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Jaynes-Cummings model under continuous measurement:
Weak chaos in a quantum system induced by unitarity collapse
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We show that a system managed by quantum theory bears chaotic behavior indureiiy collapsein
its time development. Nonunitary time evolution of the Jaynes-Cumniii@smodel, the interacting system
consisting of two subsystenta two-level atom and a quantized photon fjeldnder a continuous quantum-
nondemolition(QND) measurement of the photon number is investigated. In the regime of weak coupling
between the subsystems, the measured system shows the Rabi oscillation and the decrease of the photon
number variance, which mimic the unmeasured JC system and the photon field under the continuous QND
photodetection, respectively. In the strong-coupling regime, the quantum system shows a nonintegrable nature,
that is, it yieldsweak chaosharacterized by both the broad continuous power spectrum and the decaying
correlation function due to the lack of quantum recurrei84050-294{©8)03910-9

PACS numbgs): 42.50.Ct, 03.65.Bz, 05.45b, 42.50.Dv

I. INTRODUCTION is governed not only by the Schiimger equation but also by
the continuous state reduction caused by the measurement
Despite the accumulation of considerable works on quanback action. So there will appear a possibility that a quantum
tum theory of chaotic systems, there exists a prevailing beliegystem shows temporal chaos due to the lack of quantum
that, due to the linearity of the Schiinger equation, the recurrence. The subject has a similarity to that on decoher-
guantum system exhibits no chaos characterized by standaethce induced when the quantum system is coupled with the
diagnostics of the positive Lyapunov exponent. Even if itsenvironment2]. The decoherence phenomenon implies the
classical counterpart would show chaos, the Sdimger environment-induced suppression of quantum suppression of
equation describes only a time-periodic or quasiperiodichaos, thereby eventually recovering the chaos in quantum
wave and inevitably excludes any solution representing temdynamics. Despite the similarity between the environment-
poral chaos or turbulence in genefal. induced decoherence and continuous measurement, the latter
Such a belief, however, could be valid only if the quan-is governed by von Neumann’s peculiar nonunitary process.
tum system is assumed to be “closed,” that is, to be con-Therefore, the continuous measurement of a classically cha-
fined in an infiniteQ cavity without leakage and not to in- otic quantum system has its own right to be investigated as a
teract with the other subsystems. In practical experimentgerfectly independent theme.
signals out of the system should be measured by using In this paper, we investigate the temporal evolution of the
proper apparatus and the measurement process is usuatjyantum system under the continuous measurement, and
continued for a long duration, referred to as the continuouslemonstrate within quantum theory that the system shows
measurement. The continuous measurement action enforcegak chaosnduced by the unitarity collapse in the course of
the system to couple with the large degrees of freedom ouits time developmeng3]. Concretely, we employ as such a
side, and “readout” of the measurement information will system the Jaynes-Cummings model, which consists of a
give a continuous back action on the measured system. Theo-level atom interacting with a single-mode quantized
process of this kind does disturb the quantum system vighoton field, and consider the continuous quantum nondemo-
continuous reduction of wave packets, which cannot be delition (QND) photon counting as a continuous measurement
scribed by the time-dependent Sctliryer equation. There- strategy(see Fig. L
fore, the time evolution induced by the continuous measure- This paper is organized as follows. In Sec. Il, our scheme
ment is intrinsically time-irreversible and nonunitary. is introduced after a brief review of the continuous QND
Then, what should take place if the classically noninte-measurement. Section Il is devoted to the formalism of time
grable quantum system has been continuously measure@?olution based on von Neumann's quantum measurement
Under such a circumstance, temporal evolution of the systentheory and embodied with the aid of the decomposition for-
mula of an exponential operator. Numerical results are given
in Sec. IV in two parameter regimes. The competition be-
* Author to whom correspondence should be addressed. Electrontwveen unitary and nonunitary evolutions is also discussed
address: ogawa@cmpt01l.phys.tohoku.ac.jp there.
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whereg is the coupling constant between the sigfmioton
field) and the prob¢QND photodetectora (a') is the pho-
ton annihilation(creation operator, andr.. is the flipping
operator, which represents the transition from one state to the
photon field other in a degenerate bistable device. A good example here is
a molecule with a double-quantum-well potential, as shown
W\/\p OM/\/\_. in the inset of Fig. 1. The state of a molecule initially pre-
pared in the left valley can transit to the right through the
two-level atom QND photodetector virtual uppermost energy level with an infinitesimal lifetime,
leading to a photoabsorption and a subsequent photoemis-
sion. If the state of the molecule initially prepared in the left

