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Quantum state engineering via unitary transformations
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We construct a Hamiltonian for the generation of arbitrary pure states of the quantized electromagnetic field.
The proposition is based upon the fact that a unitary transformation for the generation of number states has
already been found. The general unitary transformation here obtained would allow the use of nonlinear inter-
actions for the production of pure states. We discuss the applicability of this method by giving examples of
generation of simple superposition states. We also compare our Hamiltonian with the one resulting from the
interaction of trapped ions with two laser field§1050-294{®8)00710-0

PACS numbd(s): 42.50.Ct, 42.50.Dv

The generation of pure nonclassical states of the quansych that we are able to delete the higher-order powess of

t!zed electromagnetic field is a central topic in quantum OP-andat in order to obtain the simplest possible expression for
tics. Several schemes have already been proposed, based ei-

ther on thenonunitarycollapse of the state vectéthrough vy - We start by decomposirig in a convenient way,
atom measurementsvithin micromaser environmenid,,2]

. . . . . " M ~m ~tm
or by using a cavity QEinitary time-dependent interaction  ~ ~ ~4 & ~y- 2o ntn, @ a e, nn
[3]. Both approaches involve individual atoms interacting F(a,a’)=fo(a a)+m§=:1 fm(a'a) \/WJF\/Hfm(a a)|.
with a single-mode cavity field, which would demand ex- 3

traordinary control in a generation experiment. It is therefore
interesting to seek alternative methods for the generation CEOW if we substitute Eq(3) and the expression fd? into
nonclassical light. A significant advance was the proposal o . -

a unitary gengrator fogr] the number stat by Kil?n eE)nd g. (2), after some algebra we find the conditions that the
Horoshko[4]. They derived an expression for a Hamiltonian functionsf,(k)=(k|f,(a"a)[k) must obey in order to cancel

A, such thatd ,|0)=|n) andA,|n)=|0), i.e., they obtained MOSst of the terms in:lm,). These conditions are
a Hamiltonian that generates the statg from the vacuum
state |0), but only during particular interaction times,y, fo(0)=Cqo, fo(k)=—=Co, fn(0)=Cy, fr(k)=0,

=(m+1/2)x]. This could be experimentally achieved by (4)
pumping conveniently prepared nonlinear media, as dis-
cussed if4]. fork=1,2,... M andm=1,2,... M. Those are necessary

In this paper we propose a genera”zation of Kilin andbut not sufficient conditions for the determination of the
Horoshko’s procedure for the generation of an arbitrary purunctionsf,(a'a), which introduces a certain degree of ar-
state|\If>,. ‘.NhiCh’ for instance, can be expressed as a lineaf;yariness in their choice. A simple form f&b and?m in-
superposition of number states volving a finite expansionin the annihilation and creation

M operatorsa anda’ is
W)= 2> Cyln), (1) )
n=o fo(afa)=Cy[2(1—afa)Fata)—1],
whereM is the maximum number of photons in the radiation R
field. For certain interaction times, we assume the existence fn(a'a)=C,Fa'a), m=#0 (5)
of a Hamiltonian H;y, such that Hy|0)=|¥) and
Hjy,|¥)=|0). The Hamiltoniarf|y,, may be written in the ~Where

general form "

R M M - }'(é_Té_)ZIZ A|(éTé)l. (6)
H|«p>=n§0 Cn(|0><n|+|n><o|)—c:0k§0 |k)(K| + PEP, =0

(2 The conditionf,(0)=C,, demands thatF(a'a)|0)=|0),
o R which means that we must havg=1. Moreover, we can
whereP=1—3=M (|k)(k| andF is any Hermitian operator. use the conditiorf,(k)=0 [see Eq.(4)] to determine the
The sums of projector&} o|k)(k| are needed in order to remaining coefficient#, . The successive application of the
compensate all the terms present in the superposition state fiinction F(a'a) onto the M number states
Eqg. (1). For the sake of simplicity we have considered the|1),|2), ... M) gives rise to the followindl coupled lin-
coefficientsC,, real. Our task now is to find an operaﬂ%r ear equations for the coefficients:
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1+A;+ A+ - +Ay=0, Hig=(1-p)*f1-4a'a+2(a'a)?]

