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Complementarity and quantum erasure in welcher Wegexperiments

Gunnar Björk* and Anders Karlsson
Department of Electronics, Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista, Sweden

~Received 16 October 1997; revised manuscript received 2 July 1998!

We extend the concept of distinguishability and likelihood introduced by Englert in Phys. Rev. Lett.77,
2154~1996! to encompass quantum erasure. We delineate the necessary and sufficient condition for obtaining
optimal values of distinguishability and erasure. Finally we apply these measures on a gedankenwelcher Weg
experiment consisting of a coupled atom-photon interferometer.@S1050-2947~98!08311-5#

PACS number~s!: 03.65.Bz, 42.50.2p
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I. INTRODUCTION

A fundamental notion of quantum mechanics is that
complementarity. If we know, e.g., the location of an obje
so it becomes particlelike, then no wavelike behavior, l
interference, can be observed, and vice versa. Recently
glert showed a fundamental inequality between the frin
visibility and the distinguishability@1# in a welcher Weg
measurement. What is notable with Englert’s derivation
that it is logically independent of any uncertainty principle
relies solely on the unitary transformation of the object a
meter states@1–3#.

In this paper we discuss the connection between Engle
somewhat abstractly defined distinguishability~see below!
and the distinguishability measured by some specific de
tor. As we shall see below, and Englert points out in
paper, unless one carefully matches ones detector to the
containing thewelcher Weginformation, one will not be able
to extract the fullwelcher Weginformation that is available
We also extend Englert’s analysis to include quantum e
sure@2,4–7#. Quantum erasure is a procedure where the s
in which thewelcher Weginformation is encoded is manipu
lated in such a way as to prevent thewelcher Weginforma-
tion from being extracted with the chosen detector. In
quantum erasure experiment this loss ofwelcher Weginfor-
mation is traded against the reappearance of the complem
tary information, i.e., the object interference fringes.~The
complementary information is quantified by the visibility
the interference fringes.! This is what sets quantum erasu
apart from, e.g., simple additive detector noise, which
stroys information without trading it for complementary i
formation.

In previous treatments of quantum erasure, spec
schemes have been discussed. Our treatment, on the
hand, is general and clearly spells out what is needed
terms of unitary transformations to do quantum erasure.
delineate the trade-off betweenwelcher Weginformation and
the visibility we extend the visibility measure to include co
ditioned visibility. With these concepts we demonstrate
conditions under which it is possible to erase thewelcher
Weg information contained in the meter state and to w
extent this will lead to an improved~conditional! visibility.

Let us consider the schematic setup depicted in Fig
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The object is set up by a ‘‘beam splitter’’ in a superpositi
of taking the upper~1! path and the lower~2! path, with
associated object states$u1n&% and$u2n&%. The object states
u1n& and u1p& are orthogonal, both with the object in th
~1! path but with the object in different internal states, wh
nÞp. To exemplify, if the object is a two-level atom, th
u10& state may designate the atom localized to the up
path in its ground state whileu11& may designate the atom
localized to the upper path in its excited state. A meter s
sequently interacts with the two object modes under a po
bly nonunitary transformationÛ5Û1 ^ Û2 , where the fact
that the upper and lower object paths are physically se
rated allows us to factorizeÛ into distinct upper- and lower-
path transformations. After the interaction we allow the po
sibility of a unitary transformationÛm that is local to the
meter. Subsequently we detect the state of the meter b
detector. We note that it is possible to choose many differ
kinds of detectors for the meter, so after we have detecte
which path the object is in, the meter is, in general, not
any of the detector’s associated eigenstates.

In the paragraph above we have introduced the term
ject and meter as if these terms were unambiguous. In re
this is not the case. What constitutes, e.g., the object is
fined by the detectors~not shown in Fig. 1! that need to be
inserted in the two paths to measure which path the ob
took, or to measure the object interference visibility.
theory the detectors may be ‘‘sharp,’’ i.e., they will ‘‘click’
only if a particular state impinges on them.

