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Order ma6 contributions to ground-state hyperfine splitting in positronium
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A Bethe-Salpeter based bound-state formalism is applied to the calculation of recoil contributions of order
ma6 to hyperfine splitting in ground-state positronium. The calculation involves the numerical evaluation of
two- and three-photon exchange diagrams along with derivative terms and many-potential contributions. After
inclusion of all other contributions of the same order, a comparison with other calculations and experiment is
made.@S1050-2947~98!02911-4#

PACS number~s!: 36.10.Dr, 12.20.Ds, 31.15.Md, 31.30.Jv
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INTRODUCTION

Because of the equality of the masses of the electron
positron and their pointlike nature, there exists only one
pansion parameter for positronium, the fine-structure c
stanta. Corrections to the basic energy scale of a rydberg
thus given asa r Ry. Calculations of ther 52 term were
made by Pirenne@1# and Beretstetski and Landau@2# and
completed by Ferrell@3#. A few years after the developmen
of the modern form of quantum electrodynamics~QED!, Ful-
ton and Martin@4# calculated the leading QED correction
with r 53. While logarithmic terms of the next higher ord
were calculated for hyperfine structure in the 1970s@5# and
for fine structure in the early 1990s@6#, it is a remarkable
fact that it has taken more than 40 years for the comp
calculation of constant terms of orderr 54 to be completed.
Very recently, however, this has been achieved through
calculation of three separate effects. The first is the eva
tion of two-loop radiative corrections to one-photon anni
lation @7,8#. In Ref. @7# the calculation is carried out with
Bethe-Salpeter based techniques and is specific to gro
state hyperfine splitting, the energy difference between
triplet (1 3S1) and singlet (11S0) states. It is in excellen
agreement with the result of Ref.@8#, which is carried out in
the framework of nonrelativistic QED~NRQED! @9#, and is
valid for all states. The second is the evaluation by Pachu
@10#, in an effective Hamiltonian approach, similar
NRQED, of recoil contributions of orderma6. However, in
this case there is a significant disagreement with a prev
NRQED calculation@9# for hyperfine splitting. Finally, ra-
diative recoil effects, which previously had been calcula
only for ground-state hyperfine splitting@11#, have been ex-
tended to all states by Pachucki and Karshenboim@12#.

In this paper we present a calculation of recoil correctio
to positronium hyperfine splitting of orderma6. The calcu-
lation involves the evaluation of derivative terms, man
potential terms, two-photon exchange diagrams, and th
photon exchange diagrams. While this same calculation
carried out for arbitrary states by Pachucki@10# in his effec-
tive Hamiltonian formalism, here we specialize to the grou
state, using the same Bethe-Salpeter formalism as that
in Ref. @7#. However, while the use of this formalism led
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very good agreement with NRQED for two-loop radiativ
corrections@7,8#, in this case the agreement with NRQED
poor: Specifically, our result of 1.32~7! MHz is almost three
standard deviations away from the Caswell-Lepage resu
3.12~0.66! MHz. An even stronger disagreement exists w
the 7.03~3!-MHz result of Pachucki.

The plan of the paper is as follows. In Sec. I we fir
briefly describe the bound-state formalism used. While
full calculation has been carried out only for ground-sta
hyperfine splitting, we present the energy shifts associa
with certain parts of the calculation, specifically derivati
terms, many-potential terms, and one-photon exchange
both the ground-state hyperfine interval and the singlet st
which is of course equivalent to evaluating the singlet a
triplet separately. We then specialize to hyperfine splitt
for the remainder of the calculation, which involves th
evaluation of two- and three-photon exchange diagra
This is a simpler calculation than calculating the singlet a
triplet separately, as a set of infrared sensitive effects c
nected with the Bethe logarithm cancel out. While we w
not present final results for the singlet, we discuss cer
complications concerning the relation of the Bethe logarit
to the formalism in Sec. II. Finally, the present status
theory and experiment is treated in Sec. III.

I. FORMALISM

Because the Bethe-Salpeter method we use is a relati
standard one, being a modification of that presented
Caswell and Lepage@13#, we describe it only briefly. The
first element of the formalism is the choice of propagator

S0~p!52
2p id~p0!

2vp2E
@L1~pW !g0#~1!@L2~pW !~2g0!#~2!T.

~1!

