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Quantum capacity is properly defined without encodings
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We show that no source encoding is needed in the definition of the capacity of a quantum channel for
carrying quantum information. This allows us to use the coherent information maximized over all sources and
block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this
maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure
channel’s capacity without relying on an unproven assumption as in an earlier paper.
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l. INTRODUCTION S(p)
QE(X)Esu;{q:V e>04 £,D,p,N:T=q,
In recent years the field of quantum information theory
has emerged. One of the central issues in this field is the oN
concept of quantum channel capacity. Several papers have Fe(p,Dox" e&)>1—¢/. )
discussed the capacity of noisy quantum channels to carry
guantum informatioi1—6]. Unfortunately, defining and cal- That is, roughly Qg is the highest entropy per use of the

culating the quantum capacity has turned out to be difficulichannel that can be sent reliably using block coding. Here
because of the specifitand sometimes oddfeatures of the density operatgs is on a block ofN copies of the input
quantum information. Various types of capacities of quan-Hilbert space and the encoding and decoding operaifons
tum channels have also been defined, such as the capacity afidD (which are linear trace-preserving completely positive
a quantum channel to carry classical informat[@r8], the  map$ act on such block density operators. The definition
capacities of quantum channels to carry quantum informatiomequires that arbitrarily high entanglement fidelities may be
with the assistance of classical side chanféls and a ca- achieved, possibly by going to larger and larger block blize
pacity based on a quantum analog of the Shannon mutué does not require, however, that arbitrarily high fidelity be
information[9]. Here we will concentrate on just one type of achievable for some fixed block si2¢. It is immediately
guantum capacity. apparent from the definition that one may bound this capac-
Barnum, Nielsen, and Schumachél have given a defi- ity below by some constant (for rate by exhibiting a se-
nition of quantum capacit@g(x) of a channel in terms of  quence (in N) of source density operators and coding
the entanglement fidelity and the von Neumann entropyschemes such that the entropy of the source operators goes to
S(p)=—Tr p log, p of the source’s density matrig. The r and the entanglement fidelity of the operators under the
entanglement fidelity of a density matyixelative to a linear total operation goes to 1 with large. We will say such a
trace-preserving completely positive m&p10] is defined as sequence of tripletép,£,D) achieves the rate.r
The definition ofQg uses the entropy of the sourpas a
_ measure of the information that is sent through the channel
Felp.&)=(nlZ&E) (| n) 7l 7). @ rather than the entropy of the output sign@lof®No£)(p).

One might argue that since capacity is about sending entropy
where|#) is any purification ofp. A purification[11] of any  to the channel output one should consider a defini8H in
density matrixp in a Hilbert spacé is any pure staté) in - which the entropy of the output signal appears in place of the
a tensor product spadé,® Hg such that Tx| 7){n|=p. I entropy of the inpup as inQg . However, in general, as the
Eq. (1) the identity operates on the purification spa&tgeand  decoding procesP need not be unitargand indeed it cannot
£ operates orHg . Note thatF.(p,€) is independent of the be if it is to extract the noise from the output signilcan

choice of purificatior 1]. map the signal onto an arbitrarily large Hilbert space and the
Definition 1. The entanglement capacig of a channel output entropy can become unboundedly large. This implies
X is that Q°“is not a good measure of the total amount of infor-

mation that is sent through the channel. The problem is that
for any pure state there exist density matrices of high fidelity
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tors orthogonal to|#). This density matrix has entropy _ l(p,x®N)
H,(€)+ € log, n and fidelity 1— e relative to|y) for any e Q= lim max—y3——- (6)
and anyn. [H,(€)=—¢€ logy(e)—(1—e)log,(1—€') is the N—e p

binary entropy function.

Another quantity that has been of interest is the coheren
information[1,3].

Definition 2.The coherent information of a density matrix
p and a linear trace-preserving completely positive rfiap

ee Sec. Il
(iii) The quantum capacity of the erasure charjéglis
given by Qe=Qp=maxX1-2p,0} as in[6]. See Sec. IIl.

