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Analytical formulas for Coulomb integrals involved in scattering problems
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Radial matrix elements of multipole type involving the product of two Coulomb functions appear in many
problems of theoretical atomic physics. Here we investigate some of their properties, with a generalization
which includes the possibility of having the two functions related to two different charges. These would
typically appear in calculations of ionization cross sections, going beyond the well studied case where the two
charges are equétlastic scattering or discrete excitatiolVe provide analytical formulas for the evaluation
of matrix elements and recursion relations connecting them, both in the exact quantal formulation and in the
WKB approximation. These theoretical results are illustrated by considering, within the Coulomb projected
Born model, the electron impact ionization of Mgnd AF* with a relatively moderate incident energy. The
radial matrix elements are evaluated with our exact quantal formulas and in the WKB approximation. The
agreement is impressive, and is reflected in the values of triple, double, and single differential cross sections.
Finally, a further study shows how the semiclassical approximation yields a very good estimate of single cross
sections[S1050-294P8)05407-9

PACS numbs(s): 34.80.Kw, 34.80.Dp

[. INTRODUCTION wherez; andz; are not necessarily equal, and can be either

positive or negative corresponding to a repulsive or an attrac-

In many problems of atomic physics, integrals involving tive Coulomb potential depending on the charge of the pro-
the product of two Coulomb functions appear in the theoretjectile. The case; or z; equal to zero corresponds to zero
ical partial wave formulations. Indeed, in model calculationspotential, for which the Coulomb partial wave functions re-
of scattering amplitudes where Coulomb wave functionsduce to Bessel functions.=0 describes the multipole con-
]—f(r) are involved, one conveniently separates the angulagidered, whilel; and I; are the angular momenta for the

from the radial part, with the well known partial wave ex- initial and final states of a collision process. The conserva-

pansion tion of angular momentum implies that only the cases for
which l;—1l{=—=N\,—A+2,... \ are of physical interest.
1 . . For electron impact collision processes where the initial
jrf(f)=§q 477(i)'ei'5lWF,(k,z;r)Yfm(k)YLm(r), and final chargeg; and z; are equal(elastic scattering or

1) discrete excitation formulas for such integrals have been
derived and extensively studied in the past: Aldeal.[1] in
the frame of Coulomb excitations of nuclei while Burgess
et al.[2,3] similarly for atomic targets. For certain ranges of
Sommerfeld parameters, the accurate numerical computation
of such integrals is not an easy task due to the highly oscil-
latory nature of the integrand; various formulas, tables, and
details of numerical techniques can be found in the appendix
2 1 ik of [2]. High precision in the evaluation of Coulomb integrals
e 7T (2kr) e is often required in collision calculations since cancellations
may occur in the partial wave summations. Also, in some
X Fy(I+1—in,2+2,2kr). (2)  cases(typically for a dipole excitation of positive iolisa
large number of matrix elemen{8) are needed for con-
One has then to evaluate radial Coulomb integrals of multiverged calculations of scattering amplitudes: recursion rela-
pole type and we shall investigate here some of their proptions are then a powerful tool to cope with this is$aef].
erties restricting ourselves to the nonrelativistic case. In the In the first part of this contribution, we extend a series of
notation of Alderet al. [1] the Coulomb integrals in ques- Pproperties for matrix element8) to the general case, includ-
tion, often called matrix elements, are written as follows: ing the possibilityz;# z; . The corresponding integrals would
appear, for example, in partial wave calculations of scatter-
. ing amplitudes for ionization processes where the initial and
M= ij F (ki ,z ;r)ilﬂ (K¢, zg;r)dr, (3) final target charges Qiﬁer. Along.the lines [df], we provigie
it fJo i pAtLoe formulas for evaluating the matrix elemeri8, and a series

whereY, , are spherical harmonicg,=argl’ (1 +1+i7) are
the Coulomb phase shifts, ark](k,z;r) are the Coulomb
radial wave functions for given chargeand momentunk
(n=2z/k is the Sommerfeld paramejer

[T(1+1+i9)]

Fitkz)=—5rGi2)
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of useful recursion relations linking matrix elements of simi- numerical results obtained for the electron impact ionization
lar or different multipolarity. The results provided here canof the valence electron of the alkali-metal-like ions Mgnd

be seen as a generalization of some of those givenzfor Ar’* in their ground state. A comparison between the quan-
=2z;, in [1]. We then investigate the matrix elemef®s in  tal results, and their WKB and semiclassical counterparts is
the WKB approximatioril] which, under certain appropriate presented. We would like to make clear the fact that we have
conditions, has proved to be a very useful approach in mango intention, with the CPB approximation, of producing ac-
aspects of scattering problems—8|. The effectiveness of curate ionization cross sections. The example is taken as a
the WKB method was illustrated in a preceding publicationmeans of illustrating how the analytical results we provide in
by Hervieux and Guef9] on the study of excitationz  the first part of this contribution may be useful when solving
=z;) of alkali-metal-like ions by electron impact. In the scattering problems.

WKB approximation the matrix elements are expressed in

terms of an integral which is directly related to the semiclas- Il. THEORY: ANALYTICAL FORMULAS

sical picture. Here, we extend this integral expressgven, FOR RADIAL COULOMB INTEGRALS

for example, i 1]) to the general case, includizg# z; . For

the monopole case, one can express the matrix element in
terms of Hankel functions. For higher multipoles, we are We start by looking at how the formulas to evaluate ma-
able to derive analytical formulas which link matrix elementstrix elements(3) provided in[1] need to be modified to in-
of different multipolarities. The classical limit of the quantal clude the case;#z;, and then tackle the issue of recursion
result is also briefly discussed. As an illustration of our gen+elations. Two Sommerfeld parameters are involveg,
eral formulas we present a selection of numerical results forz;/k; and n;=z;/k;; for convenience we definé= ;

the monopole, dipole, and quadrupole matrix elemésften  — #; .

