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Complementarity and quantum erasure inwelcher Wegexperiments
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We extend the concept of distinguishability and likelihood introduced by Englert in Phys. Rev7Lett.
2154(1996 to encompass quantum erasure. We delineate the necessary and sufficient condition for obtaining
optimal values of distinguishability and erasure. Finally we apply these measures on a gesaluken Weg
experiment consisting of a coupled atom-photon interferomgsdi050-294©@8)08311-9

PACS numbeps): 03.65.Bz, 42.50:p

I. INTRODUCTION The object is set up by a “beam splitter” in a superposition
of taking the uppef+) path and the lowef—) path, with
A fundamental notion of quantum mechanics is that ofassociated object statfist,)} and{|—,)}. The object states
complementarity. If we know, e.g., the location of an object|+,) and|+ ) are orthogonal, both with the object in the
so it becomes particlelike, then no wavelike behavior, like(+) path but with the object in different internal states, when
interference, can be observed, and vice versa. Recently ER# p. To exemplify, if the object is a two-level atom, the
glert showed a fundamental inequality between the fringd+o) State may designate the atom localized to the upper
visibility and the distinguishability{1] in a welcher Weg path in its ground state whilet ;) may designate the atom
measurement. What is notable with Englert's derivation idocalized to the upper path in its excited state. A meter sub-
that it is logically independent of any uncertainty principle, it sequently interacts with the two object modes under a possi-
relies solely on the unitary transformation of the object ancbly nonunitary transformatiot=U, ® U_, where the fact
meter state$1-3]. that the upper and lower object paths are physically sepa-
In this paper we discuss the connection between Englert’gyeq allows us to factorizé into distinct upper- and lower-
somewhat abstractly defined distinguishabiligee below  hat transformations. After the interaction we allow the pos-
and the distinguishability measured by some specific detec-

tor. As we shall see below, and Englert points out in hiSs,|b|I|ty of a unitary transformatiorJ ,, that is local to the

paper, unless one carefully matches ones detector to the sta eeter. Subsequently we detect the state of the meter by a

containing thewelcher Wegnformation, one will not be able 6tector. We note that it is possible to choose many different

to extract the fullwelcher Wegnformation that is available. mishc’faiﬁt?ﬁ;ofbfgéf?f ir:e:ﬁre’ ?r?e?efztreirswﬁ hae\z/r?e?aeltercmgetdirlnn
We also extend Englert’'s analysis to include quantum era- P J, ! : N9 '
: any of the detector’'s associated eigenstates.
sure[2,4—7]. Quantum erasure is a procedure where the state i
In the paragraph above we have introduced the term ob-

in which thewelcher Wegnformation is encoded is manipu- ject and meter as if these terms were unambiguous. In reality
lated in such a way as to prevent thelcher Wegnforma- this is not the case. What constitutes, e.g., the object is de-

tion from being extracted with the chosen detector. In & A,
X . e ined by the detectorénot shown in Fig. 1that need to be
quantum erasure experiment this lossficher Wegnfor inserted in the two paths to measure which path the object

mation s traded against the reappearance of the compleme&)—ok or to measure the object interference visibility. In
tary information, i.e., the object interference fringéshe theo'r the detectors mav be “Jshar vie. thev will “cIi():/l.<”
complementary information is quantified by the visibility of | ¥ ticular stat y be P, tH -~ they

the interference fringesThis is what sets quantum erasure only 1 a particuiar state impinges on them.

stroys information without trading it for complementary in- 9 )

. the object as separate entities. According to this definition, if
formation. . . .
. ... the state of the object changes, the object ceases to(thast
In previous treatments of quantum erasure, specific

schemes have been discussed. Our treatment, on the othoebr](aCt detector will not “click”). This is in contrast to our

hand, is general and clearly spells out what is needed iﬁveryday notion where most of us think about, e.g., an atom

terms of unitary transformations to do quantum erasure. T&S an object that has a physical existence independent of its

delineate the trade-off betweerelcher Wegnformation and
the visibility we extend the visibility measure to include con-
ditioned visibility. With these concepts we demonstrate the object
conditions under which it is possible to erase thelcher =~ — | Splitter
Weg information contained in the meter state and to what ()-path
extent this will lead to an improvegtonditiona) visibility.

