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Quantum mechanics can be formulated as a non-Markovian stochastic process
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Both quantum mechanics and stochastic-process theory deal with dynamical systems the behaviors of which
can be predicted only probabilistically. It is shown here that the measurable behavior of an elementary quantum
system can be modeled as a non-Markovian stochastic process. The conclusion that quantum behavior can
generally be modeled as a real stochastic process eliminates some mysterious characteristics of quantum
mechanics when viewed in Copenhagen-interpretation tgi%1950-29478)07710-3

PACS numbd(s): 03.65.Bz, 03.65.Ca

I. INTRODUCTION was shown[82,85,87, that quantum-mechanical processes
cannot be described by the real Markovian equations, and in
The efforts to reformulate quantum mechanics in terms of85] it is even manifested that no non-Markovian equation is
deterministic hydrodynamicgl—10] or the theory of real sufficient for solving this problem. The goal of the present
stochastic process¢41—67 have a history that goes back Work is to make clear which stochastic equati¢htarkov-
approximately 70 years. Although hydrodynamic modelsian, non-Markovian, or neithgare suitable for mathematical
have a certain heuristic value, they contradict the generallynodeling of the quantum-mechanical processes.
accepted statistical(according to Borh character of
guantum-mechanical motid68—732. Il. A TWO-DIMENSIONAL QUANTUM SYSTEM
The stochastic approach is another case: if it is accepted
that behavior of microparticles is inalienably statistical, why [N [87] Gillespie studied a possibility of modeling as a
is a specific quantum theofy3] used for its mathematical Markov process the temporal evolution of the simplest
modeling, but not a theory of stochastic processes intendegantum-mechanical two-level system previously considered
for analysis ofany probabilistic process? The description of in [60]. Let “unperturbed” HamiltoniarH, have two ortho-
microworld phenomena by the use of the stochastic pronormal eigenstateld) and|2):
cesses theory would contradict neither Born’s interpretation

of the wave function, nor von Neumann'’s theorem about Holk)=Eolk) Kl=12 1
hidden parametef{§4], because nonlocal hidden parameters (k|ly= &, e @
are not at variance with quantum mechanics as is evident

from the well-known Bell's theorem[75]. Indeed, a Oscillations between eigenstatds and |2) are induced

guantum-mechanical random walk is just a completely disby a “perturbing” HamiltonianH’, which is defined by its
continuous process, not only in the phase, but also in theepresentation in the Hamiltoniah, eigenbasis according to
configuration space[76]—unlike the Brownian motion,

which is completely continuous with probability 1 not only , E’, k=I
in the configuration(cf. the Doob theorem77]) but also in (kIH'|l)= AE, k#l (k1=1,2. )
the phase spade4].
Nevertheless, it is generally acceptgtB—8g that this The time evolution of the whole system is determined by

goal has not bgen achieved in any of the W0['Ik$—6_q, the Schfadinger equation:

because each time such nondeductive and nonclassical pro-

cedures as the introduction of imaginary tifi#5], a nega- d

tive diffusion coefficient[33,49,59, complex probability i — |V (t))=(Ho+H")|W¥(t)) (3
[73,86, or the diffusion equation for a non-ambiguous- dt

discontinuous stochastic procefg2,38,42,54,5 etc. are ] o N

necessary to obtain the Schioger equation from the clas- With the initial condition, for example,

sical Brownian motion.

By now it seems to be acceptgsi2,89 that it is impos- W (to))=|1). 4
sible to obtain anything from the Brownian motion except
the diffusion Fokker-Plank equation. For the Salinger If we expand¥ (t) in the eigenbasis dfi,
equation to be deduced, it is necessary to proceed from a
(non-Brownian Markovian proces$52,64,9Q. However, it [P (t)y=ai(t)|1)+ay(t)]2), (5)
then, from the solution set of E@3) under initial condition
*Electronic address: gera@mail.moss.pu.ru (4), we can obtain the probabilities of finding the system in
"Electronic address: sis@srdlan.npi.msu.su states|1) or |2) at any timet=t,, respectively:

