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Optimal quantum codes for preventing collective amplitude damping

Lu-Ming Duan and Guang-Can Guo*
Department of Physics and Nonlinear Science Center, University of Science and Technology of China,

Hefei 230026, People’s Republic of China
~Received 6 April 1998!

Collective decoherence is possible if the distance between quantum bits is smaller than the effective wave-
length of the noise field. Collectivity in the decoherence helps us to devise more efficient quantum codes. We
present a class of optimal quantum codes for preventing collective amplitude damping to a reservoir at zero
temperature. It is shown that two quantum bits~qubits! are enough to protect one bit quantum information, and
approximatelyL1

1
2 ln2(pL/2) qubits are enough to protectL-qubit information whenL is large. For prevent-

ing collective amplitude damping, these codes are much more efficient than the previously discovered quantum
error correcting or avoiding codes.@S1050-2947~98!08410-8#

PACS number~s!: 03.67.2a, 03.75.2b, 42.50.Dv, 89.70.1c
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I. INTRODUCTION

In quantum computation or communication systems, i
essentially important to maintain coherence of a quan
system@1#. In reality, however, decoherence due to intera
tion with a noisy environment is inevitable@2#. It is discov-
ered that quantum redundant coding is the most efficient
to combat decoherence. Until now, many kinds of quant
errors correcting or preventing codes have been devised@3–
15#. Quantum error-correcting codes~QECCs! cover a large
range of decoherence, and they are very powerful in no
suppression for large quantum systems. However, for sm
systems, QECCs are rather costly of quantum computing
sources@16#. To protect one quantum bit~qubit! of informa-
tion from general single-qubit errors, one needs at least
qubits @6#. Apart from the QECCs, there are alternate qu
tum codes, such as the quantum error preventing or avoi
codes @14–20#, which combat decoherence with speci
noise modes, but have the advantage of being more effic
to implement, especially for small quantum systems. Qu
tum error-preventing codes are based on the quantum Z
effect, and therefore useful with quadratic noise@14,15,21#.
Quantum error-avoiding codes~QEACs! make use of collec-
tivity in the decoherence@17–20#. For combatting collective
decoherence, they are a better choice.

Collective decoherence is an ideal circumstance, whic
possible if the qubits couple to the same environment,
the separations between them are smaller than the effe
wavelength of the noise field. For collective decoheren
there are coherence-preserving states. In QEACs, arbi
input states are encoded into superpositions of
coherence-preserving states. To avoid general collective
coherence, one needs at least four qubits to encode one
of information @19#. Nevertheless, with specific noise mo
els, more efficient QEACs can be devised@18,20#. For ex-
ample, a two-bit QEAC has been devised for eliminating
dissipation that can be transformed into collective ph
damping by some techniques@18#.

The dominant noise process in many quantum comp
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tion or communication systems is described by amplitu
damping, such as the radiative decay@22–25#. In this paper,
we propose a class of optimal QEACs for preventing coll
tive amplitude damping to a reservoir at zero temperatu
These codes are much more efficient than those devise
the presence of general collective decoherence or in the p
ence of independent amplitude damping@20,7#. For example,
we need only two qubits to encode one qubit informatio
and approximatelyL1 1

2 ln2(pL/2) qubits to encodeL-qubit
information whenL is large. A QEAC with a high efficiency
has two advantages. On the one hand, it costs few additi
quantum-computing resources. This is remarkable, si
quantum-computing resources are very stringent@26,27#. On
the other hand, to encode a bit of information, an efficie
QEAC needs only a small number of qubits, and therefor
much easier to implement in practice. QEACs are based
collective decoherence. Collective decoherence is most
sible for the closely spaced adjacent qubits. Cooperative
fects in the amplitude damping of two trapped ions ha
been observed experimentally@28#. In our proposal, two qu-
bits subject to collective amplitude damping are enough
protecting one qubit of information.

The paper is arranged as follows: First we derive the m
ter equation for collective amplitude damping. In the deriv
tion, the explicit condition for collective decoherence is o
tained. Then, from the master equation, we show that th
are many collective dark states, which are subject to no
lective amplitude damping. In the whole 2L-dimensional Hil-
bert space ofL qubits, the collective dark states span a su
space of dimensions (@L/2#

L ), where @L/2# indicates the
minimum round number no less thanL/2. For some smallL,
the codes are explicitly constructed. The two-bit code is
special interest, and we further discuss its possible phys
implementation.