By defining the object as a particular quantum state
becomes meaningless to talk about the object and the sta
the object as separate entities. According to this definition
the state of the object changes, the object ceases to exis~the
object detector will not ‘‘click’’!. This is in contrast to our
everyday notion where most of us think about, e.g., an a
as an object that has a physical existence independent o

FIG. 1. A schematic setup of awelcher Wegexperiment.
3477 ©1998 The American Physical Society
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3478 PRA 58GUNNAR BJÖRK AND ANDERS KARLSSON
quantum state. However, while it may seem ‘‘natural’’
speak about a two-level atom having a physical existe
regardless of whether it is in its excited or its ground sta
the picture becomes more ambiguous if we assume tha
object is a single photon. In this case subtraction of o
energy quanta~the equivalent to the emission of one quan
from an excited atom! would leave the object in the electro
magnetic ground state. We believe that few physicists wo
still think about this zero-point field as the ‘‘object’’~which
was a one-photon state! but in a different state. Hence, from
this point of view it is natural to define the object in terms
a particular quantum state~which must be one of the detec
tor’s associated eigenstates!. Defining the object in terms of a
single quantum state the analysis in@1# is sufficient to de-
scribe the distinguishability and visibility of anywelcher
Wegexperiment in which all null~5 no ‘‘click’’ ! results are
ignored. Note that the same sharp detectors need to be
both to determine which path the object took and to meas
the visibility. In both cases null results must be ignored.

However, in practice many detectors are not ‘‘sharp
they will have insufficient resolution to distinguish betwe
different states. To exemplify, suppose a slow Rb ato
moving at 1 m/s is ‘‘beam-split’’ and we want to measu
which path it took. Furthermore, suppose we chose to de
the ‘‘object’’ by measuring the linear momentum of the R
atom. The presence of the object would be defined b
linear momentum measurement result of 1.4310222(kg m)
in one of the paths. If the meter consisted of a pulse
photons at 780-nm wavelength~the RbD2 line!, and if for
some reason the object-meter interaction leaves the Rb a
in its excited state, then the atom’s state will change and
will the atom’s linear momentum. The momentum chan
would be approximately68.5310228(kg m) ~depending on
whether the photon copropagates or counterpropagates
the atom!, that is, less than 1 part in 105 of the atom’s total
momentum. Hence, it is unlikely that the detectors will
able to resolve the slight momentum shift. Therefore one
the detectors will click indicating the presence of the obj
although the Rb atom was in a state orthogonal to its gro
state, which was our definition of the object. We see tha
this case it is hard to analyze the outcome of the experim
using a theory that defines the object in terms of a partic
state. We believe it is still meaningful to talk about the obje
by taking one path or the other~at least subsequent to
measurement!, although the object may be in one of tw
~orthogonal! internal states. As indicated above we w
therefore define the object in terms of two sets of sta
$u1n&% and $u2n&%, which can be associated with detect
clicks from an upper and lower path detector, respectiv
Note that, e.g., the electromagnetic ground state may be
to these sets, somewhat contrary to the everyday usage o
term ‘‘object.’’ We will discuss this further in Sec. IV. We
have already introduced the notation ‘‘internal state’’ to d
tinguish the respective states within each set from each o
It is our hope that this extension of Englert’s work in term
of internal states is helpful to experimentalists that usually
not possess infinitely ‘‘sharp’’ object detectors. Finally w
note that throughout the paper we will assume that the m
detector is sharp. The rationale for this assumption is tha
is the state of the meter we want to use to be able to pre
which path the object will be found in. Therefore, if th
e
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meter detector is unsharp, the whole objective with o
analysis, and any associated experiment, will fail. In real
experiments are usually designed with an intentional as
metry between the meter and the object to assure that a
able sharp meter detector can be implemented.

We start the analysis by reiterating Englert’s definition
The preinteraction object is assumed to be described by
density operatorr̂0 , where we have assumed that only o
of the object internal states is excited. The(a priori) predict-
ability P of the object being found in the upper or the low
path is

P[u^10ur̂0u10&2^20ur̂0u20&u[uw12w2u, ~1!