FIG. 1. Schematic '”“S‘Ta“"” of our system. The cavity .Conta'nsvalley is found in the right one after the interaction, a single
a two-level atom and a single-mode quantized photon field. The s '

L - ; hoton has been detected; if the state of the atom is found to
photon number inside the cavity is continuously measured by th

QND photodetector at the right-hand side of the cavity. Inset: aremaln in the left valley, no photon has been detected. Thus,

hysical model corresponding to the QND photodetector. contrary to the photodetector made of a two-level afom .
b4 P g QNDp 7], the QND photodetector can count a photon nondemoli-

Il. CONTINUOUS MEASUREMENT AND PRESENT tionally. , , L -
SCHEME Practically, the interaction Hamiltonian in E() satisfies

the QND conditions for the photon numbe=a‘a [8,9]:
In the context of the quantum measurement, temporal

evolution of any m?asured guantifgigna) should be led (@ [Fphoton N1=0,
from von Neumann’s quantum measurement theory, regard-
less of the kind of measurement apparaju®be. Accord-

ing to this principle, the quantum measurement process con-
sists of two stage$4]. In the first stage, signal and probe - -
become quantum-correlated through the interaction Hamil- (©) [Hini, o-]1#0, (4)

tonian ﬂim, that is,

(b) [Hin, N1=0,

(d) H,; should be a function ofn,
R =0 R ~ A )

Ps-p(tot ) =U()ps(t) ©pp(to) U (L), @ where Honotor=iw(N+3). With the use of the procedure
mentioned in Ref[8], we describdi) the one-count process

whereU (t) = exp(—iTtint/%), ps(to) [pp(to)] are the initial att=t, as

density operator for the signgirobd, andf;s,p(t(fl—t) is the
total densny operator dp+t. Thls process is reversible be- p(tHonpg(to)n, (5)
cause the interaction is unitary. In the second stage, the

probe is read out instantaneously, resulting in a new quantumnd (i) the no-count process during<t<t,+ r as

state of the signal via nonunitary state reduction as

)

n A " A
~ _ A2 _ A2
Tt Psp(to+ D8] X)po(XI] PS“O”)“GX’]( 2" 7)”5“0)6”’( "7

Tre—plps—p(toT @ X)pp(X|1’

ps(to+t)= 2

where A=g2At. Here ﬁs(t*) is the signal(photon field

- . . . . density operator just after the one-count process,risdhe
n
wherepy(to+17) is the signal density operator just after thetime during which no photon is counted. The main idea of

measurement arjX), is an eigenvector of the probe 0bserv- jeaet al’s theory lies in the introduction of a sequence of

able X, with an eigenvalu,. Thus, the measurement pro- these two kinds of infinitesimal processes with an interaction
cess becomes irreversible only at the second stage. time At, each of which represents a signal-probe coupling
The continuous photon countiri§,6] is not an exception  via unitary interaction followed by “readout” of the measur-
to this principle, although the state reduction of the photoqng probe.
field occurs at every moment when the detector is active. In The time evolution through the continuous measurement
Ref. [7], the microscopic quantum theory of the continuousijs nonunitary and its periodicity is broken via the time-
photodetection was proposed by one of the present authofigeversible state reduction of wave packets. Therefore, it is
based on von Neumann's theory and it was shown that thgteresting to investigate whether a nonintegrable system
procedure correctly reproduces issues of the Srinivas-Davigsears quantum behaviors different from those of integrable

model[5] for the photodetection. systems and, in particular, whether the former shows tempo-
One of the present authors considered the model that pefa| chaos.

