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Jaynes-Cummings model under continuous measurement:
Weak chaos in a quantum system induced by unitarity collapse
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We show that a system managed by quantum theory bears chaotic behavior induced byunitarity collapsein
its time development. Nonunitary time evolution of the Jaynes-Cummings~JC! model, the interacting system
consisting of two subsystems~a two-level atom and a quantized photon field!, under a continuous quantum-
nondemolition~QND! measurement of the photon number is investigated. In the regime of weak coupling
between the subsystems, the measured system shows the Rabi oscillation and the decrease of the photon
number variance, which mimic the unmeasured JC system and the photon field under the continuous QND
photodetection, respectively. In the strong-coupling regime, the quantum system shows a nonintegrable nature,
that is, it yieldsweak chaoscharacterized by both the broad continuous power spectrum and the decaying
correlation function due to the lack of quantum recurrence.@S1050-2947~98!03910-9#

PACS number~s!: 42.50.Ct, 03.65.Bz, 05.45.1b, 42.50.Dv
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I. INTRODUCTION

Despite the accumulation of considerable works on qu
tum theory of chaotic systems, there exists a prevailing be
that, due to the linearity of the Schro¨dinger equation, the
quantum system exhibits no chaos characterized by stan
diagnostics of the positive Lyapunov exponent. Even if
classical counterpart would show chaos, the Schro¨dinger
equation describes only a time-periodic or quasiperio
wave and inevitably excludes any solution representing t
poral chaos or turbulence in general@1#.

Such a belief, however, could be valid only if the qua
tum system is assumed to be ‘‘closed,’’ that is, to be c
fined in an infinite-Q cavity without leakage and not to in
teract with the other subsystems. In practical experime
signals out of the system should be measured by u
proper apparatus and the measurement process is us
continued for a long duration, referred to as the continu
measurement. The continuous measurement action enfo
the system to couple with the large degrees of freedom
side, and ‘‘readout’’ of the measurement information w
give a continuous back action on the measured system.
process of this kind does disturb the quantum system
continuous reduction of wave packets, which cannot be
scribed by the time-dependent Schro¨dinger equation. There
fore, the time evolution induced by the continuous measu
ment is intrinsically time-irreversible and nonunitary.

Then, what should take place if the classically nonin
grable quantum system has been continuously measu
Under such a circumstance, temporal evolution of the sys
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is governed not only by the Schro¨dinger equation but also by
the continuous state reduction caused by the measure
back action. So there will appear a possibility that a quant
system shows temporal chaos due to the lack of quan
recurrence. The subject has a similarity to that on decoh
ence induced when the quantum system is coupled with
environment@2#. The decoherence phenomenon implies
environment-induced suppression of quantum suppressio
chaos, thereby eventually recovering the chaos in quan
dynamics. Despite the similarity between the environme
induced decoherence and continuous measurement, the
is governed by von Neumann’s peculiar nonunitary proce
Therefore, the continuous measurement of a classically c
otic quantum system has its own right to be investigated a
perfectly independent theme.

In this paper, we investigate the temporal evolution of t
quantum system under the continuous measurement,
demonstrate within quantum theory that the system sh
weak chaosinduced by the unitarity collapse in the course
its time development@3#. Concretely, we employ as such
system the Jaynes-Cummings model, which consists o
two-level atom interacting with a single-mode quantiz
photon field, and consider the continuous quantum nonde
lition ~QND! photon counting as a continuous measurem
strategy~see Fig. 1!.

This paper is organized as follows. In Sec. II, our sche
is introduced after a brief review of the continuous QN
measurement. Section III is devoted to the formalism of ti
evolution based on von Neumann’s quantum measurem
theory and embodied with the aid of the decomposition f
mula of an exponential operator. Numerical results are gi
in Sec. IV in two parameter regimes. The competition b
tween unitary and nonunitary evolutions is also discus
there.
ic
3293 © 1998 The American Physical Society
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II. CONTINUOUS MEASUREMENT AND PRESENT
SCHEME

In the context of the quantum measurement, tempo
evolution of any measured quantity~signal! should be led
from von Neumann’s quantum measurement theory, reg
less of the kind of measurement apparatus~probe!. Accord-
ing to this principle, the quantum measurement process c
sists of two stages@4#. In the first stage, signal and prob
become quantum-correlated through the interaction Ha
tonianĤint , that is,

r̂s2p~ t01t !5Û~ t !r̂s~ t0! ^ r̂p~ t0!Û†~ t !, ~1!

