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Duality in perturbation theory and the quantum adiabatic approximation

Marco Frasca
Via Erasmo Gattamelata 3, 00176 Roma, Italy

~Received 23 March 1998!

Duality is considered for the perturbation theory by deriving, given a series solution in a small parameter, its
dual series with the development parameter being the inverse of the other. A dual symmetry in perturbation
theory is identified. It is then shown that the dual to the Dyson series in quantum mechanics is given by a
recently devised series having the adiabatic approximation as leading order. A simple application of this result
is given by rederiving a theorem for strongly perturbed quantum systems.@S1050-2947~98!01311-0#

PACS number~s!: 03.65.Bz, 02.90.1p
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A known result of fluid mechanics@1#, given the Navier-
Stokes equation in the absence of any forcing

]u

]t
1~u•¹!u2n¹2u1¹p50, ~1!

wheren is the viscosity,p the pressure, andu the velocity
field, is that, by fixing the zeroth-order solution through t
Eulerian part as@2#

]u0

]t
1~u0•¹!u050, ~2!

one obtains a perturbation series for a large Reynolds n
ber Re while, taking at the leading order the equation

]w0

]t
2n¹2w050, ~3!

one obtains a perturbation series for small Re. So far,
was the only case in perturbation theory, as applied to ph
ics, with an equation generating both a small perturbat
series and its strong perturbation counterpart.

Duality in perturbation theory should then be understo
in the sense that, for a given differential equation, one
the possibility to derive perturbation series in both a sm
development parameter and its inverse, giving in this w
the possibility to study a solution in different regions of t
parameter space. However, it should be said that the me
could not be of absolutely general usefulness as some l
tations can appear for the computation of both the lead
and higher orders. In addition, there exist situations wh
better approximations are known, as I will show. However
is easy to realize that many problems in physics can get
insight from this approach, so it is worthwhile to exploit i

A natural question, in the light of the above-defined du
ity in perturbation theory, is what should be the dual to t
well-known Dyson series for the Schro¨dinger equation. The
answer to this question is the main aim of this paper. In fa
the existence of this possibility gives a technique to anal
quantum systems in different regions of their parame
space.

Quite recently I showed that solutions for the Schro¨dinger
equation, in time-dependent problems, can be obtained w
a strong perturbation is applied to a quantum system@3#.
PRA 581050-2947/98/58~5!/3439~4!/$15.00
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This approach seems to indicate that, at the leading orde
adiabatic approximation should be used@4#. On a different
line of research, Mostafazadeh@5# was able to show that a
series exists, for the Schro¨dinger equation, with a well-
defined development parameter, having the adiabatic
proximation as leading order. Using duality in perturbati
theory, the above different research lines can be merged,
am going to show, giving us the main result of this paper.
fact, the series derived by Mostafazadeh is dual to the Dy
series. Then the theory of strong perturbations in quan
mechanics can be proved to be dual to the standard s
perturbation theory.

In order to show how a dual series can be obtained i
simple case, let us consider the model given by the differ
tial equation

ẍ5 f 0~x!1l f 1~x!, ~4!

where the overdots mean derivation with respect to the t
and l is an ordering parameter. It is a well-known matt
that, whenl→0, a solution series of the formx;x01lx1
1l2x21O(l3) can be obtained. However, as for th
Navier-Stokes equations, we are free to choose at the lea
order, as an unperturbed equation,ẍ05l f 1(x0). To show
that this choice gives a dual perturbation series, I rescale
time variable in Eq.~4! as t→Alt5t. One gets

l ẍ5 f 0~x!1l f 1~x!, ~5!

where now the overdots mean derivation with respect tot. It
is quite easy to verify that the series

x5x01
1

l
x11

1

l2
x21OS 1

l3D ~6!

is a solution of Eq.~5! when

ẍ05 f 1~x0!,

ẍ15 f 18~x0!x11 f 0~x0!, ~7!