Let us consider the schematic setup depicted in Fig. 1.

Welcher weg or
interference

__J Detector
*Electronic address: gunnarb@ele.kth.se FIG. 1. A schematic setup ofwelcher Wegexperiment.
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guantum state. However, while it may seem “natural” to meter detector is unsharp, the whole objective with our
speak about a two-level atom having a physical existencanalysis, and any associated experiment, will fail. In reality,
regardless of whether it is in its excited or its ground stategxperiments are usually designed with an intentional asym-
the picture becomes more ambiguous if we assume that tHgetry between the meter and the object to assure that a suit-
object is a single photon. In this case subtraction of oneéible sharp meter detector can be implemented.
energy quantdthe equivalent to the emission of one quanta_ We start the analysis by reiterating Englert's definitions.
from an excited atojnwould leave the object in the electro- The preinteraction object is assumed to be described by its
magnetic ground state. We believe that few physicists wouldlensity operatop,, where we have assumed that only one
still think about this zero-point field as the “objectwhich ~ of the object internal states is excited. Tlaepriori) predict-
was a one-photon statbut in a different state. Hence, from ability P of the object being found in the upper or the lower
this point of view it is natural to define the object in terms of path is
a particular quantum statgvhich must be one of the detec- . .
tor's associated eigenstateBefining the object in terms of a P=|(+olpol+ o) —(—olpol =) =Wy —w_[,  (2)
single quantum state the analysis[il] is sufficient to de- . o ,
scribe the distinguishability and visibility of anwelcher ~Where|+o) and|—o) represent identical internal states with
Wegexperiment in which all nul{= no “click” ) results are the object in the upper and lower path, respectively. The
ignored. Note that the same sharp detectors need to be usBEgdictability satisfies & P<1, whereP=0 represents na
both to determine which path the object took and to measurBfiori knowledge of which path the object will be found in
the visibility. In both cases null results must be ignored. ~ @ndP=1 represents the case where there is no uncertainty as

However, in practice many detectors are not “sharp,”to which path the_ object will be_ found in. The two cases
they will have insufficient resolution to distinguish between €orrespond to object “beam splitters™ with transmittivities
different states. To exemplify, suppose a slow Rb atom®f 50% and O or 100%. As demonstrated by Englert, the
moving at 1 m/s is “beam-split’ and we want to measure Maximum preinteraction visibility of an object mtgrferom-
which path it took. Furthermore, suppose we chose to defineter is V= (1—P?)Y2 and this visibility requiresp, to
the “object” by measuring the linear momentum of the Rb represent a pure state. If one is to predatestimatgwhich
atom. The presence of the object would be defined by @ath one will find the object one strategy one may use is a
linear momentum measurement result of>X41 ?(kgm)  Maximum likelihood estimation. This strategy dictates that
in one of the paths. If the meter consisted of a pulse ofn every realization one should predict the path with the
photons at 780-nm wavelengtthe RbD, line), and if for ~ highesta priori probability. If, e.g.,w,>w_ one should
some reason the object-meter interaction leaves the Rb atopfedict that the object will be found in the upper path in
in its excited state, then the atom’s state will change and severy realization. Hence, the likelihodd of correctly esti-
will the atom’s linear momentum. The momentum changemating in which path the object will be found Is=w_
would be approximately-8.5x 10" 2%(kg m) (depending on =(w,+w_+w, —w_)/2=(1+P)/2. The last equality
whether the photon copropagates or counterpropagates witbllows from the fact that Wf’o}: |<+o|;)o| +o)
the atom, that is, less than 1 part in 1®f the atom’s total Cn = N\ = —

+{—olpol —o)|=w, +w_=1.