dominant in scattering problemg$or two scattering situa- (8 N=0. Equation(11.B.56) of [1] is modified as follows:
tions: the electron impact excitatior; &€ z;= — Z) and ion-
ization (zj=—2, zs=—2—1) of positively charged targets

A. Exact Coulomb functions

(Mg", Z=1 and Af*, Z=7). These allow us to verify the I (ki—k\ im0 [ Ak, !
. - . . M t=e (TE(K — k)2 T
numerical validity of some of our recursion relations, and to Ll iR K +Kq (ki — k)2
make a comparison of the quantal and WKB results showing b
the surprisingly good quality of the latter. ) )
In the second part, we would like to demonstrate the use- [T+ 1+in)|[T(1+14i7)]
fulness of our theoretical formulation with a simple study of rei+2)

a practical case, the ionization of a positive ion by electron

impact. We first provide the quantal formulas, in the Cou-

lomb projected Bori{CPB) approximation 10|, for the sin- X F
gly, doubly, and triply differential cross sectiolidenoted,

respectively, SDCS, DDCS, and TDLShowing how the

matrix elementg3) with z;# z; appear. Since there is a close ) )
link with the WKB approximation to the matrix elements, we and relation(1.B.59) of [1] still holds,

then consider the semiclassi¢&IC) approximatiori1,5] and

provide formulas for singly and doubly differential cross sec- MI_,Il(ki ke ) =€ W§M|_,|1(ki — ke — 7).

l+1—in |+1—in, 242 —_4kikf) )
' (ki—ky)?

tions. In recent years, the SC approximation has been “re- (5)
discovered” in various domains: electron elastic scattering
by atoms[6], discrete excitation of positive ion®], inner- (b) A\=1. For multipoles\=1, expressiorill.B.58) of [1]

shell ionization by heavy particldd]. Finally, we show the for M-\ ! is changed into

ﬁ)' IT(1+1+i7)]

~\—1_ o(72)E( ol \A 2
Mir=e (2ki) (ki IT(I+1+N+in)]

(IF(Hié)IZ

ki m—m>
T(2N)

k
F2(_2)\+1'l+1_i77fv|+1+i77fv_)\+1_i§’_)\+l+i§; koK
i i

k. \MFié —in N —i
+2Re<kf k,) T(I+1+Nx—ig)T(—\—i§)

2ki F(|+1_|7’f)

XF,

: . . .  ki—ke k=K
e N A - I I N T I e S T N R P W S P ok’ 2K , (6)
i i
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whereF, is a generalized hypergeometric function, one ofhowever, generally, fox>1

the so-called Appell functions. In E@6), the first function

F, reduces to a polynomial since its first parameter is a nega-M; A\ M(k; , 7; K¢, 7¢) €~ "M MK, — 71 5Ke = 7).
tive integer. In particular, for the dipole and quadrupole (13
cases one finds

In the casez;=2z;, and only for\=1, one has the equality

i

Z'_If(zf_zi) ()\:1) 5 I
! M (Kis i Ke ) =€ MM (K, — i Ke = 1)
Fo(—2N+1,...)= A (7) (14)
A (A=2),

71z E(1+£€°) So far, we have been dealing with matrix elements for

h which the angular momentum selection rule is satisfied. We

where will now show how the matrix elements given above, and

A=222&( i+ 10+ (2i—2) others with different combmgﬂons of multlpolarlty a_nd an-

gular momenta, may be efficiently related via recursion rela-

x[zniznf(zf—zi)z— ﬂfZZiZf tions. Generally speaking, the latter constitute a powerful

- - tool for the evaluation of large humbers of matrix elements,

—(3I+4) nizi + (31 +5) niz], thus avoiding to have to evaluate hypergeometric functions

[see Egs(4) and (6)] for each angular momentum value.
Moreover, for large angular momenta and certain ranges of
Sommerfeld parameters, it is numerically hard to reach
proper convergence in calculating seri@, and analytical
relations between matrix elements allow one to overcome the

which is an extension of Eqll.B.60) of [1]. As indicated in
[1], the second functiof, in expression6) can be reduced
to a single functiorF; by use of

Fola, 8.8 y,aixy)=(1-y)"* difficulty. Recursion relations also provide us with a way of
X evaluating matrix elements with broken selection rule.

XFq ,B,a—,B’,,B’,y;x,r , For z;=z; recursion relations between matrix elements

y are given in[1,4], and we now extend some of them so that

(8)  they are valid also for the case+z;. We start from rela-
] ] . tions(14.2.7) and(14.2.9 of [12] satisfied by the Coulomb
where the functior-, can then be computed using the series5ve functions and consider matrix eleme(@swith \ re-
@i BB’ placed byx+1. By partial integration one obtains, fdor
Fua,B,B,y:XY)= D, — = Rymyn +1li+1—-A>0, general formulas connecting matrix ele-
mn Ym+nMm!n! ments of multipolarity differing by one,

Ix|<1, [|y|<1 (9

wherea,=TI'(a+n)/T'(a). P N T
In the case of vanishing energy lods €k;=Kk), expres- (A +hi=loM, »)}f ’= | Mlii\llj;_ |fT1MIi ,AIﬁll
sion (6) for M; A" (A=1) is especially simple,
T(I+1+i7) [[T(A+i§)? = _i) N
M= e 2k 2 t , b+l )
’ (I+1+N+in)| T(2N)

(10 (15
which is an extension of EqlI.E.74) [1], the latter being - alff—l a1 a'i a1
valid only for the case;=z;. This result can be of use, for ()\+If—|i)M|i A A mMmuf
example, in €-3e) calculations; indeed, in the so-called two f '
step proces$TS1) [11] use is made of the second Born ap- Z; Z a1
proximation, and in the partial wave expansion of the corre- + th_ ﬁ lidg 1
sponding matrix elements, the situatibp=k; and z;# z;
appears. N _ _ where we have introduced

The matrix elementsM, |;,* can be directly obtained
from M;}[}ll through the simple relation af=[KA(I+1)2+ 2422