Here vp5ApW 21m2, E is the total energy in the center o
mass, and the projection operators are given by

L6~pW !5
1

2vp
@vp6~m2gW •pW !g0#. ~2!
3552 ©1998 The American Physical Society
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The lowest-order problem is defined in terms of the kern

K0~p8,p!5S 2vp8
vp81mD S 2m

vp81WD 1/2

~2 i !V~pW 82pW !

3S 2m

vp1WD 1/2S 2vp

vp1mD F11g0

2 G ~1!F12g0

2 G ~2!T

.

~3!

HereW5E/2 andV(pW 82pW ) is the Coulomb potential,

V~pW 82pW !52
4pa

upW 82pW u2
. ~4!

The factors involving 11g0 and 12g0 , which are close to
unity for the electron and positron, respectively, in the no
relativistic limit, play an important role in numerator simpl
fication when they surround Dirac propagators and toge
with the other factors in the kernel turn the set of ladd
diagrams with Dirac propagators into the nonrelativis
Coulomb Green’s function. With the above propagator a
kernel, the ground-state wave function for the singlet is

c~p!52pd~p0!
1

A8
f~pW !

1

2vp~vp1m!
AW01vp

2W0

3~p”1m!~11g0!g5~p”2m!g0 , ~5!

with

f~pW !5
8pg

~pW 21g2!2 S g3

p D 1/2

, ~6!

whereg5ma/2 andW05A12g2. The triplet state differs
from the singlet only in the replacementg5→e”, where e

5(0,eW ) is the spin vector of the triplet state. More details
the procedure are given by Adkins and Fell@14#.

Once this formalism has been chosen, perturbation the
in the perturbing kerneldK[K2K0 , with K the complete
kernel, can be applied in a straightforward manner. The
culation divides into three parts: a derivative term, a ma
potential term, and two-photon and three-photon excha
diagrams.

The simplest part of the calculation is the derivative ter
whose leading term is given formally by (dK)(dK)8. The
first term, neglecting annihilation kernels, which have be
treated elsewhere, is simply the leading fine structure1

3 ma4

for hyperfine splitting and2 3
8 ma4 for the singlet. The sec

ond term vanishes for single Coulomb and transverse ph
exchange, as they do not depend on the total energy~higher-
order kernels do have energy dependence, but contribu
orders beyondma6), but K0 does have energy dependenc
which leads to the energy shifts

DEd
hfs52

1

24
ma6 ~7!

for hyperfine splitting and
-
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DEd
singlet5

3

64
ma6 ~8!

for the singlet.
The many-potential term arises from the formal for

dKGdK, which comes from standard second-ord
Rayleigh-Schro¨dinger perturbation theory. In the present fo
malism, the reference Green’s function is directly prop
tional to the nonrelativistic Coulomb Green’s functio
which in momentum space breaks up naturally into a f
propagator, a one potential part in which free propagat
occur before and after a single interaction with the Coulo
potential, and a many potential part in which two or mo
Coulomb interactions take place. The first two terms
combined with the two- and three-photon diagrams discus
below, leaving only the many-potential termdKGMPdK.
Again leaving out the annihilation kernel, the only kerne
that contribute to the order of interest are the difference
Coulomb photon exchange with the reference kernel, wh
we designate asdK0 , and transverse photon exchange, d
ignatedT. We then consider the combinationsdK0•dK0 ,
dK0•T, T•dK0 , andT•T. The first gives no contribution to
the hyperfine splitting and contributes

DEMP
singlet~dK0•dK0!50.000 446ma6 ~9!

to the singlet. The second and third, which are equal to
another, sum to

DEMP
hfs~dK0•T1T•dK0!50.053 745ma6 ~10!

for hyperfine splitting and

DEMP
singlet~dK0•T1T•dK0!520.052 937ma6 ~11!

for the singlet. Finally, theT2T contribution is

DEMP
hfs~T•T!50.367 198ma6 ~12!

for hyperfine splitting and

DEMP
singlet~T•T!520.373 518ma6 ~13!

for the singlet. We note that the result of Eq.~10! differs
from the result found by Caswell and Lepage, as expec
because of the different formalism used, but Eq.~12!, which
is less sensitive to the formalism, is in agreement with the

The main part of the calculation is associated with t
evaluation of two- and three-photon exchange diagra
While the connection with the bound-state formalism
somewhat complex, it is straightforward to write down t
general form of the diagrams we consider. We represent
photon propagator in Coulomb gauge asDmn

C (q), where

D00
C ~q!5

1

qW 2
,

~14!
D0i

C ~q!5Di0
C ~q!50,

Di j
C~q!5

1

q21 i e S d i j 2
qiqj

qW 2 D .
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We now introduce the three kinds of diagrams that can c
tribute to hyperfine splitting in orderma6, namely, one-
photon, two-photon, and three-photon exchange diagra
One-photon exchange~in the absence of radiative corre
tions! is given by

DE1g5e2E d4p8

~2p!4 E d4p

~2p!4 Dmn
C ~p82p!