whereu10& and u20& represent identical internal states wi
the object in the upper and lower path, respectively. T
predictability satisfies 0<P<1, whereP50 represents noa
priori knowledge of which path the object will be found i
andP51 represents the case where there is no uncertaint
to which path the object will be found in. The two cas
correspond to object ‘‘beam splitters’’ with transmittivitie
of 50% and 0 or 100%. As demonstrated by Englert,
maximum preinteraction visibility of an object interferom
eter is Vmax5(12P2)1/2 and this visibility requiresr̂0 to
represent a pure state. If one is to predict~or estimate! which
path one will find the object one strategy one may use i
Maximum likelihood estimation. This strategy dictates th
in every realization one should predict the path with t
highest a priori probability. If, e.g.,w1.w2 one should
predict that the object will be found in the upper path
every realization. Hence, the likelihoodL of correctly esti-
mating in which path the object will be found isL5w1

5(w11w21w12w2)/25(11P)/2. The last equality
follows from the fact that Tr$r̂0%5u^10ur̂0u10&
1^20ur̂0u20&u[w11w251.

The interaction will in general entangle the object and
meter. Hence, the post-interaction total object and meter d
sity matrix

r̂5Û r̂o^ r̂DÛ†, ~2!

wherer̂D corresponds to the preinteraction density opera
of the meter, will in general be nonseparable. Englert defi
the ~postinteraction! distinguishabilityD of the object to be
in the upper and lower path as

D5TrDH U(
n

~ r̂1n2 r̂2n!UJ <(
n

Dn

[(
n

TrD$ur̂1n2 r̂2nu%, ~3!

whereuÂu[AÂ†Â denotes the absolute value of the opera
Â and the trace is taken over the meter states. The ope
r̂1n[^1nur̂u1n& and correspondingly forr̂2n . The distin-
guishability is hence the sum of the Hilbert-space distan
between the meter density operators conditioned on the
spective stateu1n& and u2n& of the object.

We note that Eq.~3! actually differs from that of Englert
in two respects. First we have used un-normalized con
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tioned density operatorsr̂1n andr̂1n . The reason for this is
mainly to simplify subsequent notation. Second, as discus
above, we have allowed for the possibility that the obj
changes its internal state as a consequence of the intera
with the meter. Keeping with our definition of the object, w
therefore sumr̂1n2 r̂2n over all object internal states. If th
object detector is sharp, these states can be separated
separate distinguishabilityDn can be assigned to each su
ensemble. This will lead to a higher distinguishability exce
if all n operators (r̂1n2 r̂2n) are orthogonal, in which cas
D5(nDn . The latter case is ensured if both the object a
the meter preinteraction states are pure, the interaction
scribed byÛ is unitary and~as we have assumed! the meter
detector is sharp. In this case identification of the respec
Dn’s can be achieved through the outcome of the meter m
surement.

The postinteraction likelihood of estimating in which pa
the object will be found by an optimal measurement isL
5(11D)/2. It is worth noticing that thea priori information
about the path the object took is built intoD. For example, if
Û is the identity operator then

r̂6n5 r̂D ^ ^6nur̂ou6n&5H 0 if nÞ0

w6r̂D if n50.
~4!

Hence, in this case,D5P.

II. MEASURED DISTINGUISHABILITY

As stated above, the distinguishabilityD defined by Eng-
lert is the optimum distinguishability. In general the disti
guishability inferred from a measurement will be smal
than D since the meter detector will not optimally use t
Hilbert-space distance between the operatorsr̂1n and r̂2n .
It is particularly convenient to express these operators in
complete orthonormal basis associated with the detec
$uc i&%. A measurement of the meter will collapse its sta
into one of the detector eigenstates. Only if the meter st
corresponding tor̂1n and r̂2n have different~meter! detec-
tor statistics is it possible to get any path information fro
such a measurement. To exemplify, ifuc0& and uc1& are
detector eigenstates, then the statesuj0&5(uc0&1uc1&)/A2
and uj1&5(uc0&2uc1&)/A2 are orthogonal, but they are in
distinguishable by the detector, since the probability of c
lapsinguj0& anduj1& into e.g.,uc0& are both equal to 1/2, an
the same foruc1&. If, on the other hand, we chose a detec
for which uj0& anduj1& were both eigenstates, then we cou
distinguish perfectly between these states. We see that
choice of detector will influence how well we can read t
welcher Weginformation in the meter, and as we shall s
below the choice of~effective! detector provides the founda
tion on which quantum erasure schemes are based.