MK 7K 70 = MEN K ek ). (10 o

e (K ke ) = Mg ke ki) (A1) the superscripta indicating that the momentunk, and
Moreover, the matrix elements corresponding to the repulchargez, are involved. It is quite easy to see how this result
sive and attractive Coulomb fields are related, for any valugeduces to a known formula in the cage- z;; indeed, tak-

of \, through the relation ing I;=I;+1=I1+1 in the first orl;=I;+1=1+1 in the
second, the last term drops out and one recovers formula
MK 71K 0 =€ TEM K, — 7K, — ), (11.B.68) of [1]. One may also derive another formula, simi-

(120  larto Eq.(15),
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i f

a'f_l -\—1
M| —1|f | M1
f

a

—(T;

and, from these, another one valid fo# | —1;

AHLF I+ DM 2=

| )M, N (16)
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The latter can be seen as an extension of formMillR&.66) of
[1] as it reduces to it fog;=z; . Moreover, a recursion rela-
tion linking the same matrix elements as in E.B.70) of
[1] can be written but will feature on the right-hand side a
term proportional to z(i—zf)M[,l_l. For practical purposes,
relation (21) provides a much easier alternative.

(b) A\=1. Forl,=1;=1>0, relation(15) gives

@1+ z (L)) I+ )M, 2=+ 1)) M 5 —lef M Ay
i 1e(ls+1) —[(1+1)z—1z M, 2. (23)
f
a| -1 a, ;
(2, +1)M| — (N1 +|f+1)| Ml ) +1 ;I'lhg last term can be replaced by the result obtained from Eq.
af _ .
21+ 1)(zi—z) M, P= o 121+ 1) M >
—(N+li=ly) M| " 7 ( Jzmz) M= l(f M lf"
-2 -2
2l MG a o M7y
which links matrix elements of same multipolarity. To dem- (24)
onstrate explicitly the information contained in these rela-
tions, we now consider the first two multipoles. yielding, for z,#z; ,
(& A=0. By takingl;=1;+1=1+1 andl;=l;+1=| +1
in the two relationg15) one obtains I+ DI1+1)(zi—z) M,

(z—z) M= oM ! I+DM 3,

(18
fa 1y g1 2
Mo Mt DM, S

faq- [ —
— @My =aj_(21+ DZM 4, -

Iz M2 5. (25)

f -2
la)(zi+z) M| 5

» —af 4[(1+1)z—
(Zi=z) M 5=~
MH“ , we takel;=1;+1=1+1 in Eq. (15 to obtain
We notice here that the left-hand sides feature matrix ele
ments with broken gelectlon rule for angular_ momentum. , Zi)MI_+21,I+a:MI_,IZ_aIfMI_+21,I+11
These types of matrix elements appear only in the context 26
z;# z; (see prefactgrand are related to the fact that the first (26)

F is not zero fol = 1 [see Eq(7)]. They are given interms where the last two terms can be replaced using(E4).

of matrix elements whose evaluation is prescribed above \We have therefore shown how one can evaluate matrix
[formulas(4) and(6)]. Only one matrix element of each kind elements not covered by formuldd) and (6), including

20+ M2 = (-

needs to be evaluated as one can derive, from(Eg).with

I,=1;=1, the following recursion relations:

those with selection rule for angular momentum which is
broken(e.g., MY, . M, M%) and unbroken ;).
Alternative combinations of expressions given above would

i -1 o fag-1 _ -1
(I Dy Moy =leg M iy = [0+ Dzi= Iz My 7 yield other relations, but we do not wish here to cover them
(19 all. It is obvious that one can proceed similarly for higher
(1+1)af 1/\/1(.1 1—|a:Mf11|=[(| +l)zf—lz-]Mf|l values of\. Suppose one wishes to compute all the matrix
_ - ¥ .

elements satisfying the selection rule for=3: M|+3| can

Similarly, using Eq.(16) mstead one obtains an expressionbe evaluated through E®). M|+1| through relat|or(15) in
for another matrix element\1;*, with broken selection rule — terms of M 2 M2 o1, and M2 IM Y5 and M

121+ )M, P=al oM7Y +af oM~ (z+z M

(20

From the results above, one may derive the following,ihars withh + 1.

interesting relations:

are directly given by relatiofl1)].

Finally, before closing this subsection, we would like to
mention that it can sometimes be useful to express radial
integrals of type(3) of a given multipolarity\ in terms of
In the context of the Coulomb Born ap-
proximation for the calculation of excitation cross sections,

i -2 fa, -2 Nakazaki[13] has derived such links, based on the property
AM A=l M= el M el My (13.4.10 [12] of the confluent hypergeometric function.
1o o These can be easily generalized to include the zase; .
:E(kl _kf)MU y (21)
B. WKB approximation
Za:alf 2,12 Under certain conditions, the WKB approximation pro-
+1 Mipa= @D KK (I +1) Mt vides a good approach in many scattering problghs—8§|.
oul In a preceding publicatiof®], the WKB approximation was
@11, employed and shown to be effective for the study of excita-
|—M|—11,|—1:0- (22) POy y

tion (z;=z;) of alkali-metal-like ions by electron impact.



