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Quantum noise reduction and generalized two-mode squeezing in a cavity Raman laser

Kai Drühl* and Claude Windenberger
Center for Technology Research, Maharishi University of Management, Fairfield, Iowa 52557

~Received 4 May 1998!

We study a generalized notion of two-mode squeezing for the Stokes and anti-Stokes fields in a model of a
cavity Raman laser, which leads to a significant reduction in decoherence or quantum noise. The model
comprises a lossless cavity with classical pump, unsaturated medium, and arbitrary homogeneous broadening
and dispersion. Allowing for arbitrary linear combinations of the two modes in the definition of quadrature
variables, we find that there always exists a combination of the two output modes that exhibits quadrature
squeezing with noise reduction below the vacuum level. The number of noise photons for this combination
mode is proportional to the square root of the number of Stokes noise photons.@S1050-2947~98!02010-1#

PACS number~s!: 42.50.Dv, 42.50.Lc, 42.65.Dr
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I. INTRODUCTION

In this paper, we investigate aspects of quantum no
reduction in a model of a linear multichannel quantum a
plifier. Our investigation deals with both state reduction,
decoherence, and squeezing for the amplified channels
fact, both phenomena turn out to be intimately connec
The model describes stimulated Raman scattering~SRS! for
a linear amplifier in a lossless cavity with a single Stok
mode, a single anti-Stokes mode, and a classical pump.
assume the Raman medium to be not saturated, but allow
arbitrary homogeneous broadening and dispersion. The
man amplification process gives rise to both two-mo
squeezing and decoherence for the two optical field mo
We find that quantum noise resulting from these proces
can be largely canceled by appropriate interference arra
ments, while maintaining the full amount of amplification

The first arrangement is an ‘‘antisqueezing’’ operation,
which two uncorrelated normal modes are obtained. This
eration can be implemented, for example, by a linear pa
metric amplifier. If the initial state of fields, medium, an
reservoir is the vacuum, the state for one of the norm
modes is the vacuum, while for the other it is a canoni
ensemble of number states. The average number of ‘‘noi
photons for the latter mode is equal to the number
phonons in the medium and reservoir states.

The second arrangement involves linear mixing of Sto
and anti-Stokes without additional squeezing. The state
the resulting mixed mode is a canonical ensemble
squeezed number states. For a suitable, optimal choic
mode coefficients, the variance of one of the quadrat
phases@1# of the mode is below the vacuum level, in spite
the additional quantum noise resulting from decoherence
the mixed state. This result holds for all values of dispersi
linewidth, and coupling constants. The variance of the c
jugate quadrature is comparable to the variances of
Stokes quadratures. For large amplification, the numbe
squeezed photons in the mixed mode is proportional to
square root of the number of Stokes photons. This repres
a significant reduction in the amount of decoherence for
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mixed mode, as compared to the original modes.
The use of general mode coefficients amounts to a ge

alization of the notion of two-mode squeezing. For conve
tional two-mode squeezing, both mode coefficients are c
sen to be of equal magnitude.~This is the definition reported
by Loudon and Knight@1#. Caves and Schumaker rescale t
coefficients by frequency-dependent factors, to correct
the frequency-dependent relationship between photon
field operators@2#.! In this case, the variances of bot
quadratures and the number of photons of the mixed m
grow in proportion to the number of Stokes photons, indic
ing a much higher level of quantum noise than for the op
mal choice of mode coefficients.

The reduction of quantum noise through squeezing
been studied extensively@1,3#. A squeezed state of a ha
monic oscillator is a state for which the variance in one
the conjugate variables is reduced at the expense of an
crease in the variance of the other variable.~We will not
discuss the more general notions of higher order squee
that have been defined in terms of the variance of polyno
als of conjugate variables@4,5#. In the context of quantum
optics it has become customary to speak of conjugate v
ables as quadrature phases@1#.!

For example, the variance in the electric field of an opti
mode may be reduced below its vacuum level at the expe
of an increased variance in the magnetic field. This situat
is desirable for high sensitivity interferometer experime
@1,6# and optical communications@1,7#. Such squeezed state
of the electromagnetic field can be generated by nonlin
optical processes, such as degenerate parametric ampl
tion or four-wave mixing, in which photons are created
pairs. If the process is nondegerate, i.e., if two photons
different frequencies are generated, squeezing is not fo
for each of the individual modes, but rather for linear co
binations of the two. This is known as two-mode squeezi
and its experimental detection requires an additional coh
ent source at the sum or difference frequency@1#. Two-mode
squeezing is conventionally defined in terms of linear co
binations with equal mode coefficients@1,2#. We will show
in this paper that, for situations where decoherence occ
this is not an optimal definition, and that it is useful to adju
the mode coefficients to compensate for different noise l
els in the two modes.
3268 © 1998 The American Physical Society
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PRA 58 3269QUANTUM NOISE REDUCTION AND GENERALIZED . . .
The generation of squeezed light involves an amplifi
tion process, and this is frequently associated with state
duction or decoherence. State reduction~the transformation
of a pure state into a statistical mixture! occurs due to the
coupling of the observed modes to a number of unobser
or unobservable modes. The process of state reductio
linear quantum amplifiers has been studied for various ty
of models, and the following references represent just a sm
selection of papers that are of interest here@8–10#. Such
models are of great interest for the description of dissipa
in quantum systems@9,10#, and for the analysis of state re
duction in quantum measurement theory@8,10#. Most studies
refer to harmonic oscillator models involving a small numb
of observable variables, and a large or infinite number
unobserved ‘‘reservoir’’ oscillators. The time evolution
the amplifier can be described either by master equations
the observable degrees of freedom@10#, or by exact solutions
for the linear equations of motion of the complete syst
@8–10#.

