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Quantum mechanics can be formulated as a non-Markovian stochastic process
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Both quantum mechanics and stochastic-process theory deal with dynamical systems the behaviors of which
can be predicted only probabilistically. It is shown here that the measurable behavior of an elementary quantum
system can be modeled as a non-Markovian stochastic process. The conclusion that quantum behavior can
generally be modeled as a real stochastic process eliminates some mysterious characteristics of quantum
mechanics when viewed in Copenhagen-interpretation terms.@S1050-2947~98!07710-5#

PACS number~s!: 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

The efforts to reformulate quantum mechanics in terms
deterministic hydrodynamics@1–10# or the theory of real
stochastic processes@11–67# have a history that goes bac
approximately 70 years. Although hydrodynamic mod
have a certain heuristic value, they contradict the gener
accepted statistical~according to Born! character of
quantum-mechanical motion@68–72#.

The stochastic approach is another case: if it is acce
that behavior of microparticles is inalienably statistical, w
is a specific quantum theory@73# used for its mathematica
modeling, but not a theory of stochastic processes inten
for analysis ofany probabilistic process? The description
microworld phenomena by the use of the stochastic p
cesses theory would contradict neither Born’s interpreta
of the wave function, nor von Neumann’s theorem ab
hidden parameters@74#, because nonlocal hidden paramete
are not at variance with quantum mechanics as is evid
from the well-known Bell’s theorem@75#. Indeed, a
quantum-mechanical random walk is just a completely d
continuous process, not only in the phase, but also in
configuration space@76#—unlike the Brownian motion,
which is completely continuous with probability 1 not on
in the configuration~cf. the Doob theorem@77#! but also in
the phase space@24#.

Nevertheless, it is generally accepted@78–88# that this
goal has not been achieved in any of the works@11–66#,
because each time such nondeductive and nonclassical
cedures as the introduction of imaginary time@25#, a nega-
tive diffusion coefficient @33,49,59#, complex probability
@73,86#, or the diffusion equation for a non-ambiguou
discontinuous stochastic process@22,38,42,54,57#, etc. are
necessary to obtain the Schro¨dinger equation from the clas
sical Brownian motion.

By now it seems to be accepted@52,89# that it is impos-
sible to obtain anything from the Brownian motion exce
the diffusion Fokker-Plank equation. For the Schro¨dinger
equation to be deduced, it is necessary to proceed fro
~non-Brownian! Markovian process@52,64,90#. However, it
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was shown@82,85,87#, that quantum-mechanical process
cannot be described by the real Markovian equations, an
@85# it is even manifested that no non-Markovian equation
sufficient for solving this problem. The goal of the prese
work is to make clear which stochastic equations~Markov-
ian, non-Markovian, or neither! are suitable for mathematica
modeling of the quantum-mechanical processes.

II. A TWO-DIMENSIONAL QUANTUM SYSTEM

In @87# Gillespie studied a possibility of modeling as
Markov process the temporal evolution of the simple
quantum-mechanical two-level system previously conside
in @60#. Let ‘‘unperturbed’’ HamiltonianH0 have two ortho-
normal eigenstatesu1& and u2&:

H0uk&5E0uk&
^ku l &5dk,l

J k,l 51,2. ~1!

Oscillations between eigenstatesu1& and u2& are induced
by a ‘‘perturbing’’ HamiltonianH8, which is defined by its
representation in the HamiltonianH0 eigenbasis according to

^kuH8u l &5 HE8, k5 l
DE, kÞ l ~k,l 51,2!. ~2!

The time evolution of the whole system is determined
the Schro¨dinger equation:

i\
d

dt
uC~ t !&5~H01H8!uC~ t !& ~3!

with the initial condition, for example,

uC~ t0!&5u1&. ~4!

If we expandC(t) in the eigenbasis ofH0 ,

uC~ t !&5a1~ t !u1&1a2~ t !u2&, ~5!

then, from the solution set of Eq.~3! under initial condition
~4!, we can obtain the probabilities of finding the system
statesu1& or u2& at any timet>t0 , respectively:
3426 ©1998 The American Physical Society
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P~1,tu1,t0!5u^1uC~ t !&u25ua1~ t !u2

5cos2@DE~ t2t0!/\#, ~6a!

