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Optimal quantum codes for preventing collective amplitude damping
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Collective decoherence is possible if the distance between quantum bits is smaller than the effective wave-
length of the noise field. Collectivity in the decoherence helps us to devise more efficient quantum codes. We
present a class of optimal quantum codes for preventing collective amplitude damping to a reservoir at zero
temperature. It is shown that two quantum kgsbity are enough to protect one bit quantum information, and
approximatel)ﬁ_+% In,(7L/2) qubits are enough to protelctqubit information wherl is large. For prevent-
ing collective amplitude damping, these codes are much more efficient than the previously discovered quantum
error correcting or avoiding codelsS1050-29478)08410-9

PACS numbgs): 03.67—a, 03.75-b, 42.50.Dv, 89.70:c

I. INTRODUCTION tion or communication systems is described by amplitude
damping, such as the radiative de¢@2-25. In this paper,

In quantum computation or communication systems, it isve propose a class of optimal QEACs for preventing collec-
essentially important to maintain coherence of a quantuniive amplitude damping to a reservoir at zero temperature.
system[1]. In reality, however, decoherence due to interac-These codes are much more efficient than those devised in
tion with a noisy environment is inevitabJ&]. It is discov-  the presence of general collective decoherence or in the pres-
ered that quantum redundant coding is the most efficient wagnce of independent amplitude dampj2@,7]. For example,
to combat decoherence. Until now, many kinds of quantumve need only two qubits to encode one qubit information,
errors correcting or preventing codes have been dey®ed and approximately. + 1 In,(7L/2) qubits to encodé-qubit
15]. Quantum error-correcting codé@ECCS cover a large  information wherlL is large. A QEAC with a high efficiency
range of decoherence, and they are very powerful in noisbas two advantages. On the one hand, it costs few additional
suppression for large quantum systems. However, for smafjuantum-computing resources. This is remarkable, since
systems, QECCs are rather costly of quantum computing reuantum-computing resources are very string@6t27. On
sourceg16]. To protect one quantum bigubit) of informa-  the other hand, to encode a bit of information, an efficient
tion from general single-qubit errors, one needs at least fiv&@EAC needs only a small number of qubits, and therefore is
qubits[6]. Apart from the QECCs, there are alternate quaninuch easier to implement in practice. QEACs are based on
tum codes, such as the quantum error preventing or avoidingpllective decoherence. Collective decoherence is most pos-
codes[14-20, which combat decoherence with specific sible for the closely spaced adjacent qubits. Cooperative ef-
noise modes, but have the advantage of being more efficief¢cts in the amplitude damping of two trapped ions have
to implement, especially for small quantum systems. Quanbeen observed experimental®8]. In our proposal, two qu-
tum error-preventing codes are based on the quantum Zerts subject to collective amplitude damping are enough for
effect, and therefore useful with quadratic nojd4,15,21.  protecting one qubit of information.

Quantum error-avoiding codé®EACS make use of collec- The paper is arranged as follows: First we derive the mas-
tivity in the decoherencfl7—20. For combatting collective ter equation for collective amplitude damping. In the deriva-
decoherence, they are a better choice. tion, the explicit condition for collective decoherence is ob-

Collective decoherence is an ideal circumstance, which igained. Then, from the master equation, we show that there
possible if the qubits couple to the same environment, anére many collective dark states, which are subject to no col-
the separations between them are smaller than the effectivective amplitude damping. In the wholé-2limensional Hil-
wavelength of the noise field. For collective decoherencebert space of qubits, the collective dark states span a sub-
there are coherence-preserving states. In QEACs, arbitragpace of dimensions[LL(,z]), where [L/2] indicates the
input states are encoded into superpositions of theninimum round number no less tham?2. For some small,
coherence-preserving states. To avoid general collective déhe codes are explicitly constructed. The two-bit code is of
coherence, one needs at least four qubits to encode one qubjiecial interest, and we further discuss its possible physical
of information[19]. Nevertheless, with specific noise mod- implementation.
els, more efficient QEACs can be devisgl8,20. For ex-
ample, a two-bit QEAC has been devised for eliminating th§, '\, sTER EQUATION FOR COLLECTIVE AMPLITUDE
dissipation that can be transformed into collective phase DAMPING
damping by some techniqugss].