momentum. Hence, it is unlikely that the detectors will be  The jnteraction will in general entangle the object and the

able to resolve the slight momentum shift. Therefore one ofneter. Hence, the post-interaction total object and meter den-
the detectors will click indicating the presence of the ObjeCTsity matrix

although the Rb atom was in a state orthogonal to its ground
stgte, Whlph_ was our definition of the object. We see that in ;)z 0;’0®;700T7 )
this case it is hard to analyze the outcome of the experiment

using a theory that defines the object in terms of a particulaghere 5 corresponds to the preinteraction density operator
state. We believe it is still meaningful to talk about the objectys the meter, will in general be nonseparable. Englert defined

by taking one path or the othdat least subsequent to a {he (postinteraction distinguishabilityD of the object to be
measuremeiyt although the object may be in one of two i the upper and lower path as

(orthogonal internal states. As indicated above we will

therefore define the object in terms of two sets of states

{|+} and{|—,)}, which can be associated with detector DZTTD[
clicks from an upper and lower path detector, respectively.

Note that, e.g., the electromagnetic ground state may belong - -
to these sets, somewhat contrary to the everyday usage of the =2 Trpdlpsn—p-nl}, €)
term “object.” We will discuss this further in Sec. IV. We "

have already introduced the notation “internal state” to dis- NIy
tinguish the respective states within each set from each othe\f\{hereIAI = VA'A denotes the absolute value of the operator

It is our hope that this extension of Englert's work in termsA and the trace is taken over the meter states. The operator
of internal states is helpful to experimentalists that usually dg , ,=(+,|p|+ ) and correspondingly fop_,,. The distin-

not possess infinitely “sharp” object detectors. Finally we guishability is hence the sum of the Hilbert-space distances
note that throughout the paper we will assume that the metdretween the meter density operators conditioned on the re-
detector is sharp. The rationale for this assumption is that ispective stat¢+,) and|—,) of the object.

is the state of the meter we want to use to be able to predict We note that Eq(3) actually differs from that of Englert
which path the object will be found in. Therefore, if the in two respects. First we have used un-normalized condi-

; (13+n_13—n)

|3
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tioned density operatoys, , andp_. ,. The reason for this is Where we have first summed over all internal object states,
mainly to simplify subsequent notation. Second, as discussdfen allowed for a unitary transformation local to the meter
above, we have allowed for the possibility that the objectand then finally projected the conditioned summed density
changes its internal state as a consequence of the interactifitrices of the meter onto the detector eigenstates. The ab-

with the meter. Keeping with our definition of the object, we Solute value of this detector outcome probability difference
therefore Suni)-%—n_;)—n over all object internal states. If the constitutes our measure of how well the which-path informa-

object detector is sharp, these states can be separated anHOQ gar;] bfa‘kreadl O(;J(TTE mt;aasEureld digtingu(;sr;]ability is_ de-
separate distinguishability, can be assigned to each sub- noted the “knowledge’Ky by Englert[8], and the equation

ensemble. This will lead to a hiaher distinauishability exce ta}bovg can be found implicitly in the definition of the estima-
. S S W ~ 9 'St gu'.s I.I y ex |Ot|on likelihood £,, in [1].) We note once more that if the
if all n operators p,,—p_,) are orthogonal, in which case

D=X,D,. The latter case is ensured if both the object an(JObl_ect anhd tge r_n;teDr preinteraction state is pure, @nis
the meter preinteraction states are pure, the interaction d&"tary, thenDp,=2,Dp, .

scribed byU is unitary and(as we have assumethe meter We note thatp.,—p_, is a Hermitian operator so the

detector is sharp. In this case identification of the respectivéliagonal operator coefficients are real valued irrespective of

D,’s can be achieved through the outcome of the meter medhe chosen basis. In EdS) above we have included the

surement. unitary transformation of the metél,,. This transformation
The postinteraction likelihood of estimating in which path will not affect D (or V, see below but it will in general

the object will be found by an optimal measurementis changeD,,. If the total object and meter evolution is unitary,

=(1+D)/2. Itis worth noticing that the priori information  then one can find a unitary operatdy,, so that the operator
aA\bout the path the object took is built infb For example, if Omn(;hrn_;)fn)o‘rmn is strictly diagonal in the detector