The exact solutions reveal that, for these models, the t
evolution is a multimode squeezing transformation coupl
the observed variables and the reservoir. The amoun
squeezing in the observable variables depends on the typ
model studied. If the coupling to the reservoir involves on
one of the conjugate variables, an initial rapid buildup
decoherence and squeezing for that variable occurs on a
short time scale, of the order of the reservoir coherence t
@9,10#. In addition, decoherence for both conjugate variab
increases on a much longer time scale, given by the diss
tion rate of the reservoir. In quantum optics it is customary
employ the ‘‘rotating wave approximation’’~RWA!, in
which the coupling involves both conjugate variables of
observable system in a symmetric fashion. In this appro
mation, single-mode squeezing is absent, and decoher
occurs on the longer, dissipative time scale@9,10#. The cav-
ity SRS amplifier studied here is in this category.

So far, studies of quantum amplifiers in the RWA ha
emphasized either the process of state reduction, or the
eration of squeezed states. However, both aspects are
mately connected. The authors found in@11# that, for the
simplest case of a single mode amplifier coupled to an i
nite reservoir, the time evolution results in two-mode sque
ing for the amplifier mode and a single, time-dependent r
ervoir mode. If only the amplifier mode is observed,
squeezing is found, and the density matrix contains a la
number of pure components, proportional to the amplifi
tion factor. If, on the other hand, both the amplifier mode a
the large-time limit of the special reservoir mode are o
served, the density matrix contains only a small number
squeezed pure components. Similar results were found f
model of a single mode laser, comprising a single radiat
mode, an inverted medium, and a reservoir. To the bes
our knowledge, these connections between the choice of
served mode combinations, the degree of state reduction
the degree of squeezing have not been systematically
plored so far.

The linear cavity Raman amplifier studied here is of p
ticular interest, both because of the type of interactions fo
in this system, and as an object for experimental study.
medium is assumed to contain a large number of unsatur
Raman active molecules or atom, and is modeled b
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single oscillator mode. The coupling between Stokes a
medium oscillator is of squeezing type. However, since
medium is not directly observable, two-mode variables c
structed from these two modes have no experimental sig
cance. On the other hand, the coupling between the a
Stokes mode and the medium conserves photon-pho
number, and the anti-Stokes mode can therefore be con
ered as a probe of the medium. In fact, the squeezing tr
formation occurring between the Stokes mode and the
dium is reflected in corresponding correlations betwe
Stokes and anti-Stokes modes. While the coupling betw
the anti-Stokes mode and the medium is in most cases s
ger than the Stokes coupling, the influence of the anti-Sto
mode on the medium is reduced by dispersion, which le
to a frequency detuning of the anti-Stokes mode. It is the
fore of interest to study the behavior of the CRA over t
whole range of relevant parameters, including dispersion,
mogeneous linewidth, and gain. Experimentally, all of the
parameters can be controlled independently, by varying
pressure of the gaseous Raman medium, the type of med
and the pump intensity.

Cavity SRS models with Stokes and anti-Stokes mo
have been studied by several authors. Nonlinear, microm
models of SRS in a cavity with a single three-level atom a
without dispersion were studied by Lawet al. @12# and Puri
et al. @13#. The latter found noise reduction below th
vacuum level with the conventional notion of two-mod
squeezing for certain values of the number of passes and
passing time of the atom through the cavity. Linear oscilla
models of the medium and reservoir had been studied ea
by Walls@14# and Perina@15# for arbitrary dispersion and fo
the limiting case of large linewidth, where the medium o
cillators are eliminated adiabatically. These studies w
mainly concerned with photon statistics, and give no expl
discussion of squeezing. The first detailed study of squee
in this type of model was done by Chizhovet al., who stud-
ied quadrature and higher-order squeezing for the cas
zero dispersion in a cavity@16,17#. A free-propagation am-
plifier was studied by Yeonget al. @18#. In the limit of large
linewidth @16#, quadrature squeezing was reported to be
sent, while such squeezing was found for the case of sm
linewidth in @17# and @18#. These studies discuss conve
tional two-mode quadrature squeezing in terms of the v
ance of one of the two-mode quadratures.

Our present work studies the linear cavity SRS model
arbitrary values of linewidth and dispersion.~The case of
zero dispersion is rather special, in that the Stokes mo
anti-Stokes mode, and the medium undergo damped osc
tions. For nonzero dispersion, exponential amplification
curs.! Two-mode quadrature squeezing is defined in terms
the ratio of the variances of two conjugate two-mode quad
tures, with arbitrary mode coefficients. We give explicit e
pressions for the Wigner characteristic function of the e
tangled state of Stokes and anti-Stokes modes, and deter
those values of the mode coefficients for which maxim
squeezing and minimal state reduction occur.