1+2A;+4A,+ - +2MA, =0, 7) +pY3(1-ata)a+af(1-a'a)]. (10)

On the other hand, if we pump with a classical fiéld
=Ee 'Y+ E*e'™ (polarized along the direction a non-
linear medium characterized by linear and nonlinear suscep-
. gy (l) (3) . . . _
The solution of this set of equations always exists, whichfiPilities x> and x™*', respectively, the coupling of the sig

) A . nal (polarized along thex direction, the pump, and the
completely determines the functiofig. Therefore thereis a qytput fields will be described by the following Hamiltonian
specific set of numerical coefficienty for every value of [4]:

M, which is of the formA;=a;/M!,A,=a,/M!, ... Ay
:CYM/MI, W|th |a1|<|a2|<<|aM_1|<|aM| In pal’-
ticular, ay,=(—1)M/M!. This result is convenient for us

1+MA;+M?A,+ - - - + MMA,=0.

x _ 1H2TA 1 3) At2-4 3) AtA
Ha=xioata+ x(v[E2+ + X3 a%a?+ x3), a'alE|2

because the powers afa will be multi_plieq by increasingly +X§/3y)yy|E|2|E|2+ (X%,)"QITEJF)(E(%@TZEZ
smaller coefficients, i.e., the relative importance of the
higher-order terms will be consistently diminished. + XA FaE+ Xy AT E[PE+H.c). (1)
The complete and already simplified Hamiltonian will
then read Both the pump and signal are traveling waves propagating
Moo along thez axis. The expression for our generafar Eq.
Flio = fa(ata)+ M At am+ atmeata) . (1Q)] has the same forn_1 as th.e Hamiltonian in Egl),
n=Tola'a) mE=1 vm! [Faa) (@'a)] which allows us, at least in principle, to know how to choose

(8) and prepare a nonlinear medium in such a way that we end

. up with the Hamiltonian in Eq(10), as we are going to
We would like to remark that the functidip(ata) is impor- ~ show. The linear and nonlinear susceptibilities have to as-
tant for the establishment of the match between our Hamilsume specific values in order to make possible the correspon-
tonian and the “physical” interaction Hamiltonian in a real- dence between both Hamiltonians. For instance, there is no

istic experiment. Here, we have made a choiceffpisee  term in Eq.(10) proportional toa™, which means that we

Eq (5)]that allows the inclusion Of the Kerr effect in the must haveXS(?()yy: 0. By Comparing terms proportiona' to
generat|0n process, as we are going to show.

In what follows we discuss applications of this method. It
would be interesting to generate a state exhibiting nonclassi- 1 3) ) 3) 2
cal properties such as squeezing, antibunching, and sub- Xxy (B0 E+ Xy EI"E= = xosE=P (12
Poissonian character, for instance. These effects occur simul-
taneously in a single state, namely, the binomial sfale and
which admits an expansion such as the one in(Eqhaving

a', a'2a, and toa'a, we obtain

a finite number of number stateea) coefficients different X (Eo) T Xs EI2= = Xioo= —2(1—p)Y2 (13
from zero,
M 112 These relations among the different susceptibilities are of the
Cn=Br'¥'= —_p"(1-pM-n| (9) same form as the ones found in Rp4]. However, in our
n!(M—n)! case we are generating a state which is the one-photon state

coherently superposed to the vacuum, a fact which is embod-
ied in the “tuning” parametem. The susceptibilities{})

tribution. The binomial states are characterized by two paz . of course a feature of the chosen crystal and the first-
D can be changed by the application

rametersp is the probability of emission of a single photon, order susceptibilities(i(j

gnd M the maximum number of photons in_the field. They of a static fieldE,. We can control the generation procedure
interpolate between a number stgh) (containingM pho- by adjusting the values of the pump fielfl and the static

toEs), a'apel, arz)d a g(ﬁ/‘herent_staltah) (Wki)thl real ampllitude ; field Eq in order to satisfy the relationd2) and(13). From
a=ypM) asp—0 andM—, i.e., they belong to a class o Eq. (12) we see that the probability of having one photon in

“intermediate states.” Their nonclassical propert|e‘s‘! Ofthe field,p, is proportional to the pump field amplitude as
course, are strongly dependent on the values of the inters L« would expect. We note that the conditions in H4g)
polation parameters’p andM [6]. Generalizations of bino-

x . and(13) connect the quantum superposition principle, repre-
mial states also include the squeezed coherent dtales (13 q berp P P P