340 L. U. ANCARANI AND P. A. HERVIEUX PRA 58

The generalization, including the possibiligy# z;, of the For A=1, on the other hand, they give a formula
WKB formula for the matrix elements reads (I.LE.57), which expresses the matrix element in terms of a
Hankel function and its first derivative. An equivalent ex-
MM = (e ' a) 27) pression, forzi#z¢, was not found because of the extra ex-
bt a7 €¢,a), ponential term in Eq(28). However, we were able to find
the following formulas connecting WKB matrix elements of
different\ and u:

A—2

+ oo
I)\M(E,g’,a):f ei§’[esin|’(x)+x+(a/§f)xl

- eIV =7 ¢ €170+ (17 a\Je?— 1)1+ (2 - 1)T2°
| Loostin) + e+ Ve Tsint ) 3D
X!
[ ecoshx)+ 1] T+ 1T
(28 ==+ 21 [5,(62_1)_‘1]100
where the different quantities are defined as dz00
- +ef e —1 de + a€eZ%* 1, (32
~ i f
u=li—l¢, T= '2 ,

where we have omitted the argumentsZof“(e, &', a) for
the sake of compactness. One can appreciate here the simi-

~ ~ ~ Z

k=vkki, z=sgnz)Vziz,, 7==, larity of Eq. (32) with our quantal resul{19), i.e., the ap-

k pearance of a matrix element with broken selection rule of
[72+ (T+1)2]22 angular momentum; faz;=z;, this contribution disappears,

e=— "~ and Eq.(32) reduces to the above-mentioned BYE.57) of
i [1]. Result(31) is given here because of its numerical use-

~ fulness; indeed, compared to the elemeft¥, those with
a=—(z—-z)/k, & =(k— kf)g. n=0 have an integrand which decreases faster for large val-
k ues of the integration variable, and are therefore easier to

calculate.
Clearly, forz;=z;, ¢’ reduces ta¢ and Eq.(27) to expres- In the casez;=z;, Alder and Winthef[14] provided sev-

sion (11.B.100) of [1]. Note that here we have chosen the eral formulas connecting matrix elements of differanand
geometric mean for andk; indeed, we have observed that u [incidentally, we would like to point out two typographical
numerical results obtained with this choitsee subsections mistakes in that papefa) the second 4 of th& =3 result in

Il E and 1l C) are slightly better than those obtained with Eq. (13) should be 2(b) the 3 of the second line of E¢L7)
arithmetic means. The latter, however, must be used wheshould be 1 These were easily generalized to include the
one of the two charges is zero, i.e., for the case of ionizatiopossibility z;#z;, and more were derived. Here we give
of a singly charged negative ion or of a neutral atom. Asonly the generalization of their formulél5), valid for A
indicated in Sec. I.E.4 of1], the numerical calculation of >0,

Eq. (28) is greatly facilitated if one translates the integration o

path by an amount aofs/2, as this decreases the oscillating dz ,

behavior of the integrand. €ge = " (NF D¢ e - 1T

For A =0 the matrix elemen{27) can be expressed as

o
1 + —[¢' TN 04 M-\ - 170 710],
My =T €€ @), M ¢ ‘ :
T 4k?

(33
I%e, &' a)=2e"TAETIK 1 (E€), (29 _ , _
which, for numerical purposes, can be more conveniently

whereK ,(z) denotes the Hankel function defined by written

I}\O

K, (2)= J;) g~ zcosht) +uty¢ (30 Edde =~ (N+1)[TM 104 (2— 1) 2]

Although relation(29) provides an effective way of evaluat-
ing the monopole matrix element in the WKB approxima-
tion, one has to keep in mind that such terms would not
appear in atomic collision calculatiohsee, for example, Eq.
(43) below]. For this very same reason, and for the fact that
in nuclear excitation the distance of closest approach is far We consider now the so-called classical limit, that is, for
larger than the nuclear size itself, Aldet al. [1] have not |l;—i#|>1, |l;—in;|>1 and ¢ finite (see Sec. II.LE.4 in
provided in Sec. IL.E.5, fok =0, an analytical result like Eq. [1]). In this limit the quantal resul(6) for A=1 is trans-
(29). formed, through a confluence, into

+ SLET a1 ), (34)

C. Classical limit
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k2 0
Mffﬁl: yen Ihginh = @~ £(62— wI2) o= £ coto/2
|F(Hi§)|2\1f N1~ N+1—ig,—N+1+igz 2"
1“(2)\) 2( ’ |§a Igaz 12 )
+2RE (=) e ™z T (A=W~ N L1HIEN+1+iE, —N+1+i1E2 .27, (35)

with §=2arcsin(1¢) andz’' =(¢'/2)(cot9/2—i), and where

¥m+n m

Vola,y,7 :%.Y)=2 Xmyn (36)

T yoyamin!

is a confluent Appell function which is convergent for =ll
andy. Together with relatiori27), our result(35) constitutes
an extension of formuldll.E.50) of [1] [in that formula
(—)" is missing in front of the secondr,]. One can math-
ematically show that the classical limit of E@) yields the
WKB formulas (27) and (28) (see[4] for the z;=2z; case.

formed with standard numerical quadrature; in the second,
fromr =R to infinity, the Coulomb functions can be replaced
by their asymptotic form and amplitude-phase methods can
be applied. For the evaluation of these “tail” integrals Sil
et al.[15] study techniques in the complex plane, while Bur-
gess and Sheorgyl6] provide an alternative numerical ap-
proach. It is obvious that if one should have to calculate an
integral of type(3) but only for R to infinity, one could
reverse the problem by writing it as E() minus the inte-
gral from O toR.

When a relativistic approach is considered in collision
calculations, the integrals involved are not of ty(®; the

We have verified that this is indeed the case in our numericaituation is modified in several ways. First of all, there are
investigation(see subsection I)Ethe agreement is perfect two components. Secondly, the recursion properties of the

for z;=2z;, almost perfect forz;#z;, and better for larger

|zi|.

Coulomb partial waves linked to the integer nature of angu-
lar momenta do not hold. Thirdly, the Coulomb potential

Another interesting limit is the one of large orbital angu- whose expansion is the source of the ~ term in Eq.(3) is

lar momenta] >1 (see Sec. II.E.7 dfL]). The classical limit

replaced by a photon propagator whose multipole expansion

result(35) given above still holds, irrespective of the value Makes Bessel functions appear. A method for evaluating

of 7. However, if>|7| the deflection angl® of the asso-
ciated classical orbit is smallo-27/T) and the orbits ap-
proach straight linegsee also subsection Il)BThene>1,
and we may neglect'¢’ *®* in Eq. (28); with arguments
similar to those given in Sec. II.E.7 ¢1], we find \=1)

TA-2
M—x—lzk 2m o= (72)(& +a)g—¢T/7
AT TN =+ 1)/2)
NI ZT —(N+putl)2
><g,( n=1) T) (37)
n

D. Other considerations

Dirac Coulomb radial integrals is provided, for example, in
the paper by Beckeet al. [17]. The analytical results are
much more complicated than in the nonrelativistic case, and
recursion relations among them do not seem to be available.
Similarly to the study of Sikt al. [15], if one considers the
tail integrals, i.e., fronR to infinity, techniques in the com-
plex plane can be applied effectively whetlagis equal toz;

or not[18].