In Sec. II A, we give the model equations for the amp
tude operators, derive the general form of solutions, and
culate the variance of a general Hermitean combination
the two optical modes for the case where the initial state
time t50 is the vacuum. As is well known, this unique
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3270 PRA 58KAI DRÜHL AND CLAUDE WINDENBERGER
determines the Wigner characteristic function, and ther
the Schro¨dinger state at later timest.0. In Sec. II B, we
show that the reduced state of the Stokes and anti-St
modes is a product of the vacuum and a canonical ensem
of number states for two uncorrelated normal modes. Th
normal modes are obtained from the original optical mo
by an ‘‘antisqueezing’’ transformation, and we show that t
transformation can be realized by a linear parametric am
fier. In Sec. II C, we study ‘‘nonsqueezed’’ linear combin
tions of the two optical modes, and generalize the co
sponding notion of two-mode squeezing by admitti
arbitrary mode coefficients. We show that, at any given ti
t, it is possible to choose optimal mode coefficients in suc
way that one of the quadratures has minimal variance be
the vacuum level at that time. This choice also leads to m
mal decoherence. In situations where the system shows
ponential amplification, the number of photons in the optim
mode is proportional to the square root of the number
Stokes photons, indicating a much higher level of quant
coherence than for the Stokes mode. In Sec. II D, we c
sider amplification of an initial coherent state of the Stok
mode. The coherent state is maximally amplified if it is
90° relative to the minimal two-mode quadrature, and giv
the same output as the vacuum if it is parallel to that quad
ture. In the former case, amplitude fluctuations are enhan
while phase fluctuations are below the vacuum level.

In Sec. III A we give the general solution to the line
equations of motion for optical modes and medium in ter
of the eigenvalues of the 333 matrix of coefficients. We
discuss the special cases of zero and large linewidth in S
III B and III C, and the intermediate case of finite linewid
in Sec. III D. In particular, we consider the influence of d
persion on the long-time behavior of the system. For z
linewidth, there exists a critical value of dispersion, belo
which the system shows periodic or quasiperiodic behav
and above which exponential amplification occurs. For n
zero linewidth, the system always shows exponential am
fication at large times, except for zero dispersion, where
behavior is that of damped oscillations.

In Sec. IV, we summarize our findings and discuss so
possible implications for a deeper understanding of state
duction in more general systems.

II. MODEL EQUATIONS, STATE REDUCTION,
AND SQUEEZING

A. Model equations and characteristic functions

Our model of a cavity Raman laser contains the followi
variables: a classical pump at frequencyv0 , a Raman-active
medium with transition frequencyv3 , a reservoir of oscilla-
tors with frequenciesv r , r 54,...,N, modeling homogeneou
broadening of the Raman transition, a Stokes mode at
quencyv15v02v3 , and an anti-Stokes mode at frequen
v25v01v31D. The parameterD is a frequency detuning
of the anti-Stokes mode, which results from dispersion in
Raman-active medium. Figure 1 shows a level diagram
the medium, including the Raman transition, two transi
intermediate states, and the three optical frequenciesv0 ,
v1 , andv2 .
y
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The medium is assumed to be only weakly excited, w
most of its population in the ground state. It can therefore
modeled by a single harmonic oscillator. We write t
Heisenberg operatorsb̃n(t), n51,...,N for all variables in-
volved as products of time-dependent phase factors and
plitude operatorsbn(t):

b̃1~ t !5e2 i ~v02v3!tb1~ t !,

b̃2~ t !5e2 i ~v01v3!tb2~ t !,

b̃k~ t !5e2 ivktbk~ t ! ~k53,...,N!.

The Heisenberg equations of motion for the amplitude
erators in the Markov approximation are@16,17#

ḃ1
†5k1b3 , ~1!

ḃ252 iDb22k2b3 , ~2!

ḃ35k1b1
†1k2b22Gb31F, F5(

s54

N

gse
2 iDstbs~0!,

~3!

ḃr52gre
iDr tb3 ~r 54,...,N!, ~4!

wherek1 , k2 , and gr are the coupling coefficients for th
medium with the Stokes, anti-Stokes, and reservoir variab
The frequency detunings areD5v22v32v0 and D r5v r
2v3 . The solutions of these equations take the form

b1
†~ t !5T11~ t !a1

†1 (
k52

N

T1k~ t !ak ,

~5!

bi~ t !5Ti1~ t !a1
†1 (

k52

N

Tik~ t !ak ~ i 52,...,N!,

FIG. 1. Shown are the two levels of the Raman transition
frequenciesv50 andv5v3 , and two intermediate levels at fre
quenciesv5v0 and v5v01v3 for Stokes and anti-Stokes gen
eration. The corresponding absorption of pump radiation and g
eration of Stokes and anti-Stokes modes is indicated by vertical
horizontal arrows. The anti-Stokes mode at frequencyv5v01v3

1D and its driving polarization atv5v01v3 are represented by
two different lines, separated by the frequency detuningD.



o

a

d

ll

n
-

ion.
om-

a
ely

kes
and

ted.

PRA 58 3271QUANTUM NOISE REDUCTION AND GENERALIZED . . .
wherean5bn(0), n51,...,N, and the coefficientsTnm(t) are
c-number solutions of Eqs.~1!–~4!, which satisfy

Tnm~0!51, n5m,

Tnm~0!50, nÞm.

Because Eq.~3! for b3 involves only the initial valuesbr(0),
r 54,...,N, of the reservoir variables, the coefficientsTik(t)
for i, k51,2,3 can be calculated from Eqs.~1!, ~2! and a
modified version of Eq.~3!, for which F50:

ḃ35k1b1
†1k2b22Gb3 . ~6!