P~2,tu1,t0!5u^2uC~ t !&u25ua2~ t !u2

5sin2@DE~ t2t0!/\#. ~6b!

According to the theory of Markov processes@91# the
time evolution of probabilities~6! should be modeled by th
‘‘master equation’’ set

d

dt
P~1,tu1,t0!5W2~2,t !P~2,tu1,t0!

2W1~1,t !P~1,tu1,t0!, ~7a!

d

dt
P~2,tu1,t0!5W1~1,t !P~1,tu1,t0!

2W2~2,t !P~2,tu1,t0!, ~7b!

whereW6(k,t) are the ‘‘stepping functions’’ satisfying th
Markovian consistency conditions@87#:

W1~2,t !5W2~1,t ![0, ~8!

W1~1,t !dt5P~2,t1dtu1,t !, ~9!

W2~2,t !dt5P~1,t1dtu2,t !. ~10!

By direct substitution, it is easy to show that functions~6!
do not solve the equation set~7! under the conditions~8!–
~10!. Hence, Gillespie concluded:the fundamental quantum
mechanical evolution-measurement process cannot gene
be modeled as a jump Markov process [87]. It is necess
to agree completely with this conclusion.

The question now arises as to whether there is a poss
ity of modeling the quantum-mechanical evolutio
measurement process by means of the non-Markovian
eralized master equation~GME!, so that the probabilities~6!
are satisfied. Gillespie@87# does not give any definite con
clusions about this. Grabert, Ha¨nggi, and Talkner@85#, how-
ever, insist on the impossibility in general for quantum
mechanical probabilities to be modeled by the class
stochastic theory equations—neither Markovian, nor a
non-Markovian equations. However, this notion is refuted
our success in finding a non-Markovian GME set such t
probabilities~6! are satisfied. By the direct substitution alo
it can be proved that probabilities~6! satisfy the following
generalization of the Kolmogorov-Chapman equation:

1
2 ~ t2t0!

]

]t
P~n,tuk,t0!

5 (
m51,2

E
t0

t

P~n,tum,t!dtP~m,tuk,t0!

52 (
m51,2

E
t0

t

P~m,tuk,t0!dtP~n,tum,t!, ~11!
lly
ry

il-

n-

-
l

y
y
t

wherek51,2; n51,2. Differentiating Eq.~11! with respect
to t, one obtains the desired GME set, which probabilities~6!
satisfy:

d

dt
P~1,tu1,t0!1~ t2t0!

d2

dt2
P~1,tu1,t0!

52E
t0

t

P~1,tu1,t0!dtW1~ t2t!

22E
t0

t

P~2,tu1,t0!dtW2~ t2t!, ~12a!

d

dt
P~2,tu1,t0!1~ t2t0!

d2

dt2
P~2,tu1,t0!

52E
t0

t

P~2,tu1,t0!dtW2~ t2t!

22E
t0

t

P~1,tu1,t0!dtW1~ t2t!, ~12b!

where the stepping functions

W1~ t2t!5W2~ t2t!5
]

]t
P~2,tu1,t!5

]

]t
P~1,tu2,t!

~13!

are introduced.
The following reasons led us to deduce the equati

~11!–~13!. We have previously established@92# that, in the
case of a purely discontinuous stochastic process, a n
Markovian property may be introduced in different ways:
introduction of a nonlinear combination of probabilities,
by integration over a ‘‘memory function,’’ etc. However, th
operation of integration over a memory function alone
compatible with the quantum-mechanical systems. The m
ter is that even the simplest differential equation with
argument lag

Y8~x!52E
0

`

Y~x2s!dr~x,s! ~14!

possesses the remarkable property: under sufficiently la
argument lag, every solution of Eq.~14! has the number of
roots unlimited to its right@93#. Meanwhile, the quantum
mechanical probabilities are characterized by the oscillati
unbounded in time. Proceeding from this property of E
~14!, we introduced a distributed time lag both in the incom
~positive!, and in the outcome~negative! item in the right
side of GME~12!. Moreover, the form of delay function is
defined strictly by the ‘‘consistency relationships’’ propos
by Gillespie@87#, compelling us to choose the stepping fun
tion in the unique possible form~13!.