Il. Qg IS WELL DEFINED WITHOUT SOURCE
ENCODING
1e(p,&)=S(E(p))~ Send p,E), ()
Consider a situation where the sequence of trigle®,£)
where S, (p,€) is the final entropy of an initially pure en- achievesQg and thef’s may be nonunitary. We will show
vironment implementingy [10]. that there exists another sequence of tripfet, {=D,Z) that

Barnum, Nielsen, and Schumachét have shown that achieves the capacig, where7'is an additional decoding
step. We thus replace the nonunitaapcodingby a not-

l(p.xENeE) necessarily-unitanydecoding We will do this by showing
Qe=<| a=SUpmax ——-—. (4)  that for any triplet(p,D,£) with a given entropy and with a
N péE N given entanglement fidelity when used with the chanpel

there exists another triplep(,7°D,Z) whose entropy and

It has been conjecturdd,3,5] that this bound is an equality. entanglement fidelity are both close to those of the original
Notice that the definition oQg includes a supremum over triplet.

encodings. This is required to give a most general definition

of a channel capacity, but it is surprising from a physical A. Preliminaries

point of view. Any unitary encoding of a source is equivalent We will need the following two lemmas.

to using a different source and since the supremum also in- Lemma 1Given two bipartite pure statég) and|¢) in a

cludes the source, the unitary encoding could be left out. Thﬁilbert spaceH="H® Hg With [( | $)[2=1—¢, then

coherent information, due to the failure of the pipelining in- ATTB ’

equality, can increase by using nonunitary encodirgee IS(Tral¥)(]) — S(Tra| p)(d])|<2Ve log, d+1  (7)

[5]), which suggests the necessity of the supremum over

nonunitary encodings in the capacity definition. However, &or all e< 3 whered is the dimension ofg.

nonunitary encoding intuitively corresponds to adding noise Proof. We will use an inequality from Fanngs3] involv-

to the signal, which seems unlikely to improve the quality ofing thel; norm. TheL; norm of an operatoA, indicated by

the output signal. This illustrates the complexity of the issue|A||, is defined by

In this paper we resolve this matter by showing that the

supremum over encodings can be omitted from the definition |A|=Tr|A|=TryAA. 8
of capacity, though we do not know if the maximization over
encodings can be omitted frohy,,y. We also define the function(x)= —x log, x and letp,p»

Another issue is the continuity of the gquantum channebe density matrices ift{g. We than have froni13] (when
capacity in the parameters of channel It is not known [p1—p2l<3)
whetherQg or Qp is continuous. It was stated |B] that the
capacity of the erasure channel@-=max0,1—2p}. This 1S(p1) = S(p2)|<llp1—pallogz d+ n(lp1—pal). (9
result was derived by bounding the capacity both from below N
and from above with md®,1— 2p}. The derivation of the [Of Our purposes, we may note that far<s, #(x)
upper bound, however, assumed the capacity to be continis 092 3/3<1 and we use the weaker inequality
ous as a function op, which has not been proved. We will
use the results in this paper to prove the capacity in an alter- [S(pa) = S(p2)[<log; dllpy—pal +1. (19

native way, thus resolving the continuity question for theg,. 10 commuting density matrices, and p, we have
erasure channel. A similar proof of the capacity of the eraﬂpl—pzﬂ=E'|7\-(1)—)\-(2)| with 232 the eig;nvalues of
| ] I ! ]

sure ch_annel was.c.a_rned out independently by CEf us- density matricep ,p, respectively. Since the entropy differ-
ing a different definition of the quantum channel capacity. i . . ; ;
ence is invariant under independent unitary rotations of each

In this paper we prove the following. . .
(i) The maximization over encodingsin the definition of density matrix,
Qe is not necessary. In other words, we find that
S(p1) = S(pz)|=log, A2 NV =AP[+1, (1D
QE: QEO encoding (5) !
where we have rearranged the eigenvalues in order of size. It

whereQR° ¢"°°dns defined exactly as Qg , except without IS known[14] that
the encoding mag over encodings. See Sec. Il.

(ii) The quantum capacit@)e is bounded from above by E AND-A?|<2y1-BO\D @) (12)
the maximum coherent information withoswurce encoding i ' ' ' ’
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whereB is the Bhattacharyya-Wootters overlgb], defined

by

Z )\ipi)gz MS(pi)—Z Nilogy A,
(22

Z NiS(pi)<$

2
B(M”,MZ))E(E W\?”M(z)) : (13

with Z;N\;=1 and p; density matrices. Taking the partial

trace of Eq.(21) and using Eq(22) one can derive that
The fidelity between two density matricgs,p, can be de-

fined as the maximum inner product between all purifications’ S(Trap’) — €’ S(Tra| dmax{ Pmasd)

1¢1),1¢2) of py andpy: <S(Trap) = S(Tra| man{ Pma)