In the following, we will study the coherence properties
the Stokes and anti-Stokes modes in the stateuc(t)& at time
t. The state is uniquely characterized by its Wigner char
teristic function x, depending ont and arbitrary complex
coefficientsan :

x~ t,an ,an* !5^c~ t !uei @f~0!1f†~0!#uc~ t !&

5^c~0!uei @f~ t !1f†~ t !#uc~0!&, ~7!

where the operatorf(t) is defined by

f~ t !5a1* b1
†~ t !1(

j 52

N

a jbj~ t !5b1* ~ t !a1
†1 (

k52

N

bk~ t !ak .

~8!

From Eq.~5!, the time-dependent coefficientsbn are given
by

b1* ~ t !5a1* T11~ t !1(
i 52

N

a iTi1~ t !,

~9!

bk~ t !5a1* T1k~ t !1(
i 52

N

a iTik~ t ! ~k52,...,N!.

From the canonical commutation relations for the amplitu
operators, one finds

@f~ t !,f†~ t !#52ub1u21 (
k52

N

ubku252ua1u21(
j 52

N

ua j u2.

~10!

If the initial stateuc~0!& is a product of vacuum states for a
amplitude operatorsan , the characteristic functionx takes
the form

x~ t,an ,an* !5e2~1/2!w2~ t !,

where

w2~ t !5^c~0!u@f~ t !1f†~ t !#2uc~0!&

5 (
n51

N

ubnu252ub1u22ua1u21(
i 52

N

ua i u2. ~11!
f

c-

e

Here we have used Eq.~10! to eliminate the dependence o
all coefficientsb i with i .1. If only the Stokes and anti
Stokes modes are observed, we seta i50 for i .2, and ob-
tain

w2~ t !52ub1u22ua1u21ua2u2,
~12!

b1* ~ t !5a1* T11~ t !1a2T21~ t !.

Equations~11! and~12! for the characteristic function of the
two optical modes are the main results of this subsect
They show that the reduced state of these modes is c
pletely determined by the two complex coefficientsT11 and
T21. For observation of the Stokes mode alone, one setsa2
50 and finds

w2~ t !5~2uT11u221!ua1u25~2n111!ua1u2. ~13!

For observation of the anti-Stokes mode alone, one setsa1
50 and finds

w2~ t !5~2uT21u211!ua2u25~2n211!ua2u2. ~14!

Hereni is the average photon number:

ni5^c~0!ubi
†bi uc~0!&5 H uT11u221 for i 51

uTi1u2 for i .1 .

The characteristic function~11! of each of these modes is
canonical ensemble of number states, which is uniqu
characterized byni ~see Appendix A!. From Eq. ~10!, the
following relationship is derived for the coefficientsTi1 :

uT11u22uT21u25 (
k53

N

uTk1~ t !u2[R2>1. ~15!

In terms of photon numbers, this is equivalent to

n12n25 (
k53

N

nk5R221>0 ~16!

showing that the difference between Stokes and anti-Sto
photon numbers is equal to the total number of medium
reservoir phonons.

B. ‘‘Antisqueezing,’’ normal modes, and decoherence

For t.0, the Stokes and anti-Stokes modes are correla
Equating the coefficients ofa1a2 in Eqs.~11! and ~12!, we
find

^c~0!ub1b2uc~0!&5T11* T21. ~17!

We now seek to write the two modesbi as linear combina-
tions of uncorrelated normal modesci :

b1
†5Uc1

†1V* c2 ,
~18!

b25Vc2
†1U* c1 , uUu22uVu251.

In terms of the normal modesci , the mode operatorf of Eq.
~8! takes the form

f~ t !5a1* b1
†1a2b25g1* c1

†1g2c2 ~19!
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3272 PRA 58KAI DRÜHL AND CLAUDE WINDENBERGER
with complex coefficientsg i given by

g1* 5a1* U1a2V,
~20!

g25a1* V* 1a2U* ,

and

2ua1u21ua2u252ug1u21ug2u2.

Equation~12! for the variancew2 suggests to choose

U5R21T11, V5R21T21. ~21!

With this choice,w2 is diagonalized:

w25~2R221!g1
21g2

2 ~22!

and the characteristic functionx(g1 ,g2) of the two normal
modes factorizes:

x~g1 ,g2!5e2~1/2!~2R21!ug1u2e2~1/2!ug2u2. ~23!

This shows that the reduced state for the two normal mo
is the product of a canonical ensemble of number states
c1 ~see Appendix A! and the vacuum state forc2 . In particu-
lar, the normal modes are uncorrelated and not squee
The numbern18 of photons in modec1 is equal to

n185R2215n12n2 . ~24!

For the special situation whereR251, the coefficientsTi1 for
i .2 vanish. The normal modesci are then just the Schro¨-
dinger operatorsbi(0)5ai , and Eq.~18! is the original time
evolution, Eq.~5!. As we shall see below, this situation o
curs for G5D50 periodically at certain timest.0. It is
remarkable that, even forR2.1, one of the normal modes i
always found in the vacuum state.

A physical interpretation of the normal modesci can be
given in terms of an ‘‘antisqueezing’’ experiment, perform
on the output of the cavity Raman laser. Inverting Eqs.~18!,
we find

c1
†5U* b1

†2V* b2 ,
~25!

c252Vb1
†1Ub2 .

