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Duality in perturbation theory and the quantum adiabatic approximation
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Duality is considered for the perturbation theory by deriving, given a series solution in a small parameter, its
dual series with the development parameter being the inverse of the other. A dual symmetry in perturbation
theory is identified. It is then shown that the dual to the Dyson series in quantum mechanics is given by a
recently devised series having the adiabatic approximation as leading order. A simple application of this result
is given by rederiving a theorem for strongly perturbed quantum sys{&h850-294{©8)01311-7

PACS numbegps): 03.65.Bz, 02.90tp

A known result of fluid mechanickl], given the Navier- This approach seems to indicate that, at the leading order, an
Stokes equation in the absence of any forcing adiabatic approximation should be ugeld. On a different
line of research, Mostafazad¢f] was able to show that a
u ) series exists, for the Schiimger equation, with a well-
5 T (U V)u=»¥Vou+Vp=0, (1) defined development parameter, having the adiabatic ap-
proximation as leading order. Using duality in perturbation
where v is the viscosityp the pressure, and the velocity theory, the above different research lines can be merged, as |

: . - _ ; am going to show, giving us the main result of this paper. In
E?Jllde’rilznmp?r’t%g]x ing the zeroth-order solution through thefact, the series derived by Mostafazadeh is dual to the Dyson

series. Then the theory of strong perturbations in quantum
mechanics can be proved to be dual to the standard small
— +(Ug- V)Uup=0, 2) perturbation theory.
at In order to show how a dual series can be obtained in a

) ) ) simple case, let us consider the model given by the differen-
one obtains a perturbation series for a large Reynolds numy| equation

ber Re while, taking at the leading order the equation

AU

x="fo(X)+Af1(X), (4)

— —vV2wW,=0, (3)  where the overdots mean derivation with respect to the time
and \ is an ordering parameter. It is a well-known matter

. . . .that, when\ —0, a solution series of the form~xy+\X;
one obtains a perturbation series for small Re. So far, thl%)\gxz_l_o()\:g) can be obtained. However, as for the

was the only case n perturbat_lon theory, as applied to physﬁlavier-Stokes equations, we are free to choose at the leading
ics, with an equation generating both a small perturbation

order, as an unperturbed equatiog=\f;(x,). To show
Othat this choice gives a dual perturbation series, | rescale the
time variable in Eq(4) ast—\t=r. One gets

series and its strong perturbation counterpart.

Duality in perturbation theory should then be understoo
in the sense that, for a given differential equation, one ha
the possibility to derive perturbat'ion series. in bc_)th a small AX=fo(X) + M f4(X), (5)
development parameter and its inverse, giving in this way
the possibility to study a solution in different regions of the where now the overdots mean derivation with respeet tid
parameter space. However, it should be said that the methads quite easy to verify that the series
could not be of absolutely general usefulness as some limi-

tations can appear for the computation of both the leading N Ex i ix 410 i 6)
and higher orders. In addition, there exist situations where 0F T2 E
better approximations are known, as | will show. However, it )
is easy to realize that many problems in physics can get nef$ @ solution of Eq(5) when
insight from this approach, so it is worthwhile to exploit it. .t
A natural question, in the light of the above-defined dual- Xo=f1(Xo),
ity in perturbation theory, is what should be the dual to the Y
well-known Dyson series for the Schimger equation. The X1= 11(%0)X1 + FolXo), ™
answer to this question is the main aim of this paper. In fact, ) 1
the existence of this possibility gives a technique to analyze Xo=fo(Xg)X1+ fi(xo)x2+§f’1’(x0)xi,
guantum systems in different regions of their parameter
space.

Quite recently | showed that solutions for the Salinger
equation, in time-dependent problems, can be obtained when analogy with the results in quantum mechan@k | take
a strong perturbation is applied to a quantum sysf8in the above as the dual method to small perturbation theory to
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obtain a dual perturbation series to a given one. It is imporwill show how the dual method works in this case. So let us
tant to note that the above result is true independently ofet&=\X, =g+ (1) ¢y +O(1N?), andE=NE+E;

one’s ability to solve the leading-order equations. +O(1/\). This yields the equations
We see that the arbitrariness in the choice of the leading-
order equation gives rise to a symmetry. In fact, setting h? d?y,
=1 in Eq.(4), there is no longer a reason to see any differ- LT +Vi(eé) o= Eoio,
ence between the perturbation and the unperturbed system in ¢
the same way as happens in fluid mechanics. This means that e
the series given by the small perturbation theory can be de- 1 _
rived from the one given by the dual method and vice versa " 2m dg? +Va(ed)Ynt+Vopho=Erho+ Eopr, (12)

by simply interchangind 3(x) < f1(x). That is a symmetry
of the perturbation theory whose meaning can be really un-
derstood only after the introduction of the dual series. Actu-

ally, the general solution of Eq4) can be written, for the \yhere e=1/\N. At the leading order we get a well-known

