)’3 1/2 '

d(p)= m(;) : (6) AESNI®( 5K, T+ T- 8Ko)=—0.052 93Ta® (1)

for the singlet. Finally, th& —T contribution is
where y=ma/2 andW,=\1— 2. The triplet state differs
from the singlet only in the replacement— ¢, wheree AENS(T.T)=0.367 1981a° (12

=(0,¢) is the spin vector of the triplet state. More details of
the procedure are given by Adkins and Hal].

Once this formalism has been chosen, perturbation theory AESNIe(T.T)= —0.373 518na® (13)
in the perturbing kernebK=K —K,, with K the complete MP '
kernel, can be applied in a straightforward manner. The calgy, the singlet. We note that the result of EQ0) differs

culatio'n divides into three parts: a derivative term, a many+om the result found by Caswell and Lepage, as expected
potential term, and two-photon and three-photon exchanggecayse of the different formalism used, but Ec®), which

diagrams. o o is less sensitive to the formalism, is in agreement with them.
The simplest part of the calculation is the derivative term,  Tha main part of the calculation is associated with the

whose leading term is given formally bysK)(6K)'. The gy auation of two- and three-photon exchange diagrams.

first term, neglecting annihilation kernels, which have beenyhile the connection with the bound-state formalism is
. - . . 4

treated elsewhere, is simply the4|ead|ng fine struckmee®  gomewhat complex, it is straightforward to write down the

for hyperfine splitting and-sma" for the singlet. The sec-  general form of the diagrams we consider. We represent the

ond term vanishes for single Coulomb and transverse photof\, 5:on propagator in Coulomb gaugeR! where
exchange, as they do not depend on the total engigher- 8 propag gaug S”(q)’

for hyperfine splitting and

order kernels do have energy dependence, but contribute to 1
orders beyondana®), butK, does have energy dependence, Dgo(q)= =5
which leads to the energy shifts q
c c (14
o 1 Dgi(9)=Djp(q)=0,
AEg°=— o ma® (7)
24 1 QG
_ N D)= —— 5ij—|»—2j)-

for hyperfine splitting and Q°tle q
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We now introduce the three kinds of diagrams that can con- ' d4k d*p’ d*p
tribute to hyperfine splitting in ordema®, namely, one- AEZ‘yXZIe4 2m)° 2m)* 2m)*
photon, two-photon, and three-photon exchange diagrams.

One-photon exchangén the absence of radiative correc- ngP(p’—k)th(k— p)

tions) is given by

— 1
i 4 X )Y B k—myie
AE,—e?[ 2P —dpDC('—)
1y (277)4 (277)4 )73 p p 1 .
_ Xy'P(p) Y —555— 7
XTr(p") y*(p)y"]. (15) PR2—k+p+p' —m+ie

(21)

Separating this into Coulomb and transverse photon contri-

butions, these contribute Finally, there are six topologies for three-photon exchange,

of which four are independent. The first we refer to as the
“0” class, which has the topology of a three-rung ladder,

hfs 6 1
AEg*=ma® - 2 in @—0.019 21 (16)
4 4 4. 4
AE. = —gb d*k d”l d*p d*p
and 70 (2m* ) @2m*) @m*]) @2mn)*
. . ) XDy, (p' = DD (1= K)Dgs(k—p)
AET="ma*- >ma®+ma’ — = In «+0.360 80 _ 1
32 ® L R e
17 PI2+t—m+ie
14 1 o
for hyperfine splitting and Y Prk—mtie? ¥ (p)
’ 1 1 7 1 1
| B A o
ABY= — 5 ma’~ gma®+ma’) — 5o in « “Y hizrk—mrie’ —PR2+t-mtie”
(22)
+0.085 00% (19
and The next two, which we refer to as ther” class, are equal,
so we evaluate only one explicitly, accounting for the other
3 3 1 by doubling, giving
singlet_ __ — 4, — 5 6| _ _
AEY gMa + g Ma +Mma 16 In «—0.379 23
19
( ) AE ) ] d4k d4| d4p/ J~ d4p
3yy= — <€ Z Z Z Z
for the singlet energy. ! (2m) (2m) (2m) (2m)
There are two topologies for two photon exchange: un- C /s 1\MC (] _ c
crossed XD,,(p" =D (1=K)D ;5(k—p)
XTrl g(p") y* : v !
AE :ie4f d*k f d*p’ f d*p Y B —meie? P2t k—mtie
270 2m*) @2m* ) @)t 1
C(n! c @ A
XD (P =KD (k=p) XYY Rk pomrie
TP — Wp) 1
NP )Y o —mrie? (P B p
P2+k—m+ie Xy Y e (23
X y* ! P (20)
Y PR k—mtie!