whereÛ(t)5exp(2iĤintt/\), r̂s(t0) @ r̂p(t0)# are the initial
density operator for the signal@probe#, andr̂s2p(t01t) is the
total density operator att01t. This process is reversible be
cause the interaction is unitary. In the second stage,
probe is read out instantaneously, resulting in a new quan
state of the signal via nonunitary state reduction as

r̂s~ t01t1!5
Trp@ r̂s2p~ t01t ! ^ uX&pp^Xu#

Trs2p@ r̂s2p~ t01t ! ^ uX&pp^Xu#
, ~2!

wherer̂s(t01t1) is the signal density operator just after th
measurement anduX&p is an eigenvector of the probe obser
ableX̂p with an eigenvalueXp . Thus, the measurement pro
cess becomes irreversible only at the second stage.

The continuous photon counting@5,6# is not an exception
to this principle, although the state reduction of the pho
field occurs at every moment when the detector is active
Ref. @7#, the microscopic quantum theory of the continuo
photodetection was proposed by one of the present aut
based on von Neumann’s theory and it was shown that
procedure correctly reproduces issues of the Srinivas-Da
model @5# for the photodetection.

One of the present authors considered the model that
mits the photon number to be a QND observable, and p
vided a continuous QND~CQND! measurement scheme fo
the photon number@8#. The interaction Hamiltonian they
proposed is

Ĥint5\gâ†â~ ŝ21ŝ1!, ~3!

FIG. 1. Schematic illustration of our system. The cavity conta
a two-level atom and a single-mode quantized photon field.
photon number inside the cavity is continuously measured by
QND photodetector at the right-hand side of the cavity. Inse
physical model corresponding to the QND photodetector.
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whereg is the coupling constant between the signal~photon
field! and the probe~QND photodetector!, â (â†) is the pho-
ton annihilation~creation! operator, andŝ6 is the flipping
operator, which represents the transition from one state to
other in a degenerate bistable device. A good example he
a molecule with a double-quantum-well potential, as sho
in the inset of Fig. 1. The state of a molecule initially pr
pared in the left valley can transit to the right through t
virtual uppermost energy level with an infinitesimal lifetim
leading to a photoabsorption and a subsequent photoe
sion. If the state of the molecule initially prepared in the le
valley is found in the right one after the interaction, a sing
photon has been detected; if the state of the atom is foun
remain in the left valley, no photon has been detected. Th
contrary to the photodetector made of a two-level atom@5–
7#, the QND photodetector can count a photon nondem
tionally.

Practically, the interaction Hamiltonian in Eq.~3! satisfies
the QND conditions for the photon numbern̂[â†â @8,9#:

~a! @Ĥphoton, n̂#50,

~b! @Ĥint , n̂#50,

~c! @Ĥint , ŝ2#Þ0, ~4!

~d! Ĥint should be a function ofn̂,

where Ĥphoton5\v(n̂1 1
2 ). With the use of the procedur

mentioned in Ref.@8#, we describe~i! the one-count proces
at t5t0 as

r̂s~ t1!}n̂r̂s~ t0!n̂, ~5!

and ~ii ! the no-count process duringt0<t<t01t as

r̂s~ t01t!}expS 2
l

2
n̂2t D r̂s~ t0!expS 2

l

2
n̂2t D , ~6!

where l[g2Dt. Here r̂s(t
1) is the signal~photon field!

density operator just after the one-count process, andt is the
time during which no photon is counted. The main idea
Uedaet al.’s theory lies in the introduction of a sequence
these two kinds of infinitesimal processes with an interact
time Dt, each of which represents a signal-probe coupl
via unitary interaction followed by ‘‘readout’’ of the measu
ing probe.

The time evolution through the continuous measurem
is nonunitary and its periodicity is broken via the tim
irreversible state reduction of wave packets. Therefore, i
interesting to investigate whether a nonintegrable sys
bears quantum behaviors different from those of integra
systems and, in particular, whether the former shows tem
ral chaos.

Let us now employ the Jaynes-Cummings~JC! model
without the rotating-wave approximation~RWA! ~called the
non-RWA JC model hereafter! and the QND photodetection
as a quantum system and continuous measurement stra

The JC model has been recognized as the simplest
most effective model to treat the interaction between a tw
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level atom and a single-mode quantized photon field@10#. In
addition to its exact solvability within the RWA, the mod
provides a number of remarkable properties due to the qu
tum aspects of the field such as ‘‘collapse and revival’’ in t
time domain@11#. The failure of the RWA, however, leads t
somewhat different conclusions from those of the JC mo
with the RWA.