1050-2947/98/58)/34267)/$15.00 PRA 58 3426 ©1998 The American Physical Society



PRA 58 QUANTUM MECHANICS CAN BE FORMULATED ASA ... 3427

P(1t|1to)=[(1|¥(1))]|?>=]a(t)|? wherek=1,2; n=1,2. Differentiating Eq(11) with respect
tot, one obtains the desired GME set, which probabilit®s
=C0§[AE(t_to)/h], (63) Satisfy:
P(2t|1to)=](2|¥(1))]?=]as(t)|? d d?
(24]Lt0) = (2] (1)) = az(0)| 8 ot -t P
= SI[AE(t—t)/A]. (6b) t t
t
According to the theory of Markov processggl] the =2[ P(1,71to)d, W, (t—17)
time evolution of probabilitie$6) should be modeled by the fo
“master equation” set t
—ZJ P(2,7|1te)d,W_(t—1), (129
t
d 0
— P(Lt|1te)=W_(2,)P(2t|1t)
dt d2

d
WL (LHP(LE1t), (73 gt P(2t|1to)+ (t—1p) ae P(2t|1to)

t
d P(24| 1) =W, (L) P(Lt|1o) - thOP(Z'Tll’t")dTW‘(t_ g

dt
t
_W*(zvt)P(21t|lvt0)1 (7b) _ZJ’ P(l,Tll,to)dTWJr(t_T), (12b)
to
whereW.. (k,t) are the “stepping functions” satisfying the _ .
Markovian consistency conditioi87]: where the stepping functions
_ — Jd Jd
W (20 =W_(11)=0, ®) W, (t=n) =W (t= )= = P(21|1,)= - P(142,7)
W, (Lt)dt=P(2+dt[1}), ©) (13

are introduced.
W_(2)dt=P(1t+dt|2}). (10) The following reasons led us to deduce the equations
(11)—(13). We have previously establish¢®2] that, in the

By direct substitution, it is easy to show that functidfs  case of a purely discontinuous stochastic process, a non-
do not solve the equation s€t) under the conditiong8)—  Markovian property may be introduced in different ways: by
(10). Hence, Gillespie concludethe fundamental quantum- introduction of a nonlinear combination of probabilities, or
mechanical evolution-measurement process cannot generallyy integration over a “memory function,” etc. However, the
be modeled as a jump Markov process [87]. It is necessaryperation of integration over a memory function alone is
to agree completely with this conclusion compatible with the quantum-mechanical systems. The mat-

The question now arises as to whether there is a possibiter is that even the simplest differential equation with an
ity of modeling the quantum-mechanical evolution- argument lag
measurement process by means of the non-Markovian gen-
eralized master equatidtEME), so that the probabilitie¢b) o
are satisfied. Gillespig87] does not give any definite con- Y'(x)= —f Y(x—s)dr(x,s) (14
clusions about this. Grabert, Hggi, and Talknef85], how- 0
ever, insist on the impossibility in general for quantum-
mechanical probabilities to be modeled by the classica
stochastic theory equations—neither Markovian, nor an
non-Markovian equations. However, this notion is refuted b))' . — . I
our success in finding a non-Markovian GME set such tha{nechanlcal probabmtles are c'haracterlzeq by the oscillations
probabilities(6) are satisfied. By the direct substitution alone unbound.ed in time. Progeedmg 'from this prpperty.of Eq.
it can be proved that probabilitiei§) satisfy the following (14), we introduced a distributed time lag both in the income

At i - (positive, and in the outcoménegative item in the right
generalization of the Kolmogorov-Chapman equation: side of GME(12). Moreover, the form of delay function is

P defined strictly by the “consistency relationships” proposed
LHt—ty) = P(n,t[K,to) by G'illespie[8'7], compe_lling us to choose the stepping func-
at tion in the unique possible forr(l3).