ẍ25 f 08~x0!x11 f 18~x0!x21
1

2
f 19~x0!x1

2 ,

A

In analogy with the results in quantum mechanics@3#, I take
the above as the dual method to small perturbation theor
3439 ©1998 The American Physical Society
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obtain a dual perturbation series to a given one. It is imp
tant to note that the above result is true independently
one’s ability to solve the leading-order equations.

We see that the arbitrariness in the choice of the lead
order equation gives rise to a symmetry. In fact, settingl
51 in Eq. ~4!, there is no longer a reason to see any diff
ence between the perturbation and the unperturbed syste
the same way as happens in fluid mechanics. This means
the series given by the small perturbation theory can be
rived from the one given by the dual method and vice ve
by simply interchangingf 0(x)↔ f 1(x). That is a symmetry
of the perturbation theory whose meaning can be really
derstood only after the introduction of the dual series. Ac
ally, the general solution of Eq.~4! can be written, for the
one-dimensional case, as

t2t05E
x0

x

dx8
1

A2AE1E
x0

x8
f 0~x9!dx91E

x0

x8
f 1~x9!dx9

,

~8!

with E a motion constant. It is easily seen that both the se
expansions, for smallf 0 or f 1 , can be straightforwardly ob
tained. What is interesting is that the small parameter i
case is the inverse of the development parameter in the o
From the discussion above it should be clear that both se
can have the same problems as secularities or diver
terms.

A more interesting example is given by the Duffing equ
tion

ẍ1v0
2x1bx35 f 0cos~vt !. ~9!

By setting t5v0t, n5v/v0 , j5(v0
2/ f 0)x, and l

5b f 0
2/v0

6 , one gets the rescaled equation

j̈1j1lj35cos~nt!, ~10!

where the overdots mean derivation with respect tot andl
is just a parameter measuring the strength of the nonlinea
Equation~10! is generally considered, analytically, only fo
small l, but what happens in the limit of a very strong no
linearity? Duality can be applied and one easily realizes t
for large values of the parameterl, the quantitye5 1

2 j̇2

1l 1
4 j4 tends to be a constant of motion. This is due to

result that the perturbation completely drives the system.
we have regular periodic motion in the considered limit. T
example shows that, although the leading-order equation
be easy to solve, going to higher orders could be very
volved.

A class of important problems arises from the Sch¨-
dinger equation that I consider in the one-dimensional fo

2
\2

2m

d2c

dx2
1V0~x!c1lV1~x!c5Ec, ~11!

where l→`. One could apply immediately the symmet
between the dual and small perturbation theories discu
so far and use without difficulty the Rayleigh-Schro¨dinger
approximation scheme. While that is a correct approac
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will show how the dual method works in this case. So let
set j5Alx, c5c01(1/l)c11O(1/l2), andE5lE01E1
1O(1/l). This yields the equations

2
\2

2m

d2c0

dj2
1V1~ej!c05E0c0 ,

2
\2

2m

d2c1

dj2
1V1~ej!c11V0c05E1c01E0c1 , ~12!

A

wheree51/Al. At the leading order we get a well-know
equation, that is, a second-order differential equation wit
slowly varying coefficient due to the perturbation. In th
case we can apply the WKB approximation@6#. Thus the
dual method yields in this case a solution that is a combi
tion of both Rayleigh-Schro¨dinger and semiclassical meth
ods.

There are several problems where the above approxi
tion can be applied. A well-known example is given by t
anharmonic oscillator that has a large body of literature@7#
and is a model that any approximation scheme should
dress. The Hamiltonian can be cast in the form

H5
p2

2
1

1

2
q21

l

4
q4. ~13!

The method I discussed so far gives an unambiguous an
to this problem, i.e., the leading-order approximation, wh
the anharmonicity is very strong, can be obtained by solv
the equation

S p2

2
1

l

4
q4Dc0~q!5Ec0~q!. ~14!