II. MASTER EQUATION FOR COLLECTIVE AMPLITUDE
DAMPING

We start by deriving the master equation for collecti
amplitude damping. Amplitude damping of the qubits
caused by the interaction with noisy environment. The qub
are described by the spin-1/2 operatorssW l , and the environ-
3491 ©1998 The American Physical Society
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ment is modeled by a bath of oscillators with infinite degre
of freedom. The Hamiltonian for amplitude damping ofL
qubits in the interaction picture has the following form~set-
ting \51!

HI~ t !5(
l 51

L

(
kW

@gkWe
2 ikW•rW le2 i ~vkW2v0!tsl

1akW1H.c.#, ~1!

whereakW is the annihilation operator of the bath modekW , and
vkW andv0 denote frequencies of the bath modekW and of the
qubits, respectively. The symbolrW l indicates the site of thel
qubit, andgkW is the coupling coefficient. Under the Born
Markov approximation, the general form of the master eq
tion with the interaction HamiltonianHI(t) is expressed as
@29#

d

dt
r~ t !52E

0

`

dt trB$†HI~ t !,@HI~ t2t!,r~ t ! ^ rB#‡%,

~2!

whererB is the bath density operator, andr(t) denotes the
reduced density operator of the qubits in the interaction p
ture. Suppose that the bath is at zero temperature. This i
case in many circumstances, such as for the radiative d
or for the loss process@22–25#. Substituting Hamiltonian~1!
into Eq. ~2!, we obtain the following master equation fo
spatially correlated amplitude damping:

d

dt
r~ t !5 i (

i , j 51

L

d i j @sj
1si

2 ,r~ t !#1 1
2 (

i , j 51

L

$g i j @2si
2r~ t !sj

1

2sj
1si

2r~ t !2r~ t !sj
1si

2#%, ~3!

where the spatially correlated damping coefficientsg i j and
Lamb shiftsd i j are defined, respectively, by

g i j 5(
kW

@2pugkWu2d~vkW2v0!eikW•~rW i2rW j !#, ~4!

d i j 5(
kW

F ugkWu2
1

vkW2v0
eikW•~rW i2rW j !G . ~5!

In the continuum limit, the summations of Eqs.~4! and ~5!
become integrals, and the principal value should be take
the integral of Eq.~5!. The main contributions to the sum
mations of Eqs.~4! and ~5! come from the modeskW that
satisfy vkW'v0 . Supposed is the maximum separation be
tween the qubits, andv0 is the velocity of the noise field

aroundvkW5v0 , i.e., v05vkW /ukW uuvkW5v0 . If d andv0 satisfy
the condition

d!
v0

v0
, ~6!

in Eqs. ~4! and ~5! eikW•(rW i2rW j )'1, and theng i j and d i j are
independent of the qubit index. In this circumstance, we
note g i j 5g0 , d i j 5d0 , and S65( l 51

L sl
6 . Equation~3! is

thus simplified to
s

-

-
the
ay

of

-

d

dt
r~ t !5 id0@S1S2,r~ t !#1

g0

2
@2S2r~ t !S12S1S2r~ t !

2r~ t !S1S2#. ~7!

This is the master equation for collective amplitude dampi
which is obtained under condition~6!. The termv0 /v0 in
Eq. ~6! defines the effective wavelength of the noise fie
This expression for the effective wavelength is derived us
the Born-Markov approximation, and holds in the case
amplitude damping. For other sources of decoherence,
expression for the effective wavelength may have a differ
form @30#. Condition ~6! may be satisfied in practice fo
some sources of decoherence. For example, in the ion
quantum computer, a fundamental limit to internal state
coherence is given by the radiative decay. For this sourc
decoherence,v0 is estimated by the velocity of light, and th
typical value of the separations of ions~qubits! has the order
of a few mm, then Eq.~6! requires thatv0!1014 Hz. For
some hyperfine transitions, it is possible to meet this con
tion @27#.