3Tr@c̄~p8!gmc~p!gn#. ~15!

Separating this into Coulomb and transverse photon co
butions, these contribute

DEC
hfs5ma6F2

1

48
ln a20.019 217G ~16!

and

DET
hfs5

1

3
ma42

1

2
ma51ma6F2

1

6
ln a10.360 801G

~17!

for hyperfine splitting and

DEC
singlet52

1

2
ma22

1

8
ma51ma6F2

7

128
ln a

10.085 004G ~18!

and

DET
singlet52

3

8
ma41

3

8
ma51ma6F2

1

16
ln a20.379 234G

~19!

for the singlet energy.
There are two topologies for two photon exchange:

crossed

DE2g05 ie4E d4k

~2p!4 E d4p8

~2p!4 E d4p

~2p!4

3Dmr
C ~p82k!Dnl

C ~k2p!

3TrF c̄~p8!gm
1

P” /21k”2m1 i e
gnc~p!

3gl
1

2P” /21k”2m1 i e
grG ~20!

and crossed
-

s.

ri-

-

DE2gX5 ie4E d4k

~2p!4 E d4p8

~2p!4 E d4p

~2p!4

3Dmr
C ~p82k!Dnl

C ~k2p!

3TrF c̄~p8!gm
1

P” /21k”2m1 i e

3gnc~p!gr
1

2P” /22k”1p”1p” 82m1 i e
glG .

~21!

Finally, there are six topologies for three-photon exchan
of which four are independent. The first we refer to as
‘‘0’’ class, which has the topology of a three-rung ladder,

DE3g052e6E d4k

~2p!4 E d4l

~2p!4 E d4p8

~2p!4 E d4p

~2p!4

3Dmr
C ~p82 l !Dnl

C ~ l 2k!Dab
C ~k2p!

3TrF c̄~p8!gm
1

P” /21 ł 2m1 i e

3gn
1

P” /21k”2m1 i e
gac~p!

3gb
1

2P” /21k”2m1 i e
gl

1

2P” /21 ł 2m1 i e
grG .

~22!

The next two, which we refer to as the ‘‘Y’’ class, are equal,
so we evaluate only one explicitly, accounting for the oth
by doubling, giving

DE3gY522e6E d4k

~2p!4 E d4l

~2p!4 E d4p8

~2p!4 E d4p

~2p!4

3Dmr
C ~p82 l !Dnl

C ~ l 2k!Dab
C ~k2p!

3TrF c̄~p8!gm
1

P” /21 ł 2m1 i e
gn

1

P” /21k”2m1 i e

3gac~p!gl
1

2P” /21 ł 2k”1p”2m1 i e

3gb
1

2P” /21 ł 2m1 i e
grG . ~23!

Similar remarks apply to the next two contributions, referr
to as the ‘‘Z’’ class, which are
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DE3gZ522e6E d4k

~2p!4 E d4l

~2p!4 E d4p8

~2p!4 E d4p

~2p!4

3Dmr
C ~p82 l !Dnl

C ~ l 2k!Dab
C ~k2p!

3TrF c̄~p8!gm
1

P” /21 ł 2m1 i e
gn

1

P” /21k”2m1 i e

3gac~p!gl
1

2P” /21 ł 2k”1p”2m1 i e

3gr
1

2P” /22k”1p”1p” 82m1 i e
gbG . ~24!

Finally, when all photons are crossed we define the con
bution to be an ‘‘X’’ diagram, given by

DE3gX52e6E d4k

~2p!4 E d4l

~2p!4 E d4p8

~2p!4 E d4p

~2p!4

3Dmr
C ~p82 l !Dnl

C ~ l 2k!Dab
C ~k2p!

3TrF c̄~p8!gm
1

P” /21 ł 2m1 i e

3gn
1

P” /21k”2m1 i e
gac~p!

3gr
1

2P” /22 ł 1p”1p” 82m1 i e

3gl
1

2P” /22k”1p”1p” 82m1 i e
gbG . ~25!