The dominant noise process in many quantum computa- We start by deriving the master equation for collective
amplitude damping. Amplitude damping of the qubits is
caused by the interaction with noisy environment. The qubits

*Electronic address: gcguo@sunix06.nsc.ustc.edu.cn are described by the spin-1/2 operatérs and the environ-
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ment is modeled by a bath of oscillators with infinite degrees ¢ _ o Yo - e

of freedom. The Hamiltonian for amplitude damping lof — 5; P()=18[S"S",p(D)]+ 5-[2S"p()S" ~S"S"p(1)
qubits in the interaction picture has the following fofset-

ting=1) —p(1)S*S7]. 7

L L This is the master equation for collective amplitude damping,
Hi()=2> > [gie * e @ eoigfa;+H.c], (1) which is obtained under conditiof6). The termug/wg in
=1k Eq. (6) defines the effective wavelength of the noise field.
This expression for the effective wavelength is derived using
whereay is the annihilation operator of the bath mddeand  the Born-Markov approximation, and holds in the case of
wy andw, denote frequencies of the bath mddand of the  amplitude damping. For other sources of decoherence, the
qubits, respectively. The symbdg| indicates the site of the  expression for the effective wavelength may have a different
qubit, andgy is the coupling coefficient. Under the Born- form [30]. Condition (6) may be satisfied in practice for
Markov approximation, the general form of the master equasome sources of decoherence. For example, in the ion trap
tion with the interaction Hamiltoniai, (t) is expressed as quantum computer, a fundamental limit to internal state de-
[29] coherence is given by the radiative decay. For this source of
decoherencey is estimated by the velocity of light, and the
typical value of the separations of iofgubitg has the order
of a few um, then Eq.(6) requires thatw,<10** Hz. For
2 some hyperfine transitions, it is possible to meet this condi-
tion [27].

d (e ]
St o0 == | “dr ugllH, 0.0 = 2,90 2 poT,
0

wherepg is the bath density operator, apdt) denotes the

reduced density operator of the qubits in the interaction pic- IIl. COLLECTIVE DARK STATES

ture. Suppose that the bath is at zero temperature. This is the ) ]

case in many circumstances, such as for the radiative decay !N the language of quantum trajectorig&l], the system

or for the loss proceg®2-25. Substituting Hamiltoniaril) ~ €volution described by the master equati@his represented
into Eq. (2), we obtain the following master equation for by an ensemble of wave functions that propagate according

spatially correlated amplitude damping: to the effective Hamiltonian
d - . Hot=— 50S'S — = 70S'S" 8)
qtPO=1 2 dils'sp(0]+2 2 {v[2s p(s] eff™ %0 2 702 =
—stsTp(t) —p(t)sts Tt 3 ?nterrupted at randpm timgs by quantum jumpg. A quantum
S s pO=p(OS]s ]} ® jump takes place in the time intervgl,t+dt), with prob-
where the spatially correlated damping coefficiemts and ability
Lamb shiftsg;; are defined, respectively, by P(t)=(W(1)| %S*S™| W (1))dt, (9)
Yi :Z [27] ¢ 28 wi— wo)eik-(FifFj)], (4) leading to a wave function collapse according to
k
[W(t+dt)=c'VyoS W (1), (10
8 =2 oil2 )1 eilZ-<Frr]-) ) (5) yvherec’ isa norma!i;ation constant. From E@8) and(9),
[< WK~ W it follows that if a initial state satisfies
In the continuum limit, the summations of Edq4) and (5) S7[¥(0))=0, 11

become integrals, and the principal value should be taken C?{ remains unchanged during the effective evolution, and is
the integral of Eq(5). The main contributions to the sum- 9 9 !