III. COLLECTIVE DARK STATES

In the language of quantum trajectories@31#, the system
evolution described by the master equation~7! is represented
by an ensemble of wave functions that propagate accord
to the effective Hamiltonian

Heff52d0S1S22
i

2
g0S1S2, ~8!

interrupted at random times by quantum jumps. A quant
jump takes place in the time interval@ t,t1dt), with prob-
ability

P~ t !5^C~ t !ug0S1S2uC~ t !&dt, ~9!

leading to a wave function collapse according to

uC~ t1dt!&5c8Ag0S2uC~ t !&, ~10!

wherec8 is a normalization constant. From Eqs.~8! and~9!,
it follows that if a initial state satisfies

S2uC~0!&50, ~11!

it remains unchanged during the effective evolution, and
subject to no quantum jumps at any time. All the states s
isfying Eq. ~11! are called collective dark states. Coheren
between these states is perfectly preserved during collec
amplitude damping. It can also be seen from Eqs.~8! and~9!
that no other states except those satisfying Eq.~11! remain
unchanged during the effective evolution and quant
jumps.

To obtain all the collective dark states, we notice thaSW

5S l 51
L sW l is expressed as a sum ofL spin-12 operators. From

the angular momentum theory@32#, S(x), S(y), andS(z) can
be chosen as three generators of the su~2! algebra. The irre-
ducible representation of the su~2! algebra in the two-
dimensional Hilbert spaceH1/2 of a single qubit is denoted
by D1/2, thenD1/2

^ L defines anL-fold tensor product represen
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tation of the su~2! algebra in the whole 2L-dimensional Hil-
bert spaceH1/2

^ L of L qubits. The representationD1/2
^ L is re-

ducible, and it can be decomposed into a series of irreduc
representations of the su~2! algebra, such as

D1/2
^ 25D1/2^ D1/25D1% D0 . ~12!

Suppose D1/2
^ 2l has the decomposition D1/2

^ 2l

5 % j 50
l nj (2l )D j (2l ), where D j (2l ) denotes the

(2 j 11)-dimensional irreducible representations of the su~2!
algebra in the state space of 2l qubits, andnj (2l ) is the
multiplicity of D j (2l ) in the decomposition; then we hav
the following recursion relations @setting n21(2l )
5nl 11(2l )5nl 12(2l )50#:

D1/2
^ 2l 115D1/2

^ 2l
^ D1/2

5 %

j 5~1/2!

l 1~1/2!

@nj 1~1/2!~2l !1nj 2~1/2!~2l !#D j~2l 11!,

~13!

D1/2
^ 2l 125D1/2

^ 2l 11
^ D1/2

5 %

j 50

l 11

@2nj~2l !1nj 21~2l !1nj 11~2l !#D j~2l 12!.

~14!

Equations~13! and ~14!, together with Eq.~12!, determine
the decomposition ofD1/2

^ L with an arbitraryL. In the decom-
position ofD1/2

^ L , there arenj (L) (2 j 11)-dimensional irre-
ducible representationsD j (L), whose representation spac
are denoted byH j

(m)(L), where m51,2,..., andnj (L), re-
spectively. The whole 2L-dimensional Hilbert spaceH1/2

^ L of
L qubits splits into a series of orthogonal subspa
H j

(m)(L) according to the decomposition ofD1/2
^ L . In every

subspace H j
(m)(L), the Casimir operator SW 25(S(x))2

1(S(y))21(S(z))2 has the eigenvaluej ( j 11). The subspace
H j

(m)(L) is of 2j 11 dimensions, whose basis vectors can
chosen as the eigenvectorsu j ,mj&m of the operatorS(z),
where mj52 j ,2 j 11,...,j . In each spaceH j

(m)(L), the
lowest-weight stateu j ,2 j &m satisfies the conditionS(2)u j ,
2 j &m50, and no other states have this property. Hence th
is one and merely one collective dark state in each subs
H j

(m)(L), and the dark states in different subspaces are
thogonal to each other. The total numberN(L) of orthogonal
collective dark states is therefore just the number of the
reducible representations in the decomposition ofD1/2

^ L , i.e.,
the total numberN(L)5S jnj (L). From Eqs.~13! and ~14!,
we obtain the following recursion equations aboutN(L):

N~2l 11!52N~2l !2n0~2l !, ~15!

N~2l 12!52N~2l 11!, ~16!

wheren0(2l ) is the multiplicity of the one-dimensional irre
ducible representations in the decomposition ofD1/2

^ L , and is
known to ben0(2l )5(2l )! @ l !( l 11)!#21 @19#. Substituting
le

s

e

re
ce
r-

r-

this into Eqs.~15! and~16!, we obtainN(L)5( @L/2#
L ), where

@L/2# indicates a minimum round number of no less tha
L/2. The quantum error avoiding codes are obtained by e
coding arbitrary input states into superpositions of the co
lective dark states. The encoding space is ofN(L) dimen-
sions; thus the optimalL-bit quantum code has the efficiency

h~L !5
1

L
ln2N~L !5

1

L
ln2S L

@L/2# D . ~17!