Similar remarks apply to the next two contributions, referred
and crossed to as the ‘Z” class, which are
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FIG. 1. Bethe-Salpeter perturbation scheme: Double lines repre-

sent irreducible kernels.
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FIG. 3. Y-class diagrams: The transverse photon diagtam

requires no corrections, but the Coulomb photon diagthjre-
quires a formalism-dependent subtraction.

whenever a single Coulomb photon is exchanged to the
rightmost of a diagram, to make the rearrangem8@
=(SC—5Kp) + SKo=R+ SK,, whereS is the propaga-
tor immediately to the left of the Coulomb phot@hand S,

and K, were defined above. Similarly, we can also write

CS=(CS—KySp) +KoSy=R+KS,. One then exploits the
fact that the first part of the breakuR,or R, is small, which
frequently allows the neglect of that term, after which the
remaining part can be absorbed into the wave function,
which satisfies the equatioSsK = ¢ and K Sy= . We

will see in Sec. Il, however, that if highly nonrelativistic

Finally, when all photons are crossed we define the contrimomentum regions are important, as they are for the singlet
bution to be an X” diagram, given by

AES‘}/X: —eb

X

X

X

X

X A

d*k d4l d*p’ d*p
©] @mt ] @m*] @nt) 2o

DS, (p' =D (1-k)DS4(k—p)

_ 1
Tr ¢(p )WP/ZT

m+ie

1
Y prrk—mrie” VP

¥’ ! -
—PR—t+p+p ' —m+ie

1 B
Y TPl—Kk+tptp —m+ie”

(29

While we are interested in contributions of ordew®,

some of the above diagrams can contribute to lower order@-rx) and two from the two-kernel diagranX{T and TX).
when Coulomb photons are adjacent to wave functions angtis then leads to Eq23) with the photon with momentum
we wish to isolate such terms. This is done automatically b)b,_| understood to be a transverse photon, as indicated in
the bound-state formalism. The contribution to energy shiftq:ig_ 3(a). This is represented diagrammaticalyly in Figa)3

can be represented very compactly by Fig. 1, which is “Maters become more complicated when the kernel of
closely related to the form derived and used by Caswell an@ig_ 2(b) is accompanied by Coulomb photons. Using the
Lepage in Ref[13]. The solid vertical bars represent all yyroa1n discussed above, it is straightforward to show that
irreducible kernels, which for the present calculation can bgnea three-kernel diagrams with Fig(& to the leftmost or
I|m.|ted to the.kernels shown in Fig. 2. Different kernels re- rightmost, with the other kernels single Coulomb exchange,
quire rather different treatment, so we now analyze them ong,nce| the corresponding two-kemel diagrams to the order of

at a time. The basic strategy that is used in the following is

AAAAAA
VWV

a

and triplet states separately, terms involviRgand R must

be treated with particular care, as they can contribute in situ-
ations in which the hyperfine calculation allows them to be
neglected.

We first discuss the kernels of Figgcpand Zd), which
are the only irreducible three-photon kernels. Figuf@
the diagrammatic representation of thelass defined by Eq.
(24) and Fig. Zd) is that of theX class defined by E(25).

In terms of Fig. 1, if these are used as any of the solid bars,
the remaining kernels must be single-Coulomb-photon ex-
change, as any other kernel would contribute in a higher
order. These photons can be absorbed into the wave function
after making the rearrangement introduced above, with the
net result that the diagram with three kernels becomes equal
to three times the expectation value of the kernels of Figs.
2(c) and Zd), which is canceled down to a factor of one by
the diagram with two kernels. Thus no modification of Egs.
(24) and(25) is required.

Continuing to diagrams that contain the kernel of Fig.
2(b), we note that if they are accompanied by a transverse
photon, there are four ways of getting a contribution of the
order of interest from the three-kernel diagraethemati-
cally, if X represents Fig. (®), XTC, TXC, CXT, and

interest. The remaining term with Fig(l® in the center and
single Coulomb exchanges on the sides, after making the
rearrangement introduced above, becomes, when both fac-
tors of SyK, are present, precisely equal to Eg1), which
means that term can be evaluated without modification.
When oneR factor is present, however, the diagram contrib-

FIG. 2. Irreducible kernels entering the present calculation. utes to the order of interest, which means that &%) is
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FIG. 4. O-class diagramga) requires no corrections, bub)
requires a single subtraction afg) a double subtraction. The in-
ternal photon in(c) can be either Coulomb or transverse.
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modified when the photon with momentumi—1 is a Cou- ctO+tcO
lomb photon by the subtraction of a similar form with the

Coulomb photon replaced B¢, and the adjacent propagator
by the reference propagator. The diagram representing this is _zi@i_+_z’ﬁi_
given in Fig. 3b).