E. lllustration

To illustrate some of the theoretical results presented
above we consider the electron impact excitatian=(z;)
and single ionizationz;=z;— 1) of two ions, namely, Mg
(z=—1) and Afr* (z;=—7). We compare matrix elements
calculated with the exact quantal formulatig®ec. Il A and

In calculations for elastic scattering or discrete excitationin the WKB approximation(Sec. Il B), for the first three

of neutral targets where matrix elemeri8 would appear,

multipoles, and for values of angular momenta 0-5 and 15.

we havez,=z;=0 and the integrand reduces to a product ofThe Sommerfeld parametefs and z; which enter in all the
Bessel functions times a power of Since the charge is formulas, have been chosen in the range of the physical situ-

equal, such integrals fall into the category studiedlih in

ations considered in Sec. Ill where we shall study the cross

particular, they can be written in terms of an ordinary hyper-section for the electron impact ionization of such ions at

geometric functior[see Eq.(Il.LE.31) in [1]]. The cases of
ionization by an electrorfpositron of a neutral target 4
=0,z=71) or of a singly charged negative iorg €

moderate energy. The incident energy is fixed at three times
the ionization potentiaflP) of the target ground state calcu-
lated in the frozen-core Hartree-Fock approximation. In

+1, z=0) are interesting since the radial integrals containatomic units, IP is equal to 0.540 58 and 5.252 24 for'Mg
both a Bessel and a Coulomb function. The properties outand Ar'*, respectively. The corresponding Sommerfeld pa-

lined in Sec. Il A may be used.
For the evaluation of integral8), one may adopt a dif-

ferent approach, by splitting the integration into two parts:—1.492 86;z;= —2),

the first, which runs front =0 to a certainR, can be per-

rameters are #;=—0.555 26;z,=—1), (7;=—1.246 95;
Zi=_7) and (7]f=_0.746 43;Zf=_1), (7]f=
(7i=—1.54073;z;=—=7), (n:=
—1.760 84;z;=—8).
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TABLE I. Comparison between WKB approximation and quan-
tal values of the radial monopole matrix elemeritg * for z;=
—1(7;=—0.555 26) andz;=—1(7;=—0.746 43) orz;=—2(7;
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TABLE Ill. Comparison between WKB approximation and
quantal values of the radial dipole matrix elementt; %, and
MiZ, for  z=—1(7=-055526) and z=—1(p=

=—1.492 86). —0.746 43) orz;=—2(n;= — 1.492 86).
| Quantal WKB M2, M A,
2= —1:2——1 Quantal WKB Quantal WKB
0 4.222-1] 4.819-1] z=-1;z=-1
1 2.567 1] 2.710-1] 0 1.779-1] 1.803-1] 4.413-1] 4.38G—1]
2 1.627-1] 1.67—1] 1 6.324-2] 6.421—2] 2.47Q0—1] 2.443-1]
3 1.066 — 1] 1.089 —1] 2 2.871-2] 2.906—2] 1.499-1] 1.487—1]
4 7.176 - 2] 7.287-2] 3 1.47§-2] 1.491-2] 9.60Q —2] 9.487—2]
5 4,917 2] 4.968 — 2] 4 8.196 —3] 8.253—3] 6.350 —2] 6.267—2]
15 1.602—3] 1.59q - 3] 5 4.774-3] 4.797-3] 4.291-2] 4.237-2]
zi=—1;z=—2 15 6.311—5] 6.247-5] 1.33§-3] 1.304-3]
0 5.351—1] 5.497 —1] z=-1;,2=-2
1 4530 1] 4714 1] 0 4.086—1] 4.068—1] 1.091-1] 1.123-1]
2 3.407-1] 3.48§ — 1] 1 1.536—1] 1.539—1] 1.581—1] 1.621-1]
3 2.467—1] 2.491-1] 2 7.292-2] 7.26-2] 1.417-1] 1.417-1]
4 1.766—1] 1.766 — 1] 3 3.881-2] 3.847-2] 1.117-1] 1.101-1]
5 1.261-1] 1.257 1] 4 2.207-2] 2.175-2] 8.467—2] 8.26§ 2]
15 4.726-3] 4.554 —3] 5 1.317-2] 1.28§-2] 6.293 —2] 6.111-2]
15 1.886—4] 1.813—4] 2.78Q—3] 2.633-3]

The quantal and WKB monopole radial matrix elements

have been computed by using formulds and(29), respec-
tively. The results are given for Mgin Table | and for Af*

in Table Il.

F, in Eq. (6) convergence is, in most cases, rather slow for
large angular momenta. It may also happen that convergence
cannot be reached at all as was observed in some of the

The quantal dipole radial matrix elemeaw(;f andMig
are evaluated through E¢6). The recursion formul@2l) is
then used to generate all the successive dipole tenﬁéﬂ
andM,’fM with the use of Eq(4) to calculate the monopole
termsM[ll. The results are presented in Table Il and Table
IV for the two ions, respectively. It is important to point out

that the use of relatiof21) is essential for the evaluation of ¥ and Table V.

dipole terms having large values of angular momentum. In-

examples presented here.
The quantal quadrupole radial matrix eIemev\td;[,?‘+2
and /\/l|1321, are directly evaluated through E@) while the
eIements‘/\/l,f,3 have been computed from dipole matrix ele-
ments with formula25). The results are presented in Table

In the preceding tables, the dipole and quadrupole WKB

deed, when calculating the second hypergeometric functioffdial matrix elements have been obtained by numerical in-

TABLE Il. Same as Table | but fog;=—7(7;=—1.246 95)

andz;= —7(n;=— 1.540 73) orz;= —8(7;= — 1.760 84).