— 2
F(plIPZ)_lng;lag()KgﬂgZ)l . (14) $6,S(TrAp,)_G,S(TrA|¢)maX><¢ma>J)+H2(€,) (23)
175162
Since, given the eigenvalues of two density operators, thgnd thus
fidelity is maximized by choosing their eigenvectors to be IS(Trap) = S(TrAl i) bmand)|< € l0G, dim Hg+ 1.
the sameassigned to eigenvalues in order of gize max Fma (24
B N®)=F(p1.p2). (15) To prove that¢) and| ¢ have high fidelity we use Eq.
Hence (21) and(¢|p|p)=1— € to write
(@lpld)=(1= €Dl pmanl+ €' (lp'|$)=1-€.
|S(p1)—S(p2)|<2V1-F(p1,p2) log, d+1  (16) 25)
when The inner product{ ¢|p’|$) is no bigger than one and’
<¢, SO we can rearrange things to get
2V1-F(p1,p2)<3 17

|<¢| (z’max}lz2 1-2e.

Thus, by Lemma 1 we can bound

(26)
and by the definition of(p1,p,) (which includes a maxi-
mization we have that

IS(p1) —S(p2)|<2V1-[(¢| )| log, d+1,

where |¢) and |¢) are purifications ofp; and p,, i.e.,

Tral )| =p; and Tr| ) é|=p,. This holds whenever
F(p1.p2)>1—%, which
Kyl d)P>1—5. u

(18)

is certainly true whenever

IS(Tral ) b]) = S(Tral pman{ Pmad ) |< V2€ log, dimHg
(27)

+1.

Therefore we find, with Eq(24) and (27),

IS(Tral #)( p|) — S(Trap)|<2+2€ log, dimHg+2.

Lemma 2.Given a bipartite pure statgp) and density (28
matrix p in Hilbert spaceH=H,®Hg With ($|p|d)=1

—eande<, then Finally, using Tp|#){ ¢|=Trg| ¢){ ¢| for all pure states and

Eq. (19, we immediately have Ed20). |

IS(Tral ){ b)) — S(Trap)|<2+2¢ log, dimHg+2,

(19 B. The main theorem

Theorem 1Supposep is a density operator on a Hilbert
spaceH, and E,D linear trace-preserving completely posi-
tive operations such that

and similarly for systenB, and thus

|S(Trap) — S(Trgp)|<4+/2¢€ log, maxdimH, ,dimHg}

+4, (20) Fe(p, Dox*No&)=1~e. (29
Proof. We can write Then there exist a density operatet and a linear trace-
preserving completely positive operati@rsuch that
p=(1l—-e€ )|¢ma><><¢max|+é P (21 Fe(p’,TODO)(@N)?l—ZG (30)
with €’ <e. This is obtained by diagonalizing and noting
that the largest eigenvalue of a density matrix is always no
smaller than the largest diagonal element of the mafiré4. |S(p)—S(p’)|$2\/Z log, dimHa+ 2. (31)

|pmay is the eigenvector op corresponding to its largest

eigenvalue. The proof consists of two parts. First we show if there
Here is the plan for the proof. We will first bound exists a source that has high entanglement fidelity using

|S(Trap) = S(Tral dma{Pmad)l. Then we will argue that some encoding and decodingD, we can always find an-

| bmaxy has high fidelity with respect t@) and use Lemma 1 other source’ that has a high entanglement fidelity as well,

to bound [S(Tra| ) &) — S(Tral dmax{Pmad)|, Which will  but has additional decoding instead of encoding. Second we

finally give us a bound ofS(Tra| ¢){ ¢b|) — S(Trap)|- show that this new sourge’ has very nearly the same von
Recall the property of the entrof{7] Neumann entropy as.
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A where\ hax IS the largest eigenvalue pf
N } , Proof. We can writep® |0°)(0°| as
‘ pou
P D p010°) (0% =Ml ) 1050
E

10— § + (1= Nmadp’ ®[0)(0°], (39

where| ¢y is the eigenvector of corresponding to\ pax-

FIG. 1. General encoding-channel-decoding systedm.is the Take
unitary operation of the encoddthe associated environmeit

makes the whole action of the encoder nonunitary in general V)= VA masd Pma ® |OC>
dim Hp
Let _|¢) be a purification ofp in Hilbert spaceH,@Hg. AN, 2 Vuilife 0B)e[i), (36)
See Fig. 1. Any linear trace-preserving completely positive i=1

map, including nonunitary operations, can be written as a ) . ]

unitary operator that operates on the original system aloni/here|i”) and x; are the eigenvectors and eigenvalues of
with an ancillary systenfoften referred to as an environ- 17s p and(0%[i®)=0. Thus(¥|(p®|0°)(0%))|¥)=A} .M
mend, as in Fig. 1. Thus, for the case of the nonunitary Since(¢|p°"|¢)=1—€ we have[as in EqQ.(21)] Apax
encoder, some quantum systé&that is in general entangled =1-—e. Take|¥) also purifying Tg(p°") as in the lemma.
with the AB’ system will remain in the encoder. Since this Then