The most complicated situation occurs when all kernels c t t c

are one-photon exchange. If the outer photons in the first Ctx+tcx
term of Fig. 1 are both transverse, then there are no terms of
t t

lower order ina regardless of the nature of the inner photon
and one can directly evaluate E@2), as depicted in Fig.
4(a). If two photons are transverse but one photon on either
side is Coulomb, our rearrangement gives a factor of 2 times
the second term in Fig. 1 with two transverse photons, which tt0 ttx
leads to a factor of unity multiplying E420) with two trans-
verse photons. If the leftmost or rightmost photon in the first

term of Fig. 1 is transverse and the others Coulomb, applying asier all necessary subtractions have been implemented,

our rearrangement gives a term of the foMCR+RCT,  we are ready to carry out the numerical evaluation of these
which is represented in Fig.(H), plus terms that cancel the diagrams, which is done as follows. The integrations over the
second part of Fig. 1 with one Coulomb and one transverséourth component of the loop momeritg andl, are carried

photon. However, when the transverse photon is in the cersut with Cauchy’s theorem. If there were poles associated

ter, the rearrangement is of the formR€KySy)T(R with py and pg, as is the case with the Barbieri-Remiddi

+SyK ), which reduces tRTR andTR+RT+T. The latter fﬁrrr;alism[;s], this \évgulq b? ahsignificant c;omplilf:ation, bst
term can be rearranged into the folf® C+ CST—T, which the factorsd(po) and 8(po) in the present formalism avoi

is the form we found most convenient for numerical evalua-g;'s'rE\r/nenvi’ict)r'] et\r:?rgcirnl;nz/b?r of tﬁ”tni re‘:‘\;ﬂ? Eat:rtlculﬁrr:{ for
tion. Finally, when all photons are Coulomb, similar argu- agrams ee transverse photons, ch brea o up

ments show that the net result is that the 0 diagram becom 15 or 16 parts_ aﬁer_ the appllcatlon O.f Cal_Jchys_theor_em.
ere then remains either a six- or a nine-dimensional inte-

RCR, indicated in Fig. 4), and a one-loop diagram of the gration over the spatial momenta, which is carried out with
form CSC-C is introduced. The diagrams representing theghe adaptive multidimensional integration programecas
net effect of one-photon and two-photon exchange are Cot‘l6]. Whenever possible, the momergaand p’ were set

lected together in Fig. S. equal to zero everywhere except in the wave functions. This

_The net result of these manipulations is that we can deghaqs to a decoupling of the integrations, with the wave func-
with subtracted forms of the three-photon and two-photonio, at the origin squared multiplying a simpler integral.
expressions given above. The subtraction for the two-photopygyever, this could not always be done when terms of order
expressions is particularly straightforward, as it simply in-, .6 |n o were present. In those cases we carried out an

volves subtracting the easily evaluated one-photon eXCha”@trapolation toa=0, typically evaluating the diagrams at
terms. The three-photon expressions have modifications Onléfhysical a, al2, and /4 and then fitting to the form

for tlhe 8 ar?dY classes and even ]tor them Or?'y whehq almaG(A+B In ). Our largest numerical errors were associ-
Coulomb photon is next to a wave function. The grap icalyiad with this procedure.

representation of what is actually evaluated has been givenin \ya now present the results for ground-state hyperfine
Figs. 4c), 2(d), 3, and 4, which represent the three-photongyjiysing for the two- and three-photon exchange diagrams.

exchange classes of diagra@ds X, Y, and 0, and Fig. 5, giaring with the two-photon exchange diagrams, we note
which gives the two-photon exchange diagrams. When wey, 5 they contribute first in ordena?, giving ma*/3, which

tabulate results for the three-photon exchange diagrams, WEa 4o not explicitly include in Table I. We do tabulate,

break diagrams with unlabeled photons according to Whetheﬁowever the breakdown by diagram of the kndid] ma®
they are transverse)( or Coulomb €). We follow the la- erms ’

beling convention of following the photon lines attached to

the bottom fermion line from left to right, so, for example, a ma®

Y diagram in which the first such photon is Coulomb, the AE=- 27 (26)
second transverse, and the third again Coulomb is designated

ctey. along with thema?® terms of present interest.