While we are interested in contributions of orderma6,
some of the above diagrams can contribute to lower ord
when Coulomb photons are adjacent to wave functions
we wish to isolate such terms. This is done automatically
the bound-state formalism. The contribution to energy sh
can be represented very compactly by Fig. 1, which
closely related to the form derived and used by Caswell
Lepage in Ref.@13#. The solid vertical bars represent a
irreducible kernels, which for the present calculation can
limited to the kernels shown in Fig. 2. Different kernels r
quire rather different treatment, so we now analyze them
at a time. The basic strategy that is used in the following

FIG. 1. Bethe-Salpeter perturbation scheme: Double lines re
sent irreducible kernels.

FIG. 2. Irreducible kernels entering the present calculation
i-
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whenever a single Coulomb photon is exchanged to
rightmost of a diagram, to make the rearrangementSC
5(SC2S0K0)1S0K0[R1S0K0 , whereS is the propaga-
tor immediately to the left of the Coulomb photonC andS0
and K0 were defined above. Similarly, we can also wr
CS5(CS2K0S0)1K0S0[R̃1K0S0 . One then exploits the
fact that the first part of the breakup,R or R̃, is small, which
frequently allows the neglect of that term, after which t
remaining part can be absorbed into the wave functi
which satisfies the equationsS0K0c5c andc̄K0S05c̄. We
will see in Sec. II, however, that if highly nonrelativisti
momentum regions are important, as they are for the sin
and triplet states separately, terms involvingR and R̃ must
be treated with particular care, as they can contribute in s
ations in which the hyperfine calculation allows them to
neglected.

We first discuss the kernels of Figs. 2~c! and 2~d!, which
are the only irreducible three-photon kernels. Figure 2~c! is
the diagrammatic representation of theZ class defined by Eq
~24! and Fig. 2~d! is that of theX class defined by Eq.~25!.
In terms of Fig. 1, if these are used as any of the solid b
the remaining kernels must be single-Coulomb-photon
change, as any other kernel would contribute in a hig
order. These photons can be absorbed into the wave func
after making the rearrangement introduced above, with
net result that the diagram with three kernels becomes e
to three times the expectation value of the kernels of F
2~c! and 2~d!, which is canceled down to a factor of one b
the diagram with two kernels. Thus no modification of Eq
~24! and ~25! is required.

Continuing to diagrams that contain the kernel of F
2~b!, we note that if they are accompanied by a transve
photon, there are four ways of getting a contribution of t
order of interest from the three-kernel diagram~schemati-
cally, if X represents Fig. 2~b!, XTC, TXC, CXT, and
CTX) and two from the two-kernel diagram (XT andTX).
This then leads to Eq.~23! with the photon with momentum
p82 l understood to be a transverse photon, as indicate
Fig. 3~a!. This is represented diagrammatically in Fig. 3~a!.

Matters become more complicated when the kernel
Fig. 2~b! is accompanied by Coulomb photons. Using t
breakup discussed above, it is straightforward to show
the three-kernel diagrams with Fig. 2~b! to the leftmost or
rightmost, with the other kernels single Coulomb exchan
cancel the corresponding two-kernel diagrams to the orde
interest. The remaining term with Fig. 2~b! in the center and
single Coulomb exchanges on the sides, after making
rearrangement introduced above, becomes, when both
tors of S0K0 are present, precisely equal to Eq.~21!, which
means that term can be evaluated without modificati
When oneR factor is present, however, the diagram contr
utes to the order of interest, which means that Eq.~23! is

e-

FIG. 3. Y-class diagrams: The transverse photon diagram~a!
requires no corrections, but the Coulomb photon diagram~b! re-
quires a formalism-dependent subtraction.
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3556 PRA 58G. S. ADKINS AND J. SAPIRSTEIN
modified when the photon with momentump82 l is a Cou-
lomb photon by the subtraction of a similar form with th
Coulomb photon replaced byK0 and the adjacent propagato
by the reference propagator. The diagram representing th
given in Fig. 3~b!.