The measured distinguishabilityDm is given by

Dm5(
i

U^c i uÛm(
n

~ r̂1n2 r̂2n!Ûm
† uc i&U<(

n
Dmn

[(
n

(
i

u^c i uÛm~ r̂1n2 r̂2n!Ûm
† uc i&u, ~5!
ed
t
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where we have first summed over all internal object sta
then allowed for a unitary transformation local to the me
and then finally projected the conditioned summed den
matrices of the meter onto the detector eigenstates. The
solute value of this detector outcome probability differen
constitutes our measure of how well the which-path inform
tion can be read out.~The measured distinguishability is de
noted the ‘‘knowledge’’KW by Englert@8#, and the equation
above can be found implicitly in the definition of the estim
tion likelihood Lw in @1#.! We note once more that if the
object and the meter preinteraction state is pure, andÛ is
unitary, thenDm5(nDmn

.

We note thatr̂1n2 r̂2n is a Hermitian operator so th
diagonal operator coefficients are real valued irrespective
the chosen basis. In Eq.~5! above we have included th
unitary transformation of the meterÛm . This transformation
will not affect D ~or V, see below! but it will in general
changeDm . If the total object and meter evolution is unitar
then one can find a unitary operatorÛmn so that the operato
Ûmn( r̂1n2 r̂2n)Ûmn

† is strictly diagonal in the detecto
eigenstate basis. In fact, if the object and meter preinte
tion states are pure, andÛ is unitary, the relation̂6nu6p&
5dnp ensures that Tr$r̂6nr̂6p%5w6n

2 dnp since quantum
numbers are conserved in closed systems. Therefore, in
a case it isalways possibleto find a unitary transformation
Ûm5Ûm0^ Ûm1^ •••^ Ûmn that simultaneously makes alln

operators Ûmn( r̂1n2 r̂2n)Ûmn
† diagonal in the detecto

eigenstate basis.This operator Ûm represents the idea
postinteraction unitary transformation of the meter so th
the measured distinguishability Dm equals the distinguish-
ability D. Alternatively one can incorporate the unitary tran
formationÛm in the meter detector so that this unitary tran
formation plus the ‘‘bare’’ detector constitutes a
‘‘effective’’ detector. This optimal ‘‘effective detector’’ is
the one that make all operators (r̂1n2 r̂2n) diagonal when
expressed in the ‘‘effective’’ detector eigenstate basis.

It follows from the definitions~3! and~5! thatDm<D and
that the equality holds if and only ifÛm( r̂1n2 r̂2n)Ûm

† is
diagonal in the detector eigenstate basis for alln. Under cer-
tain conditions~to be derived below! it is also possible to
find a differentÛm so thatDm50 althoughD may be unity.
This corresponds to total quantum erasure, the conditio
states of the meter has been projected onto the detect
such a way that the path information encoded on the m
cannot be extracted.

The visibility V for the setup in Fig. 1 is defined as

V52U(
n

^1nuTrD$r̂%u2n&U<(
n

Vn

[(
n

2u^1nuTrD$r̂%u2n&u. ~6!

This definition, too, is contingent on our definition of th
object. We sum over all the object internal states since the
of states are defined to be the object. Superficially, the o
come of the meter measurement plays no role. Howeve
the preinteraction state of the object and meter are pure
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Û is unitary, the postinteraction state of the meter will allo
one to identify the internal state of the object. This will le
to identification of the respective visibilitiesVn , which, in
general, will result in a higher visibility than if the mete
detector outcome is simply ignored~or the meter is not de
tected at all!.

A fundamental inequality Englert implicitly establishe
was

Dn
21Vn

2<~w1n1w2n!2, ~7!

wherew6n5TrD$r̂6n% and where the equality sign holds
the total postinteraction state is pure. Summing over the
ject internal states gives us the inequality

(
n

Dn
21Vn

2<(
n

~w1n1w2n!2; ~8!

Eq. ~8! reduces to Englert’s explicit result ifw6nÞ0 for one,
and only one, value ofn, since, in this case,

Tr$Û ^ Ûmr̂0Ûm
†

^ Û†%5(
n

~w1n1w2n!5~w1n1w2n!

51. ~9!