mits the photon number to be a QND observable, and pro- | et us now employ the Jaynes-Cummingi) model

vided a continuous QNICQND) measurement scheme for wjithout the rotating-wave approximatigRWA) (called the

the photon numbe{8]. The interaction Hamiltonian they non-RWA JC model hereafteand the QND photodetection

proposed is as a quantum system and continuous measurement strategy.
) o . The JC model has been recognized as the simplest and
Hiw=hga'a(o_+o.), (3)  most effective model to treat the interaction between a two-
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level atom and a single-mode quantized photon fig@. In oo =T + 7 )
addition to its exact solvability within the RWA, the model total™ “eystem’ THint- ®

provides a number of remarkable properties due to the quarote that this total Hamiltonian no longer satisfies the QND

tum aspects of the field such as “collapse and revival” in themeasurement conditions for the photon nunii8érFor each
time domairi 11]. The failure of the RWA, however, leads t0 time interval,[t,to+ At], the initial state is expressed as
somewhat different conclusions from those of the JC model

with the RWA.
e norRWA,JC model is of nterest n connecton with prol10) =Pt 8o )
A Herefasysten(t) is the density operator for the non-RWA JC
+inQS(a-a’), (7)  model and!)(l|gerectormeans that the QND photodetector is
initially prepared in the “left” (1) valley.
. . First, the time evolution of the total density operator can
whereS, andS,=S_+S, are the Pauli spin matrices, and pe described as
the constants,, w, and{) are an energy separation of the
two-level atom(with upper|a) and lower|b) levels, the p(to+At)=U(AD) promlto) O T(AD), (10)
frequency of the photon field, and a coupling constant be-
tween them(the vacuum Rabi frequengyrespectively. where
Our proposed scheme is illustrated in Fig. 1. A two-level
atom and a single-mode quantized photon field are confined R R
in a finite-Q cavity; they couple with each other through the U(At)=exp — i HiAt/h). (11
interaction in Eq(7). The cavity is supposed to have a small

window, through which the continuous measurement, i.€., s stage, the quantum correlation between the non-RWA
the QND photodetection is carried out. The leaked photon§c model and the QND photodetector is established.

are continuously measured one by one by using the QND |, \he second stage, the density matrix Bd) is adjusted

photodetector. Throughout the continuous measurement, the..ording to the result of the readout information of the
photon field keeps interacting with the two-level atom. In theQND photodetector as

next section, we shall develop the scheme for time evolution
of the continuously measured quantum system.

Here we mention the reason for exploiting the QND pho- . T
todetector(rather than the demolition-type photodetector in Psystent to+ At) =
Ref. [5-7]) as the method of the continuous measurement.

The average photon number will decrease toward zero if we

employ the demolition-type photodetector regardless of ini,
tial photon state§6]. In other words, the photons in the

cavity are still absorbed toward a vacuum state and the Bloch Tr [t +AD®|IN| ]

vector of the interacting two-level atom will cease to move Poystent to At) = detectot P70 detectod
sooner or later. Since we need to calculate the time evolution Trp(to+At) @ {1 |getecto]

of the Bloch vector and compare the results with its classical (13
counterpart, the QND-type photodetector should be used

with which one can detect photons without a substantial deEquations(12) and (13) correspond to the one-count and

crease of the photon number relatively in the cavity. no-count processes, respectively, and their probabilities are
given in terms of the probability amplitudé€x(t)’s as

. 1
T2

“ 1 ~
7_[system: 2 fiweS,+ho

rdetectoﬁﬁ(to"' At) ® |I‘><I’ |detect0;]
Trlp(to+ At) |1 )(r|getectod

I1l. MICROSCOPIC MODEL FOR TIME EVOLUTION

— 2 2

In our proposed scheme, the measured quantum system Pone“)‘zo [ICa (I +Co,rn(WI, (14
(the non-RWA JC modglis accompanied by two kinds of
temporal evolutions. One is thaternal evolution, which is o
time-reversible and descriped by thg von Neumann equation Po(t)=>, [|Cain(D)|2+]Ch i n(D]?], (15)
of the density operatoifidp(t)/dt=[H,p(t)]. The other is n=0
the time-irreversibl@onunitaryevolution due to the continu- )
ous measurement of the internal system. Since the latter pré€SPEctively, wher® g+ Ppo=1. L
cess cannot be described by the orthodox von Neumann Finally, the new QND photodetector, which is initially
equation, we should apply von Neumann's quantum meaP'€Pared in a prescribed state, is set to
surement theory to the evolution of our system, envisaging a
combination of the unitary evolution and the subsequent in- .
stantaneous projection. lgetectok P(to+ AD® | ) [ getectod