The most complicated situation occurs when all kern
are one-photon exchange. If the outer photons in the
term of Fig. 1 are both transverse, then there are no term
lower order ina regardless of the nature of the inner phot
and one can directly evaluate Eq.~22!, as depicted in Fig.
4~a!. If two photons are transverse but one photon on eit
side is Coulomb, our rearrangement gives a factor of 2 tim
the second term in Fig. 1 with two transverse photons, wh
leads to a factor of unity multiplying Eq.~20! with two trans-
verse photons. If the leftmost or rightmost photon in the fi
term of Fig. 1 is transverse and the others Coulomb, apply

our rearrangement gives a term of the formTCR1R̃CT,
which is represented in Fig. 4~b!, plus terms that cancel th
second part of Fig. 1 with one Coulomb and one transve
photon. However, when the transverse photon is in the c

ter, the rearrangement is of the form (R̃1K0S0)T(R

1S0K0), which reduces toR̃TR andTR1R̃T1T. The latter
term can be rearranged into the formTSC1CST2T, which
is the form we found most convenient for numerical evalu
tion. Finally, when all photons are Coulomb, similar arg
ments show that the net result is that the 0 diagram beco
R̃CR, indicated in Fig. 4~c!, and a one-loop diagram of th
form CSC2C is introduced. The diagrams representing t
net effect of one-photon and two-photon exchange are
lected together in Fig. 5.

The net result of these manipulations is that we can d
with subtracted forms of the three-photon and two-pho
expressions given above. The subtraction for the two-pho
expressions is particularly straightforward, as it simply
volves subtracting the easily evaluated one-photon excha
terms. The three-photon expressions have modifications
for the 0 andY classes and even for them only when
Coulomb photon is next to a wave function. The graphi
representation of what is actually evaluated has been give
Figs. 2~c!, 2~d!, 3, and 4, which represent the three-phot
exchange classes of diagramsZ, X, Y, and 0, and Fig. 5,
which gives the two-photon exchange diagrams. When
tabulate results for the three-photon exchange diagrams
break diagrams with unlabeled photons according to whe
they are transverse (t) or Coulomb (c). We follow the la-
beling convention of following the photon lines attached
the bottom fermion line from left to right, so, for example,
Y diagram in which the first such photon is Coulomb, t
second transverse, and the third again Coulomb is design
ctcy.

FIG. 4. 0-class diagrams:~a! requires no corrections, but~b!
requires a single subtraction and~c! a double subtraction. The in
ternal photon in~c! can be either Coulomb or transverse.
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After all necessary subtractions have been implemen
we are ready to carry out the numerical evaluation of th
diagrams, which is done as follows. The integrations over
fourth component of the loop momentak0 and l 0 are carried
out with Cauchy’s theorem. If there were poles associa
with p0 and p08 , as is the case with the Barbieri-Remid
formalism@15#, this would be a significant complication, bu
the factorsd(p0) andd(p08) in the present formalism avoid
this. Even so, a large number of terms result, particularly
diagrams with three transverse photons, which break into
to 15 or 16 parts after the application of Cauchy’s theore
There then remains either a six- or a nine-dimensional in
gration over the spatial momenta, which is carried out w
the adaptive multidimensional integration programVEGAS

@16#. Whenever possible, the momentap and p8 were set
equal to zero everywhere except in the wave functions. T
leads to a decoupling of the integrations, with the wave fu
tion at the origin squared multiplying a simpler integra
However, this could not always be done when terms of or
ma6 ln a were present. In those cases we carried out
extrapolation toa50, typically evaluating the diagrams a
physical a, a/2, and a/4 and then fitting to the form
ma6(A1B ln a). Our largest numerical errors were asso
ated with this procedure.

We now present the results for ground-state hyperfi
splitting for the two- and three-photon exchange diagram
Starting with the two-photon exchange diagrams, we n
that they contribute first in orderma4, giving ma4/3, which
we do not explicitly include in Table I. We do tabulat
however, the breakdown by diagram of the known@17# ma5

terms,

DE52
ma5

2p
, ~26!

along with thema6 terms of present interest.

FIG. 5. Diagrams treated in Table I.
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Logarithmic terms in orderma5 are seen to be present
individual diagrams, but cancel in the sum. A notable feat
of this part of the calculation is the difficulty of the numer
cal analysis, which is reflected in the relatively large nume
cal errors. This is in some measure the price one pays for
advantage of using a completely numerical approach: a v
lengthy analysis is required, when working analytically, ev
for the calculation of the logarithmic terms in orderma6

@18#. In the present calculation the logarithmic terms a
associated constants are automatically included, but are
ficult to numerically separate from the lower-order contrib
tions. The sum of the logarithmic terms associated with t
transverse photon exchange is in agreement with Fig. 4~e! of
Ref. @19#, but other logarithmic terms differ because of t
different formalisms used.