This is a squeezing operation performed on the modesb1 and
b2 , which can be implemented, for example, by a nondeg
erate linear parametric amplifier~LPA! @3#. If the Stokes and
anti-Stokes modes are used as idler and signal in a ph
matched linear amplifier, the equations for propagation in
z direction are@3#

d

dz
c1

†5ge2 ihc2 , c1
†~0!5b1

† ,
~26!

d

dz
c25geihc1

† , c2~0!5b2 ,

whereh is the pump phase, andg is the product of pump
amplitude and gain coefficient. The solutions are
es
or

ed.

n-

se-
e

c1
†~z!5coshgzb1

†1e2 ihsinh gzb2 ,
~27!

c2~z!5eihsinh gzb1
†1coshgzb2 .

Equation~25! is obtained, apart from a common phase fac
of c1 andc2 , for

coshgz5uUu, h5arg~V!2arg~U !. ~28!

Equations~19! and ~23! show that, at any given timet, this
operation will disentangle the state of Stokes and anti-Sto
modes, leading to zero correlation between the new mo
c1 andc2 and to zero photon count for modec2 . We illus-
trate the sequence of squeezing and ‘‘anti-squeezing’’ op
tions performed by the cavity Raman laser~CRL! and the
LPA in Fig. 2.

By adjusting the pump amplitude and phase of the LP
arbitrary ‘‘anti-squeezing’’ transformations can be pe
formed on the optical fields. For example, if the pump pha
h is changed by an amount 2e from the value given in Eq.
~28!, we find for the number of photons in the exit mod
c2(z):

h5arg~V!2arg~U !12e ~29!

and

^c~0!uc2
†~z!c2~z!uc~0!&52

~n111!n2

11n12n2
sin2 e.2n2 sin2 e.

~30!

For n2@1, a single photon is counted fore5(2n2)21/2, and
a very stringent condition onh is obtained. Similar restric-
tions are found for the pump amplitudeg.

C. Generalized two-mode squeezing for Stokes and anti-Stoke

Two-mode squeezing for two oscillatorsb1 andb2 is con-
ventionally defined in terms of the variance of the Hermiti
components@1#:

XQ5 1
2 ~b11b1

†1b21b2
†!,

XP5
2 i

2
~b12b1

†1b22b2
†!. ~31!

These operators are just the quadratures of a linear comb
tion b of b1 andb2 :

FIG. 2. Illustration of the sequence of entangling and disent
gling operations performed by the cavity Raman laser~CRL! and
linear parametric amplifier~LPA!. The uncorrelated states of th
initial Stokes and anti-Stokes modesa1 and a2 , and of the final
normal modesc1 andc2 , are represented by disjoint circles, whi
the entangled state of the intermediate, amplified Stokes and
Stokes modesb1 and b2 is represented by a single ellipse. Th
quantitiesn1 andn2 are the corresponding photon numbers.
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b5
1

&
b11

1

&
b2 , ~32!

XQ5
1

&
~b1b†!, XP5

2 i

&
~b2b†!. ~33!

A state is two-mode squeezed forb1 andb2 if it is squeezed
for b. The conventional definition of squeezing is that t
variance of one of the Hermitian components is below
vacuum value1

2:

^~DXF!2&, 1
2 for F5P or Q. ~34!

Because of the uncertainty relations, this implies that

^~DXP!2&Þ^~DXQ!2&. ~35!

In this paper, we use the term ‘‘squeezed state’’ for sta
satisfying the weaker condition~35!. If the state is a minimal
uncertainty state, e.g., the vacuum state, one has

^~DXP!2&^~DXQ!2&5
1

4
~36!

and Eq.~35! implies Eq.~34!. For states satisfying Eq.~35!
but not Eq.~36!, however, the variance of both componen
may exceed the vacuum value.

To generalize the notion of two-mode squeezing, we fi
admit arbitrary coefficientszi in the definition of the linear
combinationb

b5z1b11z2b2 , uz1u21uz2u251. ~37!

Second, we allow arbitrary phase factors in the definition
quadratures. We thus consider a general Hermitian lin
combination ofb andb† as in the definition~7! and~8! of the
characteristic function

f15a* b†1ab. ~38!

For a51/& or a52 i /&, one hasf15XQ or f15XP . To
determine the degree of squeezing of a given state, one n
to find those values ofa with uau51/&, for which the vari-
ance off1 assumes maximal and minimal valuesw1

2 and
w2

2 . We now apply this procedure to the Stokes and a
Stokes modes defined above.

From Eqs.~38! and ~8! we find that the characteristi
function of the modeb in Eq. ~37! is obtained from the
general expressions~11! and ~12! by settinga15az1 and
a25az2 . Thus

b1* 5a* z1* T111az2T21. ~39!

This gives for the variancew1
2 of f1 @see Eq.~12!#:

w1
252ua* z1* T111az2T21u21uau2~ uz2u22uz1u2!. ~40!

To quantify the amounts of state reduction and squeez
we rewrite this in the form~see Appendix A!

w1
25Q2ua* U81aV8u2, uU8u5coshs, uV8u5sinh s.

~41!
e

s

t

f
ar

eds

i-

g,

This corresponds to a canonical ensemble of squeezed n
ber states with average photon numbern5 1

2 (Q221) and
squeezing parameters. For uau51/&, we find the maximal
and minimal variances of the corresponding quadratu
from Eqs.~40! and ~41!:

w6
2 5~r 1R16r 2R2!21 1

2 ~r 2
22r 1

2!5 1
2 Q2e62s, ~42!

where

r i5uzi u and Ri5uTi1u. ~43!