. subject to no quantum jumps at any time. All the states sat-
;na?;;?;]i)gi fgséﬂnggegjs)iscfhn;engi?:mﬂ?ﬁ sn;ggsaﬁti;?\alt)e- isfying Eq. (11) are called collective dark states. Coherence

. X : ; . between these states is perfectly preserved during collective
tween the qubits, and, is the velocity of the noise field amplitude damping. It can also be seen from Egsand (9)

aroundwy=wo, i.e.,v0=i/[K||4=u,. If dandv, satisfy  that no other states except those satisfying @d) remain

the condition unchanged during the effective evolution and quantum
jumps.
d< Yo 6) To obtain all the collective dark states, we notice tBat
wo’ =E,L:1§| is expressed as a sum bfspin5 operators. From
. the angular momentum theofg2], S®, S, andS® can
in Egs. (4) and (5) ek (i~")~1, and theny; and §; are  be chosen as three generators of th@salgebra. The irre-

independent of the qubit index. In this circumstance, we deducible representation of the (@ algebra in the two-
note vy;; =y, &j=0y, and Si=2|L115|i . Equation(3) is  dimensional Hilbert spackl,,, of a single qubit is denoted
thus simplified to by D4, thenD?}g defines arL-fold tensor product represen-
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tation of the s(2) algebra in the whole '2dimensional Hil-
bert spaceH ;5 of L qubits. The representatiddy5 is re-
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this into Egs.(15) and(16), we obtainN(L)Z([LL,z]), where
[L/2] indicates a minimum round number of no less than

ducible, and it can be decomposed into a series of irreducible/2. The quantum error avoiding codes are obtained by en-

representations of the &) algebra, such as

D{5=D1,®Dy;,=D;&Dy. (12)
Suppose D$2 has the decomposition D3
=a|_on;(21)Dj(2l), where D;(2I) denotes the

(2j +1)-dimensional irreducible representations of th€su
algebra in the state space of Qubits, andn;(2l) is the
multiplicity of D;(2l) in the decomposition; then we have
the following recursion relations [setting n_4(2l)

=n11(21)=n;5(21)=0]:

D®2|+1

®2l
172 Dy ®Dapp

1+(1/2)
= ® [Njyap(2D)+nj_1p(2)]D;(21+1),
=12

13

©21+2_ ~®2l+1
Dyz “=Dy7 "®Dyp

I+1
=& [2nj(2|)+nj_1(2|)+n]+1(2|)]DJ(ZI +2).
=0

(14
Equations(13) and (14), together with Eq(12), determine

the decomposition db 5 with an arbitraryL. In the decom-
position ofD1,2 there aren;(L) (2] +1)-dimensional irre-

coding arbitrary input states into superpositions of the col-
lective dark states. The encoding space iN¢t.) dimen-
sions; thus the optimdl-bit quantum code has the efficiency

1 1 L

If L is large,n(L) is approximated by % (1/2L)In,(7L/2),
which approaches 1 very rapidly. Hence, in the presence of
collective amplitude damping, these codes are much more
efficient than the previously-discovered quantum error cor-
recting or avoiding codes.

IV. EXPLICIT CONSTRUCTION OF THE L-BIT CODES
WITH SOME SMALL L

The orthogonal collective dark states obtained in Sec. lll
can be chosen as a set of basis vectors for the encoding
space. To construct the codes explicitly, we need only ex-
press the collective dark states in the computational basis,
whose basis vectors are the coeigenstates of the opesators
s3,..., ands{ . The two eigenstates of the operasdr with
the eigenvalues 3, are denoted byl) and|0), respectively.
The collective dark states and the computational basis vec-
tors are connected by the Clebsch-Gordan coefficig82k
Here, we explicitly construct the optimatbit QEACs with
L=2,3,4. These codes are simple and involve only a small
number of qubits, and at the same time have notably high

ducible representatior; (L) whose representation spaces €fficiencies, so they are an ideal choice of quantum codes in

are denoted byH{™ (L), wherem=1,2,..., andn (L) re-
spectively. The whole '2dimensional Hilbert spacbl 1)z Of