possesses the remarkable property: under sufficiently large
rgument lag, every solution of E¢l4) has the number of

The non-Markovian extensiorill) of the Markovian

= z tP(n,t|m,r)dTP(m,r|k,to) Kolmogorov-Chapman equation is defined uniquely by the
m=12 Jtg GME [Eq. (12)], which is consistent with the time evolution
¢ of quantum-mechanical probabiliti€s).
== > P(m, 7|k to)d.P(n,tjm,7), (11) Let us show that Eqs(11)—(12) are the minimal non-

m=12 Jt, Markovian extension of Markovian equatiof®. Indeed, for
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sufficiently small differencé—tg, it is possible to limit one-  Similarly, GME set(12) is the minimal non-Markovian gen-
self by the first three terms in the power decomposition:  eralization for master equation s&0) or (7) necessary for
the same goal.

dP(n,t|k,to) The Kolmogorov-Chapman equatiofl9) contains the
Pn.tlk.to) =P(n.tolkto) +—— ) transition probabilityP(n, t|k,to) on its left side and all com-
0 binations of transition probabilities over the intermediate
1 9?P(n,t|k,to) ) statem in the intermediate time on its right side. As to our
5z | (=t (19  non-Markovian generalizationll) of Markovian equation
t=tg (19), it contains on the left side the derivation from the tran-

sition probability P(n,t|k,t;) that does not allow us to see

For  probabilities (6) one has ‘7P/‘9t|t=tozo and the essence of introduced non-Markovity. To eliminate this

P(n,t|k,to) =8, k. As a result, we get from Ed15) “defect,” let us rewrite Eq.(11) in the equivalent integral
P form:
P(ntkt) =8, +5 —=| (t—to) (16)
M2t t=t, P(n,t|k,to) = Snk
By differentiating Eq.(16), one obtains, using once again t 1 t

Eq. (16), =2ft0 P— 2 LP(n,SIm,r)dTP(m,rlk,to) ds.

J 2 (21

rn P(n:t|kato)EW (t—to) , . - . .

t=tq Equation(21) is the minimal non-Markovian extension of

Markovian equatior{19), and its right side demonstrates ex-
plicitly the memory and time lag introduced in the standard
Kolmogorov-Chapman equatiofil9) to achieve adequate
mathematical modeling of quantum-mechanical probabili-
In another way, Eq(17) can be rewritten as ties.

5 Gillespie[87] had entitled his paper “Why quantum me-
101y 2 _ _ chanics cannot be formulated as a Markov process” and
2(t-t) dat P(n.tlkto)=P(n.tlk.to) = dny. (19 Grabert, Haggi, and Talknef85] had entitled their paper

“Is quantum mechanics equivalent to a classical stochastic

Substituting Eq(18) into Eq.(11), one gets two identical process?” The title of our article is explained by the results
Kolmogorov-Chapman equations for the both ca@@sk  f the next section.

=1 andn=2,k=1):

2
BTN [P(n,t|k,to) = Sn il 17
0

Ill. A GENERALIZED TWO-LEVEL SYSTEM

t
P(ntlkte)= > | P(m,7lk,te)d,P(n,tlm,7). _ , ) _
m=12 Jt, It is possible to suppose that non-Markovian stochastic

(19 equations for quantum probabilities were found in the previ-

) ous section only for the simplest example of quantum prob-

It is well known [91] that the Markov character of the oy (1)_(3), which may not even be of real interest from a
process is summarized in the corresponding Kolmogorovphysical point of view. That is why in this section we shall

Chapman equation. _ analyze the quantum two-level system, which can be evi-
In a similar manner, at the small difference to, Eq.  gently realized physically. Let us consider a process of pho-
(12) become the ordinary Markovian master equafig4l: ton emission(absorption by a two-level atom interacting
J N with monochromatic electromagnetic field. The solution of
— p(1,t|1,to):J P(1,71to)d, W, (t—17) this quantum-mechanical problem in semiclassical approxi-
at to mation was discussed in the arti¢@5], according to which