III. CONDITIONED VISIBILITY

In the case whenD51 then Englert’s analysis asserts th
V50. However, it follows quite naturally to ask if someho
the visibility can be resurrected when simultaneouslyDm
50. To this end we define a conditioned visibility, where t
measurement information about the meter state is inco
rated in the visibility measurement. The conditioned visib
ity is defined as

Vc5(
i

2U^c i u(
n

^1nuÛmr̂Ûm
† u2n&uc i&U<(

n
Vcn

[(
n

(
i

2u^1nu ^ ^c i uÛmr̂Ûm
† uc i& ^ u2n&u. ~10!

Note that in contrast toV, the conditioned visibilityVc per
definition uses the meter detector result and records the
ibility of each subensemble~‘‘labeled’’ by the meter detector
eigen-state indexi ) before adding them. It follows from the
definition thatVc>V. This is also quite natural, because th
is a type of postinteraction selection of states and such p
selection can never degrade the obtained visibility, only
prove it. Once again, if the object and the meter preinter
tion states are pure andÛ unitary, Vc5(nVcn

due to
quantum number conservation.

The fundamental inequality for measured distinguisha
ity and conditional visibility corresponding to~7! is

(
n

Dmn

2 1Vcn

2 <(
n

~w1n1w2n!2. ~11!

This is one of the central results in this paper and the pr
will be outlined below. The result extends Englert’s analy
to the ~intentional or nonintentional! quantum erasure re
b-

t

o-
-

is-

st-
-
c-

l-

f
s

gime, and makes a natural connection between Engle
somewhat abstractly defined distinguishabilityD and that
measured in a laboratory,Dm ~or the knowledge reaped from
the measurement, in Englert’s language!.

In order to achieve the upper limit of Eq.~11! a necessary
but insufficient condition is that the object-meter interacti
be unitary. In the following we will treat only this case. T
derive the bounds forDm and Vc , let us first assume tha
TrD$r̂1nr̂2n%50 for somen, i.e., thatr̂1n and r̂2n are or-
thogonal. Any unitary transformation will leave the dens
matricesr̂1n and r̂2n orthogonal. Specifically, it is possibl
to find a unitary transformationÛm such that the meter state
corresponding tor̂1n and r̂2n are transformed onto two or
thogonal detector eigenstates,uc1n& and uc2n&. Hence, the
term in the postinteraction density operator corresponding
the statesu6n& can be expressed

w1nu1n&^1nu ^ uc1n&^c1nu1w2nu2n&^2nu ^ uc2n&^c2nu.
~12!

In this basis it becomes clear thatDmn
5Dn5w1n1w2n ,

andVcn
5Vn50. However, if we rotate the meter state usi

the only nontrivial two-state unitary operator

Ûmn~fn!5F cos~fn! isin~fn!

isin~fn! cos~fn!
G , ~13!

then it is straightforward to show that

uw1n2w2nu<Dmn
<w1n1w2n , ~14!

and

0<Vcn
<2Aw1nw2n . ~15!

All values in the respective ranges can be achieved b
proper choice of rotation anglefn . If r̂1n and r̂2n are
orthogonal for all n it follows that

uw12w2u[P<(
n

uw1n2w2nu<Dm<(
n

w1n1w2n

515D. ~16!

The result is intuitive,Dm cannot be smaller that thea priori
predictability P and cannot exceed the distinguishabilityD.
Equation~16! also shows thatonly if w1n5w2n for all n is
it possible to obtain a complete quantum erasure, Dm50.
This last condition can be restated as

TrD$~ r̂1n2 r̂2n!%50 ; n↔Dm50. ~17!

When condition~17! is fulfilled ~and r̂1n and r̂2n are or-
thogonal for alln) then it follows@from an explicit but trivial
calculation using Eq.~13!# that Vc51. Furthermore, in this
case, it can readily be shown that(nDmn

2 1Vcn

2 is indepen-

dent of the unitary transformationÛm and is equal to
(n(w1n1w2n)2 for whatever values offn one chooses.