U is the identity operator then eigenstate basis. In fact, if the object and meter preinterac-
0 if N0 tion states are pure, andl is unitary, the relatiof = | + ;)
~ A ~ ~ ~ 2 .
Pen=po®{Elpol £ n)= (4)  =0np ensures that Tp.,p.pl=W35,5,, since quantum

w.pp if n=0. numbers are conserved in closed systems. Therefore, in such
a case it isalways possibldo find a unitary transformation
Un=Uno®U®- - - @ U, that simultaneously makes ail
operators Upn(psn—p_n)Ul . diagonal in the detector
eigenstate basisThis operator U, represents the ideal
As stated above, the distinguishabilBydefined by Eng- postinteraction unitary transformation of the meter so that
lert is the optimum distinguishability. In general the distin- the measured distinguishability JDequals the distinguish-
guishability inferred from a measurement will be smallerability D. Alternatively one can incorporate the unitary trans-
than D since the meter detector will not optimally use the formationU,, in the meter detector so that this unitary trans-
Hilbert-space distance between the operafors andp_,.  formation plus the “bare” detector constitutes an
It is particularly convenient to express these operators in the‘effective” detector. This optimal “effective detector” is
complete orthonormal basis associated with the detectorhe one that make all operatorg.(,—p_,) diagonal when

{l#1)}. A measurement of the meter will collapse its stateexpressed in the “effective” detector eigenstate basis.
into one of the detector eigenstates. Only if the meter states |t follows from the definitiong3) and(5) thatD,<D and

corresponding t® ., andp_, have differentmete) detec-  that the equality holds if and only i ,(p,n—p_n) U/ is

tor statistics is it possible to get any path information fromdiagonal in the detector eigenstate basis fonallnder cer-
such a measurement. To exemplify,|ifq) and [¢/1) are  tain conditions(to be derived beloyit is also possible to
detector eigenstates, then the staig = (| ‘/’0>+|¢1>)/\/§_ find a differentU,, so thatD,,=0 althoughD may be unity.
and|&1)=(|#o) — |11))/ /2 are orthogonal, but they are in- This corresponds to total quantum erasure, the conditioned
distinguishable by the detector, since the probability of col-states of the meter has been projected onto the detector in
lapsing| &) and|é;) into e.g.,| ) are both equal to 1/2, and guch a way that the path information encoded on the meter
the same fot4). If, on the other hand, we chose a detectorcannot be extracted.

for which|&,) and|&,) were both eigenstates, then we could  The visibility V for the setup in Fig. 1 is defined as
distinguish perfectly between these states. We see that our

choice of detector will influence how well we can read the -

welcher Wegnformation in the meter, and as we shall see V=2 En: (+nlTrolp} —n) $; Vi

below the choice ofeffective detector provides the founda-

tion on which quantum erasure schemes are based.

Hence, in this casd) =P.

IIl. MEASURED DISTINGUISHABILITY

The measured distinguishabiliy,, is given by E; 2|(+nlTrofp} =)l (6)
D.= 10 S 5 Z0He <SS D This definition, too, is contingent on our definition of the
m Z (il m; (pen=p-)Unli) ; ™ object. We sum over all the object internal states since the set

of states are defined to be the object. Superficially, the out-
— 10 (pon—p_ )0t 1w)l, 5 come of the meter measurement plays no role. However, if
; ZI (gl Unm(p+n=p—n) U] )] ® the preinteraction state of the object and meter are pure and
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U is unitary, the postinteraction state of the meter will allow9ime, and makes a natural connection between Englert's
one to identify the internal state of the object. This will lead Somewhat abstractly defined distinguishabilly and that

to identification of the respective visibilitieg,, which, in ~ measured in a laboratorf,, (or the knowledge reaped from
general, will result in a higher visibility than if the meter the measurement, in Englert's langunge

detector outcome is simply ignorédr the meter is not de-  In order to achieve the upper limit of E(L1) a necessary
tected at all. but insufficient condition is that the object-meter interaction
A fundamental inequality Englert implicitly established be unitary. In the following we will treat only this case. To
was derive the bounds fob,, and V., let us first assume that
y s , Tro{p+np_n} =0 for somen, i.e., thatp,, andp_, are or-
DL+ Vis(Wiptw_p)s, (7)  thogonal. Any unitary transformation will leave the density

