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Analytical formulas for Coulomb integrals involved in scattering problems
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Radial matrix elements of multipole type involving the product of two Coulomb functions appear in many
problems of theoretical atomic physics. Here we investigate some of their properties, with a generalization
which includes the possibility of having the two functions related to two different charges. These would
typically appear in calculations of ionization cross sections, going beyond the well studied case where the two
charges are equal~elastic scattering or discrete excitation!. We provide analytical formulas for the evaluation
of matrix elements and recursion relations connecting them, both in the exact quantal formulation and in the
WKB approximation. These theoretical results are illustrated by considering, within the Coulomb projected
Born model, the electron impact ionization of Mg1 and Ar71 with a relatively moderate incident energy. The
radial matrix elements are evaluated with our exact quantal formulas and in the WKB approximation. The
agreement is impressive, and is reflected in the values of triple, double, and single differential cross sections.
Finally, a further study shows how the semiclassical approximation yields a very good estimate of single cross
sections.@S1050-2947~98!05407-9#

PACS number~s!: 34.80.Kw, 34.80.Dp
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I. INTRODUCTION

In many problems of atomic physics, integrals involvin
the product of two Coulomb functions appear in the theo
ical partial wave formulations. Indeed, in model calculatio
of scattering amplitudes where Coulomb wave functio
Fk

6(r) are involved, one conveniently separates the ang
from the radial part, with the well known partial wave e
pansion

Fk
6~r!5(

l ,m
4p~ i ! le6 id l

1

kr
Fl~k,z;r !Yl ,m* ~ k̂!Yl ,m~ r̂ !,

~1!

whereYl ,m are spherical harmonics,d l5argG( l 111 ih) are
the Coulomb phase shifts, andFl(k,z;r ) are the Coulomb
radial wave functions for given chargez and momentumk
(h5z/k is the Sommerfeld parameter!,

Fl~k,z;r !5
uG~ l 111 ih!u

2G~2l 12!
e2hp/2~2kr ! l 11e2 ikr

31F1~ l 112 ih,2l 12,2ikr !. ~2!

One has then to evaluate radial Coulomb integrals of mu
pole type and we shall investigate here some of their pr
erties restricting ourselves to the nonrelativistic case. In
notation of Alderet al. @1# the Coulomb integrals in ques
tion, often called matrix elements, are written as follows:

Ml i ,l f

2l215
1

kikf
E

0

`

Fl i
~ki ,zi ;r !

1

r l11
Fl f

~kf ,zf ;r !dr, ~3!
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wherezi andzf are not necessarily equal, and can be eit
positive or negative corresponding to a repulsive or an att
tive Coulomb potential depending on the charge of the p
jectile. The casezi or zf equal to zero corresponds to ze
potential, for which the Coulomb partial wave functions r
duce to Bessel functions.l>0 describes the multipole con
sidered, whilel i and l f are the angular momenta for th
initial and final states of a collision process. The conser
tion of angular momentum implies that only the cases
which l i2 l f52l,2l12, . . . ,l are of physical interest.

For electron impact collision processes where the ini
and final chargeszi and zf are equal~elastic scattering or
discrete excitation!, formulas for such integrals have bee
derived and extensively studied in the past: Alderet al. @1# in
the frame of Coulomb excitations of nuclei while Burge
et al. @2,3# similarly for atomic targets. For certain ranges
Sommerfeld parameters, the accurate numerical computa
of such integrals is not an easy task due to the highly os
latory nature of the integrand; various formulas, tables, a
details of numerical techniques can be found in the appen
of @2#. High precision in the evaluation of Coulomb integra
is often required in collision calculations since cancellatio
may occur in the partial wave summations. Also, in so
cases~typically for a dipole excitation of positive ions!, a
large number of matrix elements~3! are needed for con
verged calculations of scattering amplitudes: recursion r
tions are then a powerful tool to cope with this issue@1,4#.

In the first part of this contribution, we extend a series
properties for matrix elements~3! to the general case, includ
ing the possibilityziÞzf . The corresponding integrals woul
appear, for example, in partial wave calculations of scat
ing amplitudes for ionization processes where the initial a
final target charges differ. Along the lines of@1#, we provide
formulas for evaluating the matrix elements~3!, and a series
336 © 1998 The American Physical Society
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of useful recursion relations linking matrix elements of sim
lar or different multipolarity. The results provided here c
be seen as a generalization of some of those given, fozi
5zf , in @1#. We then investigate the matrix elements~3! in
the WKB approximation@1# which, under certain appropriat
conditions, has proved to be a very useful approach in m
aspects of scattering problems@5–8#. The effectiveness o
the WKB method was illustrated in a preceding publicati
by Hervieux and Guet@9# on the study of excitation (zi
5zf) of alkali-metal-like ions by electron impact. In th
WKB approximation the matrix elements are expressed
terms of an integral which is directly related to the semicl
sical picture. Here, we extend this integral expression~given,
for example, in@1#! to the general case, includingziÞzf . For
the monopole case, one can express the matrix eleme
terms of Hankel functions. For higher multipoles, we a
able to derive analytical formulas which link matrix elemen
of different multipolarities. The classical limit of the quant
result is also briefly discussed. As an illustration of our ge
eral formulas we present a selection of numerical results
the monopole, dipole, and quadrupole matrix elements~often
dominant in scattering problems! for two scattering situa-
tions: the electron impact excitation (zi5zf52Z) and ion-
ization (zi52Z, zf52Z21) of positively charged target
(Mg1, Z51 and Ar71, Z57). These allow us to verify the
numerical validity of some of our recursion relations, and
make a comparison of the quantal and WKB results show
the surprisingly good quality of the latter.

In the second part, we would like to demonstrate the u
fulness of our theoretical formulation with a simple study
a practical case, the ionization of a positive ion by elect
impact. We first provide the quantal formulas, in the Co
lomb projected Born~CPB! approximation@10#, for the sin-
gly, doubly, and triply differential cross sections~denoted,
respectively, SDCS, DDCS, and TDCS! showing how the
matrix elements~3! with ziÞzf appear. Since there is a clos
link with the WKB approximation to the matrix elements, w
then consider the semiclassical~SC! approximation@1,5# and
provide formulas for singly and doubly differential cross se
tions. In recent years, the SC approximation has been
discovered’’ in various domains: electron elastic scatter
by atoms@6#, discrete excitation of positive ions@9#, inner-
shell ionization by heavy particles@7#. Finally, we show the
y

n
-

in

-
r

g

e-
f
n
-

-
-

g

numerical results obtained for the electron impact ionizat
of the valence electron of the alkali-metal-like ions Mg1 and
Ar71 in their ground state. A comparison between the qu
tal results, and their WKB and semiclassical counterpart
presented. We would like to make clear the fact that we h
no intention, with the CPB approximation, of producing a
curate ionization cross sections. The example is taken
means of illustrating how the analytical results we provide
the first part of this contribution may be useful when solvi
scattering problems.