The quartic oscillator is well known in the literature@8#. So
we can compare our method with numerical results. To le
ing order of the WKB approximation of the energy leve
normalized in unit of @(\2/2)Al/4#2/3, the agreement is
within 18% with the true value of the ground-state energy
the anharmonic oscillator. That agreement improves
higher excited states. However, we know from Symanz
scaling that the quartic oscillator is the right approximati
for energy levels of the anharmonic oscillator whenl→`
@9#. Often, the use of semiclassical eigenfunctions can be
involved and better approximation schemes, such as th
given in Ref.@7#, can improve the situation. Duality, as ap
plied in perturbation theory, yields anyway a definite answ

The situation is surely more interesting in time-depend
problems. By noting that the only meaningful quantities a
transition probabilities between states of the unperturbed
tem, we have the initial conditions definitely fixed, breaki
in this way the dual symmetry of the perturbation theory.
fact, in Ref.@3# I showed that the problem

@H01lV~ t !#uc&5 i\] tuc& ~15!

with ] t5]/]t andl→`, using the above dual method, ha
the leading-order solution
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uc&;U~ t !un&1OS 1

l D , ~16!

with

lV~ t !U~ t !5 i\] tU~ t ! ~17!

andH0un&5Enun&. So the unperturbed solution fixes the in
tial condition as also happens in the small perturbat
theory. However, in order to leave the dual symmetry u
touched, one should physically consider also systems
tially prepared with the eigenstates of the perturbation,
this is not the case for the computation of probability tran
tions. Then we can conclude that for the time-dependent
turbation theory as usually applied in quantum mechan
the dual symmetry is broken due to the choice of the ini
conditions.

By the methods discussed above, we can obtain the m
result of the paper. Our aim is to show that the dual to
Dyson perturbation series, for the time-dependent Sch¨-
dinger equation, is given by the series obtained by M
stafazadeh@5# having the adiabatic approximation as leadi
order. So let us consider the Schro¨dinger equationH(t)U
5 i\] tU, U being the time evolution operator. The Dyso
series is the solution of that equation and can be writ
formally as

U~ t !5TexpS 2
i

\E0

t

dt8H~ t8! D , ~18!

with T the time-ordering operator. This is a compact form
the series development

U~ t !5I 2
i

\E0

t

dt8H~ t8!1S 2
i

\ D 2E
0

t

dt8E
0

t8
dt9H~ t8!H~ t9!

1•••. ~19!

A dual series to the one above is meant as a series havin
development parameter its inverse, as discussed above
obtain it, let us consider the case with the HamiltonianH
being constant in time. Assuming, for the sake of simplici
here and in the following that the Hamiltonian has a discr
spectrum, the solution to the time-dependent Schro¨dinger
equation is easily obtained through the time evolution ope
tor U(t)5(ne2( i /\)Entun&^nu, with Hun&5Enun&, where
the effect of the time derivative is simply] tU(t)
5(n@2( i /\)En#e2( i /\)Entun&^nu. Instead, for a time-
dependent HamiltonianH(t), in the case of the adiabati
approximation we haveUA(t)5(neian(t)un,t&^n,0u, where
an(t)5gn(t)2(1/\)*0

t dt8En(t8) with H(t)un,t&
5En(t)un,t&, so thatEn(t) gives the dynamical part of th
phasean(t) andgn(t)5 i *0

t dt8^n,t8u] t8un,t8& the geometri-
cal part. It is natural to ask how one can define a deriva
Dt to obtain the same result as for the time-independent c
that is, DtUA(t)5(n@2( i /\)En(t)#eian(t)un,t&^n,0u. It is
quite easy to verify that the following definition ofDt has the
required property

Dt5] t1 i (
n,m

nÞm

^m,tu i ] tun,t&um,t&^n,tu, ~20!
n
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so that the adiabatic approximation is exact for the equa

H~ t !UA~ t !5 i\DtUA~ t ! ~21!

and it is easily verified thatiD tuk,t&5ġk(t)uk,t&. In this
way, we are a step away from the sought result. In fact, le
introduce a generic perturbationV(t) into Eq. ~21!, so that

@H~ t !1V~ t !#U~ t !5 i\DtU~ t !. ~22!

