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Quantum state engineering via unitary transformations
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We construct a Hamiltonian for the generation of arbitrary pure states of the quantized electromagnetic field.
The proposition is based upon the fact that a unitary transformation for the generation of number states has
already been found. The general unitary transformation here obtained would allow the use of nonlinear inter-
actions for the production of pure states. We discuss the applicability of this method by giving examples of
generation of simple superposition states. We also compare our Hamiltonian with the one resulting from the
interaction of trapped ions with two laser fields.@S1050-2947~98!00710-0#

PACS number~s!: 42.50.Ct, 42.50.Dv
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The generation of pure nonclassical states of the qu
tized electromagnetic field is a central topic in quantum
tics. Several schemes have already been proposed, bas
ther on thenonunitarycollapse of the state vector~through
atom measurements! within micromaser environments@1,2#
or by using a cavity QEDunitary time-dependent interactio
@3#. Both approaches involve individual atoms interacti
with a single-mode cavity field, which would demand e
traordinary control in a generation experiment. It is theref
interesting to seek alternative methods for the generatio
nonclassical light. A significant advance was the proposa
a unitary generator for the number stateun& by Kilin and
Horoshko@4#. They derived an expression for a Hamiltonia
Ĥn such thatĤnu0&5un& andĤnun&5u0&, i.e., they obtained
a Hamiltonian that generates the stateun& from the vacuum
state u0&, but only during particular interaction times@ tm
5(m11/2)p#. This could be experimentally achieved b
pumping conveniently prepared nonlinear media, as
cussed in@4#.

In this paper we propose a generalization of Kilin a
Horoshko’s procedure for the generation of an arbitrary p
stateuC&, which, for instance, can be expressed as a lin
superposition of number states

uC&5 (
n50

M

Cnun&, ~1!

whereM is the maximum number of photons in the radiati
field. For certain interaction times, we assume the existe
of a Hamiltonian Ĥ uC& such that Ĥ uC&u0&5uC& and
Ĥ uC&uC&5u0&. The HamiltonianĤ uC& may be written in the
general form

Ĥ uC&5 (
n50

M

Cn~ u0&^nu1un&^0u!2C0 (
k50

M

uk&^ku1 P̂F̂ P̂,

~2!

where P̂5 Î 2(k50
M uk&^ku and F̂ is any Hermitian operator

The sums of projectors(k50
M uk&^ku are needed in order to

compensate all the terms present in the superposition sta
Eq. ~1!. For the sake of simplicity we have considered t
coefficientsCn real. Our task now is to find an operatorF̂
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such that we are able to delete the higher-order powersâ
andâ† in order to obtain the simplest possible expression
Ĥ uC& . We start by decomposingF̂ in a convenient way,

F̂~ â,â†!5 f̂ 0~ â†â!1 (
m51

M F f̂ m~ â†â!
âm

Am!
1

â†m

Am!
f̂ m* ~ â†â!G .

~3!

Now if we substitute Eq.~3! and the expression forP̂ into
Eq. ~2!, after some algebra we find the conditions that t

functions f l(k)[^ku f̂ l(â
†â)uk& must obey in order to cance

most of the terms inĤ uC& . These conditions are

f 0~0!5C0 , f 0~k!52C0 , f m~0!5Cm , f m~k!50,
~4!

for k51,2, . . . ,M andm51,2, . . . ,M . Those are necessar
but not sufficient conditions for the determination of th

functions f̂ m(â†â), which introduces a certain degree of a

bitrariness in their choice. A simple form forf̂ 0 and f̂ m in-
volving a finite expansionin the annihilation and creation
operatorsâ and â† is

f̂ 0~ â†â!5C0@2~12â†â!F~ â†â!21#,

f̂ m~ â†â!5CmF~ â†â!, mÞ0 ~5!

where

F~ â†â!5(
l 50

M

Al~ â†â! l . ~6!