If r̂1n and r̂2n are orthogonal, butw1nÞw2n , the sum
(nDmn

2 1Vcn

2 can still reach the upper limit spelled out by E
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~11!. This limit is reached when allDmn
are maximized~and

hence, allVcn
50) by a proper choice of the rotation angl

fn . On the other hand, the minimum value ofDmn

2 1Vcn

2 is

given by the expression

~w1n1w2n!2~16yn
4232yn

3120yn
224yn11!, ~18!

where yn5max@w1n ,w2n#/(w1n1w2n). Hence, the
‘‘worst combined’’ measurement ofDmn

2 1Vcn

2 will be

min@Dmn

2 1Vcn

2 #53~w1n1w2n!2/4, ~19!

and it will be obtained for the specific choice of relativ
object internal state probabilities givingy5(21A2)/4 and
~assuming thatw1n.w2n) fn5arccos$@(21A2)/4#1/2%.

Let us now turn over to the case whenuc1n& and uc2n&
are nonorthogonal for somen. It is then not possible to ob
tain D51. We define an overlap of the postinteraction co
ditional meter states as

cn
25

TrD$r̂1nr̂2n%

w1nw2n
, ~20!

where 0<cn<1. Using this measure, the bounds forDmn

andVcn
are calculated as

uw1n2w2nu<Dmn
<@~w1n1w2n!224w1nw2ncn

2#1/2

5Dn , ~21!

and

Vn52cnAw1nw2n<Vcn
<2Aw1nw2n. ~22!

These relations and Eq.~11! delineate the bounds for quan
tum erasure measurements. We see that in order to m
Dm50 the relation~17! is sufficient, the respective operato
r̂1n andr̂2n need not be orthogonal. It is also possible to g
Vc51 in the same situation. This makes sense becaus
order to get maximum visibility every internal state must
split symmetrically between the two paths. On the other h
it is clear that it is not possible to getV50 ~and hence not
Vc50) when any pairr̂1n and r̂2n is simultaneously non-
zero and nonorthogonal. This is also obvious, because
orthogonal conditional meter states will prevent us from
calizing the object to any one path with certainty. Therefo
the object will remain in a~possibly weak! superposition of
being in both paths with subsequent probability amplitu
interference as a result.

IV. A GEDANKEN EXPERIMENT

In the remainder of the paper we apply the formalis
outlined above to a specificwelcher Wegsetup, illustrated in
Fig. 2. The object is represented by a two-level atom w
packet, whose trajectory is split by the means of anxp pulse
and onep pulse. If the atom initially is in its ground stateug&
then the exact value ofx (0<x<1) determines the splitting
fraction of the atom ‘‘beam splitter.’’ Thexp pulse prepares
the atom in a superposition of the ground and the exc
-

ke

t
in

d

n-
-
e

e

e

d

state. Due to the linear momentum of the absorbed pho
the excited-atom wave function will have a superimpos
velocity component in the direction transverse to its init
velocity. Therefore, with time, the ground- and excited-st
center-of-mass wave functions will separate spatially in
vertical direction~in the figure!. The subsequentp pulse will
stimulate the excited atom to relax to the ground state
emit a photon~with unity probability!, in the process restor
ing the transverse linear momentum so that the atomic st
in path 3~before the interaction with the meter! and path 4
have identical internal states~the ground state! but are spa-
tially separated.

The photon interferometer in Fig. 2 has one 50% tra
mission beam splitter~at left! and one variable transmissio
beam splitter~at right!. A single photon wave packetu1&
enters this interferometer and is put in an equal superpos
of being in the upper and lower photon-interferometer pa
The photon will be used to probe the upper atom path
determine which path the atom is in. Specifically, the low
photon-interferometer path mode and the upper atom in
ferometer path mode will interact under the interacti
HamiltonianĤ i during some interaction timet, giving

Û15exp~2 iĤ it/\! ~23!

and

Û251̂, ~24!

where 1̂is the identity operator. In the language used abo
the atom, in its ground or excited state, is the object and
photon, in either stateu1& or u0& is the meter. The mete
detector used are photodetectors, so the convenient bas
express the state of the meter is the number basis.