one-dimensional case, as equation, that is, a second-order differential equation with a
slowly varying coefficient due to the perturbation. In this
N 1 case we can apply the WKB approximatip@]. Thus the
t—to= ] dx d : L . . .
Xo o o _ual method y|elds_ in th|s__c§ise a solution t_hat is a combina-
\/E E+f fo(x”)dx"+f f1(xX")dx" tion of both Rayleigh-Schiinger and semiclassical meth-
%o Xo ods.
) There are several problems where the above approxima-
with E a motion constant. It is easily seen that both the seriego?1 can b.e appl_llledt. Aﬂ\:vetllhknowrlu exarlr;p:je IS fgll_\t/en by the
expansions, for smalfi, or f,, can be straightforwardly ob- anharmonic oscillator that has a large body of literafute

tained. What is interesting is that the small parameter in f?nd IS _?hmoHdeI .ﬁ?at_ any apErOX|m?§|ortlhsc](r1eme should aq-
case is the inverse of the development parameter in the otheq.ress' € Ramiltonian can be cast in the form

From the discussion above it should be clear that both series p? 1 N
can have the same problems as secularities or divergent H=—+ g%+ -q* (13
terms. 2 2 4
A more interesting example is given by the Duffing equa- . . .
tion 9 P 9 y geq The method | discussed so far gives an unambiguous answer

to this problem, i.e., the leading-order approximation, when
X+ w(z)x+,8x3= focod wt). (9) the anhar_monicity is very strong, can be obtained by solving
the equation

By setting r=wot, v=wlwg, &é=(wi/fg)x, and \

2
= Bf3lw§, one gets the rescaled equation P

A
7+Zq4) o(q)=Eio(q). (14

E+E+NE=co vT), 10

EHeeae ) (19 The quartic oscillator is well known in the literatur8]. So
where the overdots mean derivation with respect mdx we can compare our method with numerical results. To lead-
is just a parameter measuring the strength of the nonlinearityng order of the WKB approximation of the energy levels,
Equation(10) is generally considered, analytically, only for normalized in unit of[(%2/2)\\/4]?" the agreement is
small\, but what happens in the limit of a very strong non- within 18% with the true value of the ground-state energy for
linearity? Duality can be applied and one easily realizes thathe anharmonic oscillator. That agreement improves for
for large values of the parametar, the quantitye= %2 higher excited states. However, we know from Symanzick
' scaling that the quartic oscillator is the right approximation

1¢4 . .
+A3z¢&" tends to be a constant of motion. This is due to the energy levels of the anharmonic oscillator whens o

result that the perturbation completely drives the system. S 1. Often, the use of semiclassical eigenfunctions can be too

we have regular periodic motion in the considered limit. Thisinvolved and better approximation schemes, such as those
example shows that, glthough the leading-order equation _Caj]ven in Ref.[7], can improve the situation. [5uality, as ap-
be easy to solve, going to higher orders could be very inyjieq in perturbation theory, yields anyway a definite answer.
volved. ) ) . The situation is surely more interesting in time-dependent
_A class of important problems arises from the Sehro o \hiems By noting that the only meaningful quantities are
dinger equation that | consider in the one-dimensional formy,sition probabilities between states of the unperturbed sys-

tem, we have the initial conditions definitely fixed, breaking

2 42
_ —l/I+Vo(X)9’f+ AV (X)y=Ey (12) in this way the dual symmetry of the perturbation theory. In
2m gx? ’ fact, in Ref.[3] | showed that the problem
where\—o. One could apply immediately the symmetry [Ho+AV() ]| ) =ihdy| ) (15)

between the dual and small perturbation theories discussed
so far and use without difficulty the Rayleigh-Sctlimger  with ;= d/dt and\ — o, using the above dual method, has
approximation scheme. While that is a correct approach, the leading-order solution
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1 so that the adiabatic approximation is exact for the equation
w~Uiolm+ol3 ). 19
H(tUA(t)=iAaDUA(t) (21
with .
and it is easily verified thatD|k,t)=y,(t)|k,t). In this
AV(HU(t)=ihaU(t) (170 way, we are a step away from the sought result. In fact, let us

. . .. introduce a generic perturbatidf(t) into Eq. (21), so that
andHg|n)=E,|n). So the unperturbed solution fixes the ini- g P ant) a.(21)

tial condition as also happens in the small perturbation [H(t)+V(1)JU(t)=iADU(t). (22)
theory. However, in order to leave the dual symmetry un-

touched, one should physically consider also systems inim this form the duality principle of perturbation theory can
tially prepared with the eigenstates of the perturbation, bupe applied. Having/(t) as the unperturbed Hamiltonian and

this is not the case for the computation of probability transi-H (1) as the perturbation, we get no physical meaningful re-
tions. Then we can conclude that for the time-dependent pe;ts  from the leading-order  equationV(t)U©)(t)

turbation theory as usually applied in quantum mechanics,.;zp U©(t) unless we choos¥(t)=H(t) or
the dual symmetry is broken due to the choice of the initial !

conditions.
By the methods discussed above, we can obtain the main V(t)=— 2, (mt]ifian,t)|m,t)(n,t].
result of the paper. Our aim is to show that the dual to the R