~ L . matricesp, , andp_, orthogonal. Specifically, it is possible
wherew..,=Trp{p~,} and where the equality sign holds if find Pein P ”f g_ b ph h z P
the total postinteraction state is pure. Summing over the ob° find @ unitary transtormatiodl ,, such that the meter states

ject internal states gives us the inequality corresponding t@ .., andp_, are transformed onto two or-
thogonal detector eigenstatés;,, ,) and|¢_,). Hence, the

term in the postinteraction density operator corresponding to
2 2 2.
En: Dn+vn$§n: (Win+Wop)™ ®  the stateg=+,) can be expressed

Eq. (8) reduces to Englert's explicit resultif. ,#0 for one,  W-rnl o)+l ®[n)(Wnl +W_n| = n) (=l ® |r—n)(th—n|-
and only one, value of,, since, in this case, (12

o . In this basis it becomes clear th@tmnanzmerw,n,
T{U®U o0l = En: (WintW_p)=(W,nt+wW_p) andV, =V,=0. However, if we rotate the meter state using
the only nontrivial two-state unitary operator

0 | cod¢n) isin(¢y)
Ill. CONDITIONED VISIBILITY mnl $n) = isin(¢p,) cog ¢y |’

=1. 9
(13

In the case whe® =1 then Englert's analysis asserts thatthen it is straightforward to show that
V=0. However, it follows quite naturally to ask if somehow
the visibility can be resurrected when simultaneouBly, Wy n=W_ | <Dy SW,q+W_p, (14
=0. To this end we define a conditioned visibility, where the
measurement information about the meter state is incorpcand

rated in the visibility measurement. The conditioned visibil-
ity is defined as 0=V, <2VW; W_p. (15

All values in the respective ranges can be achieved by a

proper choice of rotation angle,. If p., and p_, are
orthogonal for all nit follows that

chzi 2 <‘//||; <+n|0m;30l1|_n>|l//i> gg Vcn

52 E 2/(+nl (| OmpUl gy @] = o). (10

|W+_W—|EP$; |W+n_W—n|$Dm$; WintW_p

Note that in contrast t&/, the conditioned visibilityV, per

definition uses the meter detector result and records the vis-
ibility of each subensemblglabeled” by the meter detector
eigen-state indek) before adding them. It follows from the : ey e :
definition thatV.=V. This is also quite natural, because this predictability > and cannot exceed the distinguishabillty

) ! : ; guation(16) also shows thabnly if w, ,=w_, for all n is
is a type of postinteraction selection of states and such posi: ibl btai | m
selection can never degrade the obtained visibility, only im-. POssIbie to obtain a complete quantum erasurg,=b.

) L : e This last condition can be restated as
prove it. Once again, if the object and the meter preinterac-

tion states are pure andl unitary, Ve=2pVe, due to Tro{(psn—p-n)}=0 V nesD,=0. (17)
guantum number conservation.
The fundamental inequality for measured distinguishabil\when condition(17) is fulfilled (and p,, and p_, are or-

—1=D. (16)

The result is intuitiveD ,, cannot be smaller that theepriori

ity and conditional visibility corresponding @) is thogonal for alin) then it follows[from an explicit but trivial
calculation using Eq(13)] that V.= 1. Furthermore, in this

. . 2 2 . .
; Dfnn+vgn<; (W, +w_ )2 (1)  case, it can readily be shown thatD7, +V; is indepen-

dent of the unitary transformatiortﬂm and is equal to
i s 2
This is one of the central results in this paper and the proo?n(anJFanz for whatever values oé, one chooses.
will be outlined below. The result extends Englert’s analysis If p,, andp_, are orthogonal, butv, ,#w_, the sum
to the (intentional or nonintentionalquantum erasure re- EnDann+V§n can still reach the upper limit spelled out by Eg.
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(12). This limit is reached when a[Dmn are maximizedand 11>
hence, all\/cn=0) by a proper choice of the rotation angles 10> ‘1 ‘LI 2 \
¢n. ON the other hand, the minimum value Bf, +V¢ is 215, splitter N
iven by the expression 1 HINY
g y p N ,D_
(WontW_)%(16y5— 325+ 20y5— 4y, +1),  (18) . fo| oy P
4 ! x7-pulse 2
where y,=ma{w,,,w_,]/(w,,+w_,). Hence, the | >3~5‘~V 3 3
“worst combined” measurement d?2, +V2 will be & 0 Interference
n n ) Il m-pulse 4
min[Drznn+V§n]=3(W+n+w_n)2/4, (19