The condition f m(0)5Cm demands thatF(â†â)u0&5u0&,
which means that we must haveA051. Moreover, we can
use the conditionf m(k)50 @see Eq.~4!# to determine the
remaining coefficientsAl . The successive application of th
function F(â†â) onto the M number states
u1&,u2,&, . . . ,uM & gives rise to the followingM coupled lin-
ear equations for the coefficientsAl :
3349 © 1998 The American Physical Society
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11A11A21•••1AM50,

112A114A21•••12MAM50, ~7!

A

11MA11M2A21•••1M MAM50.

The solution of this set of equations always exists, wh

completely determines the functionsf̂ m . Therefore there is a
specific set of numerical coefficientsAl for every value of
M , which is of the formA15a1 /M !,A25a2 /M !, . . . ,AM
5aM /M !, with ua1u,ua2u,•••,uaM21u,uaMu. In par-
ticular, aM5(21)M/M !. This result is convenient for us
because the powers ofâ†â will be multiplied by increasingly
smaller coefficients, i.e., the relative importance of t
higher-order terms will be consistently diminished.

The complete and already simplified Hamiltonian w
then read

Ĥ uC&5 f 0~ â†â!1 (
m51

M
Cm

Am!
@F~ â†â!âm1â†mF~ â†â!#.

~8!

We would like to remark that the functionf 0(â†â) is impor-
tant for the establishment of the match between our Ham
tonian and the ‘‘physical’’ interaction Hamiltonian in a rea
istic experiment. Here, we have made a choice forf 0 @see
Eq. ~5!# that allows the inclusion of the Kerr effect in th
generation process, as we are going to show.

In what follows we discuss applications of this method
would be interesting to generate a state exhibiting noncla
cal properties such as squeezing, antibunching, and
Poissonian character, for instance. These effects occur si
taneously in a single state, namely, the binomial state@5#,
which admits an expansion such as the one in Eq.~1!, having
a finite number of number state~real! coefficients different
from zero,

Cn5Bn
M5F M !

n! ~M2n!!
pn~12p!M2nG1/2

. ~9!

Its photon number distributionPn5(Bn
M)2 is a binomial dis-

tribution. The binomial states are characterized by two
rameters:p is the probability of emission of a single photo
and M the maximum number of photons in the field. Th
interpolate between a number stateuM & ~containingM pho-
tons!, asp→1, and a coherent stateua& ~with real amplitude
a5ApM) asp→0 andM→`, i.e., they belong to a class o
‘‘intermediate states.’’ Their nonclassical properties,
course, are strongly dependent on the values of the ‘‘in
polation parameters’’p andM @6#. Generalizations of bino-
mial states also include the squeezed coherent states@7#.

We start by showing an explicit calculation of the Ham
tonian for the particular case ofM51, i.e., the state being
generated would be the superposition of the vacuum s
with the one-photon stateuf&5C0u0&1C1u1&. In this case
we have thatF(â†â)511A1â†â. From the requiremen
(11A1â†â)u1&50 @fourth condition in Eq.~4!#, we obtain
A1521. The Hamiltonian in Eq.~8! then becomes
h
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Ĥ uf&5~12p!1/2@124â†â12~ â†â!2#

1p1/2@~12â†â!â1â†~12â†â!#. ~10!

On the other hand, if we pump with a classical fieldEc
5Ee2 iVt1E* eiVt ~polarized along they direction! a non-
linear medium characterized by linear and nonlinear susc
tibilities x (1) andx (3), respectively, the coupling of the sig
nal ~polarized along thex direction!, the pump, and the
output fields will be described by the following Hamiltonia
@4#:

ĤNL5xxx
~1!â†â1xyy

~1!uEu211xxxxx
~3! â†2â21xxyxy

~3! â†âuEu2

1xyyyy
~3! uEu2uEu21~xxy

~1!â†E1xxxyy
~3! â†2E2

1xxxxy
~3! â†2âE1xxyyy

~3! â†uEu2E1H.c.!. ~11!