= PVWWW

AAAAANA

= PWWW/

FIG. 5. Diagrams treated in Table I.
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TABLE II. Order ma® contributions to hyperfine splitting from
two-loop diagrams.

TABLE I. Order ma® andma® contributions to the hyperfine
splitting from one-loop diagrams.

5

6

6

Diagram mea® Ina Ma ma® In « ma Graph ma® In ma
ccO 0 0 — 4_18 —0.0151 ttt0 0 0.0694
cex 0 0 0 —0.0176 tct0 -3 —0.0996
_ L
ctottco 2 2In274 L 0.386512) ctt0+ttcO 2] 0.016311)
37 37 ctcO -t —0.2955(11)
2 —21In2+2 . cctO+tcco = 0.12873)
ctx+tcx ~3- —a 3 0.24515) ceco 0 0.0003
tt0 o BT - 224 —0.0598(16) ctex 0 0.0043
1 4ln2+2 cctxtteex 0 —0.0489
ttx il ahere -1 -05618(22) tctx 0 ~0.0230
6m 18 ctix-+ttcx L 0.0239
tttx 0 0.0041
T , 5 , ttty 0 —0.0011
Logarithmic terms in ordema® are seen to be present in
T . . tcty+ttcy 0 0.0558
individual diagrams, but cancel in the sum. A notable feature tecy 0 —0.0681
of this part of the calculation is the difficulty of the numeri- cce 0 _0'0010
cal analysis, which is reflected in the relatively large numeri- ctt y L _o 1"135 (12)
cal errors. This is in some measure the price one pays for the y Rz '
advantage of using a completely numerical approach: a very ~Cctcy+ccty 3 0.531737)
lengthy analysis is required, when working analytically, even ccez 0 0.0063
for the calculation of the logarithmic terms in ordera® ctcztcctz 0 0.0283
[18]. In the present calculation the logarithmic terms and tccz -3 —0.4780(38)
associated constants are automatically included, but are dif-  ttcz+tctz 0 0.0534
f!cult to numerically separate frqm the Iower-order cor_1tr|bu- cttz 1 —0.0448
tions. The sum of the logarithmic terms associated with two tttz 024 — 0.0011

transverse photon exchange is in agreement with Faj.of
Ref. [19], but other logarithmic terms differ because of the
different formalisms used. for experiment and comparison with other calculations, we
Turning to the three-photon exchange calculation, wenow briefly discuss some issues connected with the singlet
tabulate in Table Il the individual contributions from the energy.
various diagrams. In this case, although nine-dimensional in-
tegrals had to be evaluated, there were no terms of order
ma® present and the principal numerical difficulty was asso- A significant complication of calculating either the singlet
ciated with separating out the logarithmic terms. Again com-0r triplet energy by itself is the presencerofr® terms asso-

paring the latter terms with the analysis of Lep4d6], we ci_ated With_ the Bethe logarithm that cancel only when the
first note that the logarithmic term itctO is in agreement difference is considered. These terms come from a region of

with his analysigFig. 4(f)], though other logarithmic terms integration in which the photon energy is of order’,

are again formalism dependent. The surt/6ma® In «is in which we refer to as the deep nonrelativistic region. One
agreement with the known result. well-known complication associated with this region is that

- . . . 5
We also note a cancellation of several of these terms2" infinite set of kernels contribute to ordar°. Here, how-

notably that betweetccz andctey-+ccty, cttO+ttcO and ~ SVer We wish to discuss a second complication that is asso-
ctty, andcttx+ttcx andcttz This patter’n of cancellations ciated with the choice of bound-state formalism. To illustrate

was noted in Fig. 8 of Ref.19]. Associated with this can- it, we first consider Eq(21) when one photon is Coulomb

cellation we note significant cancellation of constant terms2nd the other transverse. If we also make the change of vari-

By combining the contributions together and manifesting the?Plek— K+ p this becomes

cancellation directly, better numerical control of the sum was TABLE Ill. Contributions to the positronium hyperfine interval
obtained[20] and the results of that procedure were used irat orderma?®.

obtaining our final answer for the contribution of Table II.
Including the results of Tables | and Il with the derivative
and many-potential termsee Table 1ll, we find

Il. SINGLET ENERGY

Contribution Coefficient ofa®

Derivative term —0.04167
Many-potential term 0.42094
1 Two-photon exchange —0.0227(30)
Es,=|— =In a+0.070%35) |ma®. 2 b g '
3y 6 “« 35 |ma 27 Three-photon exchange —0.2861(17)
Total 0.070%35)

This is our principal result. Before discussing its implications
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kk

k2

XTr[Z(p'm(P/2+k+p+m>yi P(p)yo(— PI2—k+p’ +m)y;]
[(P/2+p+k)2—m?+i€][(P/2—p' +k)2—mP+ie][K2+ie]

d d3k d*p’ d* 1
AEzyx(CT‘F TC):2|e4J' _ko f P P
2 (2m® ) @em* ) @2m)*|p-p—k?