FIG. 2. The proposed experiment. A single-photon optical inter-
ferometer(top) probes the path information of an atafimottom).
The right optical beam splitter performs the photon-state rotation

corresponding tdJ , .

and it will be obtained for the specific choice of relative
object internal state probabilities giving=(2+2)/4 and
(assuming thaw, ,>w_,) ¢,=arcco$[(2+ y2)/4]*2.

Let us now turn over to the case whapn, ,) and|y_,,)
are nonorthogonal for some It is then not possible to ob-
tain D=1. We define an overlap of the postinteraction con-
ditional meter states as

state. Due to the linear momentum of the absorbed photon,
the excited-atom wave function will have a superimposed
velocity component in the direction transverse to its initial
velocity. Therefore, with time, the ground- and excited-state
A A center-of-mass wave functions will separate spatially in the
C%M, (200  Vertical direction(in the figurg. The subsequent pulse will
WynW_p stimulate the excited atom to relax to the ground state and
) _ emit a photon(with unity probability, in the process restor-
where O<c,<1. Using this measure, the bounds ©f,  ing the transverse linear momentum so that the atomic states
andVCn are calculated as in path 3(before the interaction with the me}eand path 4
have identical internal statéthe ground stajebut are spa-
(W= W_p|<Dpm <[ (W +W_p)2— 4w, w_,c2]*? tially separated.
! The photon interferometer in Fig. 2 has one 50% trans-
=Dy, (21)  mission beam splittefat left) and one variable transmission
beam splitter(at right. A single photon wave packefl)
and enters this interferometer and is put in an equal superposition
— of being in the upper and lower photon-interferometer path.
V=26 YW qW_n <V S2YWqWop. 22 The ph%ton will %@ used to prokr))e the upper atom pa?h to
] ) determine which path the atom is in. Specifically, the lower
These relations and E¢l1) delineate the bounds for quan- photon-interferometer path mode and the upper atom inter-
tum erasure measurements. We see that in order to makgrometer path mode will interact under the interaction
szo tP]e relation(17) is sufficient, the respective operators HamiltonianI:h during some interaction time, giving
p+nandp_, need not be orthogonal. It is also possible to get
V.=1 in the same situation. This makes sense because in 0+:exq_i|:|i7-/ﬁ) (23
order to get maximum visibility every internal state must be
split symmetrically between the two paths. On the other hanénd
it is clear that it is not possible to g&t=0 (and hence not L
V,=0) when any paifp., andp_, is simultaneously non- U.=1, (24)
zero and nonorthogonal. This is also obvious, because non- - ) )
orthogonal conditional meter states will prevent us from lo-Where 1is the identity operator. In the language used above,
calizing the object to any one path with certainty. Thereforethe atom, in its ground or excited state, is the object and the
the object will remain in possibly weak superposition of ~Photon, in either stat¢l) or [0) is the meter. The meter

being in both paths with subsequent probability amplitudedetector used are photodetectors, so the convenient basis to
interference as a result. express the state of the meter is the number basis.

Let us assume that the atom “beam splitter” has a 50%
transmittivity (implying x=1/2). Hencew_ =w_=1/2. We
denote the total object and meter state by a veldt®,3,4,

In the remainder of the paper we apply the formalismwhere the state in mode=1, ... ,4 (identified at various
outlined above to a specifigelcher Wegsetup, illustrated in  places of the measurement setup on Fjgs2ndicated in the
Fig. 2. The object is represented by a two-level atom waveorresponding position in the state vector. The pertinent total
packet, whose trajectory is split by the means okanpulse  object and meter state vector space is spanned by the five
and oner pulse. If the atom initially is in its ground statg)  vectors |1,09,—), 0,1g9,—), |1,0,—-,9), |0,1,~,9), and
then the exact value of (0=<x=1) determines the splitting- |0,0g,—), where 0 and 1 denote a zero- and one-photon
fraction of the atom “beam splitter.” Th&s pulse prepares states in the mode in question, and g, ande denote no
the atom in a superposition of the ground and the exciteé@tom, a ground-state atom, and an excited atom in the mode.