W by showi licit calculati f the Hamil sented by the coherent superposition of the vacuum with the
Ve start by showing an explicit calculation of the Hamil- one-photon state, with “macroscopic features” such as non-
tonian for the particular case &l =1, i.e., the state being

I linear susceptibilities in a crystal.

ggnerated would be the superposition of the vacuum state oy general scheme allows the generation, in principle, of
with the one-photon stath)=Co|0) +C4|1). In this case  y;ally any pure state of the quantized field through some
we have thatF(a'a)=1+Aja'a. From the requirement kind of nonlinear interaction. As a second example, we now
(1+A15T5)|1>=0 [fourth condition in Eq.(4)], we obtain  construct the generating Hamiltonian for the superposition of
A;=—1. The Hamiltonian in Eq(8) then becomes the vacuum staté0) with the two-photon stat€?), or |)

Its photon number distributiolf?nz(B,“{')2 is a binomial dis-
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=Cl0)+C;[2). In this case the solution of the system of ;s F(a'a). They do not need to contain higher-order
equations in Eq(7) gives usA,=—3/2, A;=1/2, and the powers of @'a). In fact a simpler functiofF=1—a'a/M is

Hamiltonian will read enough for the number state generati@). However, we
shall stress that in a real experiment, a nonlinear medium has

W _5(ata atay2_1,ata)3 ; | ¢ , & 1 : nt
Hiy=Coll-5(a’a)+4(a'a)’~1(a'a)’] in general all its nonlinear susceptibilities excited as it is
C pumped. This means that it is convenient to have the contri-
+ 2[FAata)a+at2Aata)], butions of all powers o&'a (up to theMth) in the interac-
V2 tion Hamiltonian, as it does happen in our approach. Our
3 . generalization, then, is consistent with previously known re-
N S Pr sults.
Flata)=1 2a at 2(a )% (14) The effective implementation of this technique would

constitute a challenging experimental problem, starting from

We note that because the target stgteabove does contain the design of appropriate media. It would be interesting to
even photon numbers only, there are fewer terms in the gecomment on an alternative physical system, other than the
erating Hamiltonian, which means that additional conditionselectromagnetic field, that could be suitable for the accom-
must be imposed on the relevant susceptibilities in the cormodation of such a nonlinear Hamiltonian. Recently there
responding nonlinear Hamiltonian. More specifically, in Eq.has been a great deal of interest in the generation of nonclas-
(14) we have terms of the typa'?(a’a)2, which means that sical states of motion of a single ion confined into an elec-
a fourth-order nonlinear susceptibility{*)) should take part tromagnetic trap. Successful experiments for the production
in the generation process. Recently there have been developf number, coherent, and squeezed vacuum states of the
ments both theoreticéB] and experimentdl9] in processes ion’s motion have been carried olit0]. On the other hand,
involving five-wave mixing in fluids. This kind of medium Raman-type excitation of a trapped ion via two laser fields
has several advantages, such as a flexible geometry, for igroduces an intrinsically nonlinear Hamiltonian, which is
stance. However, due to its intrinsic isotropy, processes inconveniently expressetbne-dimensional cagein the fol-
volving modes in collinear propagation are forbidden. Inlowing form[11]:
general there are more stringent conditions over fluid media
than in crystals. This of course may favor our scheme in the
sense that we have only a few terms present in our Hamil-
tonian.

We would expect that the Hamiltonian in E@®) for the
generation of binomial state€@ the limits of p—0 andM 2 (—1)'5?.
—) should be somehow equivalent to Glauber’s displace- fi(n; 77) = /22 ATET Mal. (18

ment operatoD («) = exp(a’—a*a). In fact we have

mfkm n(ina)*+H.c.,

where

Here n=2mag/N is the Lamb-Dicke parametera,
(=1/y2my,) is the size of the ground state of the harmonic