(28)

If we close the contour above the real axis, only the polema?, so in situations in which the typical energy scale is of

ko=—|k|=—w contributes to ordema® in the deep non- orderme, as is the case for hyperfine splitting, there is little

relativistic region. The denominator of the above expressiofifference between the formalisms. However, when energies
then becomes of orderma? are important, as in the Bethe logarithm, there

is a difference and the Barbieri-Remiddi formalism includes
the true behavior more naturally. Reintroduction of the cor-

D =—20[(Wo+Ppo—w)?=[p+K|*—m?] rect low-energy behavior in the present formalism requires
) 5 (2 22 2 consideration of higher loop diagrams. In the present case,
X[(Wo—po—w)*~[p’ —k|*=m?]. (29 we have found that thetcy diagram and the four-photon

diagram of Fig. 6 play a role in reintroducing the correct

While in the present formalism, and pj vanish, we have behavior. In other words, these diagrams, which enter in or-
kept them general in Eq29) for later comparison with the derma®andma’, respectively, for hyperflne splitting, con-
Barbieri-Remiddi formalisni15], in which they do not van- tribute at the unexpectedly low order wfa® for the singlet

ish. We can further simplify this denominator by neglecting€nergy. This is an example of a case in which Ehéactor,
K with respect to p and p and ? with respect to even though it is designed to subtract out the leading behav-

— 2Wpw~ — 2ma. With these approximations, the denomi- ior, can still contribute to a relatively low order.
nator becomes, in the present formalism At present, we are analyzing whether the awkward treat-
' ' ment of ma® terms present in our formalism can affect the
. . order of interest for singlet and triplet states. The question is
D~—-2w(2mw+p2+y?)(2mw+p’'2+y?). (300  whether higher-order diagrams such as Fig. 4, after their
Ieadingma behavior is subtracted out, behaverag® or

However, suppose instead that we used the Barbieri- Remidéfe’- In the latter case, the present method can be extended

formalism. In this formalism, thé function of p,, is replaced to singlet and triplet calculations, but in the former case ei-
by ther extra diagrams will have to be included or a formalism

like that of Barbieri and Remiddi, with its more complicated
structure, adopted. However, we stress that these issues in-
—Wo (31) volve only the singlet and triplet states individually, as the
_,W[p(z)_(wp_wo_ie)z]' dgep nonrelatlvgstlc region plays no role in hyperfine split-
ting to orderma®.

6(Po)—

with a similar replacement fa(p(). While both formalisms

emphasize the regiomy=0,p,=0, an extra integration must  !ll. COMPARISON WITH OTHER CALCULATIONS

be carried out in the latter case. If we do this with Cauchy’s AND EXPERIMENT

theorem, the pole from the wave function givpg=W, As mentioned in the Introduction, two previous calcula-
—wp~—(p?+y?)/2m and py~—(p'?+y%)/2m. In the tions of three-photon exchange have been carried out with
Barbieri-Remiddi formalism, the denominators then take thejiffering results. The first calculation, in which NRQED was
quite different form introduced[ 9], found the result

-~ - _r—1 6
D’~V—2w(2mw+2p2+2y2)(2mw+2p’2+2y2). E37 [—5In a+0.16433) ma (33

(32 and the second, carried out in an effective Hamiltonian ap-

proach[10], obtained
It is the latter form of the denominator that is encountered

AAAAAA

when the nonrelativistic Coulomb Green’s function in the Es,=[— & In a+0.376717)ma®. (34)
Bethe logarithm is expanded in terms of Coulomb potentials.

This leads to the obvious question of how the Bethe loga- 3

rithm arises in the present formalism. The basic problem is e R :;Si R

that, while considerable simplification is achieved by making -

the p, dependence of the wave functiorséunction, forcing c ¢ t c

this dependence misses some deep nonrelativistic behavior in g1 6. Four-photon diagram contributing to singlet energies in
which p, depends on?+ y?)/2m. This energy is of order orderma®.