II. THEORY: ANALYTICAL FORMULAS
FOR RADIAL COULOMB INTEGRALS

A. Exact Coulomb functions

We start by looking at how the formulas to evaluate m
trix elements~3! provided in@1# need to be modified to in-
clude the caseziÞzf , and then tackle the issue of recursio
relations. Two Sommerfeld parameters are involved,h i
5zi /ki and h f5zf /kf ; for convenience we definej5h f
2h i .

~a! l50. Equation~II.B.56! of @1# is modified as follows:

Ml ,l
215e2~p/2!j~ki2kf !

22S ki2kf

ki1kf
D i ~h i1h f !S 4kikf

~ki2kf !
2D l

3
uG~ l 111 ih i !uuG~ l 111 ih f !u

G~2l 12!

3FS l 112 ih i ,l 112 ih f ,2l 12;
24kikf

~ki2kf !
2D ~4!

and relation~II.B.59! of @1# still holds,

Ml ,l
21~ki ,h i ;kf ,h f !5e2pjMl ,l

21~ki ,2h i ;kf ,2h f !.
~5!

~b! l>1. For multipolesl>1, expression~II.B.58! of @1#
for Ml 1l,l

2l21 is changed into
Ml 1l,l
2l215e~p/2!j~2ki !

l22S kf

ki
D l uG~ l 111 ih f !u

uG~ l 111l1 ih i !u

3H uG~l1 i j!u2

G~2l!
F2S 22l11,l 112 ih f ,l 111 ih f ,2l112 i j,2l111 i j;

ki2kf

2ki
,
ki2kf

2ki
D

12ReF S kf2ki

2ki
D l1 i j G~ l 111l2 ih i !G~2l2 i j!

G~ l 112 ih f !

3F2S 2l111 i j,l 111l2 ih i ,l 111 ih f ,l111 i j,2l111 i j;
ki2kf

2ki
,
ki2kf

2ki
D G J , ~6!
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whereF2 is a generalized hypergeometric function, one
the so-called Appell functions. In Eq.~6!, the first function
F2 reduces to a polynomial since its first parameter is a ne
tive integer. In particular, for the dipole and quadrupo
cases one finds

F2~22l11, . . . !55
h i

zij
~zf2zi ! ~l51!

h i

2

A

h f
2zi

3j~11j2!
~l52!,

~7!

where

A5zizf
2j~h i1h f !1~zf2zi !

3@2h i
2h f

2~zf2zi !
22h f

2zizf

2~3l 14!h i
2zf

21~3l 15!h f
2zi

2#,

which is an extension of Eq.~II.B.60! of @1#. As indicated in
@1#, the second functionF2 in expression~6! can be reduced
to a single functionF1 by use of

F2~a,b,b8,g,a;x,y!5~12y!2b8

3F1S b,a2b8,b8,g;x,
x

12yD ,

~8!

where the functionF1 can then be computed using the ser

F1~a,b,b8,g;x,y!5(
m,n

am1nbmb8n

gm1nm!n!
xmyn,

uxu,1, uyu,1 ~9!

wherean5G(a1n)/G(a).
In the case of vanishing energy loss (ki5kf5k), expres-

sion ~6! for Ml 1l,l
2l21 (l>1) is especially simple,

Ml 1l,l
2l215e~p/2!j~2k!l22U G~ l 111 ih f !

G~ l 111l1 ih i !
UuG~l1 i j!u2

G~2l!
,

~10!

which is an extension of Eq.~II.E.74! @1#, the latter being
valid only for the casezi5zf . This result can be of use, fo
example, in (e-3e) calculations; indeed, in the so-called tw
step process~TS1! @11# use is made of the second Born a
proximation, and in the partial wave expansion of the cor
sponding matrix elements, the situationki5kf and ziÞzf
appears.

The matrix elementsMl ,l 1l
2l21 can be directly obtained

fromMl 1l,l
2l21 through the simple relation

Ml ,l 1l
2l21~ki ,h i ;kf ,h f !5Ml 1l,l

2l21~kf ,h f ;ki ,h i !. ~11!

Moreover, the matrix elements corresponding to the rep
sive and attractive Coulomb fields are related, for any va
of l, through the relation

Ml ,l 1l
2l21~ki ,h i ;kf ,h f !5e2pjMl ,l 1l

2l21~ki ,2h i ;kf ,2h f !,
~12!
f

a-

s

-

l-
e

however, generally, forl.1

Ml 1l,l
2l21~ki ,h i ;kf ,h f !Þe2pjMl 1l,l

2l21~ki ,2h i ;kf ,2h f !.
~13!

In the casezi5zf , and only forl51, one has the equality

Ml 11,l
22 ~ki ,h i ;kf ,h f !5e2pjMl 11,l

22 ~ki ,2h i ;kf ,2h f !.
~14!

So far, we have been dealing with matrix elements
which the angular momentum selection rule is satisfied.
will now show how the matrix elements given above, a
others with different combinations of multipolarity and a
gular momenta, may be efficiently related via recursion re
tions. Generally speaking, the latter constitute a powe
tool for the evaluation of large numbers of matrix elemen
thus avoiding to have to evaluate hypergeometric functi
@see Eqs.~4! and ~6!# for each angular momentum value
Moreover, for large angular momenta and certain range
Sommerfeld parameters, it is numerically hard to rea
proper convergence in calculating series~9!, and analytical
relations between matrix elements allow one to overcome
difficulty. Recursion relations also provide us with a way
evaluating matrix elements with broken selection rule.

For zi5zf recursion relations between matrix elemen
are given in@1,4#, and we now extend some of them so th
they are valid also for the caseziÞzf . We start from rela-
tions ~14.2.1! and ~14.2.2! of @12# satisfied by the Coulomb
wave functions and consider matrix elements~3! with l re-
placed byl11. By partial integration one obtains, forl i
1 l f112l.0, general formulas connecting matrix el
ments of multipolarity differing by one,

~l1 l i2 l f !Ml i ,l f

2l225
a l i21

i

l i
Ml i21,l f

2l212
a l f

f

l f11
Ml i ,l f11

2l21

1S zf

l f11
2

zi

l i
DMl i ,l f

2l21,

~15!