IV. A GEDANKEN EXPERIMENT
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FIG. 3. Distinguishability and visibility as a function of thé,, FIG. 4. Distinguishability and visibility as a function @f.
rotation angle¢. The right beam-splitter transmittivitgin Fig. 2)

corresponds to cdgp). In Fig. 4 we have plotted the same quantities when the

initial atom “beam-splitter” has a transmittivity of 3/4x(

Using this basigin the order indicatedwe can represent the =1/6) but everything else is left invariant. In this casey
total object and meter state as a five-component vector. Usind p_, are still orthogonal, butv, o=3/4#w_,=1/4 due
ing the initial state (1,0,0,0,0), the state is transformed to théo the asymmetry in the atom “beam splitter.” We find that
state (1i,,i,—1,0)/2 after the two beam splitters and the in this case toop=1 andV=0. However, in this case full
pulse. The modes (lower photon and 3(upper atomsub-  erasure of the information represented by the entanglement
sequently interact under thérotating wavé interaction cannot be obtained sincéw,,—w_o|=1/2<D,<=w,,
Hamiltonian +w_g=1, as seen in the figure. FurthermoresV,
<2W,oW_o=1/3/2~0.866. The unequah priori path
probability of the object always gives us some minimum
path information & P). This information prevents the object
from displaying full wave characteristics so that the visibility
cannot reach unity.

Finally we can look at what happens if we let the atom
“beam splitter” have 50% transmittivity but le® = not be a
multiple of 7. In Fig. 5 we have usef) r=57/4, leading to

H,=:Qgr@'oc_+ac,), (25)
where o_=|g)(e|, and o, =|e)(g| are the Pauli spin-flip
operators,é the photon annihilation operator, arfdl; the

vacuum Rabi frequency. After an interaction timehe en-
suing state becomeé&osf)7),i,i,—1, sin(Q7))/2. We see

that when() 7 is an even multiple ofr the state is left un-
changed and hence factorizalilbis corresponds to a full
Rabi cycle. WhenQ 7 is an odd multiple ofr the state of

the final state € 1,i2,iy2,—v2,—1)/(2y2). We see that
in this case we get tqu operators corresponding to the
atomic statesg) and|e). If we give the first of these opera-

the atom and photon modes are completely entangled, or itors the index 0 and the second the index 1, we find that

the language used aboye,, andp_ are orthogonal and all W+0=3/8, w,;=1/8, w_o=1/2, andw_;=0. In addition
other operatorg ., are zero. Computind® and V of this Co=(v2-1)/\8, that is, the two meter states conditioned
state we find thab =1 andV=0. It is therefore possible to O the ground state atom in paths 3 and 4 are nonorthogonal.
determine with certainty in which path the atom will be According to Eq.(8) this leads to

found. However, this state h&,, =0, so if the second pho-
ton beam splitter has unior zerg transmittivity, it is im-
possible to distinguish the meter states conditioned on the
atom in paths 3 and 4, respectively, with the chosen detecto e also find thatS.|w..—w_.|=0.25<D.<3 [(w
The reason is that the meter states conditioned on the atom%/ 2_4 2n|1/2:n0 98;|D .Th fm . trr;[(tAM
paths 3 and 4 are (|1,0+i|0,1))/y2 and i(|1,0 W) "~ AW, WG]~ 0. - the fact thatp.o
+i|0,1>)/\/§, respectively. These states are orthogonal but
have identical diagonal density-matrix coefficients if ex-
pressed in the number-state basis. Therefore they are indis-
tinguishable when measured with a photon-counting detec-
tor. However, as discussed above, by a suitable unitary
transformation the states can be rotated so thaj—p_,
becomes strictly diagonal in the same basis. In Fig. 3 we
have plotted)mo (=D andVCO (=V,) as a function of

the unitary rotation angleb. The physical interpretation of
this angle is that the transmittivity of the second photon
beam splitter is cd$¢). We see thaDmo and Ve, vary pe- %

riodically while D7, +V; =1, and is an invariant since

> D2+V2<(7/8)%+(1/8)2~0.781. (26)
n

1.0

0.5 1 15 2
Rotation angle ¢ (rad)