The non-RWA JC model is of interest in connection w
‘‘quantum chaos.’’ Its Hamiltonian is given by

Ĥsystem5
1

2
\v0Ŝz1\vS n̂1

1

2D1 i\VŜx~ â2â†!, ~7!

whereŜz and Ŝx[Ŝ21Ŝ1 are the Pauli spin matrices, an
the constantsv0 , v, andV are an energy separation of th
two-level atom~with upper ua& and lower ub& levels!, the
frequency of the photon field, and a coupling constant
tween them~the vacuum Rabi frequency!, respectively.

Our proposed scheme is illustrated in Fig. 1. A two-lev
atom and a single-mode quantized photon field are confi
in a finite-Q cavity; they couple with each other through th
interaction in Eq.~7!. The cavity is supposed to have a sm
window, through which the continuous measurement, i
the QND photodetection is carried out. The leaked phot
are continuously measured one by one by using the Q
photodetector. Throughout the continuous measurement
photon field keeps interacting with the two-level atom. In t
next section, we shall develop the scheme for time evolu
of the continuously measured quantum system.

Here we mention the reason for exploiting the QND ph
todetector~rather than the demolition-type photodetector
Ref. @5–7#! as the method of the continuous measureme
The average photon number will decrease toward zero if
employ the demolition-type photodetector regardless of
tial photon states@6#. In other words, the photons in th
cavity are still absorbed toward a vacuum state and the B
vector of the interacting two-level atom will cease to mo
sooner or later. Since we need to calculate the time evolu
of the Bloch vector and compare the results with its class
counterpart, the QND-type photodetector should be u
with which one can detect photons without a substantial
crease of the photon number relatively in the cavity.

III. MICROSCOPIC MODEL FOR TIME EVOLUTION

In our proposed scheme, the measured quantum sy
~the non-RWA JC model! is accompanied by two kinds o
temporal evolutions. One is theinternal evolution, which is
time-reversible and described by the von Neumann equa
of the density operator,i\dr̂(t)/dt5@Ĥ,r̂(t)#. The other is
the time-irreversiblenonunitaryevolution due to the continu
ous measurement of the internal system. Since the latter
cess cannot be described by the orthodox von Neum
equation, we should apply von Neumann’s quantum m
surement theory to the evolution of our system, envisagin
combination of the unitary evolution and the subsequent
stantaneous projection.

The total Hamiltonian of our system is given by a line
combination of the non-RWA JC model Hamiltonian in E
~7! and the interaction Hamiltonian in Eq.~3!,
n-
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Ĥtotal5Ĥsystem1Ĥint . ~8!

Note that this total Hamiltonian no longer satisfies the QN
measurement conditions for the photon number@9#. For each
time interval,@ t0 ,t01Dt#, the initial state is expressed as

r̂ total~ t0!5 r̂system~ t0! ^ u l &^ l udetector. ~9!

Here r̂system(t) is the density operator for the non-RWA J
model andu l &^ l udetectormeans that the QND photodetector
initially prepared in the ‘‘left’’ (l ) valley.

First, the time evolution of the total density operator c
be described as

r̂~ t01Dt !5Û~Dt !r̂ total~ t0!Û†~Dt !, ~10!

where

Û~Dt ![exp~2 i ĤtotalDt/\!. ~11!

In this stage, the quantum correlation between the non-R
JC model and the QND photodetector is established.

In the second stage, the density matrix Eq.~10! is adjusted
according to the result of the readout information of t
QND photodetector as

r̂system~ t01Dt !5
Trdetector@ r̂~ t01Dt ! ^ ur &^r udetector#

Tr@ r̂~ t01Dt ! ^ ur &^r udetector#
,

~12!

or

r̂system~ t01Dt !5
Trdetector@ r̂~ t01Dt ! ^ u l &^ l udetector#

Tr@ r̂~ t01Dt ! ^ u l &^ l udetector#
.

~13!

Equations~12! and ~13! correspond to the one-count an
no-count processes, respectively, and their probabilities
given in terms of the probability amplitudesC(t)’s as

Pone~ t !5 (
n50

`

@ uCa,r ,n~ t !u21uCb,r ,n~ t !u2#, ~14!