In this form the duality principle of perturbation theory ca
be applied. HavingV(t) as the unperturbed Hamiltonian an
H(t) as the perturbation, we get no physical meaningful
sults from the leading-order equationV(t)U (0)(t)
5 i\DtU

(0)(t) unless we chooseV(t)5H(t) or

V~ t !52 (
n,m

nÞm

^m,tu i\] tun,t&um,t&^n,tu.

The latter is the interesting case giving trivially the standa
Dyson series. So when we takeH(t) as the unperturbed
Hamiltonian andV(t) as the perturbation, we have at th
leading order

H~ t !U ~0!~ t !5 i\DtU
~0!~ t !, ~23!

but this is nothing other than Eq.~21! and thenU (0)(t)
5UA(t) ~i.e., at the leading order we have the adiabatic
proximation!. To complete the identification with the Mo
stafazadeh result, we have that the higher-order correct
are computed solving the equation

H8~ t !U8~ t !5 i\] tU8~ t !, ~24!

where

H8~ t !5UA
†~ t !V~ t !UA~ t !

52 (
n,m,nÞm

e2 i [am~ t !2an~ t !]^m,tu i\] tun,t&um,0&^n,0u,

~25!

as given in Ref.@5#. Then one obtains@5#

U~ t !5UA~ t !TexpS 2
i

\E0

t

dt8H8~ t8! D , ~26!

which completes the proof. No adiabatic hypothesis ente
into this argument, as it should be.

As an application of that result, a theorem recently d
rived by me and, in a rigourous way but in a different co
text, Joye@4# can be obtained for the theory of the stron
perturbations in quantum mechanics@3#. In fact, it was
proved that, for a quantum system described by the Sc¨-
dinger equation@H01lV(t)#uc&5 i\] tuc&, in the limit l
→`, the adiabatic approximation, using the eigenstates
the perturbationV(t), is a good approximation foruc&. So
considering the perturbed system in the interaction pict
gives the HamiltonianHI(t)5U (0)†(t)lV(t)U (0)(t), where
H0U (0)(t)5 i\] tU

(0)(t). Then the result obtained for th
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Dyson series by duality can be directly applied toHI(t). We
obtain for a smalll ~otherwise we miss convergence! the
Dyson series

UI~ t !5I 2
i

\E0

t

dt8HI~ t8!

1S 2
i

\ D 2E
0

t

dt8E
0

t8
dt9HI~ t8!HI~ t9!1•••

~27!

and, for a largel, the Mostafazadeh result applied toHI(t)
having at the leading order the adiabatic approximation, a
should be. It must be noticed that, in the latter case,
eigenstates to be considered are those of the perturbatio
fact, we haveU (0)†(t)V(t)U (0)(t)uk,t& I5vk

I (t)uk,t& I , but this
is equivalent to V(t)@U (0)(t)uk,t& I ] 5vk

I (t)@U (0)(t)uk,t& I ].
hi
w
,

19
it
e
In

Then vk
I is an eigenvalue ofV(t) and U (0)(t)uk,t& I differs

just by a time-dependent phase factor from the correspo
ing eigenstate of the perturbation. As a by-product, we
the confirmation that higher-order corrections are those c
puted by the method of strong perturbation theory as give
@4#.

In summary, I introduced the duality principle in pertu
bation theory for differential equations. A dual method wi
respect to the theory of small perturbation is yielded an
dual symmetry between the two methods arises from
freedom in the choice of what the perturbation is. The use
duality shows that, for the time-dependent Schro¨dinger equa-
tion, the dual series to the Dyson one is given by a per
bation series computed recently by Mostafazadeh, wit
well-defined development parameter, having the adiab
approximation as leading order. This enriches the possib
to analyze quantum systems in completely different regi
of their parameter space.
b-
rks
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