If L is large,h(L) is approximated by 12(1/2L)ln2(pL/2),
which approaches 1 very rapidly. Hence, in the presence
collective amplitude damping, these codes are much mo
efficient than the previously-discovered quantum error co
recting or avoiding codes.

IV. EXPLICIT CONSTRUCTION OF THE L-BIT CODES
WITH SOME SMALL L

The orthogonal collective dark states obtained in Sec.
can be chosen as a set of basis vectors for the encod
space. To construct the codes explicitly, we need only e
press the collective dark states in the computational bas
whose basis vectors are the coeigenstates of the operatorss1

z ,
s2

z ,..., andsL
z . The two eigenstates of the operatorsl

z , with
the eigenvalues61

2, are denoted byu1& and u0&, respectively.
The collective dark states and the computational basis v
tors are connected by the Clebsch-Gordan coefficients@32#.
Here, we explicitly construct the optimalL-bit QEACs with
L52,3,4. These codes are simple and involve only a sm
number of qubits, and at the same time have notably hi
efficiencies, so they are an ideal choice of quantum codes
the presence of collective amplitude damping.

In the case of two qubits, the encoding space is of tw
dimensions. The two codewords are given by

u j 50,mj50&5
1

&
~ u10&2u01&), ~18!

u j 51,mj521&5u00&, ~19!

which are sufficient to encode one qubit of information. Th
efficiency is 1

2.
In the case of three qubits, the encoding space is of th

dimensions. The codewords read

U j 5 1

2
,mj52

1

2L
1

5
1

A6
~ u001&1u100&22u010&),

~20!

U j 5 1

2
,mj52

1

2L
2

5
1

&
~ u001&2u100&), ~21!

U j 5 3

2
,mj52

3

2L 5u000&. ~22!
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The efficiency of this code is13 ln2 3. At least one qubit of
information can be encoded.

In the case of four qubits, the encoding space is of
dimensions. The codewords are

u j 50,mj50&15
1

2
~ u10&2u10&)~ u10&2u01&), ~23!

u j 50,mj50&25
1

)
[ u0011&1u1100&2

1

2
~ u01&1u10&)~ u01&

1u10&)], ~24!

u j 51,mj521&15
1

&
~ u10&2u01&)u00&, ~25!

u j 51,mj521&25
1

&
u00&~ u10&2u01&), ~26!

u j 51,mj521&35
1

2
@~ u01&1u10&)u00&2u00&~ u01&1u10&)],

~27!

u j 52,mj522&5u0000&, ~28!

respectively. The efficiency of this code is1
4 (11 ln2 3). At

least two qubits of information can be encoded.
The two-bit code is of special interest. It costs the le

number of qubits, and therefore has a good chance to be
implemented. We further give the encoding and decoding
this code. LetH8 denote the joint operationHsx , wheresx
is the flip operation, andH the Hadamard transformatio
ys

.

A

x

t
rst
r

@ u0&→(u0&1u1&)/&,u1&→(u0&2u1&)/&]. The symbols
Ci j and Ci j (H8) denote the controlled-Not and th
controlled-H8 operations, respectively, where the first su
script of Ci j or Ci j (H8) refers to the control bit and the
second to the target. The controlled-H8 operation performs
the joint transformationH8 on the target bit if the control bit
is in u1&, and leaves the target bit unchanged if the control
is in u0&. The input state of a single qubit can be genera
expressed asuC(0)&15c0u0&1c1u1&. An ancillary qubit 2 is
prepared in the stateu0&2 . The input state is encoded by th
following operation:

uC~0!&1u0&2 ——→
C21C12~H8!

uCenc&125c0u00&1
c1

&
~ u10&2u01&).

~29!

The encoded state is subject to no collective amplitu
damping, and afterwards it can be decoded by applying
same operation again in the reverse order, i.e.,

uCenc&12 ——→
C12~H8!C21

uC~0!&1u0&2 . ~30!

The controlled-Not and the controlled-H8 operations in-
volved in the encoding and decoding have been dem
strated@26,27#, and cooperative effects in amplitude dam
ing of two trapped ions have been observed experiment
@28#, so the proposed two-bit code has a good chance to
implemented in the near future experiment.
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