The non-Markovian extension~11! of the Markovian
Kolmogorov-Chapman equation is defined uniquely by
GME @Eq. ~12!#, which is consistent with the time evolutio
of quantum-mechanical probabilities~6!.

Let us show that Eqs.~11!–~12! are the minimal non-
Markovian extension of Markovian equations~7!. Indeed, for
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sufficiently small differencet2t0 , it is possible to limit one-
self by the first three terms in the power decomposition:

P~n,tuk,t0!5P~n,t0uk,t0!1
]P~n,tuk,t0!

]t U
t5t0

~ t2t0!

1
1

2

]2P~n,tuk,t0!

]t2 U
t5t0

~ t2t0!21¯ . ~15!

For probabilities ~6! one has ]P/]tu t5t0
50 and

P(n,tuk,t0)5dn,k . As a result, we get from Eq.~15!

P~n,tuk,t0!>dn,k1
1

2

]2P

]t2 U
t5t0

~ t2t0!2. ~16!

By differentiating Eq.~16!, one obtains, using once aga
Eq. ~16!,

]

]t
P~n,tuk,t0!>

]2P

]t2 U
t5t0

~ t2t0!

5
2

t2t0
@P~n,tuk,t0!2dn,k#. ~17!

In another way, Eq.~17! can be rewritten as

1
2 ~ t2t0!

]

]t
P~n,tuk,t0!5P~n,tuk,t0!2dn,k . ~18!

Substituting Eq.~18! into Eq. ~11!, one gets two identica
Kolmogorov-Chapman equations for the both cases~n5k
51 andn52, k51!:

P~n,tuk,t0!5 (
m51,2

E
t0

t

P~m,tuk,t0!dtP~n,tum,t!.

~19!

It is well known @91# that the Markov character of th
process is summarized in the corresponding Kolmogor
Chapman equation.

In a similar manner, at the small differencet2t0 , Eq.
~12! become the ordinary Markovian master equation@94#:

]

]t
P~1,tu1,t0!5E

t0

t

P~1,tu1,t0!dtW1~ t2t!

2E
t0

t

P~2,tu1,t0!dtW2~ t2t!, ~20a!

]

]t
P~2,tu1,t0!5E

t0

t

P~2,tu1,t0!dtW2~ t2t!

2E
t0

t

P~1,tu1,t0!dtW1~ t2t!, ~20b!

wheredW6 /dt5const, as it follows from Eq.~13! due to
the small difference (t2t0).

Thus, Eq.~11! is the minimal non-Markovian generaliza
tion of Kolmogorov-Chapman equation~19! necessary to
model the quantum-mechanical probabilities time evoluti
-

.

Similarly, GME set~12! is the minimal non-Markovian gen
eralization for master equation set~20! or ~7! necessary for
the same goal.

The Kolmogorov-Chapman equation~19! contains the
transition probabilityP(n,tuk,t0) on its left side and all com-
binations of transition probabilities over the intermedia
statem in the intermediate timet on its right side. As to our
non-Markovian generalization~11! of Markovian equation
~19!, it contains on the left side the derivation from the tra
sition probabilityP(n,tuk,t0) that does not allow us to se
the essence of introduced non-Markovity. To eliminate t
‘‘defect,’’ let us rewrite Eq.~11! in the equivalent integra
form:

P~n,tuk,t0!2dnk

52E
t0

t 1

s2t0
F(

m
E

s

t

P~n,sum,t!dtP~m,tuk,t0!Gds.

~21!

Equation ~21! is the minimal non-Markovian extension o
Markovian equation~19!, and its right side demonstrates e
plicitly the memory and time lag introduced in the standa
Kolmogorov-Chapman equation~19! to achieve adequate
mathematical modeling of quantum-mechanical probab
ties.

Gillespie @87# had entitled his paper ‘‘Why quantum me
chanics cannot be formulated as a Markov process’’ a
Grabert, Ha¨nggi, and Talkner@85# had entitled their pape
‘‘Is quantum mechanics equivalent to a classical stocha
process?’’ The title of our article is explained by the resu
of the next section.