~l1 l f2 l i !Ml i ,l f

2l225
a l f21

f

l f
Ml i ,l f21

2l21 2
a l i

i

l i11
Ml i11,l f

2l21

1S zi

l i11
2

zf

l f
DMl i ,l f

2l21,

where we have introduced

a l
a5@ka

2~ l 11!21za
2#1/2,

the superscripta indicating that the momentumka and
chargeza are involved. It is quite easy to see how this res
reduces to a known formula in the casezi5zf ; indeed, tak-
ing l i5 l f115 l 11 in the first or l f5 l i115 l 11 in the
second, the last term drops out and one recovers form
~II.B.68! of @1#. One may also derive another formula, sim
lar to Eq.~15!,
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~l1 l i1 l f11!Ml i ,l f

2l225
a l i21

i

l i
Ml i21,l f

2l211
a l f21

f

l f
Ml i ,l f21

2l21

2S zi

l i
1

zf

l f
DMl i ,l f

2l21 ~16!

and, from these, another one valid forlÞ l f2 l i ,

~2l f11!S zi

l i
2

zf~l1 l i !

l f~ l f11! DMl i ,l f

2l21

5
a l i21

i

l i
~2l f11!Ml i21,l f

2l212~l1 l i1 l f11!
a l f

f

l f11
Ml i ,l f11

2l21

2~l1 l i2 l f !
a l f21

f

l f
Ml i ,l f21

2l21 , ~17!

which links matrix elements of same multipolarity. To dem
onstrate explicitly the information contained in these re
tions, we now consider the first two multipoles.

~a! l50. By takingl i5 l f115 l 11 andl f5 l i115 l 11
in the two relations~15! one obtains

~zi2zf !Ml 11,l
21 5a l

iMl ,l
212a l

fMl 11,l 11
21 2~ l 11!Ml 11,l

22 ,
~18!

~zi2zf !Ml ,l 11
21 52a l

fMl ,l
211a l

iMl 11,l 11
21 1~ l 11!Ml ,l 11

22 .

We notice here that the left-hand sides feature matrix
ments with broken selection rule for angular momentu
These types of matrix elements appear only in the con
ziÞzf ~see prefactor! and are related to the fact that the fir
F2 is not zero forl51 @see Eq.~7!#. They are given in terms
of matrix elements whose evaluation is prescribed ab
@formulas~4! and~6!#. Only one matrix element of each kin
needs to be evaluated as one can derive, from Eq.~15! with
l i5 l f5 l , the following recursion relations:

~ l 11!a l 21
i Ml 21,l

21 2 la l
fMl ,l 11

21 5@~ l 11!zi2 lzf #Ml ,l
21 ,

~19!

~ l 11!a l 21
f Ml ,l 21

21 2 la l
iMl 11,l

21 5@~ l 11!zf2 lzi #Ml ,l
21 .

Similarly, using Eq.~16! instead, one obtains an expressi
for another matrix element,Ml ,l

22 , with broken selection rule

l ~2l 11!Ml ,l
225a l 21

i Ml 21,l
21 1a l 21

f Ml ,l 21
21 2~zi1zf !Ml ,l

21 .

~20!

From the results above, one may derive the followi
interesting relations:

a l
iMl 11,l

22 2a l 21
f Ml ,l 21

22 5a l 21
i Ml 21,l

22 2a l
fMl ,l 11

22

5
1

2
~ki

22kf
2!Ml ,l

21 , ~21!

2a l
ia l

f

l 11
Ml 11,l 11

21 2~2l 11!S ki
21kf

21
2zizf

l ~ l 11! DMl ,l
21

1
2a l 21

i a l 21
f

l
Ml 21,l 21

21 50. ~22!
-

e-
.
xt

e

The latter can be seen as an extension of formula~II.B.66! of
@1# as it reduces to it forzi5zf . Moreover, a recursion rela
tion linking the same matrix elements as in Eq.~II.B.70! of
@1# can be written but will feature on the right-hand side
term proportional to (zi2zf)Ml ,l 21

21 . For practical purposes
relation ~21! provides a much easier alternative.

~b! l51. For l i5 l f5 l .0, relation~15! gives

l ~ l 11!Ml ,l
235~ l 11!a l 21

i Ml 21,l
22 2 la l

fMl ,l 11
22

2@~ l 11!zi2 lzf #Ml ,l
22 . ~23!

The last term can be replaced by the result obtained from
~17!,

~2l 11!~zi2zf !Ml ,l
225a l 21

i ~2l 11!Ml 21,l
22

22la l
fMl ,l 11

22 2a l 21
f Ml ,l 21

22

~24!

yielding, for ziÞzf ,

~2l 11!l ~ l 11!~zf2zi !Ml ,l
23

5a l 21
i ~2l 11!zfMl 21,l

22 2 la l
f~zi1zf !Ml ,l 11

22

2a l 21
f @~ l 11!zi2 lzf #Ml ,l 21

22 . ~25!

ForMl 11,l
23 , we takel i5 l f115 l 11 in Eq. ~15! to obtain

2~ l 11!Ml 11,l
23 5~zf2zi !Ml 11,l

22 1a l
iMl ,l

222a l
fMl 11,l 11

22 ,

~26!

where the last two terms can be replaced using Eq.~24!.
We have therefore shown how one can evaluate ma

elements not covered by formulas~4! and ~6!, including
those with selection rule for angular momentum which
broken~e.g.,Ml 11,l

21 ,Ml ,l
22 ,Ml 11,l

23 ) and unbroken (Ml ,l
23).

Alternative combinations of expressions given above wo
yield other relations, but we do not wish here to cover th
all. It is obvious that one can proceed similarly for high
values ofl. Suppose one wishes to compute all the mat
elements satisfying the selection rule forl53:Ml 13,l

24 can
be evaluated through Eq.~6!,Ml 11,l

24 through relation~15! in
terms ofMl ,l

23 ,Ml 11,l 11
23 , andMl 11,l

23 @Ml ,l 13
24 andMl ,l 11

24

are directly given by relation~11!#.
Finally, before closing this subsection, we would like

mention that it can sometimes be useful to express ra
integrals of type~3! of a given multipolarityl in terms of
others withl11. In the context of the Coulomb Born ap
proximation for the calculation of excitation cross section
Nakazaki@13# has derived such links, based on the prope
~13.4.10! @12# of the confluent hypergeometric function
These can be easily generalized to include the caseziÞzf .