Th(_e to_tal Hamiltonian of our system is given by a.I|near T p(to+AD®| M | detectol
combination of the non-RWA JC model Hamiltonian in Eg.
(7) and the interaction Hamiltonian in E¢B), @ |1Y{1| getecton (16)

“ T
Protal toT A) =
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and the time evolution of the system is obtained by makingrhis decomposition is valid for noncommutable operatbrs

successive operations from Bg) through Eq.(16). andB when explicit expressions for ex)(and expB) could
i Now, a problem is to find an analytical expression forbe given on the common bases. The advantage of Egis
U(At) in Eq. (11), which is used in the practical calcula- that, when applied to the density operator, it keeps precisely
tions. Especially in the study of dynamical chaos, it is im-poth the unitary and symplectic nature of the quantum dy-

portant to proceed with the calculations as precisely as posramics. In our case, we decompose the development opera-
sible to overcome the numerical errors due to computationabr Eq. (11) into two integrable components as

calculations. Reflecting the classical nonintegrability under-
lying in the non-RWA JC model Hamiltonian in E¢7), the
matrix elements of Eg11) cannot be written explicitly, con- exr{ — —(Hy+Hy)At
trary to the case of the RWA JC model. h

We have recourse here to the second-order symmetric de- i i P
composition formula of an exponential operator, i.e., the :exp< —ﬁHlAt)ex;{ —%HzAt)ex;{ —ﬁHlAt),
Trotter formula[12],

(18

eA*é:eA’zeéeA’2[1+o([A,B])]. (17 where
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(b) *°r photon number oscillates between certain adja-
14 | cent integers stochastically. Numerical param-
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.1 R -~ 1) & s are tively. The SCR can be realized when a collection of many
leiﬁwosﬁﬁw( n+s|+iaQ(S,a-a's.) identical atoms are confined to a region small compared with
the wavelength of the photon field with high dendityd,14.
+hgn(o_+a.), (19) In this paper, we shall concentrate only on the resonance
casewg= w.
H,=ihQ(5_a—-2a's,). (20)

) ] A. Results in the WCR
It should be noted that the time evolution of our model

consists in principle of a sequence of the infinitesimal pro- N general, the ratio between and{} controls the range
cesses. While we need to calculate the unitary evolution foPf the validity of the RWA. In the WCR4/Q>1), whichis
each short-time duratiofity, to+At], the above approxi- the condition satisfied in conventional cavity QED experi-
mation is quite suitable for our study. meqts[lS], the E:oAntr|but|on of the counter-rotating terms,
#0S_a and#%Qa'S, , are averaged out on a time scale of
l/w [11]. Therefore, the RWA is a good approximation in
the WCR.

In this section, we calculate several quantities of the two Figures 2a), 2(b), and Zc) show the temporal evolution

subsystemsga two-level atom and a quantized photon fleld of the spin matrices(é)(), <§y>, and <§Z>, in the WCR,

with the use of the scheme in the preceding section. Theifggpectively. Note thatS,) corresponds to the atomic inver-
temporal evolution is derived by the multiplication of matri-

L - ) . . sion, that is, the population difference between upper and
ces consisting of the density matrix and the unitary matrix

) ) lower levels. The initial density operator &t 0 is assumed
and by the subsequent reduction of the matrix elements cor- A . 2
be a coherent statynorof0)=|a)(a| with ny=|a|

responding to the readout information, where the countiné0 . otor A
pulses are produced by a random noise generator dependingl® for the field part multiplied by an upper staigon{(0)

on the probability of the one-count or no-count processes i |a)(a| for the atom part. Collapses and revivals of the
Egs.(14) and (15). Rabi oscillation are found in the temporal evolution of the