PRA 58 ORDERmMa® CONTRIBUTIONS TO GROUND-STAE . .. 3559

The result of the present calculation is TABLE IV. Contributions to the positronium hyperfine interval
at orderma®.

Es,=[— & In @+0.070535)]ma®. (35
Contribution K AE (MHz)

The constant terms, usingma®=18.658 MHz, are o
3.120.66 MHz, 7.033) MHz, and 1.327) MHz. It was Three-photon annihilatidn —0.05194 —0.969

hoped that carrying out a third calculation would resolve the Wo-Photon annihilatioh —0.03248 —0.606
previous discrepancy, but this clearly is not the case. If th&e;photon annihilatidn —0.12565 —2.344
quoted NRQED error of 0.038a° is taken as a standard O(«") corrections to 001374 0256
deviation, there is only a 0.2% chance of agreement. The one-photon exchanfe

present calculation is in unambiguous disagreement with thBadiative recof _ —0.5453 —-10.17
result of Ref.[10]. Unfortunately, it is not possible to com- Present calculation 0.07(%) 1.327)
pare the present calculation with either of the other ap-—q, ~0.6986(35) 13.03(7)

proaches, as there is not a diagram-to-diagram correspon-
dence. However, a recalculation in the NRQED framework i€Reference$22-24.
presently being carried ofi21] and may shed light on this PReference$25, 26].
confusing situation. ‘Reference$7, 8.
There is a set of other contributions of orden® that  °Referencd27].
must be included before a comparison with experiment iSReference$11, 12.
made. Fortunately, they have all been carried(sete Table
IV). Given the theoretical uncertainty of the three-photon
exchange terms, it is useful to go through the status of the
various terms with respect to their reliability. Beginning with
threg—photon annihilation, we note tha.t a change from thgng Ritteret al. [29], who determined
original calculation of Cungt al.[22], which was, however,
numerically very small, was found by Adkinst al. [23].
This was confirmed in a subsequent publication by Devoto Av=203 389.100.74MHz. (39
and Repkd24]. A larger discrepancy was found for the one-
loop radiative corrections to the two-photon-annihilation dia-
gram[25,26. However, it was shown that if certain errors The Mills-Bearman experiment is consistent with both our
were corrected in the earlier Feynman gauge calculation, préesult and the Caswell-Lepage result, while the more accu-
cise agreement with the newer calculation, which was carrieate Ritteret al. experiment is mildly discrepant with the
out in Fried-Yennie gauge, was found. Thus the same resufresent calculation and consistent with that of Caswell and
for this term has effectively been found using two differentLepage. Both experiments are in strong disagreement with
gauges and it can be considered reliable. As mentionethe effective Hamiltonian calculation. An additional theoret-
above, two entirely independent calculations have given thégal issue is the size of uncalculatenx’ terms. One such
same result for one-photon annihilation, so that can be takeierm, involving a factor of lha, has been calculated by
as certain. This is also the case for the fourth row of Tablé<arshenboinj30] and contributes-0.92 MHz. We have not
IV, which arises simply from the well-known one- and two- included it in our analysis because of the unknown size of
loop g-2 factors. Finally, radiative recoil calculations have the nonleading terms. In fact, a recent calculation of part of
also been calculated with two different approachkk12.  the two-loop Lamb shiff31], in which a complete calcula-
In this case there is a slight discrepancy of 0.1 MHz, whichtion was compared with the leading logarithm term, also cal-
while well under the experimental uncertainty, should be unculated by Karshenboii80], provides an example of a case
derstood. Present computer power should allow a reductioi which the nonleading corrections are apparently larger
of the numerical error quoted in the earlier work: this isthan the leading logarithm. Thus, until a complete calcula-
under present investigation. tion of all ma’ terms is carried out, it seems to us most
The present status of thea® constant terms is summa- advisable simply to note that they can enter at the 1-MHz
rized in Table IV. If this is combined with the lower-order level, which we take as the level of theoretical uncertainty.
terms, While such a calculation presents a significant long-range
challenge to bound-state QED theory, by far the most press-
ing present theoretical issue for ground-state positronium hy-
perfine splitting is the resolution of the now three-way dis-
crepancy in the recoil calculation.

Av=203 387.%1.6) MHz, (38

7 «af8 1|2 5 2|
1—2—;54'5” _ﬂa n o

4

Av=ma , (36

which give 203 400.29 MHz, our result is
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