Pno~ t !5 (
n50

`

@ uCa,l ,n~ t !u21uCb,l ,n~ t !u2#, ~15!

respectively, wherePone1Pno51.
Finally, the new QND photodetector, which is initially

prepared in a prescribed state, is set to

r̂ total~ t01Dt !5
Trdetector@ r̂~ t01Dt ! ^ u &^ udetector#

Tr@ r̂~ t01Dt ! ^ u &^ udetector#

^ u l &^ l udetector, ~16!
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FIG. 2. Temporal evolution of the spin matr
ces calculated by the non-RWA JC model
WCR as a function of the normalized~dimen-

sionless! time t8[t/Dt: ~a! ^Ŝx&, ~b! ^Ŝy&, and

~c! ^Ŝz&. An initial state att850 is ua&^au ~the
upper level! for the atom part andua&^au ~the
coherent state! with uau2515 for the photon part.
Numerical parameters are chosen asvDt50.5,
VDt50.01, andgDt50.01.
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and the time evolution of the system is obtained by mak
successive operations from Eq.~9! through Eq.~16!.

Now, a problem is to find an analytical expression f
Û(Dt) in Eq. ~11!, which is used in the practical calcula
tions. Especially in the study of dynamical chaos, it is i
portant to proceed with the calculations as precisely as p
sible to overcome the numerical errors due to computatio
calculations. Reflecting the classical nonintegrability und
lying in the non-RWA JC model Hamiltonian in Eq.~7!, the
matrix elements of Eq.~11! cannot be written explicitly, con-
trary to the case of the RWA JC model.

We have recourse here to the second-order symmetric
composition formula of an exponential operator, i.e.,
Trotter formula@12#,

eÂ1B̂5eÂ/2eB̂eÂ/2@11o~@Â,B̂# !#. ~17!
g

r

-
s-
al
r-
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e

This decomposition is valid for noncommutable operatorsÂ

andB̂ when explicit expressions for exp(Â) and exp(B̂) could
be given on the common bases. The advantage of Eq.~17! is
that, when applied to the density operator, it keeps precis
both the unitary and symplectic nature of the quantum
namics. In our case, we decompose the development op
tor Eq. ~11! into two integrable components as

expF2
i

\
~Ĥ11Ĥ2!Dt G

.expS 2
i

2\
Ĥ1Dt DexpS 2

i

\
Ĥ2Dt DexpS 2

i

2\
Ĥ1Dt D ,

~18!

where
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FIG. 3. Temporal evolution calculated by th
non-RWA JC model in WCR as a function of th
normalized timet8[t/Dt: ~a! the mean photon

number^n̂& and ~b! the photon number varianc

^Dn̂2&. As the measurement proceeds, the me
photon number oscillates between certain ad
cent integers stochastically. Numerical param
eters are the same as in Fig. 2.
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1

2
\v0Ŝz1\vS n̂1

1

2D1 i\V~Ŝ1â2â†Ŝ2!

1\gn̂~ ŝ21ŝ1!, ~19!

Ĥ25 i\V~Ŝ2â2â†Ŝ1!. ~20!

It should be noted that the time evolution of our mod
consists in principle of a sequence of the infinitesimal p
cesses. While we need to calculate the unitary evolution
each short-time duration@ t0 , t01Dt#, the above approxi-
mation is quite suitable for our study.

IV. RESULTS OF CALCULATIONS

In this section, we calculate several quantities of the t
subsystems~a two-level atom and a quantized photon fie!
with the use of the scheme in the preceding section. T
temporal evolution is derived by the multiplication of mat
ces consisting of the density matrix and the unitary mat
and by the subsequent reduction of the matrix elements
responding to the readout information, where the count
pulses are produced by a random noise generator depen
on the probability of the one-count or no-count processe
Eqs.~14! and ~15!.

We perform numerical calculations in two cases of t
ratio betweenv ('v0) and V, i.e., ~i! v/V@1 and ~ii !
v/V5O(1). In Sec. IV A, the results in the case~i! are
presented, and Sec. IV B is devoted to the case~ii !. The cases
~i! and~ii ! will hereafter be called a ‘‘weak-coupling regim
~WCR!’’ and a ‘‘strong-coupling regime~SCR!,’’ respec-
l
-
r

o

ir

,
r-
g
ing
in

tively. The SCR can be realized when a collection of ma
identical atoms are confined to a region small compared w
the wavelength of the photon field with high density@13,14#.
In this paper, we shall concentrate only on the resona
casev05v.