III. A GENERALIZED TWO-LEVEL SYSTEM

It is possible to suppose that non-Markovian stocha
equations for quantum probabilities were found in the pre
ous section only for the simplest example of quantum pr
lem ~1!–~3!, which may not even be of real interest from
physical point of view. That is why in this section we sha
analyze the quantum two-level system, which can be e
dently realized physically. Let us consider a process of p
ton emission~absorption! by a two-level atom interacting
with monochromatic electromagnetic field. The solution
this quantum-mechanical problem in semiclassical appro
mation was discussed in the article@95#, according to which
the Hamiltonian of such a system is

H~ t !5I E12 i\
g

2
, Ve2 ivt

Veivt, E21 i\
g

2

I , ~22!

where E1 is the upper level energy,E2 is the lower level
energy,g21 is a radiation lifetime of the upper level,V is the
amplitude of monochromatic electromagnetic wave, andv,
\, and t denote the wave frequency, Plank’s constant, a
time, respectively.

The full wave functionC(t) is determined from the time
dependent Schro¨dinger equation,
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i\
]

]t
uC~ t !&5H~ t !uC~ t !&. ~23!

Two-component wave functionC(t) has two eigenvalues
(l1 ,l2) and two eigenvectors

uw1&5 Ia11

a12
I , uw2&5 Ia21

a22
I ,

satisfying the Schro¨dinger equations

Huw1&5l1uw1&, Huw2&5l2uw2& ~24!

with time-independent Hamiltonian

H5T~ t !H~ t !T1~ t !2 i\T~ t !
dT1~ t !

dt
,

whereT(t) is the unitary transformation.
The resulting expressions for the transition amplitudes

@95#

A215
V̄

V
exp~ ivt !A12

522ie~ i /2!vt
V̄

\m
sinS mt

2 D , ~25a!

A115Ā225e2~ i /2!vtFcosS m

2
t D1 i

Dv

m
sinS m

2
t D G ,

~25b!

where

m5
2

\
AuVu21 1

4 \2~Dv!2, ~26!

and the detuning of the system from exact resonance is
ignated\Dv with

\Dv5~E12E2!2\v5\v02\v. ~27!

From Eq. ~25! the corresponding transition probabilitie
can be obtained:

P~1,tu1,t0!5uA11u25cos2S m

2
~ t2t0! D

1
Dv2

m2 sin2S m

2
~ t2t0! D , ~28a!

P~2,tu1,t0!5uA21u25
4uVu2

\2m2 sin2S m

2
~ t2t0! D . ~28b!

Let us verify the equality to unit of the sum of probabi
ties ~28!:
re

s-

P~1,tu1,0!1P~2,tu1,0!

5cos2S m

2
t D1

~\Dv!214uVu2

\2m2 sin2S m

2
t D

5cos2S m

2
t D1sin2S m

2
t D51, ~29!

where in the second equality the relationship~26! is used.
From Eq. ~29! it is evident that probabilities~28! are the
classical probabilities varying in the range 0–1. They are
generalization of the probabilities~6! and can be reduced t
them under the full resonance conditionDv50, that is when
in Eq. ~28b! the factor (4uVu2/\2m2) equals 1.

We now turn to search for the non-Markovian GME
which the probabilities~28! satisfy. For this purpose, we
rewrite the formulas~28! in the very compact form:

P~1,tu1,t!5uA11u25cos2a~ t2t!1q sin2a~ t2t!,
~30a!

P~2,tu1,t!5uA21u25~12q!sin2a~ t2t!, ~30b!

with

a[
m

2
, q[

Dv2

m2 . ~31!

By the direct substitution, it is easy to check that pro
abilities ~30! satisfy the following integrodifferential equa
tion:

q@dn,k2P~n,tuk,t0!#

5 1
2 ~12q!~ t2t0!

]P~n,tuk,t0!

]t

1 (
m51,2

E
t0

t

P~m,tuk,t0!dtP~n,tum,t!, ~32!

wheren51,2 andk51,2. If q50, when the problem~22!–
~28! is reduced to the problem~1!–~6!, the equation~32! has
become equivalent to Eq.~11!. Thus, Eq.~32! is just the
non-Markovian generalization of the Kolmogorov-Chapm
equation~19!, modeling the time evolution of the quantum
mechanical probabilities~28! @or ~30!#.