Turning to the three-photon exchange calculation,
tabulate in Table II the individual contributions from th
various diagrams. In this case, although nine-dimensiona
tegrals had to be evaluated, there were no terms of o
ma5 present and the principal numerical difficulty was as
ciated with separating out the logarithmic terms. Again co
paring the latter terms with the analysis of Lepage@19#, we
first note that the logarithmic term intct0 is in agreement
with his analysis@Fig. 4~f!#, though other logarithmic term
are again formalism dependent. The sum21/6ma6 ln a is in
agreement with the known result.

We also note a cancellation of several of these ter
notably that betweentccz andctcy1ccty, ctt01ttc0 and
ctty, andcttx1ttcx andcttz. This pattern of cancellation
was noted in Fig. 8 of Ref.@19#. Associated with this can
cellation we note significant cancellation of constant term
By combining the contributions together and manifesting
cancellation directly, better numerical control of the sum w
obtained@20# and the results of that procedure were used
obtaining our final answer for the contribution of Table
Including the results of Tables I and II with the derivativ
and many-potential terms~see Table III!, we find

E3g5F2
1

6
ln a10.0705~35!Gma6. ~27!

This is our principal result. Before discussing its implicatio

TABLE I. Order ma5 and ma6 contributions to the hyperfine
splitting from one-loop diagrams.

Diagram ma5 ln a ma5 ma6 ln a ma6

cc0 0 0 2
1

48
20.0151

ccx 0 0 0 20.0176

ct01tc0
2

3p

2 ln 224

3p
1

12 0.3865~12!

ctx1tcx 2
2

3p

22 ln 212

3p
1
3 0.2451~5!

tt0 2
1

6p

24 ln 211

18p
2

5
24 20.0598(16)

ttx
1

6p

4 ln 212

18p
2

1
6 20.5618(22)
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for experiment and comparison with other calculations,
now briefly discuss some issues connected with the sin
energy.

II. SINGLET ENERGY

A significant complication of calculating either the singl
or triplet energy by itself is the presence ofma5 terms asso-
ciated with the Bethe logarithm that cancel only when t
difference is considered. These terms come from a regio
integration in which the photon energy is of orderma2,
which we refer to as the deep nonrelativistic region. O
well-known complication associated with this region is th
an infinite set of kernels contribute to orderma5. Here, how-
ever, we wish to discuss a second complication that is a
ciated with the choice of bound-state formalism. To illustra
it, we first consider Eq.~21! when one photon is Coulomb
and the other transverse. If we also make the change of v
ablek→k1p this becomes

TABLE II. Order ma6 contributions to hyperfine splitting from
two-loop diagrams.

Graph ma6 ln a ma6

ttt0 0 0.0694
tct0

2
5
48

20.0996

ctt01ttc0 1
24 0.0163~11!

ctc0 2
1
6 20.2955(11)

cct01tcc0 1
12 0.1287~3!

ccc0 0 0.0003
cccx 0 20.0039
ctcx 0 0.0043

cctx1tccx 0 20.0489
tctx 0 20.0230

cttx1ttcx 1
24 0.0239

tttx 0 0.0041
ttty 0 20.0011

tcty1ttcy 0 0.0558
tccy 0 20.0681
cccy 0 20.0010
ctty 2

1
24

20.1435(12)

ctcy1ccty 1
3 0.5317~37!

cccz 0 0.0063
ctcz1cctz 0 0.0283

tccz 2
1
3

20.4780(38)

ttcz1tctz 0 0.0534
cttz 2

1
24

20.0448

tttz 0 20.0011

TABLE III. Contributions to the positronium hyperfine interva
at orderma6.

Contribution Coefficient ofma6

Derivative term 20.04167
Many-potential term 0.42094
Two-photon exchange 20.0227(30)
Three-photon exchange 20.2861(17)

Total 0.0705~35!
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DE2gX~CT1TC!52ie4E dk0

2p
E d3k

~2p!3 E d4p8

~2p!4 E d4p

~2p!4

1

upW 82pW 2kW u2 S d i j 2
kikj

kW2 D
3

Tr@c̄~p8!g0~P” /21k”1p”1m!g ic~p!g0~2P” /22k”1p” 81m!g j #

@~P/21p1k!22m21 i e#@~P/22p81k!22m21 i e#@k21 i e#
. ~28!
ol

io

ng

i-

id

t
y’

th

re
he
al
ga

in

io

of
tle
ies
re
es
or-
res
se,

ct
or-
-

av-

at-
e

n is
eir

ded
ei-
m
d
s in-
he
lit-

a-
ith
s

ap-

in
If we close the contour above the real axis, only the p
k052ukW u[2v contributes to orderma5 in the deep non-
relativistic region. The denominator of the above express
then becomes

D522v@~W01p02v!22upW 1kW u22m2#

3@~W02p082v!22upW 82kW u22m2#. ~29!