I Quantal WKB
z;=—71,2,=—7
0 3.889 2] 4.011-2]
1 3.056 — 2] 3.142 -2]
2 2.274-2] 2.321-2]
3 1.691-2] 1.717-2]
4 1.267-2] 1.287 2]
5 9.582 - 3] 9.671 3]
15 7.599—4] 7.599 —4]
z=—7,2=-—8
0 4537 —2] 4.658 — 2]
1 3.725-2] 3.821-2]
2 2.869 2] 2.929-2]
3 2.182-2] 2.213-2]
4 1.661—2] 1.679 - 2]
5 1.269—2] 1.280 - 2]
15 1.046—3] 1.043 - 3]

tegration of the integral forn§28). The accuracy of our in-
tegration method was checked for the dipole case by com-
paring the result forzi=2z; with that obtained from the
analytical form ofZ1*Y(e,&'=¢, a=0) in terms of Hankel
functions[see Eq(Il.E.57) in [1] ].

In all cases, the values of the WKB radial matrix elements
are very close to the quantal ones. The best agreement is
achieved with the dipole matrix elements and more generally
for Ar’*. This latter result is a consequence of larger values
of the Sommerfeld parameters compared to the case 6f. Mg

Ill. PHYSICAL APPLICATION: COULOMB PROJECTED
BORN APPROXIMATION
APPLIED TO IONIZATION PROCESSES

To illustrate some of the theoretical results described
above, we consider here a physical problem in which matrix
elements(3) with z,#z; appear naturally. Indeed, for the
electron impact ionization of a target chargéd z;=—Z2
while z;=—2Z—1. Consider the case of ionization of a va-
lence electron in thes ground state, labeled, to a con-
tinuum state, labeled, of the ejected electron.
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TABLE IV. Same as Table lll but foz;= —7 (%= —1.246 95) andz;=—7(7n;=—1.540 73) orz;=
—8(n;=—1.760 84).

Mifia My
| Quantal WKB Quantal WKB
z;=—71,2,=—7
0 5.025—-2] 5.007 —2] 9.384 — 2] 9.390 - 2]
1 2.483—2] 2.493 - 2] 7.179 - 2] 7.163-2]
2 1.337-2] 1.344 -2] 5.191-2] 5.177 -2]
3 7.800 — 3] 7.847 - 3] 3.777 - 2] 3.755-2]
4 4.819-3] 4.843 - 3] 2.77§ - 2] 2.763-2]
5 3.102-3] 3.119 - 3] 2.071-2] 2.059-2]
15 1.008—4] 1.001 4] 1.549 - 3] 1.534-3]
z=—7;2=-—8
0 6.741—-2] 6.684 —2] 6.377—-2] 6.389 —2]
1 3.324-2] 3.329 - 2] 5.969 — 2] 5.9771-2]
2 1.796 - 2] 1.803 — 2] 4.815 - 2] 4.807-2]
3 1.052-2] 1.056 — 2] 3.739 - 2] 3.729-2]
4 6.52% 3] 6.547 - 3] 2.879 - 2] 2.863 2]
5 4.216—3] 4.226 — 3] 2.216 2] 2.201-2]
15 1.387—4] 1.382 4] 1.870 — 3] 1.848 —3]

A. Quantal formulation

1 1
. _ —% -
In the first-order perturbation theory the triple differential Vr(ab; R)_J Tk, (r)(|r—R| R) a(r)dr, (40

cross section is expressed as
where the coordinateR andr correspond to the scattering

d3o 1 Kekg 5 and the valence electron, respectively. The initial, final, and
d0,dQ.dE, = (2m)5 Ti|Tif| ' (38 ejected electrons are described by Coulomb wave functions
with momentak; , k¢, andk,, respectively. Considering the
with T;; given in the Coulomb projected Born approximation closeq shell as a spectator, the target ground_ state may be
[10] descrl_bed by the valence electron wave fun.cttng?calcu—
lated in the frozen-core Hartree-Fock approximation

Tii= f Fi (RV(abiR F (RAR, (39 #a(1)=Ra (1) Yool ). (41)

TABLE V. Comparison between WKB approximation and quantal values of the radial quadrupole matrix
elementsM, 35, M %, and M3, for ;= —1(5=—0.555 26) andz;= —1(#7;=—0.746 43) orz
=—2(n;=—1.492 86).

M P, My M5
| Quantal WKB Quantal WKB Quantal WKB
zi=—1;,z;=—-1
0 4533-2] 4.249-2] 4.359—-1] 3.83§-1] 1.337-1] 1.272-1]
1 1.149-2] 1.124-2] 1.014-1] 9.602-2] 7.322—-2] 6.984—-2]
2 4.062—-3] 4.033-3] 3.840—-2] 3.707-2] 4.373-2] 4.202-2]
3 1.71%5-3] 1.711-3] 1.782-2] 1.733-—2] 2.766-2] 2.670—2]
4 8.069—4] 8.067—4] 9.231-3] 9.01Q 3] 1.813-2] 1.754-2]
5 4.08%5—-4] 4.089—4] 5.124-3] 5.01Q - 3] 1.217-2] 1.17§-2]
15 2.348—-6] 2.331-6] 5.719-5] 5.568 —5] 3.67§ —4] 3.545-4]
z;=—1;,2=-2
0 1.222-1] 1.103-1] 5.849-1] 4.967-1] 3.830—3] 9.996 —3]
1 3.130—-2] 2.993-2] 1.43§-1] 1.316—1] 2.251-2] 2.527-2]
2 1.122-2] 1.089—-2] 5.80§ —2] 5.434-2] 2440-1] 2.502-2]
3 4.801-3] 4.677—-3] 2.85§ —2] 2.695-2] 2.102—-2] 2.083-2]
4 2.286—3] 2.286—3] 1556 -2] 1.473-2] 1.673-2] 1.630-2]
5 1.169—-3] 1.13§-3] 9.009 -3] 8.537-3] 1.285—-2] 1.240-2]

15 7.099—-6] 6.821—6] 1.247-4] 1.169 —4] 6.343-3] 5.935-3]
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TABLE VI. Same as Table V but fog;= —7 (7= —1.246 95) andz;=—7(n;=—1.540 73) orz;=
—8(n;=—1.760 84).