With Eqs. ~15!–~18!, it is not difficult to show that non-
Markovian equation~32! gets simplified and becomes th
Markovian Kolmogorov-Chapman equation~19! under suffi-
ciently small values of the difference (t2t0). Thus, the non-
Markovian equation~32! is the minimal extension of the
Markovian equation ~19! allowing one to include the
quantum-mechanical probabilities~28! @or ~30!# into the
theory of real stochastic processes.

Differentiate Eq.~32! with respect tot, one obtains the
following two integrodifferential equations:
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~11q!
d

dt
P~1,tu1,t0!1~12q!~ t2t0!

d2

dt2
P~1,tu1,t0!

52E
t0

t

P~1,tu1,t0!dtW1~ t2t!

22E
t0

t

P~2,tu1,t0!dtW2~ t2t!, ~33a!

~11q!
d

dt
P~2,tu1,t0!1~12q!~ t2t0!

d2

dt2
P~2,tu1,t0!

522E
t0

t

P~1,tu1,t0!dtW1~ t2t!

12E
t0

t

P~2,tu1,t0!dtW2~ t2t!, ~33b!

where notations

W1~ t2t![
]

]t
P~2,tu1,t!, ~34a!

W2~ t2t![
]

]t
P~1,tu2,t! ~34b!

are used. Atq50 ~the exact resonance!, the stepping func-
tions ~34! are equal to Eq.~13!, and equations~33! can be
reduced to the equations~12!. Thus, Eqs.~33! are the desired
non-Markovian GME set satisfied by the quantum probab
ties ~28! @or ~30!#.

As in the Sec. II it is possible to check that under su
ciently small difference (t2t0) the non-Markovian GME se
@Eq. ~33!# transforms into the ordinary~Markovian! master
equations set~20! or ~7!. This means that GME set~33! is the
minimal non-Markovian extension of Markovian ME@Eq.
~7!# allowing one to include the quantum-mechanical pro
abilities ~28! @or ~30!# into the theory of real stochastic pro
cesses. The transition functionsW1(t2t) andW2(t2t) in
the GME set~33! thus obey consistency relationships~34!
established in@87#. In the limit of q→1 ~that is,Dv→`, the
full absence of resonance!, the GME set~33! becomes equa
to the set of equations~20!, that are the ordinary~Markovian!
master equations of the macroscopic balance with pos
‘‘birth’’ and negative ‘‘death’’ terms. Thus once again non
Markovian GME set~33! is the desired minimal generaliza
tion of Markovian ME set~20!, modeling the time evolution
of quantum probabilities~28! @or ~30!#.

From Eq. ~30b! for sufficiently small transition timedt
5t2t one obtains

P~1,t1dtu2,t !5P~2,t1dtu1,t !5~12q!a2~dt!2. ~35!

It is a particular manifestation of the general regularity
the quantum-mechanical systems behavior@87,96#:

12 z^Cue2 iHdt/\uC& z25@DCH/\#2~dt!2, ~36!

whereH is the time-independent Hamiltonian.
-

-

-

e

IV. UNITY AND CONTRAST

In Ref. @49# one of the authors had shown that Browni
~classical! and quantum-mechanical random walks can
described by the almost identical equations—see Eqs.~8!
and ~11! in @49#:

]w

]t
52divS w¹

S

mD , ~37a!

]S

]t
1

1

2m
~¹S!22kmb2F¹2w

w
2

1

2 S ¹w

w D 2G1
]U

]w
50,

~37b!

with

b5
\

2m
, k511 for quantum-mechanical particle,

~38a!

b5D, k521 for Brownian particle, ~38b!

wherew is a probability density,S is full velocity potential,
m denotes the particle’s mass, andU is the external potential
It is evident from Eqs. ~37! and ~38! that quantum-
mechanical random walks of microparticles~motion Q! and
diffusion walks of macroscopic Brownian particles~motion
B! are connected very tightly and, simultaneously, are
tipodes, much like the two poles of a magnet or like boso
and fermions.