. the Hamiltonian of such a system is

—f P(2,7]1to)d,W_(t—17), (203
t .
0 E1_|ﬁ %, Ve—lwt

& t =

d P(2,t|1,to)=J P(2,7|1t0)d,W_(t—7) () . MK (22

at to veer, Ep+ifi 5

t
- ftop(l’7|l’t°)dfw+(t_7)’ (200 where E; is the upper level energ\g, is the lower level

energy,y” ! is a radiation lifetime of the upper levey, is the
wheredW.. /dr=const, as it follows from Eq(13) due to amplitude of monochromatic electromagnetic wave, and
the small differencet(-t;). f, andt denote the wave frequency, Plank’s constant, and
Thus, Eq.(11) is the minimal non-Markovian generaliza- time, respectively.
tion of Kolmogorov-Chapman equatiofi9 necessary to The full wave function¥ (t) is determined from the time-
model the quantum-mechanical probabilities time evolutiondependent Schainger equation,



PRA 58

1%

¢ [V O)=HO[¥ (D).

ih (23)

Two-component wave functiod (t) has two eigenvalues
(N 1,\5) and two eigenvectors

Az
azy

11
12,

a
|<Pl>:a ) |€02>:

satisfying the Schidinger equations

Hle) =Nile1), Hlez)=N\ol¢p) (24

with time-independent Hamiltonian

dT (t)

H=T@®H®) T (t)—iAT(t) T

whereT(t) is the unitary transformation.
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P(1£|1,0 +P(2[1,0
hEA 2 2
=co¢ %t)Jr%siﬁ(%t)
=co§(%t 1 sir? %t):l, (29)

where in the second equality the relationsk®®) is used.
From Eq.(29) it is evident that probabilitie28) are the
classical probabilities varying in the range 0—1. They are the
generalization of the probabilitig$) and can be reduced to
them under the full resonance conditidm =0, that is when
in Eq. (28b) the factor (4V|?/42u?) equals 1.

We now turn to search for the non-Markovian GME,
which the probabilities(28) satisfy. For this purpose, we
rewrite the formulag28) in the very compact form:

P(1t|1,7)=|A|?=coa(t—7)+q sirfa(t— 1),

The resulting expressions for the transition amplitudes are

[95]
Voo
AZl:V expliot)Aq
: v mt
— _9iaiRot _—_ g T
2ie » sm( 5 ) (25a
— 7 Ao (u
A =A,,=e (1120t cos(Et +i 7sm<5t”,
(25b)
where
2 2,132 2
p=3 NIVP+ih%(Aw)?, (26)

(303
P(2t]1,7)=|Ay|?=(1—q)sirPa(t—7),  (30b
with
A 2
a=%, qu’z—. (31)

By the direct substitution, it is easy to check that prob-
abilities (30) satisfy the following integrodifferential equa-
tion:

ql 8n k= P(n,tlk,to)]

IP(n,t[K,to)

=3(1-a)(t—ty) ——

and the detuning of the system from exact resonance is des-

ignatedzAw with

hAdw=(E;—E,)—hw=howy—ho. (27
From Eqg.(25) the corresponding transition probabilities
can be obtained:

P(l,t|1,t0): |A11|2:C0§(g (t_to))
A 2
+ M—“; sinz(% (t—to)), (283

V|2

) 4\V
P(2t|1to)=|Ay|"=

—hz—Mzsinz(g(t—to) . (28b

Let us verify the equality to unit of the sum of probabili-
ties (28):

+ > tP(m,7|k,to)dTP(n,t|m,T), (32

m=1.2 Jt,

wheren=1,2 andk=1,2. If =0, when the probleni22)—
(28) is reduced to the probleifi)—(6), the equation32) has
become equivalent to Eq11). Thus, Eq.(32) is just the
non-Markovian generalization of the Kolmogorov-Chapman
equation(19), modeling the time evolution of the quantum-
mechanical probabilitie€28) [or (30)].