B. WKB approximation

Under certain conditions, the WKB approximation pr
vides a good approach in many scattering problems@1,5–8#.
In a preceding publication@9#, the WKB approximation was
employed and shown to be effective for the study of exc
tion (zi5zf) of alkali-metal-like ions by electron impact
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The generalization, including the possibilityziÞzf , of the
WKB formula for the matrix elements reads

Ml i ,l i1m
2l21 5

k̃l22

4h̃l
I lm~e,j8,a!, ~27!

I lm~e,j8,a!5E
2`

1`

ei j8[ esinh~x!1x1~a/j8!x]

3
@cosh~x!1e1 iAe221sinh~x!#m

@ecosh~x!11#l1m
dx,

~28!

where the different quantities are defined as

m5 l i2 l f , l̃ 5
l i1 l f

2
,

k̃5Akikf , z̃5sgn~zi !Azizf , h̃5
z̃

k̃
,

e5
@h̃21~ l̃ 1 1

2 !2#1/2

h̃
,

a52~zi2zf !/ k̃, j85~ki2kf !
h̃

k̃
.

Clearly, for zi5zf , j8 reduces toj and Eq.~27! to expres-
sion ~II.B.100! of @1#. Note that here we have chosen t
geometric mean forh̃ and k̃; indeed, we have observed th
numerical results obtained with this choice~see subsection
II E and III C! are slightly better than those obtained wi
arithmetic means. The latter, however, must be used w
one of the two charges is zero, i.e., for the case of ioniza
of a singly charged negative ion or of a neutral atom.
indicated in Sec. II.E.4 of@1#, the numerical calculation o
Eq. ~28! is greatly facilitated if one translates the integrati
path by an amount ofip/2, as this decreases the oscillatin
behavior of the integrand.

For l50 the matrix element~27! can be expressed as

Ml ,l
215

1

4k̃ 2
I 00~e,j8,a!,

I 00~e,j8,a!52e2~p/2!~j81a!Ki ~j81a!~j8e!, ~29!

whereKn(z) denotes the Hankel function defined by

Kn~z!5E
0

`

e2zcosh~ t !1ntdt. ~30!

Although relation~29! provides an effective way of evalua
ing the monopole matrix element in the WKB approxim
tion, one has to keep in mind that such terms would
appear in atomic collision calculations@see, for example, Eq
~43! below#. For this very same reason, and for the fact t
in nuclear excitation the distance of closest approach is
larger than the nuclear size itself, Alderet al. @1# have not
provided in Sec. II.E.5, forl50, an analytical result like Eq
~29!.
en
n
s

t

t
ar

For l51, on the other hand, they give a formu
~II.E.57!, which expresses the matrix element in terms o
Hankel function and its first derivative. An equivalent e
pression, forziÞzf , was not found because of the extra e
ponential term in Eq.~28!. However, we were able to find
the following formulas connecting WKB matrix elements
different l andm:

eI 16157j8Ae221I 001~17aAe221!I 101~e221!I 20

~31!

57
1

Ae221
F @j8~e221!2a#I 00

6ej8Ae221
dI 00

de
1aeI 061G , ~32!

where we have omitted the arguments ofI lm(e,j8,a) for
the sake of compactness. One can appreciate here the
larity of Eq. ~32! with our quantal result~18!, i.e., the ap-
pearance of a matrix element with broken selection rule
angular momentum; forzi5zf , this contribution disappears
and Eq.~32! reduces to the above-mentioned Eq.~II.E.57! of
@1#. Result~31! is given here because of its numerical us
fulness; indeed, compared to the elementsI lm, those with
m50 have an integrand which decreases faster for large
ues of the integration variable, and are therefore easie
calculate.

In the casezi5zf , Alder and Winther@14# provided sev-
eral formulas connecting matrix elements of differentl and
m @incidentally, we would like to point out two typographica
mistakes in that paper:~a! the second 4 of thel53 result in
Eq. ~13! should be 2;~b! the 3 of the second line of Eq.~17!
should be 1#. These were easily generalized to include t
possibility ziÞzf , and more were derived. Here we giv
only the generalization of their formula~15!, valid for l
.0,

e
dI l0

de
52~l11!eI l1112j8Ae221I l0

1
a

l
@j8I l2101aI l02lAe221I l110#,

~33!

which, for numerical purposes, can be more convenien
written

e
dI l0

de
52~l11!@I l1101~e221!I l120#

1
a

l
@j8I l2101aI l0#. ~34!

C. Classical limit

We consider now the so-called classical limit, that is,
u l i2 ih i u@1, u l f2 ih f u@1 and j finite ~see Sec. II.E.4 in
@1#!. In this limit the quantal result~6! for l>1 is trans-
formed, through a confluence, into
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Ml 1l,l
2l215

k̃l22

4h̃l
2lsinl

u

2
e2j~u/22p/2!e2j8cotu/2

3H uG~l1 i j!u2

G~2l!
C2~22l11,2l112 i j,2l111 i j;z8,z8* !

12Re$~2 !le2pjz8
l1 i j

G~2l2 i j!C2~2l111 i j,l111 i j,2l111 i j;z8,z8* !%J , ~35!
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with u52arcsin(1/e) andz85(j8/2)(cotu/22 i ), and where

C2~a,g,g8;x,y!5(
m,n

am1n

gmgn8m!n!
xmyn ~36!

is a confluent Appell function which is convergent for allx
andy. Together with relation~27!, our result~35! constitutes
an extension of formula~II.E.50! of @1# @in that formula
(2)l is missing in front of the secondC2#. One can math-
ematically show that the classical limit of Eq.~6! yields the
WKB formulas ~27! and ~28! ~see@4# for the zi5zf case!.
We have verified that this is indeed the case in our numer
investigation~see subsection II E!: the agreement is perfec
for zi5zf , almost perfect forziÞzf , and better for larger
uzi u.