Both the pump and signal are traveling waves propaga
along thez axis. The expression for our generator@in Eq.
~10!# has the same form as the Hamiltonian in Eq.~11!,
which allows us, at least in principle, to know how to choo
and prepare a nonlinear medium in such a way that we
up with the Hamiltonian in Eq.~10!, as we are going to
show. The linear and nonlinear susceptibilities have to
sume specific values in order to make possible the corres
dence between both Hamiltonians. For instance, there is
term in Eq.~10! proportional toâ†2, which means that we
must havexxxyy

(3) 50. By comparing terms proportional t

â†, â†2â, and toâ†â, we obtain

xxy
~1!~E0!E1xxyyy

~3! uEu2E52xxxxy
~3! E5p1/2 ~12!

and

xxx
~1!~E0!1xxyxy

~3! uEu252xxxxx
~3! 522~12p!1/2. ~13!

These relations among the different susceptibilities are of
same form as the ones found in Ref.@4#. However, in our
case we are generating a state which is the one-photon
coherently superposed to the vacuum, a fact which is emb
ied in the ‘‘tuning’’ parameterp. The susceptibilitiesx i jkl

(3)

are of course a feature of the chosen crystal and the fi
order susceptibilitiesx i j

(1) can be changed by the applicatio
of a static fieldE0 . We can control the generation procedu
by adjusting the values of the pump fieldE and the static
field E0 in order to satisfy the relations~12! and ~13!. From
Eq. ~12! we see that the probability of having one photon
the field,p, is proportional to the pump field amplitudeE, as
one would expect. We note that the conditions in Eqs.~12!
and~13! connect the quantum superposition principle, rep
sented by the coherent superposition of the vacuum with
one-photon state, with ‘‘macroscopic features’’ such as n
linear susceptibilities in a crystal.

Our general scheme allows the generation, in principle
virtually any pure state of the quantized field through so
kind of nonlinear interaction. As a second example, we n
construct the generating Hamiltonian for the superposition
the vacuum stateu0& with the two-photon stateu2&, or uc&
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5C0u0&1C2u2&. In this case the solution of the system
equations in Eq.~7! gives usA1523/2, A251/2, and the
Hamiltonian will read

Ĥ uc&5C0@125~ â†â!14~ â†â!221~ â†â!3#

1
C2

A2
@F~ â†â!â21â†2F~ â†â!#,

F~ â†â!512
3

2
â†â1

1

2
~ â†â!2. ~14!

We note that because the target stateuc& above does contain
even photon numbers only, there are fewer terms in the g
erating Hamiltonian, which means that additional conditio
must be imposed on the relevant susceptibilities in the c
responding nonlinear Hamiltonian. More specifically, in E
~14! we have terms of the typeâ†2(â†â)2, which means that
a fourth-order nonlinear susceptibility (x (4)) should take part
in the generation process. Recently there have been dev
ments both theoretical@8# and experimental@9# in processes
involving five-wave mixing in fluids. This kind of medium
has several advantages, such as a flexible geometry, fo
stance. However, due to its intrinsic isotropy, processes
volving modes in collinear propagation are forbidden.
general there are more stringent conditions over fluid me
than in crystals. This of course may favor our scheme in
sense that we have only a few terms present in our Ha
tonian.

We would expect that the Hamiltonian in Eq.~8! for the
generation of binomial states~in the limits of p→0 andM
→`) should be somehow equivalent to Glauber’s displa
ment operatorD̂(a)5exp(aâ†2a* â). In fact we have

Ĥ uC&→ua&u0&5 lim
p→0,M→`

FB0
Mu0&1 (

m51

`

Bm
M â†m

Am!
u0&G

5 (
m50

`
e2a2/2amâ†m

m!
u0&5e2a2/2eaâ†

u0&

5e2a2/2eaâ†
ea* âu0&5D̂~a!u0&5ua&, ~15!

i.e., the application of either the appropriate Hamiltoni
Ĥ uC& or D̂(a) onto the vacuum state leads to the same~co-
herent! stateua&. It is also worth verifying that the Hamil-
tonian in Eq.~8! ~in the limit of p→1) is equivalent to Kilin
and Horoshko’s Hamiltonian@4# for the generation of num
ber states. In this caseBn

M5dn,M , and

Ĥ uC&→uM &5
1

AM !
@F~ â†â!âM1â†MF~ â†â!#, ~16!

so that

Ĥ uM &u0&5
1

AM !
â†MF11(

l 51

M

Al~ â†â! l G u0&5uM &. ~17!