With Egs.(15—(18), it is not difficult to show that non-
Markovian equation(32) gets simplified and becomes the
Markovian Kolmogorov-Chapman equati¢t®) under suffi-
ciently small values of the differencé-ty). Thus, the non-
Markovian equation(32) is the minimal extension of the
Markovian equation(19) allowing one to include the
guantum-mechanical probabilitie®8) [or (30)] into the
theory of real stochastic processes.

Differentiate Eq.(32) with respect tot, one obtains the
following two integrodifferential equations:
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2 IV. UNITY AND CONTRAST

d d
1+q9) = P(1t|1ty)+(1— t—ty) 9= P(1t|1t .
(1+0) Gy PALILI) + (1= a) (=) gz P(L]1t0) In Ref.[49] one of the authors had shown that Brownian

(classical and quantum-mechanical random walks can be

=2ftP(1,T|1,to)d,W+(t—r) described by the almost identical equations—see Kgjs.
t and(11) in [49]:
t d
_ZJ P(2,7|1to)d,W_(t—1), (33a _W: —div( wV E), (379
to ot m
d d2 1 ) Viw 1 /[/Vw\?] U
(1+0) g P(28|1t0) + (1= a)(t=to) gz P(2t[110) —t "o (V92— wkmb?| ——=—2 | =] |+ - =0,
(37b
t
=— th P(1,7|1te)d, W, (t—7) with
0
t h : :
+2f P(2,7|1to)d. W_(t—17), (33h) bzﬁ, k=+1 for quantum-mechanical particle,
‘o (389
where notations b=D, k=-1 for Brownian particle, (38b

wherew is a probability densitySis full velocity potential,
17, (343 m denotes the particle’s mass, adds the external potential.
It is evident from Egs.(37) and (38) that quantum-
J mechanical random walks of microparticlémotion Q) and
W_(t—7)=— P(1t]2,7) (34b  diffusion walks of macroscopic Brownian particlésotion
at B) are connected very tightly and, simultaneously, are an-
tipodes, much like the two poles of a magnet or like bosons
are used. Ag=0 (the exact resonangethe stepping func- gnd fermions.
tions (34) are equal to Eq(13), and equationg33) can be The similarity and even identity of these two types of
reduced to the equatioii$2). Thus, Eqs(33) are the desired random walks lies in the fact th&igs. (37) only for the two
non-Markovian GME set satisfied by the quantum probabili-first moments-probability densityw=|¥|? and currentJ
ties (28) [or (30)]. _ ~=(p/m)V 9 [2] (or full velocity potentialS[12], or two-time
. As in the Sgc. Il it is possible to check thgt under suffi- correlation functionx(t)x(t— 7)) [85], etc)—are necessary
ciently small differencet(—to) the non-Markovian GME set  and sufficiently for its full and single-valued description
[Eq. (33)] transforms into the ordinaryMarkovian master  Hence, both th&) motionand theB motionranked among
equations se20) or (7). This means that GME s€33) isthe  the normal(Gaussiah stochastic processes.
minimal non-Markovian extension of Markovian MEEq. Nonsimilarity and full contrast of andB motions mean
(7)] allowing one to include the quantum-mechanical probthat Q motion is a purely discontinuou§ump) stochastic
abilities (28) [or (30)] into the theory of real stochastic pro- process, andd motion is purely continuougdiffusive) ran-
cesses. The transition functiolé, (t—7) andW_(t—17) in  dom walk. It was shown by Doofr7] and by Nelsorj24],
the GME set(33) thus obey consistency relationshif®)  that both the Brownian trajectory and its derivative are ev-
established in87]. In the limit ofg—1 (thatis,Aw—c, the  erywhere continuous with probability 1. On the other hand,
full absence of resonangehe GME se(33) becomes equal  the quantum-mechanical walks have everywhere discontinu-
to the set of equation®0), that are the ordinarfMarkovian  ous derivatives and everywhere discontinuous trajectories

master equations of the macroscopic balance with positive7g]. In terms of the Ito stochastic differential equatiai7],
“birth” and negative “death” terms. Thus once again non-