L qubits splits into a series of orthogonal subspace

H(m)(L) according to the decomposition 61‘1,2 In every

subspace H{™(L), the Casimir operator $*=(S¥)?
+(SY)2+ (S?)? has the eigenvalugj+1). The subspace

the presence of collective amplitude damping.
In the case of two qubits, the encoding space is of two

é:iimensions. The two codewords are given by

H{™(L) is of 2j+1 dimensions, whose basis vectors can be

chosen as the eigenvectofsm;), of the operatorS(Z)
where mj=—j,—j+1,.j. In each spaceH{™(L),
lowest- we|ght statdj,— ) satisfies the conditiors - )|J,

i—0m —0)= — (|10)—
[i=0m;=0)= " (|10~[01), (18
[i=1m;=-1)=[00), (19

—j)m=0, and no other states have this property. Hence therghich are suff|C|ent to encode one qubit of information. The
is one and merely one collective dark state in each subspad@dficiency i is3.
H{™(L), and the dark states in different subspaces are or- In the case of three qubits, the encoding space is of three

thogonal to each other. The total numib#iL) of orthogonal

dimensions. The codewords read

collective dark states is therefore just the number of the ir-

reducible representations in the decompositiorlD@fg, ie.,

the total numbeN(L)=3;n;(L). From Eqgs.(13) and(14),

we obtain the following recursion equations abodlft ):
N(2[+1)=2N(2l)—

ng(2l), (15

N(2]+2)=2N(2l +1), (16)

whereng(2l) is the multiplicity of the one-dimensional irre-
ducible representations in the decompositiorD@’z', and is
known to beng(21)=(2)![I1(1+1)!]" ! [19]. Substituting

1 1
‘J_Elmj:_§>l:%(|001>+|100>_2|010>),
(20)
111
j=5m=-3 Z—E(|00]>—|100>), (21)
3 3\
J—E,m _E —|000> (22)
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The efficiency of this code ig In, 3. At least one qubit of
information can be encoded.

[|0)—(|0)+]1))/v2,|1)—(]0)—|1))/v2]. The symbols
Cij and Cj(H') denote the controlled-Not and the

In the case of four qubits, the encoding space is of sixontrolledH’ operations, respectively, where the first sub-

dimensions. The codewords are

1
i=0m=0);=> (110~ |10)(|10-|0D), (23

: 1 1
j :O:mj:0>2:‘/_§ [1001)+[1100 - 5 (|01 +]|10))([0D)

+]10))1, (24)
] 1
|J=1,mj=—1>1=5(|10>—|01>)|00>, (29
. 1
|J=1,mj=—1>z=5 |00)(|10)—|01)), (26)

1
[i=1my=—1)a=3 [(|0)+]10)|00)— [00)(|0)+10))]
(27)
|j=2,mj=—2)=|OOOQ, (28

respectively. The efficiency of this code 3§1+1n, 3). At
least two qubits of information can be encoded.
The two-bit code is of special interest. It costs the leas

number of qubits, and therefore has a good chance to be first

script of C;; or C;;(H") refers to the control bit and the
second to the target. The controlled- operation performs
the joint transformatiod’ on the target bit if the control bit

is in |1), and leaves the target bit unchanged if the control bit
is in |0). The input state of a single qubit can be generally
expressed ad¥ (0)),=cq|0)+c4|1). An ancillary qubit 2 is
prepared in the stat®),. The input state is encoded by the
following operation:

C21C1AH") c,
|¥(0))1]0); —— |\Pent>12=00|00>+5 (]10)—|01)).

(29

The encoded state is subject to no collective amplitude
damping, and afterwards it can be decoded by applying the
same operation again in the reverse order, i.e.,

C1aH")Cy1
|\I,en912—> |\I’(O)>1|O>2- (30

The controlled-Not and the controllddi- operations in-
volved in the encoding and decoding have been demon-
strated[26,27], and cooperative effects in amplitude damp-
ing of two trapped ions have been observed experimentally
[28], so the proposed two-bit code has a good chance to be
{'mplemented in the near future experiment.
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