A. Results in the WCR

In general, the ratio betweenv andV controls the range
of the validity of the RWA. In the WCR (v/V@1), which is
the condition satisfied in conventional cavity QED expe
ments @15#, the contribution of the counter-rotating term
\VŜ2â and\Vâ†Ŝ1 , are averaged out on a time scale
1/v @11#. Therefore, the RWA is a good approximation
the WCR.

Figures 2~a!, 2~b!, and 2~c! show the temporal evolution
of the spin matrices,̂ Ŝx&, ^Ŝy&, and ^Ŝz&, in the WCR,
respectively. Note that̂Ŝz& corresponds to the atomic inve
sion, that is, the population difference between upper
lower levels. The initial density operator att50 is assumed
to be a coherent stater̂photon(0)5ua&^au with n0[uau2

515 for the field part multiplied by an upper stater̂atom(0)
5ua&^au for the atom part. Collapses and revivals of t
Rabi oscillation are found in the temporal evolution of t
population inversion@see Fig. 2~c!#, which is a typical fea-
ture of the RWA JC model with the initially coherent sta
for the photon part@11#. Unlike the case in which the con
tinuous QND measurement has not been done, however
Rabi oscillation revives almostcompletely: ^Ŝz& oscillates
from 21 to 1.
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FIG. 4. Temporal evolution of the spin matr
ces calculated by the non-RWA JC model in SC
as a function of the normalized timet8[t/Dt: ~a!

^Ŝx&, ~b! ^Ŝy&, and ~c! ^Ŝz&. An initial state at
t850 is chosen to be the same as in Fig. 2. N
merical parameters are chosen asvDt50.01,
VDt50.01, andgDt50.01.
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The above curious result can be understood with the
of the temporal evolution of the mean photon number^n̂&
and the photon-number variance^Dn̂2&[^n̂2&2^n̂&2 in Figs.
3~a! and 3~b!. As mentioned in Ref.@11#, the revival phe-
nomenon is attributed to the fluctuation of the quantum R
frequency, proportional to the photon number. The init
coherent state has the fluctuation of the photon num
which is equal to the mean photon number, and this has b
suppressed through the temporal evolution via the CQ
measurement. The mean photon number is initially stagge
by the measurement back action of the QND photodetect
as plotted in Fig. 3~a!, but it gradually converges, accomp
nied by the small oscillation as the measurement proce
One can understand the dynamics more clearly in Fig. 3~b!,
where the photon number variance shows an oscillatory
cay. The Rabi oscillation is the signature of the unitary e
lution of the JC model, whereas the decay is caused by
se

i
l
r,
en
D
ed
n,

s.

e-
-
he

CQND measurement of the photon number~i.e., nonunitary
evolution!. Thus, in the WCR, the characteristic behavior
both unitary and nonunitary evolutions appears in the te
poral evolution.

Although the time series of Figs. 2~a!, 2~b!, and 2~c! are
very complicated, we cannot expect quantum chaos in
WCR, where the RWA is a good approximation. Actually,
the counter-rotating terms in Eq.~7! could be neglected, the
corresponding classical nonintegrable system is reduce
the integrable system. So the system never yields temp
chaos but does yield~quasi!periodic motion only.

Here we mention the dependence of the temporal ev
tion ong, which determines the measurement strength. In
WCR, the photon state is reduced to a photon number s
as the measurement proceeds, regardless of the initial st
The ratio betweeng andv or V merely alters the time scal
of the convergence towards the photon number state.
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FIG. 5. Temporal evolution calculated by th
non-RWA JC model in SCR as a function of th
normalized timet8[t/Dt: ~a! the mean photon

number^n̂& and ~b! the photon number varianc

^Dn̂2&. Numerical parameters are the same as
Fig. 4.
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shall therefore not pay attention to the ratio. Ifg is much
larger thanv andV, does the Rabi oscillation cease by t
strong measurement to the system? The answer is ‘‘no.’’
Rabi oscillation never stops even ifg is infinitely large. Dis-
appearance of the Rabi oscillation means that the atomic
version and the photon field are trapped in a certain le
~upper or lower state! and a certain photon number stat
respectively. In other words, the total system provides
QND measurements for the atomic inversion and the pho
number. The total Hamiltonian in Eq.~8!, however, satisfies
the QND conditions@9# for neither the inversionŜz nor the
photon numbern̂. Therefore, the photon number varian
shown in Fig. 3~b! never converges to zero although it d
cays, and the Rabi oscillation remains forever even ifg is
infinitely large.