While in the present formalismp0 and p08 vanish, we have
kept them general in Eq.~29! for later comparison with the
Barbieri-Remiddi formalism@15#, in which they do not van-
ish. We can further simplify this denominator by neglecti
kW with respect to pW and pW 8, and v2 with respect to
22W0v'22mv. With these approximations, the denom
nator becomes, in the present formalism,

D'22v~2mv1pW 21g2!~2mv1pW 821g2!. ~30!

However, suppose instead that we used the Barbieri-Rem
formalism. In this formalism, thed function ofp0 is replaced
by

d~p0!→
vp2W0

2 ip@p0
22~vp2W02 i e!2#

, ~31!

with a similar replacement ford(p08). While both formalisms
emphasize the regionp050,p0850, an extra integration mus
be carried out in the latter case. If we do this with Cauch
theorem, the pole from the wave function givesp05W0

2vp'2(pW 21g2)/2m and p08'2(pW 821g2)/2m. In the
Barbieri-Remiddi formalism, the denominators then take
quite different form

D'22v~2mv12pW 212g2!~2mv12pW 8212g2!.
~32!

It is the latter form of the denominator that is encounte
when the nonrelativistic Coulomb Green’s function in t
Bethe logarithm is expanded in terms of Coulomb potenti
This leads to the obvious question of how the Bethe lo
rithm arises in the present formalism. The basic problem
that, while considerable simplification is achieved by mak
thep0 dependence of the wave function ad function, forcing
this dependence misses some deep nonrelativistic behav
which p0 depends on (pW 21g2)/2m. This energy is of order
e

n

di

s

e

d

s.
-

is
g

r in

ma2, so in situations in which the typical energy scale is
orderma, as is the case for hyperfine splitting, there is lit
difference between the formalisms. However, when energ
of orderma2 are important, as in the Bethe logarithm, the
is a difference and the Barbieri-Remiddi formalism includ
the true behavior more naturally. Reintroduction of the c
rect low-energy behavior in the present formalism requi
consideration of higher loop diagrams. In the present ca
we have found that thectcy diagram and the four-photon
diagram of Fig. 6 play a role in reintroducing the corre
behavior. In other words, these diagrams, which enter in
derma6 andma7, respectively, for hyperfine splitting, con
tribute at the unexpectedly low order ofma5 for the singlet
energy. This is an example of a case in which theR factor,
even though it is designed to subtract out the leading beh
ior, can still contribute to a relatively low order.

At present, we are analyzing whether the awkward tre
ment of ma5 terms present in our formalism can affect th
order of interest for singlet and triplet states. The questio
whether higher-order diagrams such as Fig. 4, after th
leadingma5 behavior is subtracted out, behave asma6 or
ma7. In the latter case, the present method can be exten
to singlet and triplet calculations, but in the former case
ther extra diagrams will have to be included or a formalis
like that of Barbieri and Remiddi, with its more complicate
structure, adopted. However, we stress that these issue
volve only the singlet and triplet states individually, as t
deep nonrelativistic region plays no role in hyperfine sp
ting to orderma6.

III. COMPARISON WITH OTHER CALCULATIONS
AND EXPERIMENT

As mentioned in the Introduction, two previous calcul
tions of three-photon exchange have been carried out w
differing results. The first calculation, in which NRQED wa
introduced@9#, found the result

E3g5@2 1
6 ln a10.167~33!#ma6 ~33!

and the second, carried out in an effective Hamiltonian
proach@10#, obtained

E3g5@2 1
6 ln a10.3767~17!#ma6. ~34!

FIG. 6. Four-photon diagram contributing to singlet energies
orderma5.
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The result of the present calculation is

E3g5@2 1
6 ln a10.0705~35!#ma6. ~35!