M, My M5,
| Quantal WKB Quantal WKB Quantal WKB
z;=—7,2;=—7
0 4.010-2] 3.920-2] 7.721-1] 6.85§—1] 5.250—-2] 5.391-2]
1 1.46§—2] 1.44Q-2] 1.679-1] 1.605—1] 4541-2] 4.501-2]
2 6.240—-3] 6.177-3] 6.367—2] 6.196—2] 3.414-2] 3.361-2]
3 3.004—3] 2.989 3] 3.053-2] 2.996-2] 2517-2] 2.4795-2]
4 1.580-3] 1.576-3] 1.664-2] 1.639-2] 1.864—2] 1.833-2]
5 8.855—4] 8.844 —4] 9.827-3] 9.693 3] 1.397-2] 1.369-2]
15 1.255-5] 1.253-5] 2.367—4] 2.335-4] 1.030—-3] 1.013-3]
zi=—7;2=-8
0 5.585—2] 5.387—2] 8.269-1] 7.335-1] 2.197-2] 2.380-2]
1 2.028-2] 1.97§-2] 1.827-1] 1.73§-1] 2.88—2] 2.933-2]
2 8.597—3] 8.487—3] 7.019-2] 6.821-2] 2598 -2] 2.59Q-2]
3 4.13¢—3] 4.105-3] 3.421-2] 3.349-2] 2.127-2] 2.10Q0-2]
4 2.175-3] 2.165-3] 1.897-2] 1.858—2] 1.680—2] 1.65—2]
5 1.220-3] 1.216§-3] 1.130-2] 1.117-2] 1.315-2] 1.296-2]
15 1.744—5] 1.73§-5] 2.904-4] 2.863—4] 1.160—-3] 1.13§-3]
Using the partial wave expansiail) with 7= 7.=z./k, d?o 32 L8 101
=(—-2Z-1)/ks, k=k, for the Coulomb wave function de—dEe: kikelezme ‘ |f| PoreR Ty

]—"k‘e*(r), one may write a partial wave expansion for the

transition potential 2

XA:STR:ﬁTYuf,-me(Rf) , (45)
8> ety -
Vr(abR) == — 3 (~i)'e =V @bR) do 3 < Tl e W
e le:Me _ lily .
i A e dE. klkeli%rlf f[,\0 0 0 [R'i'f]’ (46)
XY, m,(Ke) Yl*e m (R, (42
where
" | ~ s I le Te\ (1 le P
Ae =1 71/2’|‘ 1/2|
‘ e he 0 0 0/\0 —mg me'
V|e(ab;R)=J0 Ry s(NF (Ke,ZeT) Lo
|e = — . . .
e & R, kikaO Fi.(ki,z;R)V (ab;R)
< 10
x(‘rleﬂ_?)dr, (43 XF (ks z;R)AR. (47)
>

It is clear that matrix elements of the type given in E3).

where we use the conventidr= 21 + 1, andr —=min(r,R), appear in .the radial .integra(47) since the ra_tdial parY, olf
r-=max(r,R). Similarly, one uses Eq1) for the Coulomb the transition potentla_N/_T behaves asympto'_ncally asRty* _
wave functions Fi*(R) and F,(R) with 5= (A>0). Before descr_|b|ng the results obtalned in a practical
— 5 ke k=k and T Ik k= kl Vel K example, we would like to show how the singly and doubly
=z¢/ke, k=ky andn=#=2z/k, k=k;, respectively. Tak-  jitterential cross sections may be evaluated in the semiclas-
ing the direction of the initial momentuig to be along the

. ) - . . sical approximation, since the integrals involved have a close
axis, we obtain the simplified expression of the CPB triple

. : X ) 'connection with those presented in Sec. Il B.
double, and single differential cross sections

o 32(f| B. WKB and semiclassical formulations

— i(Ii7Ieflf)ei[6|i+§|e+5|f]
d0dQdE, kiK1,

In the semiclassical pictudd], the projectile is assumed
il to follow a classical Coulomb trajectory and the ionization of
L N 2 the target is described in the framework of the first-order
XA R Y m(Ke) iy —m (Ke)| time dependent perturbation theory. This perturbation is as-

sumed not to affect the projectile trajectory. The double dif-
(44)  ferential ionization cross section is written as
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FIG. 2. Calculated triple differential cross section in atomic

FIG. 1. Classical picture of the electron orbit in the Coulomb units for the €-2e) ionization of the alkali-metal-like ion Mg in
field of the positive ion. The position of the electron and the deflec-coplanar geometry. The incident energy is equal to four times the

tion angle are denoted I(t) and 6;, respectively.

d?c _p do Ke 48
d0dE, A0 (22 9
with the Rutherford cross section given by
do 1, 1 49
—_ :_a [ —
dQ¢j, 47 sint(64/2)

and wherea is the characteristic length of the scattering
problem. The probability of ionization from the ground state

a to the continuum statb is given by
Pav= | Ibasf?d. (50
with

bab=%f+weiAEtVT(ab; R(t))dt. (52)

—0o0

In the preceding expression, the time integration is per

formed along an average Rutherford traject(sge Fig. 1
After some algebraic manipulations one finally obtains

d?c _852[ 1
dQ(dE,  kk?| 15, (215+1)2

™ | em ’ A ? do
X Yle,me 510 je e(GC!g Iala) d_\(lf ]
R
(52
do d?c ™ 3
4.~ J da,aE, 9 (53)

with

ionization energy calculated in the frozen-core Hartree-Fock ap-
proximation and the energy of the slow ejected electron is 5 eV.
The scattering anglé; is fixed at 4°. The quantdCPB) and WKB
predictions are represented by the solid line and by the dashed line,
respectively.