This gives for the coefficientsQ2 ande22s

Q252Aw2
2
•w1

2 , e22s5Aw2
2 /w1

22. ~44!

We now consider a situation where

R1 ,R2→`,
R2

R1
→q,1 as t→` ~45!

and give the results for various choices of mode coefficie
zi .

Case 1:The conventional choice of mode coefficients
uzi u51/& and gives

w6
2 5 1

2 ~R16R2!2→ 1
2 R1

2~16q!,
~46!

Q25R1
22R2

2→R1
2~12q2!, e22s→

12q

11q
.

In this case, the quantum noise in both quadratures incre
as R1

2, and goes above the vacuum level. The aver
squeezed photon number increases in proportion toR1

2, while
the squeezing coefficient goes to a finite limit.

Case 2: If the mode coefficientszi are adjusted at any
given time to make the first term in the expression forw2

2 in
Eq. ~42! vanish, we obtain

uz1* T11u5uz2T21u,

w2
2 5

1

2
~r 2

22r 1
2!→

1

2 S 12q2

11q2D,
1

2
,

w1
2→4r 1

2R1
254R1

2 q2

11q2 ,

Q2→2&R1

q

11q2 A12q2, e22s→
1

2&
R1

21 1

q
A12q2.

~47!

In this case, the quantum noise in the quadrature corresp
ing to w2

2 stays below the vacuum limit. The averag
squeezed photon number increases in proportion toR1 ,
while the squeezing coefficient decreases in proportion
R1

21.
Case 3:It is possible to choose the mode coefficientszi at

any given time so as to minimize the variancew2
2 . This

minimal value is given by
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wmin
2 5

1

2
~R1

21R2
22A~R1

22R2
221!214R1

2R2
2!,

1

2
.

~48!

In the limit of large times where Eq.~45! holds, this gives
the same results as for the choice of coefficients in Eq.~47!
above.

Case 4:It turns out that, in many situations, noise redu
tion below the vacuum level can be achieved with const
mode coefficients and quadratures. For the choicea
52 i /&, we get for the variance in this case

wfix
2 5uz1* T112z2T21u21 1

2 ~ uz2u22uz1u2!. ~49!

D. Amplification of coherent states

In this section, we calculate the final state for the line
combination mode, as discussed in Sec. II C, for the c
where the initial state is a coherent state for the Stokes fi
and the vacuum state for all other variables

a1uc~0!&5n1uc~0!&, ai uc~0!&50 for i .1. ~50!

In this case, the characteristic function takes the form

x~ t,a,a* !5ei ~b1n11b1* n1* !2~1/2!w1
2
. ~51!

If we take the near-optimal choice of case 2 for the mo
coefficientszi , for which

uz1* T11u5uz2T21u5r 1R1 , ~52!

we find for the phase of the characteristic function~51! from
Eq. ~39!

b1n11b1* n1* 5~ad1a* d* !

with

d5~n11n1* !r 1R15d* . ~53!

For the variancew1
2, we obtain from Eq.~40!

w1
252ua* 1au2r 1R11uau2~r 2

22r 1
2!. ~54!

The characteristic function is that of a canonical ensembl
coherent, squeezed number states with coherent disp
ment parameterd ~see Appendix A!. The parameterd is
maximal for realn1 , and vanishes for imaginaryn1 . On the
other hand, the variancew1

2 is maximal for reala, and mini-
mal for imaginarya. The amplified state therefore show
phase squeezing. The amplification and squeezing tran
mations in the complexn plane are illustrated in Fig. 3.

III. SOLUTIONS OF THE MODEL EQUATIONS

A. General case

The matrix coefficientsTi1(t) are obtained as the classic
solutions to Eqs.~1!, ~2!, and ~6! with Ti1(0)5d i1 . They
take the form

Ti1~ t !5(
k

t ikelkt ~ i 51,2,3!, ~55!
-
nt

r
se
d,

e

of
ce-

or-

wherelk are the eigenvalues of the matrix representing
right-hand side of Eqs.~1!, ~2!, and ~6! ~see Appendix B!.
The general form of the eigenvalues depends on the rela
size of the gain coefficientsk i( i 51,2). These coefficients
contain a factor involving the frequency of the mode cons
ered. Except for a situation where the Stokes coeffici
shows large resonant enhancement over the anti-Stokes
efficient, one hask2.k1 . We restrict our discussion to thi
case.

In this case, the eigenvalues are either purely imagin
or there is an eigenvalue with positive real part. In the form
case, the matrix coefficientsTi1 show periodic or quasiperi
odic behavior in time. In the latter case, the term involvi
an eigenvalue with positive real part dominates Eq.~55! for
large times, and Eq.~45! holds. We now discuss some sp
cial cases.

B. Hypertransient limit

In the hypertransient limit, we setG50. There are two
regimes, determined by a certain critical valueDcrit of D. For
D,Dcrit , the anti-Stokes mode dominates. The eigenval
are all purely imaginary and the system shows quasiperio
behavior. ForD50, one of the eigenvalues is zero, and t
matrix coefficientsTi1(t) are periodic, with frequency

k5Ak2
22k1

2. ~56!

At times t such that coskt521, we have

uT11u5R15k22~k1
21k2

2!, uT21u5R252k22k1k2 ,

R1
22R2

251.