system is not to be sent through the channel it may be mea- Ut 1 ACA /A C )

sured in an orthogonal basis giving resuitith probability (U|(p™'®|05)(0%N)|¥)=(1-€)*=1-2e. (37

p; and leaving theAB’ system in a pure staf;). After the Since|y) purifies Te(p®), so doeso)=|1)®[0°). As

channel operates on th8' system and the decoding %) and| ) both purify Tis(p) |0S)(0C, they are related

process is performed, one is left withp?"'=[Z, . . B )
®(D°X®N)B](|¢i><¢i|)- [To simplify the notation we will gxda;n%ig]/ transformatiobl =7, ® U acting only onHg
C I

hereafter write Z,® (Dox®N)g as Dox®N.] The whole
encoding-channel-decoding process results in a high en- U =] o). (38)
tanglement fidelity so that

Substituting this into Eq.(37) and writing p§"=p°"
C C H
Folp.Dox™M&)=3 p(@l(Dox*(u)ihlg)=1-e.  ©I07HO7], we obtain

(32 ($olUpoU T tho)=1-2e. (39
For at least one value @fit must be that We will now rid ourselves of the€ system. As
(BlDx™M ()i ) =1 e. 3y (UTreUp V1Y) =(ve0%|UpUT v 0%
Thus the unitary encoder that simply takes and rotates it + 2, (pei%UpUTyei%), (40
1#0

to |¢;) is sufficient to achieve a high entanglement fidelity.
Hereafter the subscript will be dropped frorhy;) and p™*

We are now, however, left in the odd situation in which
the unitary encoder operates on both Bhend A systems.
We have thus so far only traded nonunitarity for this odd
form of unitarity. This situation is shown in Fig. 2. We will
show that instead of usinjg) as input, we can use the un-
encoded|y) as input if we do an additional decoding step.
The following lemma will be of use.

Lemma 3.Given a density matriyp in Hilbert spacet
®Hg, then there exists a purificatid#) of Trg p into Hil-
bert space,® Hg® Hc with dimHs=dimH,+1 and

with ($®i¢|UpS"UT|y©iC)=0 sinceUpd"UT is a density
matrix, we can rewrite Eq39) as

(P TreUpS"UT| ) =1-2e. (41)

Let us defineZ(p°") be the linear trace-preserving com-
pletely positive map implemented by appendin@8) state
to p°, rotating usingU, and then tracing out th€ system.
What we have done is replacég) with |¢) and added the
decoding stagd and still achieved high entanglement fidel-
ity. In other words, writinge’ =Tra|)(#|, we have

(¥|(p®[0)(0)[ W) =N} s (34) Fo(p' ToeDox®N)=1-2e. (42)
A Achieving a high entanglement fidelity alone is not suffi-
o U ) pout cient. It is also necessary to show thgt=Tra| ¥)(#]) has
B | Elp on | entropy close enough to that pE=Tra| #)(#|) to achieve
Doy the same capacity. Using Eq83) and (19) we know that
FIG. 2. Channel with unitary encoder acting on bothAwndB |S(Trg| ) p]) — S(Trgp°)| <2.\2¢ log, dimH,+2

systems. (43)
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for e<=5. Since Tgp®'=Trg|y) (¢, S(Trgl¥){(y|)  expression is obtained by noticing that the density matrix for

=S(Tral )W) =S(p"), and S(Trglp)(#|)  the receiver is block diagonal, where the block labeled with
=S(Tra| d){#|)=S(p) we have (i,k) is of the form
1S(p)—S(p')|<2+2¢ log, dimH+2.  (44) P (1-p)N ¥p;. (49)

hus the entropy of the block,k) is p(1—p)N¥S(p)).
he total entropy of such a block diagonal density matrix
S(x®N(p)) is equal to the sum of the entropy of the blocks

dimensiond?, the dimension dinH, can be set to (dig)", p_Ius the entrgﬁy of choosing among tthbIocks. The_ expres-
where diny is the dimension on whichy acts. Since the SIPNSenkp,x"") will be the same aS(x“"(p)), but withi
definition of quantum capacitQe [Eq. (2)] has anN in the ~ andi interchangedwhat is not erased the environment gets
makeQE= QEO encoding_ Eq. (48).
We split the sum ovek into two termsl , andl _, which
we will bound separately,

This proves the theorem. The application to channel capaci&
is straightforward. As we can always purify a density matrix
in a Hilbert space of dimensiod into a Hilbert space of