+
jleme( €c ,gl 'a,"é) _ J eig’[ecsinf'(x)+x+(a/§’)x]

x W {a[ eccostix) +1]}

[coshx)+ e.+ie2—1sinh(x)]™e
X dx

[ e.cosh(x)+1]Me 1

(54)
where the quantitiea, €. are defined by
~ 7
a==,
k
€.=5sgn(z)/sin( 6;/2). (55)

The connection between the semiclassical integrals and the
quantal Coulomb integrals is given by the WKB approxima-
tion through the following relation between E&4) and the
radial integral(47):

a ~
R:ﬁi+M: Ejle“(fc,g',a,a)_ (56)

C. Numerical results

In all the numerical results presented in this section, the
WKB approximation of the TDCS, DDCS, and SDCS was
obtained by employing the WKB formul@6) for the radial
matrix elements instead of the quantal dri@).

In Fig. 2 we compare the predictions of the WKB and
guantal(CPB) TDCS for the g-2e) ionization of the alkali-
metal-like ion Mg@" in coplanar geometry where the scatter-
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FIG. 3. Calculated double differential cross section in atomic FIG. 4. Quantal(CPB) double differential cross section in
units for the g-2e) ionization of the alkali-metal-like ion Mg in atomic units for the €-2e) ionization of the alkali-metal-like ion
coplanar geometry. The incident energy is equal to four times thé\r’" in coplanar geometry. The WKB prediction cannot be visually
ionization energy calculated in the frozen-core Hartree-Fock apdistinguished from the quantal curve. The incident energy is equal
proximation and the energy of the slow ejected electron is 5 eVv1o four times the ionization energy calculated in the frozen-core
The quantal(CPB) and WKB predictions are represented by the Hartree-Fock approximation and the energy of the slow ejected
solid line and by the dashed line, respectively. electron is 5 eV.

ing angle is fixed at 4°. The incident energy is equal to fouran average Coulomb trajectory the collision time may be
times the ionization potential, while the slow ejected electrorestimated by
takes 5 eV(0.183 75 atomic unijsgiving the following _
Sommerfeld parametersy(= —0.480 87;z,;=—1) and (¢ Mmin~ a(l+ee)
=—1.179 33;z;=—2). The radial matrix elements have T Tk
been computed as explained in Sec. Il E. The agreement is
seen to be very good despite the rather low value of thguhich leads to the following estimate of the critical angle
Sommerfeld parameters involved. At the same raXio pelow which there is no transition:
=E;/IP, for alkali-metal-like ions of higher values of the
ionic charge the agreement between quantal and WKB pre- /
dictions becomes so perfect that the curves are almost indis- 0=2 arcsir(—) . (57)
tinguishable. '+1

In Fig. 3 we show the DDCS which corresponds to the
integration of the preceding TDCS of Fig. 2 over the angulafConcerning the examples in which we are interested, the
range of the ejected electron, and in Fig. 4 the DDCS for thé@bove formula givesd,~15° and 6.~ 18° for Mg" and
(e-2€) ionization of another alkali-metal-like ion, Af, Ar’", respectively. As can be seen in Fig. 3 and Fig. 4 these

with the same energy ratd. For this target the Sommerfeld are good estimates of the quantal predictions.
parameters are 7f=-1.07989z=-7) and (p= By integration of the DDCS over the scattering angles one

—1.433 47;z,= —8). Since the initial state has spherical obtains the SDCS. The predictions of the quantal, WKB and

symmetry 6 statg, the DDCS does not altogether depend onSemiclassical approximation for Mgand for different val-

the azimuthal angleb; of k;. As for the TDCS, the WKB  ues of the ratioX are given in Table VII. The semiclassical

and quantal predictions are in very good agreement. Note ) _ _ _

that we have not reproduced the WKB predictions in Fig. 4 TABLE VIl. Quantal, WKB, and semiclassica5C) single dif-

since the differences with the quantal ones are not visible Oﬁerentlal cross sections in atomic units for the ionization by electron

the scale of the figure impact of the sodiumlike ion MYy (z=—1 andz;=—2). The
Compared to what is generally observed in the ionizatioﬂnddent energy is equal t§ _time_s the ionization energy c_alculated

of neutral atoms, the quantal DDCS exhibits a new featurel'n the Hartree-Fock approximation. The energy of the ejected elec-

Lo . tron is fixed at 5 eV.
the angular distribution is no longer peaked at zero degree.
This shift of the maximum of the differential cross section

was first emphasized by Mitrojl9] in the context of elec- X Quantal WrB ¢

tron impact excitations of positive ions. One can estimate the 2 8.379 8.330 8.384
position of this maximum by using semiclassical arguments. 3 5.872 5.854 5.866
In order to transfer the energyE from the relative motion 4 4,578 4.569 4.574
to the target, the collision time, should be lower than 5 3.778 3.773 3.777
1/AE. Here we haveAE=IP+E,, IP being the ionization 6 3.230 3.227 3.230

potential ance, the energy of the ejected electron. Thus, on
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results have been obtained by using expressi®2s and  approximation. This is reminiscent of the equivalence of the
(53). One immediately notes that the quantal and semiclassisemiclassical and Born approximation in the calculation of
cal predictions agree within less than 0.1%, the differencénelastic cross sections integrated over angles.
between quantal and WKB results being a little less than
0.6% in the worst case.

Furthermore, we have checked that, in a wide range of ACKNOWLEDGMENTS
energy, energy transfer, and ionic charge, the semiclassical
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