Markovian GME se{33) is the desired minimal generaliza-
tion of Markovian ME se{20), modeling the time evolution

J
W, (t-r)=— P(2t

dé=a(t,&)dt+b(t,&)dw(t) + f c(t,&,u)v(dt,du),

of quantum probabilitie$28) [or (30)]. (39
From Eq.(30b for sufficiently small transition timelt ) o )
=t— r one obtains this means the following: in the case of quantum mechanics,

diffusional itemb(t, £) is equal to zero identically, but in the
P(1t+dt|2)=P(2t+dt1t)=(1—q)a(dt)2 (35 case of Brownian motion, the item of jumpgt,&,u) is
equal to zero identically:
It is a particular manifestation of the general regularity in ti b(t. £)=0 t £0: 40
the quantum-mechanical systems behaf@,96: motion Q, b(t,§)=0, c(t,&u)#0; (409

_ motion B, b(t,£)#0, c(t,&u)=0. (40b)
1-Kwle MM W)P=[AyH/ATX(dD?,  (36)
In Eq. (39), the a(t,£) is a drift item,w(t) is the Wiener
whereH is the time-independent Hamiltonian. process, and/(dt,du) is the Poisson proce$37].
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In the absence of driftg=0), an arbitrary function

u(t,x)=Mf(&u(s)), t<s (41
is described by the diffusion equation
ou
—==—3spb(t,x)b* (t,x)V?u] (429

ot

in the completely continuous cag; and it is described by
GME,

(;_‘t": f [u(t,x)+[c(t,x,u)|Vu(t,x)]

—u(t,x+c(t,x,u))II(du), (42b)

where 611 (A) =M, (8,A), in the completely discontinu-
ous case) [77].
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bility of specifying phenomena of a microparticle’s spin as
its main defect. However, this defect is overcome in the re-
cent versions of hydrodynamics modél-§|.

V CONCLUSIONS

Jump Markov process theory is the quintessential realistic
stochastic theory for mathematically modeling systems that
randomly jump about in real time over discrete states. For
reasons of self-consistency, the probability for any Markov
process to jump in the nexlt must belinear in dt [97]. In
contrast, at thenapproximated fundamentivel, quantum-
mechanical systems hawgiadratic-dt transition probabili-
ties (35),(36) and so cannotbe modeled as jump Markov
processes. Hence, quantum-mechanical systemst be
modeled as gump non-Markowprocess. It is axiomatic that,
there still would be consistency conditior{9),(10), that
would have to be satisfielB7]. Our conditions(349),(34b)

Nelson was the first to establish a fact that velocity un-&re just these consistency conditia($,(10), and our Egs.

dergoes a jump any pointof quantum-mechanical trajec-

tory [v.(&1)#v_(&1t)]. It is evident from this, that it is
necessary try to derive the Schinger equation from GME
[Eq. (42b)] but not from the diffusion equatio®23. How-

ever, Nelsorf22] started from the diffusion equation and all

followers of his approacf27,38,44,45,54,57continue to do

so to our knowledge, the only work starting from GME is

Ref. [76]. Our GME set(33) has the form of Eq(42b) for
completely discontinuous process.

In closing of this section, let us note that although hydro-
dynamic modelg§1-10Q do not give an adequate model of
guantum-mechanical motion, they are rather useful, because
they allow us to find the two first moments of the corre-

sponding stochastic proceg2]. In particular, the critics of

(33) are just the non-Markov GME set modeling the
guantum-mechanical problen22),(23) as a jump non-
Markov process.

The problem of quantum-mechanical motion description
as a real Markov process was recently discussd@&;09.
However, the authors of both articles manifested again the
positions of their previous workgs0,87, which were dis-
cussed above. In our view, the understanding of the nature of
guantum-mechanical motion was not clarified, hence the dis-
cussions in98,99 are not relevant to the results presented
here.
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