We perform numerical calculations in two cases of thePopulation inversiorjsee Fig. £)], which is a typical fea-
ratio betweenw (~wg) and Q, ie., (i) o/Q>1 and(i) ture of the RWA JC model with the initially coherent state
w/Q=0(1). In Sec. IVA, the results in the case) are for the photon parf11]. Unlike the case in which the con-
presented, and Sec. IV B is devoted to the ¢@$sThe cases tinuous QND measurement has not been dpne, however, the
(i) and(ii) will hereafter be called a “weak-coupling regime Rabi oscillation revives almostompletely (S,) oscillates
(WCR)” and a “strong-coupling regimgSCR),” respec- from —1 to 1.

IV. RESULTS OF CALCULATIONS
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The above curious result can be understood with the usEQND measurement of the photon numifieg., nonunitary
of the temporal evolution of the mean photon numb@) evolution. Thus, in the WCR, the characteristic behavior of
and the photon-number variané&n2)=(A2)— (n)2 in Figs. both unitary and nonunitary evolutions appears in the tem-
3(a) and 3b). As mentioned in Ref[11], the revival phe- Poral evolution. _ _
nomenon is attributed to the fluctuation of the quantum Rabi Although the time series of Figs(&, 2(b), and Zc) are
frequency, proportional to the photon number. The initialvery complicated, we cannot expect quantum chaos in this
coherent state has the fluctuation of the photon numbeMVCR, where the RWA is a good approximation. Actually, if
which is equal to the mean photon number, and this has beghe counter-rotating terms in E¢Z) could be neglected, the
suppressed through the temporal evolution via the CQNDxorresponding classical nonintegrable system is reduced to
measurement. The mean photon number is initially staggeretthe integrable system. So the system never yields temporal
by the measurement back action of the QND photodetectiorghaos but does yieltfuasjperiodic motion only.
as plotted in Fig. &), but it gradually converges, accompa- Here we mention the dependence of the temporal evolu-
nied by the small oscillation as the measurement proceedtion ong, which determines the measurement strength. In the
One can understand the dynamics more clearly in Fig),3 WCR, the photon state is reduced to a photon number state
where the photon number variance shows an oscillatory deas the measurement proceeds, regardless of the initial states.
cay. The Rabi oscillation is the signature of the unitary evo-The ratio betweeiyg andw or () merely alters the time scale
lution of the JC model, whereas the decay is caused by thef the convergence towards the photon number state. We



PRA 58 JAYNES-CUMMINGS MODEL UNDER CONTINUOWS . .. 3299

(a) 35
30 |
25
20
A
7 sl
V 15
10 |
5
N 1 . i N i N L . 1 X i .
00 5000 70000 15000 20000 25000 30000 FIG. 5. Temporal evolution calculated by the
, non-RWA JC model in SCR as a function of the
t normalized timet'=t/At: (a) the mean photon
i number(n) and (b) the photon number variance
(b)y ™ : (An?). Numerical parameters are the same as in
oo Ll Fig. 4.
50 ft
A 40 M |
o~ . |
c
<]
\Y |
20 q]
10 +
0 L i i i i 1 1 1 i 1 1 1
0 5000 10000 15000 20000 25000 30000
tl

shall therefore not pay attention to the ratio.glfis much  ance does not decay through the time evolution but shows
larger thanw and(2, does the Rabi oscillation cease by the intermittent pulsation, despite the fact that we use the con-

strong measurement to the system? The answer is “no.” Th@nuous readout information to estimate the photon number
Rabi oscillation never stops evengfis infinitely large. Dis- i the cavity.

appearance of the Rabi oscillation means that the atomic in- Generally in an interacting system consisting of a two-
version and the photon field are trapped in a certain levellevel atom and a quantized photon field under the RWA, the

(upper or lower stajeand a certain photon number state,
respectively. In other words, the total system provides th tate of the atom can change from the upper-level to the