2.5 3

W,0=W_g andp,, andp_g are orthogonal. FIG. 5. Distinguishability and visibility as a function f.
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and p_, are nonorthogonal makes it impossible to localizecontrol the interaction time, and to have object and meter
the atom to any one path with absolute certainty. The condidetectors with close to unit detection efficiency and negli-
tioned visibility will similarly lie in the interval 9ible noise for single quanta. However, simiaelcher Weg

2Co W, oW_o=V~0.146<V <2\\W, w_o~0.866. This is and quantum erasure experiments have recently been per-

quite clearly confirmed by the figure. Using these numbers iformed using Rb atoms and microwave phot¢k which
is 10 be noted thab2+ V2~0.997< 1 for this state. we believe can successfully be analyzed with our general

Bef luding thi . il brieflv di formalism.
elore conciuding this section we will Driefly dISCUSS ——yq finally note that our gedanken experiment is a perfect
some theoretical and experimental aspects of the gedank

. ) . %@(ample of a case where the loss of visibility when the ob-
experiment described above. The gedanken experiment Wasers wave function is collapsed into one of the interferom-

_chosen because of its computational simplicity. Both the obgier paths cannot be ascribed to a random momentum kick
ject and meter detector outcomes are discrete, which makegparted by the meter. Instead, the loss of visibility is due to
the operator algebra simple. The example also demonstrat@snonlocal momentum transfer to one of the states in the
a nice duality between the object measurement and the metgpstinteraction entangled object-meter superposition state
measurement. To find the particlelike characteristics of th¢10].

object(collapsing its wave function into one of the two pos-

sible paththe wavelike characteristics of the meter must be V. CONCLUSION

used. The metef= photor) must interfere in the second , .
50/50 beam splitter so no meter-path information can be ob- To conclude, we have extended Englert's analysis to en-

tained. Conversely, to restore the full object interference visSOMpass cases when thelcher Wegneasurement changes

ibility, i.e., making the object wavelike, it is necessary to the internal state of the object and the object detefgtiich

make a particlelike measurement of the meter. That is, Wgefines what constitutes the objetias insufficient resolu-

must make a measurement that collapses the meter into o en to disti'nguish' betwegn the in_ternal states. We have aiso
discussed in detail what information actually becomes avail-

of paths 1 or 2. Note that if neither photodetector clicks, this . . e
still represents a meter path measureméhtthe photo- able when the meter is measured with a specific detector. We
detectors are idenince the staté) (somewhat counterin- have shown that in general this detector information does not

tuitively) belongs to our set of states that defines the meted'V€ the entirewelche_r Weginformation encoded in the
This outcome will localize the meter to path 1, since, underneter. We have explicitly demonstrated how to transform the

the assumptions made, the only way of deexciting the mete;onditioned meter states in such a manner as to enable the

is by exciting the object. This can only happen if the Objectreadout of the fullwelcher Wegnformation. We have also

and meter simultaneously take the paths 3 and 1, respe%elwﬁ:;eg]gl]veeI((’;?]Z?'Wg?ﬂi%rr;(;?g:]e;ggggéug; ?rrlzsx]r:t,etrhat
tively. This conclusion can be experimentally confirmed by ™ 9

correlating the object and the meter outcomes. An ideal such" be traded partialiy or comple_tely f(nonditiongi quect
interference, quantified by the interference visibility. We

experiment will show a perfect correlation between the non; ave demonstrated that a complete eras@e=£0 while
observation of a photon and the simultaneous detection of v . 3 comple ., 7%0 whi
=1) requires a zer@ priori predictability but ensures a

excited atom in path 3. S T .
Of course the experiment works equally well, and can beconditioned visibility of unity.
described by the.formalism above, if we designate the pho- ACKNOWLEDGMENTS
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