Another interesting limit is the one of large orbital ang
lar momenta,l̃ @1 ~see Sec. II.E.7 of@1#!. The classical limit
result ~35! given above still holds, irrespective of the valu
of h̃. However, if l̃ @uh̃u the deflection angleu of the asso-
ciated classical orbit is small (u;2h̃/ l̃ ) and the orbits ap-
proach straight lines~see also subsection III B!. Thene@1,
and we may neglectei (j81a)x in Eq. ~28!; with arguments
similar to those given in Sec. II.E.7 of@1#, we find (l>1)

Ml 1l,l
2l21.

k̃l22

4h̃l

2p

G„~l2m11!/2…
e2~p/2!~j81a!e2j8 l̃ /h̃

3j8
~l2m21!/2S 2 l̃

h̃
D 2~l1m11!/2

. ~37!

D. Other considerations

In calculations for elastic scattering or discrete excitat
of neutral targets where matrix elements~3! would appear,
we havezi5zf50 and the integrand reduces to a product
Bessel functions times a power ofr . Since the charge is
equal, such integrals fall into the category studied in@1#; in
particular, they can be written in terms of an ordinary hyp
geometric function†see Eq.~II.E.31! in @1#‡. The cases of
ionization by an electron~positron! of a neutral target (zi
50, zf571) or of a singly charged negative ion (zi5
61, zf50) are interesting since the radial integrals cont
both a Bessel and a Coulomb function. The properties o
lined in Sec. II A may be used.

For the evaluation of integrals~3!, one may adopt a dif-
ferent approach, by splitting the integration into two par
the first, which runs fromr 50 to a certainR, can be per-
al

n

f

-

n
t-

:

formed with standard numerical quadrature; in the seco
from r 5R to infinity, the Coulomb functions can be replace
by their asymptotic form and amplitude-phase methods
be applied. For the evaluation of these ‘‘tail’’ integrals S
et al. @15# study techniques in the complex plane, while Bu
gess and Sheorey@16# provide an alternative numerical ap
proach. It is obvious that if one should have to calculate
integral of type~3! but only for R to infinity, one could
reverse the problem by writing it as Eq.~3! minus the inte-
gral from 0 toR.

When a relativistic approach is considered in collisi
calculations, the integrals involved are not of type~3!; the
situation is modified in several ways. First of all, there a
two components. Secondly, the recursion properties of
Coulomb partial waves linked to the integer nature of an
lar momenta do not hold. Thirdly, the Coulomb potent
whose expansion is the source of ther 2l21 term in Eq.~3! is
replaced by a photon propagator whose multipole expan
makes Bessel functions appear. A method for evalua
Dirac Coulomb radial integrals is provided, for example,
the paper by Beckeret al. @17#. The analytical results are
much more complicated than in the nonrelativistic case,
recursion relations among them do not seem to be availa
Similarly to the study of Silet al. @15#, if one considers the
tail integrals, i.e., fromR to infinity, techniques in the com
plex plane can be applied effectively whetherzi is equal tozf
or not @18#.

E. Illustration

To illustrate some of the theoretical results presen
above we consider the electron impact excitation (zi5zf)
and single ionization (zf5zi21) of two ions, namely, Mg1

(zi521) and Ar71 (zi527). We compare matrix element
calculated with the exact quantal formulation~Sec. II A! and
in the WKB approximation~Sec. II B!, for the first three
multipoles, and for values of angular momenta 0–5 and
The Sommerfeld parametersh i andh f which enter in all the
formulas, have been chosen in the range of the physical s
ations considered in Sec. III where we shall study the cr
section for the electron impact ionization of such ions
moderate energy. The incident energy is fixed at three tim
the ionization potential~IP! of the target ground state calcu
lated in the frozen-core Hartree-Fock approximation.
atomic units, IP is equal to 0.540 58 and 5.252 24 for M1

and Ar71, respectively. The corresponding Sommerfeld p
rameters are (h i520.555 26;zi521), (h i521.246 95;
zi527) and (h f520.746 43;zf521), (h f5
21.492 86;zf522), (h f521.540 73;zf527), (h f5
21.760 84;zf528).
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The quantal and WKB monopole radial matrix eleme
have been computed by using formulas~4! and~29!, respec-
tively. The results are given for Mg1 in Table I and for Ar71

in Table II.
The quantal dipole radial matrix elementsM0,1

22 andM1,0
22

are evaluated through Eq.~6!. The recursion formula~21! is
then used to generate all the successive dipole termsMl ,l 11

22

andMl 11,l
22 with the use of Eq.~4! to calculate the monopole

termsMl ,l
21 . The results are presented in Table III and Ta

IV for the two ions, respectively. It is important to point o
that the use of relation~21! is essential for the evaluation o
dipole terms having large values of angular momentum.
deed, when calculating the second hypergeometric func

TABLE I. Comparison between WKB approximation and qua
tal values of the radial monopole matrix elementsMl ,l

21 for zi5
21(h i520.555 26) andzf521(h f520.746 43) orzf522(h f

521.492 86).

l Quantal WKB

zi521; zf521
0 4.222@21# 4.819@21#

1 2.562@21# 2.710@21#

2 1.622@21# 1.675@21#

3 1.066@21# 1.089@21#

4 7.176@22# 7.287@22#

5 4.912@22# 4.968@22#

15 1.602@23# 1.590@23#

zi521; zf522
0 5.351@21# 5.492@21#

1 4.530@21# 4.714@21#

2 3.407@21# 3.488@21#

3 2.467@21# 2.491@21#

4 1.766@21# 1.766@21#

5 1.261@21# 1.252@21#

15 4.726@23# 4.554@23#

TABLE II. Same as Table I but forzi527(h i521.246 95)
andzf527(h f521.540 73) orzf528(h f521.760 84).

l Quantal WKB

zi527; zf527
0 3.889@22# 4.011@22#

1 3.056@22# 3.142@22#

2 2.274@22# 2.321@22#

3 1.691@22# 1.717@22#

4 1.267@22# 1.282@22#

5 9.582@23# 9.671@23#

15 7.599@24# 7.595@24#

zi527; zf528
0 4.537@22# 4.658@22#

1 3.725@22# 3.821@22#

2 2.869@22# 2.925@22#

3 2.182@22# 2.213@22#

4 1.661@22# 1.679@22#

5 1.269@22# 1.280@22#

15 1.046@23# 1.043@23#
s

e

-
n

F2 in Eq. ~6! convergence is, in most cases, rather slow
large angular momenta. It may also happen that converge
cannot be reached at all as was observed in some of
examples presented here.