QND measurements for the atomic inversion and the photofPWer-level(from lower to uppeystate via one-photon emis-
number. The total Hamiltonian in E¢B), however, satisfies Sion (absorptio. It indicates that the Hilbert space initially

the QND conditiong9] for neither the inversiorfsz nor the Prepared ixlosedas the series of (2) matrices through-

photon numbem. Therefore. the photon number varianceOUt the time development, and it does not spread further.
shown in Fig. 8b) never con’verges to zero although it de- Then, the photon number variance does not increase over the

cays, and the Rabi oscillation remains forever eveg i long time, but remains relatively constant involving small
infinitely large. oscillations, whereas the non-RWA JC model in Ef).per-
mits the atomic state to change from the upper-level to the
B. Results in the SCR lower-level state via one-photon emissionabsorption, and

In the SCR, as predicted by Tavis and Cummifig], vice versa. It leads to theiffusion in the Hilbert spacecor-

the RWA fails and we can expect chaotic behavior in theresponding to the increase of the photon-number variance in

temporal evolution. Figures(@, 4(b), and 4c) show the the time evolution. On the contrary, the CQND measurement

time evolution of the spin matrice$§<>, (S,), and(§z>, in of the photon number hgs the tendency to suppress the

the SCR. The initial density matrix is chosen to be the sam&h0ton-number variance with the use of the readout informa-

as in the WCR. Comparing Fig(@ with Fig. 2c), one finds  tion of the photon number. In the SCR, where the RWA is

that the revival phenomenon of the population inversion doe§0t @ good approximation and the counter-rotating terms

not appear in contrast to the WCR. work more EffeCtiVE|y than in the WCR, the Competition
The corresponding time evolutions of the mean photorPetween these opposite mechanisms occurs, leading to the

number and the photon number variance are given in Figgemarkable and unpredictable time series.

5(a) and Fb), respectively. A drastic difference from the  Figure 6 shows the power spectrum(&(),

results in the WCR can be seen from these figures, that is,

the mean photon number never settles down as in Fa, 3

even when we enforce the CQND measurement on the pho- P(w)=

ton number. Figure ®) shows that the photon number vari-

2

: (21)

ftma)((”Sx)e—iwtdt
0

tmax
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0.1

FIG. 6. Power spectrum dfS,) calculated by

R i the non-RWA JC model in SCR as a function of
a | ! the normalized (dimensionless frequency
(TR i o'[2r=At/t. The spectrum corresponds to the
0.001 ’ temporal evolution in Fig. @).
0.0001 " i L 1 n I‘ i 1 " ]
0.00 0.01 0.02 0.03 0.04 0.05
w'/2n

corresponding to Fig.(4). This quantity is often employed withoutthe CQND measuremeng&0) in Figs. 1a) and

as the diagnostics of quantum chaos. In a spin-boson inteiXb), respectively. The classical equations of motion are ob-
acting system such as the non-RWA JC model, the dynamiained via decorrelation of the atomic and photon operators
cal symmetry in spin matrices is broken and the interactiorwhen the Heisenberg equations are averaged for observables,
component{ASX> shows a curious behavior, as conjecturedlead'ng to the Maxwell-Bloch equatiofi$3]. In the classical

from the Hamiltonian in Eq(7). In addition, the time evolu- pounterpart, one _finds a broadband, continuous compo.nen.t in
. Ay . ) . its spectrum, which indicates that the temporal evolution is
tion of (S,) is strongly_dlsturbed viathe continuous measure-cpaqtic without any signature of stable periodic evolution.
ment of the photon field. We note that the remaining CoM-x¢y )y, the temporal evolution shows genuine chaos, char-
ponents(S,) and(S,), show qualitatively similar properties. acterized by standard diagnostics of positive Lyapunov ex-
Then we shall confine ourselves to the discussion about tenponentg13,14). In the quantum version of the modeithout
poral chaos with respect &,). One can find a broadband the CQND measurement, however, chaos is excluded due to
and a continuous component in Fig. 6, indicating the tempothe linearity of the Schidinger equation. The spectrum is
ral chaos. not continuous but accompanied by discrete line spectra,
For comparison, we calculated power spectra of the corwhich indicates that the temporal evolution is quasiperiodic
responding classical model and the non-RWA JC modetather than chaotic. Thus we conclude that the chaotic prop-
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ment strengtlg=0. Compare with Fig. 6.
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FIG. 8. Autocorrelation function ofS,) for
the CQND-measured non-RWA JC modsblid
line), the unmeasured non-RWA JC model
(dashed ling and the classical Maxwell-Bloch
equations(dotted ling as a function of the nor-
malized (dimensionless time difference é6t’
= 6t/At. Numerical parameters are the same as
in Fig. 4.
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erties inherent in the non-RWA JC model, usually sup-
pressed by the linearity of the Schlinger equation, are re- V. SUMMARY

covered due to the breakdown of time reversibility under the The i luti f . | :
COND measurement. e time evolution of a continuously measuredassi-