Ill. A CORRECT PROOF OF THE CAPACITY
OF THE ERASURE CHANNEL IN/2| ™

In this section we will provide a correct upper bound of |+=k20 pA(1- p)ka,_El [S(pi) —S(pi) ] (50)
the capacity of the erasure channel that is “proved” incor- - o
rectly in [6] by making use of the unproven assumption that, 4
the quantum channel capacity is continuous. By providing a

correct upper bound the entire capacity is restored, as the n ™
upper bound coincides with the correct lower bound given in | = k(1—p)N—k Y=S(p)1. (51
[6]. We work here withQg rather than the definition of ca- N k:[Nz/21+1 P(1=p) .21 [Stp)=S(pi)]- (5D

pacity in terms of a protected subspace employedjnbut
these two definitions of capacity have been shown to b&ach terminl_ can be at most

equivalent[19,20Q. Cerf independently provided a similar

correct upper bounfil2] using a slightly different definition S(pi) —S(pi)<N—k. (52)
of capacity, which we expect is also equivalent.

Barnum, Nielsen, and Schumachigi have shown that To boundl . we will rewrite the sum over the setsn such

a way that we can use the subadditivity property of the von

l(px®N) Neumann entropy. The idea is to pairwise match terms in Eq.
QU encodinge | no encoding.. jjn max% (45 (50). We matchS(p;) with a term S(pj) and S(p;) with
N—o  p S(p;) where we take the set ¢fubity j such thatj Ci and

. no encodin iCj. For these matching sets, we can use subadditivity,
Together with the results of Sec. Il th@g= Qg 9 we

now have S(pi) —S(pj)<N—2k,
(53

&N SN2k,
Q=< lim maX%_ (46) S(.DJ) S(,DT) N—2k

N=e= p The way to do the pairwise matching is the following. Pick
) B N— 2k qubits out of the total set dfl qubits. These are the
A quantum erasure channel with erasure probabflity gypjts that two matching sets will have in common. Then

maps an input quantum bigubit p to (1-p)p+p|3)(3|,  pick a subset ok qubits out of the remainingk2 Together
where 3) is an orthogonal direction to thil),[2) space in  \ith the N—2k qubits, these will form set. The sefj is

which p resides. Ir[6] it was shown correctly tha@p=0 for  mage from the remaining qubits and theN— 2k overlap

p=z. Thus we will consider here only channels Wil qupits. In this way each set is matched to another one. How-

<3z _ _ _ ever, we have counted the sets multiple times. Each set is
Recall the definition of the coherent information counted 2ltl—kk) times. Dividing by this number will thus

give us the original sum. Thus we have derived that
Le(p.x ™M) =S(x*N(p)) — Send p: xN). (47)
IN/2)

For the erasure channel we can write l.<> pKa—-p)Nk
=

0
| (N—2K). (54)

N ™
|c<p,x®N>=kZO |ok<1—|o>N*kE1 [S(pi)—S(pD)],
2 )

N
49 S [ }]pka-p=np (55)

We will take |, andl _ together and use

wherei designates a particular set Nf-k qubits andi the
complement of the set p; is defined asp;=Tr;p. This to get
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y N72) ’ - flawed if | pau 1N2,E"4Msince we have shown that the latter
le(pox® )gN(l—p)—kZO ( K |P(1=p)"""k. (56)  upper bounds the capacity.

N Equation(61) for the capacity of the erasure channel is a
We will use a property of binomial distributions continuous function op, but a resolution of the problem of

the continuity of capacity for general channels is to be de-

_ IN72] sired. If the channel capacity turns out not to be continuous,
lim < > k) p“(1-p)N"*kk=p for p<3. (57  this would once again show a curious characteristic of quan-
N 15 k=0 tum information. On the other hand, if the capacity were
This implies proven continuous, the quite general method for bounding
the quantum capacity introduced jA] and applied incor-
_ le(pox®N) rectly in [6] would be restored. For example, the quantum
lim maszl—Zp (58 cloning results iM21] could be used to improve the bound
N—e p on the capacity of the quantum depolarizing channel.

. . : . N In [4] it was shown that the quantum capacities with and
Eﬁg:gfgr]s[tvxfi?rllsE?qu(Tg)]ls achieved by takipg=7/27) and without a classical forward side channel are equal in the case
' of perfect error correctiong=0). A proof similar to the one
Qp<Qe<1-2p. (59)  inSec. Il can be used to show that this is true@reven in
the case of an asymptotically perfect correction as in the
In [6] a constructive lower bound 0@, has been estab- definition of quantum capacity.
lished,
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