Let us assume that the atom ‘‘beam splitter’’ has a 50
transmittivity ~implying x51/2). Hencew15w251/2. We
denote the total object and meter state by a vectoru1,2,3,4&,
where the state in modei 51, . . . ,4 ~identified at various
places of the measurement setup on Fig. 2! is indicated in the
corresponding position in the state vector. The pertinent t
object and meter state vector space is spanned by the
vectors u1,0,g,2&, u0,1,g,2&, u1,0,2,g&, u0,1,2,g&, and
u0,0,e,2&, where 0 and 1 denote a zero- and one-pho
states in the mode in question, and2, g, and e denote no
atom, a ground-state atom, and an excited atom in the m

FIG. 2. The proposed experiment. A single-photon optical int
ferometer~top! probes the path information of an atom~bottom!.
The right optical beam splitter performs the photon-state rota

corresponding toÛm .
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Using this basis~in the order indicated! we can represent th
total object and meter state as a five-component vector.
ing the initial state (1,0,0,0,0), the state is transformed to
state (1,i ,i ,21,0)/2 after the two beam splitters and thep
pulse. The modes 1~lower photon! and 3~upper atom! sub-
sequently interact under the~rotating wave! interaction
Hamiltonian

Ĥ i5\VR~ â†ŝ21âŝ1!, ~25!

where ŝ25ug&^eu, and ŝ15ue&^gu are the Pauli spin-flip
operators,â the photon annihilation operator, andVR the
vacuum Rabi frequency. After an interaction timet the en-
suing state becomes„cos(Vt),i,i,21,i sin(Vt)…/2. We see
that whenVt is an even multiple ofp the state is left un-
changed and hence factorizable~this corresponds to a ful
Rabi cycle!. WhenVt is an odd multiple ofp the state of
the atom and photon modes are completely entangled, o
the language used above,r̂10 andr̂20 are orthogonal and al
other operatorsr̂6n are zero. ComputingD and V of this
state we find thatD51 andV50. It is therefore possible to
determine with certainty in which path the atom will b
found. However, this state hasDm50, so if the second pho
ton beam splitter has unit~or zero! transmittivity, it is im-
possible to distinguish the meter states conditioned on
atom in paths 3 and 4, respectively, with the chosen detec
The reason is that the meter states conditioned on the ato
paths 3 and 4 are (2u1,0&1 i u0,1&)/A2 and i (u1,0&
1 i u0,1&)/A2, respectively. These states are orthogonal
have identical diagonal density-matrix coefficients if e
pressed in the number-state basis. Therefore they are in
tinguishable when measured with a photon-counting de
tor. However, as discussed above, by a suitable uni
transformation the states can be rotated so thatr̂102 r̂20
becomes strictly diagonal in the same basis. In Fig. 3
have plottedDm0

(5Dm) andVc0
(5Vc) as a function of

the unitary rotation anglef. The physical interpretation o
this angle is that the transmittivity of the second phot
beam splitter is cos2(f). We see thatDm0

andVc0
vary pe-

riodically while Dm0

2 1Vc0

2 51, and is an invariant since

w105w20 and r̂10 and r̂20 are orthogonal.

FIG. 3. Distinguishability and visibility as a function of theÛm

rotation anglef. The right beam-splitter transmittivity~in Fig. 2!
corresponds to cos2(f).
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In Fig. 4 we have plotted the same quantities when
initial atom ‘‘beam-splitter’’ has a transmittivity of 3/4 (x

51/6) but everything else is left invariant. In this caser̂10

and r̂20 are still orthogonal, butw1053/4Þw2051/4 due
to the asymmetry in the atom ‘‘beam splitter.’’ We find th
in this case too,D51 andV50. However, in this case ful
erasure of the information represented by the entanglem
cannot be obtained sinceuw102w20u51/2<Dm<w10
1w2051, as seen in the figure. Furthermore 0<Vc

<2Aw10w205A3/2'0.866. The unequala priori path
probability of the object always gives us some minimu
path information (5P). This information prevents the objec
from displaying full wave characteristics so that the visibili
cannot reach unity.