B. Results in the SCR

In the SCR, as predicted by Tavis and Cummings@16#,
the RWA fails and we can expect chaotic behavior in
temporal evolution. Figures 4~a!, 4~b!, and 4~c! show the
time evolution of the spin matrices,^Ŝx&, ^Ŝy&, and^Ŝz&, in
the SCR. The initial density matrix is chosen to be the sa
as in the WCR. Comparing Fig. 4~c! with Fig. 2~c!, one finds
that the revival phenomenon of the population inversion d
not appear in contrast to the WCR.

The corresponding time evolutions of the mean pho
number and the photon number variance are given in F
5~a! and 5~b!, respectively. A drastic difference from th
results in the WCR can be seen from these figures, tha
the mean photon number never settles down as in Fig. 3~a!,
even when we enforce the CQND measurement on the p
ton number. Figure 5~b! shows that the photon number var
e
he

in-
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e,
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e
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t is,
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ance does not decay through the time evolution but sho
intermittent pulsation, despite the fact that we use the c
tinuous readout information to estimate the photon num
in the cavity.

Generally in an interacting system consisting of a tw
level atom and a quantized photon field under the RWA,
state of the atom can change from the upper-level to
lower-level~from lower to upper! state via one-photon emis
sion ~absorption!. It indicates that the Hilbert space initially
prepared isclosedas the series of (232) matrices through-
out the time development, and it does not spread furth
Then, the photon number variance does not increase ove
long time, but remains relatively constant involving sma
oscillations, whereas the non-RWA JC model in Eq.~7! per-
mits the atomic state to change from the upper-level to
lower-level state via one-photon emissionor absorption, and
vice versa. It leads to thediffusion in the Hilbert space, cor-
responding to the increase of the photon-number varianc
the time evolution. On the contrary, the CQND measurem
of the photon number has the tendency to suppress
photon-number variance with the use of the readout inform
tion of the photon number. In the SCR, where the RWA
not a good approximation and the counter-rotating ter
work more effectively than in the WCR, the competitio
between these opposite mechanisms occurs, leading to
remarkable and unpredictable time series.

Figure 6 shows the power spectrum of^Ŝx&,

P~v![U 2

tmax
E

0

tmax

^Ŝx&e
2 ivtdtU, ~21!
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FIG. 6. Power spectrum of^Ŝx& calculated by
the non-RWA JC model in SCR as a function
the normalized ~dimensionless! frequency
v8/2p[Dt/t. The spectrum corresponds to th
temporal evolution in Fig. 4~a!.
ob-
tors
bles,

nt in
is

n.
ar-
ex-

e to
is
tra,
dic
rop-
corresponding to Fig. 4~a!. This quantity is often employed
as the diagnostics of quantum chaos. In a spin-boson in
acting system such as the non-RWA JC model, the dyna
cal symmetry in spin matrices is broken and the interact
component̂ Ŝx& shows a curious behavior, as conjectur
from the Hamiltonian in Eq.~7!. In addition, the time evolu-
tion of ^Ŝx& is strongly disturbed via the continuous measu
ment of the photon field. We note that the remaining co
ponents,̂ Ŝy& and^Ŝz&, show qualitatively similar properties
Then we shall confine ourselves to the discussion about t
poral chaos with respect tôŜx&. One can find a broadban
and a continuous component in Fig. 6, indicating the tem
ral chaos.

For comparison, we calculated power spectra of the c
responding classical model and the non-RWA JC mo
ter-
mi-
ion
ed