FIG. 3. Illustration of the effect of amplification on the cohere
states of the near-optimal combination modeb. The coherent states
are represented by ellipses in the complexn plane, which are cen-
tered at the coherent displacement parametern5n1 for the initial
states andn5d for the final states. The axes of the ellipses a
proportional to the root of the variances of the correspond
quadratures. The arrows connect the initial state to the final s
resulting from amplification. Case~a! represents the vacuum goin
to a squeezed state. Cases~b!, ~c!, and~d! represent various initial
coherent states with imaginary, real, and complexd going the cor-
responding final states, with~b! going to the same state as~a!, and
~c! going to the same state as~d!.



g mode

PRA 58 3275QUANTUM NOISE REDUCTION AND GENERALIZED . . .
FIG. 4. ~a!–~d! Shown are the variances of the minimal quadrature variable for the choice of conventional, fixed, and minimizin
coefficients~wconv

2 , wfix
2 , andwmin

2 ! at zero linewidth (G50), for various amounts of dispersive detuning as given in the figures~D50.0,
D50.29,D50.4, andD510.0!. The time variable is the dimensionless parametertk i .
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This is the special situation mentioned in Sec. II B above
this case, minimal variance is found for conventional tw
mode squeezinguz1u5uz2u51/&:

wconv
2 5wmin

2 5
1

2 S k22k1

k21k1
D 2

. ~57!

In the following numerical examples we choosek151 and
k25&. Figure 4~a! showswmin

2 andwconv
2 as functions oft

for D50.
Figure 4~b! illustrates the quasiperiodic behavior ofwmin

2

and wfix
2 for D50.290, just below the critical valueDcrit

50.300. In this case, two of the eigenvalues are very clos
each other, (l32l2)5 i e, ueu!ulku, and the matrix coeffi-
cients Ti1(t) are mostly dominated by the correspondi
terms with small frequency denominatore. Consequently,
the variancewmin

2 is almost constant, except for short tim
periods, during which these terms are small due to their
plicit time dependence on sinet. The behavior ofwfix

2 is quite
erratic in this case. The variancewconv

2 is much greater than
1
2 , except for the short time periods mentioned, and is
shown in this figure.

For D5Dcrit , the matrix coefficients grow linearly in
time, while for D.Dcrit , one of the eigenvalues has a po
tive real part. As mentioned above, the corresponding term
Eq. ~55! dominates the behavior for large times, and the va
ancewmin

2 approaches a constant value. For this situation,
also plot the variancewfix

2 obtained for a fixed choice o
mode coefficientszi , which gives almost minimal varianc
for large t. Figure 4~c! showswmin

2 , wfix
2 , and wconv

2 for D
n
-

to

x-

t

in
i-
e

50.4, just above the critical value, while Fig. 4~d! shows the
same forD510, much larger thanDcrit . In the former case,
wconv

2 is close towmin
2 and less than 1/2 up tot54, while in

the latter casewconv
2 .1/2 at all times. In both cases,wmin

2 and
wfix

2 go to different values~less than 1/2! as t→`.

C. Steady-state case

In the steady-state limit, it is assumed that the homo
neous linewidthG is much larger than any of the frequenci
k1 , k2 , andD. In this limit, the mode operatorb3 is approxi-
mated by its steady-state value, and we obtain the follow
equations:

b35G21~k1b1
†1k2b21F !,

ḃ1
†5g11b1

†1g12b21G1 , ~58!

ḃ252g12b1
†2g22b21 iDb21G2 ,

where

Gi5k iG
21F and gi j 5G21k ik j .

These equations are equivalent to the model studied in R
@14# and @16#. The matrix coefficientsTi1 are given by a
formula analogous to Eq.~55!, but involving only the two
eigenvalues corresponding to Eq.~58!. The eigenvalues are
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l52 1
2 ~g222g112 iD!

6A 1
4 ~g222g11!

22 1
4 D22 1

2 iD~g221g11!. ~59!

For D50, one has

l150, l252~g222g11! ~60!

and the matrix coefficients have finite limits fort→`. In this
case, one finds

R1→k22k2
2, R2→k22k1k2 ,

wfix
2 ,wmin

2 →
k24

2
@k2

2~k1
21k2

2!

2Ak822k6k2
21k4k2

414k1
2k2

6#, ~61!

wconv
2 →

1

2 S k2

k11k2
D 2

,
1

2
.

Figure 5~a! illustrates this case.
For D.0, one of the eigenvalues is positive, while t

other is negative. In this case, the matrix coefficients dive
for t→`, andwmin

2 goes to the finite limit given by Eq.~47!.
Figures 5~b! and 5~c! show the casesD50.1 andD51. They
demonstrate thatwmin

2 and wfix
2 converge to the same limit

The conventional variancewconv
2 exceeds the vacuum valu

1/2 for sufficiently large time. ForD@gik , the eigenvalues
are given by

l15g11 and l252g221 iD ~62!

and the Stokes and anti-Stokes modes decouple in this
@14#.

D. Transient case

In the transient case, whereG is of the same order o
magnitude ask1 andk2 , the casesD50 andD@G are eas-
ily solved. ForD50, the eigenvalues are

l50, l5 2
G

2
6AG2

4
2k2 ~63!

and the matrix coefficients converge to the same limits a
the steady-state case. For smallG, two eigenvalues have
imaginary parts, and additional oscillations occur for sm
times. ForD@G, the eigenvalues are, to leading order,

l5 iD, l52
G

2
6AG2

4
1k1

2. ~64!