The similarity and even identity of these two types
random walks lies in the fact thatEqs. (37) only for the two
first moments—probability densityw5uCu2 and currentJ
5(r/m)¹q @2# ~or full velocity potentialS@12#, or two-time
correlation function̂ x(t)x(t2t)& @85#, etc.!—are necessary
and sufficiently for its full and single-valued descriptio.
Hence, both theQ motionand theB motion ranked among
the normal~Gaussian! stochastic processes.

Nonsimilarity and full contrast ofQ andB motions mean
that Q motion is a purely discontinuous~jump! stochastic
process, andB motion is purely continuous~diffusive! ran-
dom walk. It was shown by Doob@77# and by Nelson@24#,
that both the Brownian trajectory and its derivative are e
erywhere continuous with probability 1. On the other han
the quantum-mechanical walks have everywhere discont
ous derivatives and everywhere discontinuous trajecto
@76#. In terms of the Ito stochastic differential equation@77#,

dj5a~ t,j!dt1b~ t,j!dw~ t !1E c~ t,j,u!ñ~dt,du!,

~39!

this means the following: in the case of quantum mechan
diffusional itemb(t,j) is equal to zero identically, but in the
case of Brownian motion, the item of jumpsc(t,j,u) is
equal to zero identically:

motion Q, b~ t,j![0, c~ t,j,u!Þ0; ~40a!

motion B, b~ t,j!Þ0, c~ t,j,u![0. ~40b!

In Eq. ~39!, the a(t,j) is a drift item, w(t) is the Wiener
process, andñ(dt,du) is the Poisson process@77#.
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In the absence of drift (a[o), an arbitrary function

u~ t,x!5M f „jxt~s!…, t,s ~41!

is described by the diffusion equation

]u

]t
52 1

2 sp@b~ t,x!b* ~ t,x!¹2u# ~42a!

in the completely continuous caseB, and it is described by
GME,

]u

]t
5E @u~ t,x!1@c~ t,x,u!u¹u~ t,x!#

2u„t,x1c~ t,x,u!…#P~du!, ~42b!

wheredP tx(A)5Mn tx(d,A), in the completely discontinu
ous caseQ @77#.

Nelson was the first to establish a fact that velocity u
dergoes a jump atany pointof quantum-mechanical trajec
tory @ v̄1( j̄,t)Þ v̄2( j̄,t)#. It is evident from this, that it is
necessary try to derive the Schro¨dinger equation from GME
@Eq. ~42b!# but not from the diffusion equation~42a!. How-
ever, Nelson@22# started from the diffusion equation and a
followers of his approach@27,38,44,45,54,57# continue to do
so to our knowledge, the only work starting from GME
Ref. @76#. Our GME set~33! has the form of Eq.~42b! for
completely discontinuous process.

In closing of this section, let us note that although hyd
dynamic models@1–10# do not give an adequate model
quantum-mechanical motion, they are rather useful, beca
they allow us to find the two first moments of the corr
sponding stochastic process@2#. In particular, the critics of
hydrodynamic models@68,69,71,72# considered the impossi
ng

g
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-
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bility of specifying phenomena of a microparticle’s spin
its main defect. However, this defect is overcome in the
cent versions of hydrodynamics model@5–8#.

V CONCLUSIONS

Jump Markov process theory is the quintessential reali
stochastic theory for mathematically modeling systems t
randomly jump about in real time over discrete states.
reasons of self-consistency, the probability for any Mark
process to jump in the nextdt must belinear in dt @97#. In
contrast, at theunapproximated fundamentallevel, quantum-
mechanical systems havequadratic-dt transition probabili-
ties ~35!,~36! and so cannotbe modeled as jump Markov
processes. Hence, quantum-mechanical systemsmust be
modeled as ajump non-Markovprocess. It is axiomatic that
there still would be consistency conditions~9!,~10!, that
would have to be satisfied@87#. Our conditions~34a!,~34b!
are just these consistency conditions~9!,~10!, and our Eqs.
~33! are just the non-Markov GME set modeling th
quantum-mechanical problem~22!,~23! as a jump non-
Markov process.

The problem of quantum-mechanical motion descript
as a real Markov process was recently discussed in@98,99#.
However, the authors of both articles manifested again
positions of their previous works@60,87#, which were dis-
cussed above. In our view, the understanding of the natur
quantum-mechanical motion was not clarified, hence the
cussions in@98,99# are not relevant to the results present
here.
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