The quantal quadrupole radial matrix elementsMl ,l 12
23

andMl 12,l
23 are directly evaluated through Eq.~6! while the

elementsMl ,l
23 have been computed from dipole matrix el

ments with formula~25!. The results are presented in Tab
V and Table VI.

In the preceding tables, the dipole and quadrupole W
radial matrix elements have been obtained by numerical
tegration of the integral form~28!. The accuracy of our in-
tegration method was checked for the dipole case by c
paring the result forzi5zf with that obtained from the
analytical form ofI 161(e,j85j, a50) in terms of Hankel
functions†see Eq.~II.E.57! in @1# ‡.

In all cases, the values of the WKB radial matrix eleme
are very close to the quantal ones. The best agreeme
achieved with the dipole matrix elements and more gener
for Ar71. This latter result is a consequence of larger valu
of the Sommerfeld parameters compared to the case of M1.

III. PHYSICAL APPLICATION: COULOMB PROJECTED
BORN APPROXIMATION

APPLIED TO IONIZATION PROCESSES

To illustrate some of the theoretical results describ
above, we consider here a physical problem in which ma
elements~3! with ziÞzf appear naturally. Indeed, for th
electron impact ionization of a target chargedZ, zi52Z
while zf52Z21. Consider the case of ionization of a v
lence electron in thes ground state, labeleda, to a con-
tinuum state, labeledb, of the ejected electron.

TABLE III. Comparison between WKB approximation an
quantal values of the radial dipole matrix elementsMl ,l 11

22 and
Ml 11,l

22 for zi521(h i520.555 26) and zf521(h f5
20.746 43) orzf522(h f521.492 86).

Ml ,l 11
22 Ml 11,l

22

l Quantal WKB Quantal WKB

zi521; zf521
0 1.779@21# 1.803@21# 4.413@21# 4.386@21#

1 6.324@22# 6.421@22# 2.470@21# 2.443@21#

2 2.871@22# 2.906@22# 1.499@21# 1.482@21#

3 1.478@22# 1.491@22# 9.600@22# 9.482@22#

4 8.196@23# 8.253@23# 6.350@22# 6.267@22#

5 4.774@23# 4.797@23# 4.291@22# 4.232@22#

15 6.311@25# 6.242@25# 1.335@23# 1.304@23#

zi521; zf522
0 4.086@21# 4.068@21# 1.091@21# 1.123@21#

1 1.536@21# 1.539@21# 1.581@21# 1.621@21#

2 7.292@22# 7.262@22# 1.411@21# 1.412@21#

3 3.881@22# 3.842@22# 1.117@21# 1.101@21#

4 2.207@22# 2.175@22# 8.462@22# 8.268@22#

5 1.312@22# 1.288@22# 6.293@22# 6.111@22#

15 1.886@24# 1.813@24# 2.780@23# 2.633@23#
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TABLE IV. Same as Table III but forzi527(h i521.246 95) andzf527(h f521.540 73) orzf5
28(h f521.760 84).

Ml ,l 11
22 Ml 11,l

22

l Quantal WKB Quantal WKB

zi527; zf527
0 5.025@22# 5.007@22# 9.385@22# 9.390@22#

1 2.483@22# 2.493@22# 7.175@22# 7.163@22#

2 1.337@22# 1.344@22# 5.191@22# 5.172@22#

3 7.800@23# 7.842@23# 3.772@22# 3.755@22#

4 4.819@23# 4.843@23# 2.778@22# 2.763@22#

5 3.102@23# 3.115@23# 2.071@22# 2.059@22#

15 1.003@24# 1.001@24# 1.549@23# 1.534@23#

zi527; zf528
0 6.741@22# 6.684@22# 6.377@22# 6.385@22#

1 3.324@22# 3.329@22# 5.965@22# 5.977@22#

2 1.796@22# 1.803@22# 4.815@22# 4.807@22#

3 1.052@22# 1.056@22# 3.739@22# 3.725@22#

4 6.525@23# 6.547@23# 2.879@22# 2.863@22#

5 4.216@23# 4.226@23# 2.216@22# 2.201@22#

15 1.387@24# 1.382@24# 1.870@23# 1.848@23#
ial

n

g
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ions
e
y be
A. Quantal formulation

In the first-order perturbation theory the triple different
cross section is expressed as

d3s

dV fdVedEe
5

1

~2p!5

kekf

ki
uTi f u2, ~38!

with Ti f given in the Coulomb projected Born approximatio
@10#

Ti f 5E F kf

2* ~R!VT~ab;R!F ki

1~R!dR, ~39!
VT~ab;R!5E F ke

2* ~r!S 1

ur2Ru
2

1

RDwa~r!dr, ~40!

where the coordinatesR and r correspond to the scatterin
and the valence electron, respectively. The initial, final, a
ejected electrons are described by Coulomb wave funct
with momentaki , kf , andke , respectively. Considering th
closed shell as a spectator, the target ground state ma
described by the valence electron wave functionwa calcu-
lated in the frozen-core Hartree-Fock approximation

wa~r!5Rnas~r !Y00~ r̂ !. ~41!
atrix
TABLE V. Comparison between WKB approximation and quantal values of the radial quadrupole m
elementsMl ,l 12

23 , Ml 11,l 11
23 andMl 12,l

23 for zi521(h i520.555 26) andzf521(h f520.746 43) orzf

522(h f521.492 86).

Ml ,l 12
23 Ml 11,l 11

23 Ml 12,l
23

l Quantal WKB Quantal WKB Quantal WKB

zi521; zf521
0 4.533@22# 4.245@22# 4.359@21# 3.835@21# 1.337@21# 1.272@21#

1 1.149@22# 1.124@22# 1.014@21# 9.602@22# 7.322@22# 6.984@22#

2 4.062@23# 4.033@23# 3.840@22# 3.707@22# 4.373@22# 4.202@22#

3 1.715@23# 1.711@23# 1.782@22# 1.733@22# 2.766@22# 2.670@22#

4 8.069@24# 8.067@24# 9.231@23# 9.010@23# 1.813@22# 1.754@22#

5 4.085@24# 4.085@24# 5.124@23# 5.010@23# 1.217@22# 1.178@22#

15 2.348@26# 2.331@26# 5.715@25# 5.568@25# 3.678@24# 3.545@24#

zi521; zf522
0 1.222@21# 1.103@21# 5.849@21# 4.967@21# 3.830@23# 9.996@23#

1 3.130@22# 2.993@22# 1.435@21# 1.316@21# 2.251@22# 2.527@22#

2 1.122@22# 1.089@22# 5.808@22# 5.434@22# 2.440@21# 2.502@22#

3 4.801@23# 4.677@23# 2.858@22# 2.695@22# 2.102@22# 2.083@22#

4 2.286@23# 2.286@23# 1.556@22# 1.473@22# 1.673@22# 1.630@22#

5 1.169@23# 1.138@23# 9.009@23# 8.537@23# 1.285@22# 1.240@22#

15 7.099@26# 6.821@26# 1.242@24# 1.169@24# 6.343@23# 5.935@23#



344 PRA 58L. U. ANCARANI AND P. A. HERVIEUX
TABLE VI. Same as Table V but forzi527(h i521.246 95) andzf527(h f521.540 73) orzf5
28(h f521.760 84).