To quantify this chaotic signature, autocorrelation func-Cally nonintegrablequantum system, i.e,, the non-RWA JC
tions model under the continuous QND photodetection, is investi-
gated as one of the candidates that has the possibility of
showing temporal chaos within a quantum theory. We have
developed the microscopic theory of time evolution based on

OS>+ St)Y. — t))2 von Neumann’s quantum measurement theory and had re-
r'(st)= (S )S;( Dt <S’2<( Vi (22)  course to the decomposition formula of an exponential op-
(Si(0)e—(Sd(b)s erator. The unitary process originating from an internal time

evolution and the nonunitary process due to the continuous
QND measurement compete with each other in the time do-
o main. Especially in the strong-coupling regime, the quantum
are plotted in F'g-TB- Herg); means the average over the g qtem shows chaotic time evolution, characterized by both
time, limr_..(1/T) [o- - -dt. Contrary to the oscillatory cor-  the proad continuous power spectrum and the decaying cor-
relation, which retains a long time for themeasuredjuan-  relation function. In our system, the latent chaotic properties
tum model, we see the decaying correlation_functions folof the non-RWA JC model, suppressed by the linearity in the
lowed by noisy ripples for both the classical and thetme-dependent Schainger equation, clearly emerge owing
continuously measured quantum versions, indicating the lacky the breakdown of the time reversibility in the CQND mea-
of quantum recurrence. surement process. We then expect thanintegrable quan-
For classical systems there is no controversy about how tg,m systems can yield “weak chaos” due to the breakdown
define chaotic behavior; classical chaos means very sensitivsg unitarity in the course of their temporal evolution.
dependence on an initial condition of trajectories, and its | 35t we note that in the CQND measurement process,
properties can be checked by comparing the maximajesyits of a measurement are provided inirafeterministic
Lyapunov exponent. In the case of quantum chaos, on thgay One cannot predict the observed value in advance.
other hand, there is no such hard number that measures th@erefore the guantum chaos in the CQND measurement in-
rate of exponential separation of neighboring trajectories, beayitably involves stochasticity. The situation in which the
cause the concept of the “neighboring trajectories” cannotoND photodetector is switched on but the readout informa-

be well defined in the quantum theory due to the uncertaintyion in discardedcalled the nonreferring measurement pro-
principle. So we can refer to this chaotic behavior as “weakcesg [6,9] is left for a future study.

chaos,” characterized by both the broad continuous power
spectrum and the decaying correlation function.

Last, we mention the dependence of tmmtinuousmea-
surement on the duratioht during which the interaction is
switched on between the system and the QND photodetector.
To neglect the possibility of more than one photon being The authors would like to thank N. Imoto at NTT Basic
detected in each duration, one has to take the likit-0 Research Laboratories for valuable comments and fruitful
[7,8]. In addition, to justify the decomposition formula of an discussions. T.F. is grateful to Y. Takane, S. Kawabata, and
exponential operator in Eq18), one must sefAt less than T. Maki for continuous encouragement, and K.N. thanks M.
l/w, 1/Q, and 1¢. However, if At is equal to zero, the Berry for a critical comment on the decoherence. This work
guantum correlation is not established in ELQ) so that the is supported by a Grant-in-Aid for Scientific Research on
information of the system is not copied onto the QND pho-Priority Areas, “Mutual Quantum Manipulation of Radiation
todetector. ThusAt should be smallbut nonzerpenoughto  Field and Matter,” from the Ministry of Education, Science,
satisfy wAt<1, QAt<1, andgAt<1. Sports and Culture of Japan.
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