Finally we can look at what happens if we let the ato
‘‘beam splitter’’ have 50% transmittivity but letVt not be a
multiple of p. In Fig. 5 we have usedVt55p/4, leading to
the final state (21,iA2,iA2,2A2,2 i )/(2A2). We see that
in this case we get twor̂1 operators corresponding to th
atomic statesug& andue&. If we give the first of these opera
tors the index 0 and the second the index 1, we find t
w1053/8, w1151/8, w2051/2, andw2150. In addition
c05(A221)/A6, that is, the two meter states condition
on the ground state atom in paths 3 and 4 are nonorthogo
According to Eq.~8! this leads to

(
n

Dn
21Vn

2<~7/8!21~1/8!2'0.781. ~26!

We also find that(nuw1n2w2nu50.25<Dm<(n@(w1n

2w2n)224w1nw2nc2#1/2'0.9885D. The fact that r̂10

FIG. 4. Distinguishability and visibility as a function off.

FIG. 5. Distinguishability and visibility as a function off.
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and r̂20 are nonorthogonal makes it impossible to local
the atom to any one path with absolute certainty. The con
tioned visibility will similarly lie in the interval
2c0Aw10w205V'0.146<Vc<2Aw10w20'0.866. This is
quite clearly confirmed by the figure. Using these number
is to be noted thatD21V2'0.997,1 for this state.

Before concluding this section we will briefly discus
some theoretical and experimental aspects of the geda
experiment described above. The gedanken experiment
chosen because of its computational simplicity. Both the
ject and meter detector outcomes are discrete, which m
the operator algebra simple. The example also demonst
a nice duality between the object measurement and the m
measurement. To find the particlelike characteristics of
object~collapsing its wave function into one of the two po
sible paths! the wavelike characteristics of the meter must
used. The meter~5 photon! must interfere in the secon
50/50 beam splitter so no meter-path information can be
tained. Conversely, to restore the full object interference
ibility, i.e., making the object wavelike, it is necessary
make a particlelike measurement of the meter. That is,
must make a measurement that collapses the meter into
of paths 1 or 2. Note that if neither photodetector clicks, t
still represents a meter path measurement~if the photo-
detectors are ideal! since the stateu0& ~somewhat counterin
tuitively! belongs to our set of states that defines the me
This outcome will localize the meter to path 1, since, un
the assumptions made, the only way of deexciting the m
is by exciting the object. This can only happen if the obje
and meter simultaneously take the paths 3 and 1, res
tively. This conclusion can be experimentally confirmed
correlating the object and the meter outcomes. An ideal s
experiment will show a perfect correlation between the n
observation of a photon and the simultaneous detection o
excited atom in path 3.

Of course the experiment works equally well, and can
described by the formalism above, if we designate the p
ton to be the object and the atom to be the meter. Na
makes no distinction between the object and the meter, a
does not matter which of the object and meter is measu
first. The distinction between object and meter is only
mantic and is done by the observer.

At present it is difficult to perform the experiment d
scribed above. The main difficulty is to control dissipatio
i-
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control the interaction timet, and to have object and mete
detectors with close to unit detection efficiency and neg
gible noise for single quanta. However, similarwelcher Weg
and quantum erasure experiments have recently been
formed using Rb atoms and microwave photons@9#, which
we believe can successfully be analyzed with our gen
formalism.

We finally note that our gedanken experiment is a perf
example of a case where the loss of visibility when the o
ject’s wave function is collapsed into one of the interfero
eter paths cannot be ascribed to a random momentum
imparted by the meter. Instead, the loss of visibility is due
a nonlocal momentum transfer to one of the states in
postinteraction entangled object-meter superposition s
@10#.

V. CONCLUSION

To conclude, we have extended Englert’s analysis to
compass cases when thewelcher Wegmeasurement change
the internal state of the object and the object detector~which
defines what constitutes the object! has insufficient resolu-
tion to distinguish between the internal states. We have a
discussed in detail what information actually becomes av
able when the meter is measured with a specific detector.
have shown that in general this detector information does
give the entirewelcher Weginformation encoded in the
meter. We have explicitly demonstrated how to transform
conditioned meter states in such a manner as to enable
readout of the fullwelcher Weginformation. We have also
delineated the conditions for complete quantum erasure,
is, when thewelcher Weginformation encoded on the mete
can be traded partially or completely for~conditional! object
interference, quantified by the interference visibility. W
have demonstrated that a complete erasure (Dm50 while
D51) requires a zeroa priori predictability but ensures a
conditioned visibility of unity.
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