Dyson perturbation series, for the time-dependent Schro

dinger equation, is given by the series obtained by Mo-The latter is the interesting case giving trivially the standard
stafazadelfi5] having the adiabatic approximation as leadingDyson series. So when we také(t) as the unperturbed
order. So let us consider the Sctimger equatiorH (t)U Hamiltonian andV(t) as the perturbation, we have at the
=ifd;U, U being the time evolution operator. The Dyson leading order

series is the solution of that equation and can be written

formally as H(HU©t)=iaDUO(t), 23
3 LN . but this is nothing other than Eq21) and thenU(©)(t)
U(t)—Tex;{ %fodt H(t ))’ (18 =U,(1) (i.e., at the leading order we have the adiabatic ap-

proximatior). To complete the identification with the Mo-
with 7the time-ordering operator. This is a compact form forstafazadeh result, we have that the higher-order corrections
the series development are computed solving the equation

N2ty
——) folt’ft dt"H(t')H (")
h) Jo 0

+- (19

H'(HU' () =ikaU’ (1), (24)

i [t
U(t)=|——f dt’H(t")+
filo

where

. . o HI () =URDV(HUA®
A dual series to the one above is meant as a series having for

development parameter its inverse, as discussed above. To 3

obtain it, let us consider the case with the Hamiltonkan N

being constant in time. Assuming, for the sake of simplicity,

here and in the following that the Hamiltonian has a discrete (25

spectrum, the solution to the time-dependent Sdimger . . .

ezuation is easily obtained through the Eme evolution operadS given in Ref[S]. Then one obtaingS]

tor U(t)=3,e /MEln)(n|, with H|n)=E,/n), where -

the effect of the time derivative is simplys,U(t) U(t)=UA(t)Texp( - '_f dt’H’(t’)), (26)

=3 [—(i/h)Eyle” /MEntin)(n|. Instead, for a time- o

dependent Hamiltoniaii(t), in the case of the adiabatic

approximation we haveJA(t)=Eneian(t)|n,t><n,0|7 where  Which completes the proof. No adiabatic hypothesis entered

an(t) = yn(t) — (1A) Fhdt Eq(t") with H(t)|n,t) into this argument, as it should be.

=E,(t)|n,t), so thatE,(t) gives the dynamical part of the  AS an application of that result, a theorem recently de-

phasea,(t) and yn(t)=if},dt’(n,t’|at,|n,t’> the geometri- rived by me and, in a rigourous way but in a different con-

cal part. It is natural to ask how one can define a derivativd®xt: JOye[4] can be obtained for the theory of the strong

D, to obtain the same result as for the time-independent casBerturbations in quantum mechani¢8]. In fact, it was

that is, DtUA(t):En[_(i/ﬁ)En(t)]eian(t)|n’t><n’0|. It is proved that, for a quantum system descrlped by _thg Schro

quite easy to verify that the following definition Bf; has the dinger equat_'or['__'(’ﬂ‘v(t).ﬂ¢>.:'hat|f/'>’ n th? limit A

required property —o0, the ad|gbat|c approxmatlon, using tr_]e eigenstates of
the perturbationV(t), is a good approximation fdrs). So

) ) considering the perturbed system in the interaction picture

Dy=ac+i 2, (mitfign,t)m,ty(n,t, (200 gives the HamiltoniarH, (t) = U©@Tt)AV(t)UOX(t), where

nem HoUO(t)=i%,U©(t). Then the result obtained for the

e~ lam®=an®l(m t]i£ g,|n,t)|m,0)(n,0],

n,m,n#m
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Dyson series by duality can be directly appliecHdt). We
obtain for a small\ (otherwise we miss convergencthe
Dyson series

i t
U|(t):|_fli_j0dt,H|(t’)

i\2 [t t/
+(_ﬁ) Jodt Jo dt"H,(t")H,t")+ - --

(27)
and, for a large\, the Mostafazadeh result appliedkig(t)

Thenwv| is an eigenvalue o¥/(t) and U©(t)|k,t), differs

just by a time-dependent phase factor from the correspond-
ing eigenstate of the perturbation. As a by-product, we get
the confirmation that higher-order corrections are those com-
puted by the method of strong perturbation theory as given in
[4].

In summary, | introduced the duality principle in pertur-
bation theory for differential equations. A dual method with
respect to the theory of small perturbation is yielded and a
dual symmetry between the two methods arises from the
freedom in the choice of what the perturbation is. The use of
duality shows that, for the time-dependent Sclimger equa-
tion, the dual series to the Dyson one is given by a pertur-

having at the leading order the adiabatic approximation, as iation series computed recently by Mostafazadeh, with a
should be. It must be noticed that, in the latter case, thevell-defined development parameter, having the adiabatic
eigenstates to be considered are those of the perturbation. #pproximation as leading order. This enriches the possibility

fact, we haved OT(t)V()UO(t) [k,t),=vi(1)|k,t),, but this
is equivalent toV()[U©(1)|k,t)]=vi(H[UO1)]K,t),].

to analyze quantum systems in completely different regions
of their parameter space.
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