The constant terms, usingma6518.658 MHz, are
3.12~0.66! MHz, 7.03~3! MHz, and 1.32~7! MHz. It was
hoped that carrying out a third calculation would resolve
previous discrepancy, but this clearly is not the case. If
quoted NRQED error of 0.033ma6 is taken as a standar
deviation, there is only a 0.2% chance of agreement.
present calculation is in unambiguous disagreement with
result of Ref.@10#. Unfortunately, it is not possible to com
pare the present calculation with either of the other
proaches, as there is not a diagram-to-diagram corres
dence. However, a recalculation in the NRQED framework
presently being carried out@21# and may shed light on this
confusing situation.

There is a set of other contributions of orderma6 that
must be included before a comparison with experimen
made. Fortunately, they have all been carried out~see Table
IV !. Given the theoretical uncertainty of the three-phot
exchange terms, it is useful to go through the status of
various terms with respect to their reliability. Beginning wi
three-photon annihilation, we note that a change from
original calculation of Cunget al. @22#, which was, however,
numerically very small, was found by Adkinset al. @23#.
This was confirmed in a subsequent publication by Dev
and Repko@24#. A larger discrepancy was found for the on
loop radiative corrections to the two-photon-annihilation d
gram @25,26#. However, it was shown that if certain erro
were corrected in the earlier Feynman gauge calculation,
cise agreement with the newer calculation, which was car
out in Fried-Yennie gauge, was found. Thus the same re
for this term has effectively been found using two differe
gauges and it can be considered reliable. As mentio
above, two entirely independent calculations have given
same result for one-photon annihilation, so that can be ta
as certain. This is also the case for the fourth row of Ta
IV, which arises simply from the well-known one- and tw
loop g-2 factors. Finally, radiative recoil calculations ha
also been calculated with two different approaches@11,12#.
In this case there is a slight discrepancy of 0.1 MHz, whi
while well under the experimental uncertainty, should be
derstood. Present computer power should allow a reduc
of the numerical error quoted in the earlier work: this
under present investigation.

The present status of thema6 constant terms is summa
rized in Table IV. If this is combined with the lower-orde
terms,

Dn5ma4F 7

12
2

a

p S 8

9
1

1

2
ln 2D2

5

24
a2 ln a G , ~36!

which give 203 400.29 MHz, our result is

Dn5203 387.26~7!MHz. ~37!

Using instead the Caswell-Lepage result giv
203 389.06~62! MHz and the effective Hamiltonian result o
Pachucki gives 203 392.97~3! MHz.

The two experimental values of highest precision
those of Mills and Bearman@28#, who found
e
e

e
e
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e

Dn5203 387.5~1.6! MHz, ~38!

and Ritteret al. @29#, who determined

Dn5203 389.10~0.74!MHz. ~39!

The Mills-Bearman experiment is consistent with both o
result and the Caswell-Lepage result, while the more ac
rate Ritter et al. experiment is mildly discrepant with th
present calculation and consistent with that of Caswell a
Lepage. Both experiments are in strong disagreement w
the effective Hamiltonian calculation. An additional theore
ical issue is the size of uncalculatedma7 terms. One such
term, involving a factor of ln2 a, has been calculated b
Karshenboim@30# and contributes20.92 MHz. We have not
included it in our analysis because of the unknown size
the nonleading terms. In fact, a recent calculation of par
the two-loop Lamb shift@31#, in which a complete calcula
tion was compared with the leading logarithm term, also c
culated by Karshenboim@30#, provides an example of a cas
in which the nonleading corrections are apparently lar
than the leading logarithm. Thus, until a complete calcu
tion of all ma7 terms is carried out, it seems to us mo
advisable simply to note that they can enter at the 1-M
level, which we take as the level of theoretical uncertain
While such a calculation presents a significant long-ran
challenge to bound-state QED theory, by far the most pre
ing present theoretical issue for ground-state positronium
perfine splitting is the resolution of the now three-way d
crepancy in the recoil calculation.
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TABLE IV. Contributions to the positronium hyperfine interva
at orderma6.

Contribution K DE ~MHz!

Three-photon annihilationa 20.05194 20.969
Two-photon annihilationb 20.03248 20.606
One-photon annihilationc 20.12565 22.344
O(a2) corrections to

one-photon exchanged 20.01374 20.256

Radiative recoile 20.5453 210.17
Present calculation 0.0705~35! 1.32~7!

Total 20.6986(35) 213.03(7)

aReferences@22–24#.
bReferences@25, 26#.
cReferences@7, 8#.
dReference@27#.
eReferences@11, 12#.
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