Ml ,l 12
23 Ml 11,l 11

23 Ml 12,l
23

l Quantal WKB Quantal WKB Quantal WKB

zi527; zf527
0 4.010@22# 3.920@22# 7.721@21# 6.858@21# 5.250@22# 5.391@22#

1 1.468@22# 1.440@22# 1.679@21# 1.605@21# 4.541@22# 4.501@22#

2 6.240@23# 6.177@23# 6.362@22# 6.196@22# 3.414@22# 3.361@22#

3 3.004@23# 2.989@23# 3.053@22# 2.996@22# 2.517@22# 2.475@22#

4 1.580@23# 1.576@23# 1.664@22# 1.639@22# 1.864@22# 1.833@22#

5 8.855@24# 8.846@24# 9.822@23# 9.693@23# 1.392@22# 1.369@22#

15 1.255@25# 1.253@25# 2.362@24# 2.335@24# 1.030@23# 1.013@23#

zi527; zf528
0 5.585@22# 5.387@22# 8.269@21# 7.335@21# 2.197@22# 2.380@22#

1 2.028@22# 1.978@22# 1.822@21# 1.738@21# 2.886@22# 2.933@22#

2 8.597@23# 8.482@23# 7.019@22# 6.821@22# 2.598@22# 2.590@22#

3 4.136@23# 4.105@23# 3.421@22# 3.349@22# 2.122@22# 2.100@22#

4 2.175@23# 2.165@23# 1.892@22# 1.858@22# 1.680@22# 1.658@22#

5 1.220@23# 1.216@23# 1.130@22# 1.112@22# 1.315@22# 1.296@22#

15 1.744@25# 1.736@25# 2.904@24# 2.863@24# 1.160@23# 1.138@23#
he

le

cal
ly
las-
ose

of
er
as-
if-
Using the partial wave expansion~1! with h5he5ze /ke
5(2Z21)/ke , k5ke for the Coulomb wave function
F ke

2* (r), one may write a partial wave expansion for t

transition potential

VT~ab;R!5
8p3/2

ke
(

l e ,me

~2 i ! l eeid l e

1

l̂ e

Vl e
~ab;R!

3Yl e ,me
~ k̂e!Yl e ,me

* ~R̂!, ~42!

with

Vl e
~ab;R!5E

0

`

rRnas~r !Fl e
~ke ,ze ;r !

3S r
,

l e

r
.

l e11 2
d l e0

R D dr, ~43!

where we use the conventionl̂ 52l 11, andr ,5min(r ,R),
r .5max(r ,R). Similarly, one uses Eq.~1! for the Coulomb
wave functions F kf

2* (R) and F ki

1(R) with h5h f

5zf /kf , k5kf andh5h i5zi /ki , k5ki , respectively. Tak-
ing the direction of the initial momentumki to be along thez
axis, we obtain the simplified expression of the CPB trip
double, and single differential cross sections

d3s

dV fdVedEe
5

32kf

kike
U (

l e ,me ,l i ,l f

i ~ l i2 l e2 l f !ei [d l i
1d l e

1d l f
]

3Al i l f

l e Rl i l f

l e Yl e ,me
~ k̂e!Yl f ,2me

~ k̂f !U2

,

~44!
,

d2s

dV fdEe
5

32kf

kike
(

l e ,me
U(

l i ,l f

i ~ l i2 l f !ei [d l i
1d l f

]

3Al i l f

l e Rl i l f

l e Yl f ,2me
~ k̂f !U2

, ~45!

ds

dEe
5

32kf

kike
(

l i ,l e ,l f

l̂ i l̂ f

l̂ e
S l i l e l f

0 0 0D
2

@Rl i l f

l e #2, ~46!

where

Al i l f

l e 5 l̂ i l̂ e
21/2l̂ f

1/2S l i l e l f

0 0 0D S l i l e l f

0 2me me
D ,

Rl i l f

l e 5
1

kikf
E

0

`

Fl i
~ki ,zi ;R!Vl e

~ab;R!

3Fl f
~kf ,zf ;R!dR. ~47!

It is clear that matrix elements of the type given in Eq.~3!
appear in the radial integrals~47! since the radial partVl of
the transition potentialVT behaves asymptotically as 1/Rl11

(l.0). Before describing the results obtained in a practi
example, we would like to show how the singly and doub
differential cross sections may be evaluated in the semic
sical approximation, since the integrals involved have a cl
connection with those presented in Sec. II B.

B. WKB and semiclassical formulations

In the semiclassical picture@1#, the projectile is assumed
to follow a classical Coulomb trajectory and the ionization
the target is described in the framework of the first-ord
time dependent perturbation theory. This perturbation is
sumed not to affect the projectile trajectory. The double d
ferential ionization cross section is written as
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d2s

dV fdEe
5PabF ds

dV f
G

R

ke

~2p!3
, ~48!

with the Rutherford cross section given by

F ds

dV f
G

R

5
1

4
ã2

1

sin4~u f /2!
~49!

and whereã is the characteristic length of the scatteri
problem. The probability of ionization from the ground sta
a to the continuum stateb is given by

Pab5E ubabu2dk̂e , ~50!

with

bab5
1

i E2`

1`

eiDEtVT„ab;R~ t !…dt. ~51!