re-
m-
.
em-
d
po-

or-
del

without the CQND measurement (g50) in Figs. 7~a! and
7~b!, respectively. The classical equations of motion are
tained via decorrelation of the atomic and photon opera
when the Heisenberg equations are averaged for observa
leading to the Maxwell-Bloch equations@13#. In the classical
counterpart, one finds a broadband, continuous compone
its spectrum, which indicates that the temporal evolution
chaotic without any signature of stable periodic evolutio
Actually, the temporal evolution shows genuine chaos, ch
acterized by standard diagnostics of positive Lyapunov
ponents@13,14#. In the quantum version of the modelwithout
the CQND measurement, however, chaos is excluded du
the linearity of the Schro¨dinger equation. The spectrum
not continuous but accompanied by discrete line spec
which indicates that the temporal evolution is quasiperio
rather than chaotic. Thus we conclude that the chaotic p
re-
FIG. 7. Power spectrum of^Ŝx& calculated by
~a! the classical Maxwell-Bloch equations and
~b! the unmeasurednon-RWA JC model in SCR
as a function of the normalized~dimensionless!
frequency v8/2p[Dt/t. Numerical parameters
are the same as in Fig. 4 except for the measu
ment strengthg50. Compare with Fig. 6.
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FIG. 8. Autocorrelation function of̂ Ŝx& for
the CQND-measured non-RWA JC model~solid
line!, the unmeasured non-RWA JC mod
~dashed line!, and the classical Maxwell-Bloch
equations~dotted line! as a function of the nor-
malized ~dimensionless! time difference dt8
[dt/Dt. Numerical parameters are the same
in Fig. 4.
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erties inherent in the non-RWA JC model, usually su
pressed by the linearity of the Schro¨dinger equation, are re
covered due to the breakdown of time reversibility under
CQND measurement.

To quantify this chaotic signature, autocorrelation fun
tions

G~dt ![
^Sx~ t !Sx~ t1dt !& t2^Sx~ t !& t

2

^Sx
2~ t !& t2^Sx~ t !& t

2
~22!

are plotted in Fig. 8. Herê & t means the average over th
time, limT→`(1/T)*0

T
•••dt. Contrary to the oscillatory cor

relation, which retains a long time for theunmeasuredquan-
tum model, we see the decaying correlation functions
lowed by noisy ripples for both the classical and t
continuously measured quantum versions, indicating the
of quantum recurrence.

For classical systems there is no controversy about ho
define chaotic behavior; classical chaos means very sens
dependence on an initial condition of trajectories, and
properties can be checked by comparing the maxi
Lyapunov exponent. In the case of quantum chaos, on
other hand, there is no such hard number that measure
rate of exponential separation of neighboring trajectories,
cause the concept of the ‘‘neighboring trajectories’’ can
be well defined in the quantum theory due to the uncerta
principle. So we can refer to this chaotic behavior as ‘‘we
chaos,’’ characterized by both the broad continuous po
spectrum and the decaying correlation function.

Last, we mention the dependence of thecontinuousmea-
surement on the durationDt during which the interaction is
switched on between the system and the QND photodete
To neglect the possibility of more than one photon be
detected in each duration, one has to take the limitDt→0
@7,8#. In addition, to justify the decomposition formula of a
exponential operator in Eq.~18!, one must setDt less than
1/v, 1/V, and 1/g. However, if Dt is equal to zero, the
quantum correlation is not established in Eq.~10! so that the
information of the system is not copied onto the QND ph
todetector. Thus,Dt should be small~but nonzero! enough to
satisfyvDt!1, VDt!1, andgDt!1.
-
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V. SUMMARY

The time evolution of a continuously measured~classi-
cally nonintegrable! quantum system, i.e., the non-RWA J
model under the continuous QND photodetection, is inve
gated as one of the candidates that has the possibility
showing temporal chaos within a quantum theory. We ha
developed the microscopic theory of time evolution based
von Neumann’s quantum measurement theory and had
course to the decomposition formula of an exponential
erator. The unitary process originating from an internal tim
evolution and the nonunitary process due to the continu
QND measurement compete with each other in the time
main. Especially in the strong-coupling regime, the quant
system shows chaotic time evolution, characterized by b
the broad continuous power spectrum and the decaying
relation function. In our system, the latent chaotic propert
of the non-RWA JC model, suppressed by the linearity in
time-dependent Schro¨dinger equation, clearly emerge owin
to the breakdown of the time reversibility in the CQND me
surement process. We then expect thatnonintegrable quan-
tum systems can yield ‘‘weak chaos’’ due to the breakdo
of unitarity in the course of their temporal evolution.

Last we note that in the CQND measurement proce
results of a measurement are provided in anindeterministic
way. One cannot predict the observed value in advan
Therefore the quantum chaos in the CQND measuremen
evitably involves stochasticity. The situation in which th
QND photodetector is switched on but the readout inform
tion in discarded~called the nonreferring measurement pr
cess! @6,8# is left for a future study.
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