The difference between Kilin-Horoshko’s Hamiltonian a
ours with respect to the number state case rests on the f
n-
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tions F(â†â). They do not need to contain higher-ord
powers of (â†â). In fact a simpler functionF512â†â/M is
enough for the number state generation@4#. However, we
shall stress that in a real experiment, a nonlinear medium
in general all its nonlinear susceptibilities excited as it
pumped. This means that it is convenient to have the con
butions of all powers ofâ†â ~up to theM th) in the interac-
tion Hamiltonian, as it does happen in our approach. O
generalization, then, is consistent with previously known
sults.

The effective implementation of this technique wou
constitute a challenging experimental problem, starting fr
the design of appropriate media. It would be interesting
comment on an alternative physical system, other than
electromagnetic field, that could be suitable for the acco
modation of such a nonlinear Hamiltonian. Recently the
has been a great deal of interest in the generation of nonc
sical states of motion of a single ion confined into an el
tromagnetic trap. Successful experiments for the produc
of number, coherent, and squeezed vacuum states of
ion’s motion have been carried out@10#. On the other hand
Raman-type excitation of a trapped ion via two laser fie
produces an intrinsically nonlinear Hamiltonian, which
conveniently expressed~one-dimensional case!, in the fol-
lowing form @11#:

Ĥ ion5
1

2
\V f̂ k~ n̂;h!~ ihâ!k1H.c.,

where

f̂ k~ n̂;h!5e2h2/2(
l 50

`
~21! lh2l

l ! ~ l 1k!!
â†l âl . ~18!

Here h52pa0 /l is the Lamb-Dicke parameter,a0

([1/A2mn1) is the size of the ground state of the harmon
potential of natural frequencyn1 , V5V1V2* /2(v212vL)
is the system’s effective two-photon Rabi frequency,V i are
the single-photon Rabi frequencies,v21 the atomic transition
frequency, andvL is the laser frequency. The detuning b
tween the lasers isD5kn1 (k51,2, . . . ).This decomposi-
tion in Eq. ~18! is similar to the one we used in our Hami
tonian @Eq. ~8!#, the difference being that in the ion’s cas

the functionsf̂ k(n̂) are already fully specified. For instanc
if we considerh!1, andk51, we may write

f̂ 1~ n̂;h!'e2h2/2S 12
h2

2
â†âD , ~19!

and the interaction Hamiltonian will read

Ĥ ion5
1

2
i\he2h2/2FVS 12

h2

2
â†âD â2V* â†S 12

h2

2
â†âD G .

~20!

The Hamiltonian above has the same form as the one in
~10!, for the generation of the one-photon state (p→1). We
note that despite the similarity between both Hamiltonia
they are not totally equivalent, because for that we must h
h5A2, which is in contradiction with our assumptionh
!1, apart from other differences. Therefore the corresp
dence between the quantum state engineering we are
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proposing, and highly nonlinear systems such as dri
trapped ions, is not so evident. Nevertheless, the appro
adopted here, based on fixed interaction times, should b
our opinion further investigated in order to seek for a clea
connection between our tailor-made Hamiltonian and
scheme of excitation of ions by laser beams.

We have presented here the explicit construction o
HamiltonianĤ uC& which is a generator of nonclassical stat
of the quantized electromagnetic field. This extends the c
of methods being considered for this purpose, drawing
gether, as particular cases, previously known generators
t.

n
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ch
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ss
-
ch

as the number state as well as the coherent state ones. H
a generation scheme based on unitary transformation
hand, new possibilities arise for the engineering of noncl
sical light under feasible controlled circumstances, e
through nonlinear interactions. Moreover, this scheme
the advantage of involving traveling waves, which obvious
minimizes the destructive effect of dissipation.
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