HI\I’>H|a>|O>: !)'r’;‘ . B{‘,"|O)+ E B \/—|0> potential of natural frequency;, Q=0,03/2(wy— o)
PR is the system’s effective two-photon Rabi frequenQy,are
> ema’l2 ma‘rm 5 the single-photon Rabi frequencies;; the atomic transition
E |0y=e"*"% aa! |0) frequency, andv, is the laser frequency. The detuning be-

tween the lasers iA=kv; (k=1,2,...).This decomposi-
_ a—a2padt naF Ay — B _ tion in Eq. (18) is similar to the one we used in our Hamil-
€ e*e? ?0)=D(a)|0)=|a), (15 tonian[Eq. (8)] the difference being that in the ion’s case
, the application of either the appropriate Hamiltonianthe funct|0nsfk(n) are already fully specified. For instance,

H\W) or D(a) onto the vacuum state leads to the saem  if we considerp<1, andk=1, we may write
herenj state|a). It is also worth verifying that the Hamil-

tonian in Eq.(8) (in the limit of p—1) is equivalent to Kilin fl(ﬁ; n)~e" 712 1 _ 7 —a'al, (19
and Horoshko’s Hamiltoniaf4] for the generation of num- 2
H M __ . . . . .

ber states. In this cadg’ =&, v, and and the interaction Hamiltonian will read

) T o N 7"~ 7" -

Ay m=—=[Fa'aa"+a™FAa')], @16 Hin=5ih7e 7" 9(1—7&T a—Q*a'|1-Za'al|.

VM!
(20

so that The Hamiltonian above has the same form as the one in Eq.

(10), for the generation of the one-photon stape{1). We

note that despite the similarity between both Hamiltonians,
they are not totally equivalent, because for that we must have
n=+/2, which is in contradiction with our assumption

The difference between Kilin-Horoshko’s Hamiltonian and <1, apart from other differences. Therefore the correspon-
ours with respect to the number state case rests on the fundence between the quantum state engineering we are here

M

1+ lZl A(ata)'||0)y=|M). (17)

. 1 .
—_— g™
Fjwy|0) —a
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proposing, and highly nonlinear systems such as drivems the number state as well as the coherent state ones. Having

trapped ions, is not so evident. Nevertheless, the approach generation scheme based on unitary transformations in

adopted here, based on fixed interaction times, should be inand, new possibilities arise for the engineering of nonclas-

our opinion further investigated in order to seek for a clearesical light under feasible controlled circumstances, e.g.,

connection between our tailor-made Hamiltonian and ahrough nonlinear interactions. Moreover, this scheme has

scheme of excitation of ions by laser beams. the advantage of involving traveling waves, which obviously
We have presented here the explicit construction of gninimizes the destructive effect of dissipation.

Hamiltonianlzlm which is a generator of nonclassical states  We would like to thank M. Marchiolli for valuable com-
of the quantized electromagnetic field. This extends the claswients. This work was partially supported by Conselho Na-
of methods being considered for this purpose, drawing toeional para o Desenvolvimento Cidito e Tecnolgico,
gether, as particular cases, previously known generators su@razil (CNPQ.

[1] K. Vogel, V.M. Akulin, and W.P. Schleich, Phys. Rev. Lett. [7] H-C. Fu and R. Sasaki, J. Phys.2®, 5637(1996.

71, 1816(1993. [8] L.C. Davilla Romero, S.R. Meech, and D.L. Andrews, J. Phys.
[2] B.M. Garraway, B. Sherman, H. Moya-Cessa, P.L. Knight, and A 30, 5609(1997).

G. Kurizki, Phys. Rev. A49, 535 (1994. [9] A.V. Balakin, N.I. Koroteev, A. Pakulev, A.P. Shkurinov, D.
[3] C.K. Law and J.H. Eberly, Phys. Rev. Lef6, 1055(1996. Boucher, P. Masselin, and E. Fertein, Pisma ZksfE Teor.
[4] S. Kilin and D. Horoshko, Phys. Rev. Leit4, 5206(1995. Fiz. 64, 668(1996 [JETP Lett.64, 718(1996)].

[5] D. Stoler, B.E.A. Saleh, and M.C. Teich, Opt. A32, 345 [10] D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, and D.J.

(1985. Wineland, Phys. Rev. Let?6, 1796(1996.

[6] A. Vidiella-Barranco and J.A. Roversi, Phys. Rev58, 5233 [11] S. Wallentowitz and W. Vogel, Phys. Rev. A5 4438
(1994. (1997.