One eigenvalue has a positive real part, and the mode c
ficients grow exponentially for large times. ForG@k1

2, the
results of the steady-state limit are recovered. For interm
ate values ofD, one eigenvalue has a positive real part, a
the behavior of the variance for large times is similar to
steady-state case.
e

it

in

ll

ef-

i-
d
e

IV. SUMMARY AND DISCUSSION

For the model of a linear cavity Raman amplifier studi
here, we found two main results. First, there exist uncor
lated normal modes, which are obtained from the Stokes
anti-Stokes modes by an antisqueezing transformation. S
ond, there exist optimal linear combination modes, for wh
the variance of one quadrature is always below the vacu
value. The states of such optimal modes are canonical
sembles of coherent squeezed number states, and the av
number of noise photons is proportional to the square roo
the number of Stokes noise photons. Thus, the degre
decoherence for the combination mode is much less than
the individual Stokes and anti-Stokes modes.

The reduction of variance in the minimal quadrature
the optimal combination mode can be understood as res
ing from a cancellation of anticorrelated quantum noise
the individual modes. To optimize the amount of cancel

FIG. 5. ~a!–~c! Shown are the variances of the minimal quad
ture variable for the choice of conventional, fixed and minimizi
mode coefficients~wconv

2 , wfix
2 , and wmin

2 ! at large linewidth (G
55), for various amounts of dispersive detuning as given in
figures~D50.0, D50.1, andD51.0!. The time variable is the di-
mensionless parametertk i .
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tion, the mode coefficients have to be chosen appropria
and will in general not be of equal magnitude. This cor
sponds to a generalization of the conventional notion of tw
mode squeezing.

If a coherent state is used as input to the Stokes chann
the amplifier, the corresponding field amplitude will be ca
celed in the combination mode, if it has the same phas
the minimal quadrature, and will be optimally amplified if i
phase differs by690°. The optimally amplified signal is thu
phase squeezed.

These results may be of interest for the generation
squeezed light through stimulated Raman scattering. T
also provide clear experimental signatures for the experim
tal observation of anticorrelation between Stokes and a
Stokes modes. It is of particular interest that these signat
are found for all values of the experimentally relevant p
rameters, such as pump amplitude, dispersion, and l
widths. Previous work on quadrature squeezing in this mo
had been restricted to a limited range of parameters~small
linewidth, zero dispersion!.

With the recent demonstration of a cw-Raman laser
Brasseuret al. @19#, experiments to verify our prediction
may become feasible in the near future.
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APPENDIX A

The quantum-mechanical density matrixr of a system
with creation and annihilation operatorsa† anda is uniquely
characterized by its Wigner characteristic function

x~a,a* !5Tr~reif~a,a* !![^eif~a,a* !&, ~A1!

where

f~a,a* !5aa1a* a†.

Of special interest are Gaussian states, for which

x5ei ^f&2~1/2!^~Df!2&, Df5f2^f&. ~A2!

The most general Gaussian state is a canonical ensemb
coherent squeezed number states. Using the notatio
Caves@1#, we write this as

r5D~d!T~z!r thT
21~z!D21~d!

with

D~d!5eda2d* a†
, T~z!5e~1/2!z* a22~1/2!za†2

, z5seiu,

r th5~12e2r !(
n

e2rnun&^nu. ~A3!
ly,
-
-

of
-
as

f
ey
n-
ti-
es
-
e-
el

y

r

of
of

For the expectation value and variance off, one finds@1#:

^f&5ad1a* d* ,

^~Df!2&5Q2uaU1a* Vu2 ~A4!

with

Q252n115
11e2r

12e2r , n5^a†a&5
e2r

12e2r ,

U5coshs, V52eiu sinh s. ~A5!

Equations~A2!, ~A4!, and~A5! give the characteristic func
tion in terms of the coherent-state displacement parameted,
the squeezing parameterz throughU and V, and the mean
photon numbern throughQ as

x~a,a* !5ei ~ad1a* d* !2~1/2!Q2uaU1a* Vu2. ~A6!

APPENDIX B

The matrix coefficientsTi1(t) for i 51,2,3 satisfy equa-
tions ~1!, ~2!, and~6!, with initial conditions

T11~0!51 and Ti1~0!50 for i 52,3. ~B1!

They take the form

Ti1~ t !5(
k

t ikelkt, i 51,2,3, ~B2!

wherelk are the eigenvalues of the matrix of coefficientsN
for equations~1!, ~2!, and~6!:

N5S 0 0 k1

0 iD 2k2

k1 k2 2G
D . ~B3!

We find

t1k5
~l il j1k1

2!

dk
, t2k52

k1k2

dk
, t3k5

k1
2~G2Sk!

dk
,

~B4!

where

dk5~lk2l i !~lk2l j ! and Sk5l i1l j

and, for fixedk, the indicesi and j take the two values dif-
ferent fromk. The eigenvalues were obtained numerically

Analytical solutions or approximations for the eigenva
ues were obtained in the special cases considered in sub
tions III B and III C, in particular the casesG50, G
@D,k i

2, D50, D@G,k i
2, and were used to verify the cor

rectness of the numerical procedure. The calculations
straightforward and will not be detailed here.
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