In the preceding expression, the time integration is p
formed along an average Rutherford trajectory~see Fig. 1!.
After some algebraic manipulations one finally obtains

d2s

dV fdEe
5

8ã2

keki
2H (

l e ,me

1

~2l e11!2

3UYl e ,meS p

2
,0DJ l eme~ec ,j8,a,ã!U2J F ds

dV f
G

R

,

~52!

ds

dEe
5E d2s

dV fdEe
dV f , ~53!

with

FIG. 1. Classical picture of the electron orbit in the Coulom
field of the positive ion. The position of the electron and the defl
tion angle are denoted byr (t) andu f , respectively.
r-

J l eme~ec ,j8,a,ã!5E
2`

1`

ei j8[ ecsinh~x!1x1~a/j8!x]

3Vl e
$ã@eccosh~x!11#%

3
@cosh~x!1ec1 iAec

221sinh~x!#me

@eccosh~x!11#me21
dx,

~54!

where the quantitiesã, ec are defined by

ã5
h̃

k̃
,

ec5sgn~ z̃!/sin~u f /2!. ~55!

The connection between the semiclassical integrals and
quantal Coulomb integrals is given by the WKB approxim
tion through the following relation between Eq.~54! and the
radial integral~47!:

Rl i l i1m
l e 5

ã

4k̃2
J l em~ec ,j8,a,ã!. ~56!

C. Numerical results

In all the numerical results presented in this section,
WKB approximation of the TDCS, DDCS, and SDCS w
obtained by employing the WKB formula~56! for the radial
matrix elements instead of the quantal one~47!.

In Fig. 2 we compare the predictions of the WKB an
quantal~CPB! TDCS for the (e-2e) ionization of the alkali-
metal-like ion Mg1 in coplanar geometry where the scatte

-

FIG. 2. Calculated triple differential cross section in atom
units for the (e-2e) ionization of the alkali-metal-like ion Mg1 in
coplanar geometry. The incident energy is equal to four times
ionization energy calculated in the frozen-core Hartree-Fock
proximation and the energy of the slow ejected electron is 5
The scattering angleu f is fixed at 4°. The quantal~CPB! and WKB
predictions are represented by the solid line and by the dashed
respectively.
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ing angle is fixed at 4°. The incident energy is equal to fo
times the ionization potential, while the slow ejected elect
takes 5 eV~0.183 75 atomic units! giving the following
Sommerfeld parameters (h i520.480 87;zi521) and (h f
521.179 33;zf522). The radial matrix elements hav
been computed as explained in Sec. II E. The agreeme
seen to be very good despite the rather low value of
Sommerfeld parameters involved. At the same ratioX
5Ei /IP, for alkali-metal-like ions of higher values of th
ionic charge the agreement between quantal and WKB
dictions becomes so perfect that the curves are almost in
tinguishable.

In Fig. 3 we show the DDCS which corresponds to t
integration of the preceding TDCS of Fig. 2 over the angu
range of the ejected electron, and in Fig. 4 the DDCS for
(e-2e) ionization of another alkali-metal-like ion, Ar71,
with the same energy ratioX. For this target the Sommerfel
parameters are (h i521.079 89;zi527) and (h f5
21.433 47;zf528). Since the initial state has spheric
symmetry (s state!, the DDCS does not altogether depend
the azimuthal anglef f of kf . As for the TDCS, the WKB
and quantal predictions are in very good agreement. N
that we have not reproduced the WKB predictions in Fig
since the differences with the quantal ones are not visible
the scale of the figure.

Compared to what is generally observed in the ionizat
of neutral atoms, the quantal DDCS exhibits a new featu
the angular distribution is no longer peaked at zero deg
This shift of the maximum of the differential cross secti
was first emphasized by Mitroy@19# in the context of elec-
tron impact excitations of positive ions. One can estimate
position of this maximum by using semiclassical argumen
In order to transfer the energyDE from the relative motion
to the target, the collision timetc should be lower than
1/DE. Here we haveDE5IP1Ee , IP being the ionization
potential andEe the energy of the ejected electron. Thus,

FIG. 3. Calculated double differential cross section in atom
units for the (e-2e) ionization of the alkali-metal-like ion Mg1 in
coplanar geometry. The incident energy is equal to four times
ionization energy calculated in the frozen-core Hartree-Fock
proximation and the energy of the slow ejected electron is 5
The quantal~CPB! and WKB predictions are represented by t
solid line and by the dashed line, respectively.
r
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an average Coulomb trajectory the collision time may
estimated by

tc5
r min

ki
5

ã~11ec!

ki
,

which leads to the following estimate of the critical angleucr
below which there is no transition:

ucr52 arcsinS j8

j811
D . ~57!

Concerning the examples in which we are interested,
above formula givesucr;15° and ucr;18° for Mg1 and
Ar71, respectively. As can be seen in Fig. 3 and Fig. 4 th
are good estimates of the quantal predictions.

By integration of the DDCS over the scattering angles o
obtains the SDCS. The predictions of the quantal, WKB a
semiclassical approximation for Mg1 and for different val-
ues of the ratioX are given in Table VII. The semiclassica

c

e
-
.

FIG. 4. Quantal~CPB! double differential cross section in
atomic units for the (e-2e) ionization of the alkali-metal-like ion
Ar71 in coplanar geometry. The WKB prediction cannot be visua
distinguished from the quantal curve. The incident energy is eq
to four times the ionization energy calculated in the frozen-c
Hartree-Fock approximation and the energy of the slow ejec
electron is 5 eV.

TABLE VII. Quantal, WKB, and semiclassical~SC! single dif-
ferential cross sections in atomic units for the ionization by elect
impact of the sodiumlike ion Mg1 (zi521 and zf522). The
incident energy is equal toX times the ionization energy calculate
in the Hartree-Fock approximation. The energy of the ejected e
tron is fixed at 5 eV.

X Quantal WKB SC

2 8.379 8.330 8.384
3 5.872 5.854 5.866
4 4.578 4.569 4.574
5 3.778 3.773 3.777
6 3.230 3.227 3.230
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results have been obtained by using expressions~52! and
~53!. One immediately notes that the quantal and semicla
cal predictions agree within less than 0.1%, the differe
between quantal and WKB results being a little less th
0.6% in the worst case.

Furthermore, we have checked that, in a wide range
energy, energy transfer, and ionic charge, the semiclas
single differential cross sections are always practically eq
to the quantal predictions. As already shown in@9# this al-
most perfect agreement between the quantal and semicl
cal description is strongly related to the validity of the WK
r,

R

ev
i-
e
n

f
al

al

si-

approximation. This is reminiscent of the equivalence of
semiclassical and Born approximation in the calculation
inelastic cross sections integrated over angles.
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