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Quantum noise reduction and generalized two-mode squeezing in a cavity Raman laser
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We study a generalized notion of two-mode squeezing for the Stokes and anti-Stokes fields in a model of a
cavity Raman laser, which leads to a significant reduction in decoherence or quantum noise. The model
comprises a lossless cavity with classical pump, unsaturated medium, and arbitrary homogeneous broadening
and dispersion. Allowing for arbitrary linear combinations of the two modes in the definition of quadrature
variables, we find that there always exists a combination of the two output modes that exhibits quadrature
squeezing with noise reduction below the vacuum level. The number of noise photons for this combination
mode is proportional to the square root of the number of Stokes noise phpBd@60-2947®8)02010-1

PACS numbd(s): 42.50.Dv, 42.50.Lc, 42.65.Dr

I. INTRODUCTION mixed mode, as compared to the original modes.

. . . . The use of general mode coefficients amounts to a gener-
In this paper, we investigate aspects of quantum noise

L ; : alization of the notion of two-mode squeezing. For conven-
reduction in a model of a linear multichannel quantum am-

o . T ) : i - ing, both mode coefficients are cho-
plifier. Our investigation deals with both state reduction, ortlonal two-mode squeezing

decoherence, and squeezing for the amplified channels. ®en o be of equal magnitudhis is the definition reported

fact, both phenomena turn out to be intimately connected y Loudon and Knight1]. Caves and Schumaker rescale the

. . coefficients by frequency-dependent factors, to correct for
The model describes stimulated Raman scattef8RS for the frequency-dependent relationship between photon and

Sfield operators[2].) In this case, the variances of both

mode, a single anti-Stokes mode, and a classical pump. Wg adratures and the number of photons of the mixed mode

assume the Raman medium to be not saturated,_but allow f%frow in proportion to the number of Stokes photons, indicat-
arbitrary homogeneous broadening and dispersion. The Rgyg a much higher level of quantum noise than for the opti-
man amplification process gives rise to both two-modemga| choice of mode coefficients.
squeezing and decoherence for the two optical field modes. The reduction of quantum noise through squeezing has
We find that quantum noise resulting from these processeseen studied extensivelyl,3]. A squeezed state of a har-
can be largely canceled by appropriate interference arrangeaonic oscillator is a state for which the variance in one of
ments, while maintaining the full amount of amplification. the conjugate variables is reduced at the expense of an in-
The first arrangement is an “antisqueezing” operation, bycrease in the variance of the other variak/e will not
which two uncorrelated normal modes are obtained. This opdiscuss the more general notions of higher order squeezing
eration can be implemented, for example, by a linear parathat have been defined in terms of the variance of polynomi-
metric amplifier. If the initial state of fields, medium, and als of conjugate variablelt,5]. In the context of quantum
reservoir is the vacuum, the state for one of the normabptics it has become customary to speak of conjugate vari-
modes is the vacuum, while for the other it is a canonicalables as quadrature phagés)
ensemble of number states. The average number of “noise” For example, the variance in the electric field of an optical
photons for the latter mode is equal to the number ofmode may be reduced below its vacuum level at the expense
phonons in the medium and reservoir states. of an increased variance in the magnetic field. This situation
The second arrangement involves linear mixing of Stokegs desirable for high sensitivity interferometer experiments
and anti-Stokes without additional squeezing. The state dfl1,6] and optical communicatiorid,7]. Such squeezed states
the resulting mixed mode is a canonical ensemble obf the electromagnetic field can be generated by nonlinear
squeezed number states. For a suitable, optimal choice abtical processes, such as degenerate parametric amplifica-
mode coefficients, the variance of one of the quadraturéion or four-wave mixing, in which photons are created in
phaseg1] of the mode is below the vacuum level, in spite of pairs. If the process is nondegerate, i.e., if two photons at
the additional quantum noise resulting from decoherence dfifferent frequencies are generated, squeezing is not found
the mixed state. This result holds for all values of dispersionfor each of the individual modes, but rather for linear com-
linewidth, and coupling constants. The variance of the conbinations of the two. This is known as two-mode squeezing,
jugate quadrature is comparable to the variances of thand its experimental detection requires an additional coher-
Stokes quadratures. For large amplification, the number ofnt source at the sum or difference frequefidy Two-mode
squeezed photons in the mixed mode is proportional to thequeezing is conventionally defined in terms of linear com-
square root of the number of Stokes photons. This representsnations with equal mode coefficient$,2]. We will show
a significant reduction in the amount of decoherence for thén this paper that, for situations where decoherence occurs,
this is not an optimal definition, and that it is useful to adjust
the mode coefficients to compensate for different noise lev-
*EAX: 515-472-1123. Electronic address: kdruhl@mum.edu els in the two modes.
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The generation of squeezed light involves an amplificasingle oscillator mode. The coupling between Stokes and
tion process, and this is frequently associated with state ranedium oscillator is of squeezing type. However, since the
duction or decoherence. State reductitime transformation medium is not directly observable, two-mode variables con-
of a pure state into a statistical mixtlireccurs due to the structed from these two modes have no experimental signifi-
coupling of the observed modes to a number of unobservedance. On the other hand, the coupling between the anti-
or unobservable modes. The process of state reduction iBtokes mode and the medium conserves photon-phonon
linear quantum amplifiers has been studied for various typesumber, and the anti-Stokes mode can therefore be consid-
of models, and the following references represent just a smadired as a probe of the medium. In fact, the squeezing trans-
selection of papers that are of interest hg8e-10.. Such  formation occurring between the Stokes mode and the me-
models are of great interest for the description of dissipatiomium is reflected in corresponding correlations between
in quantum systemg9,10], and for the analysis of state re- Stokes and anti-Stokes modes. While the coupling between
duction in quantum measurement thef8y10]. Most studies  the anti-Stokes mode and the medium is in most cases stron-
refer to harmonic oscillator models involving a small numberger than the Stokes coupling, the influence of the anti-Stokes
of observable variables, and a large or infinite number ofmode on the medium is reduced by dispersion, which leads
unobserved “reservoir” oscillators. The time evolution of to a frequency detuning of the anti-Stokes mode. It is there-
the amplifier can be described either by master equations fdore of interest to study the behavior of the CRA over the
the observable degrees of freedfitf], or by exact solutions whole range of relevant parameters, including dispersion, ho-
for the linear equations of motion of the complete systemmogeneous linewidth, and gain. Experimentally, all of these
[8-10. parameters can be controlled independently, by varying the

The exact solutions reveal that, for these models, the timpressure of the gaseous Raman medium, the type of medium,
evolution is a multimode squeezing transformation couplingand the pump intensity.
the observed variables and the reservoir. The amount of Cavity SRS models with Stokes and anti-Stokes modes
squeezing in the observable variables depends on the type béve been studied by several authors. Nonlinear, micromaser
model studied. If the coupling to the reservoir involves onlymodels of SRS in a cavity with a single three-level atom and
one of the conjugate variables, an initial rapid buildup ofwithout dispersion were studied by Last al.[12] and Puri
decoherence and squeezing for that variable occurs on a veey al. [13]. The latter found noise reduction below the
short time scale, of the order of the reservoir coherence timgacuum level with the conventional notion of two-mode
[9,10]. In addition, decoherence for both conjugate variablesqueezing for certain values of the number of passes and the
increases on a much longer time scale, given by the dissipgassing time of the atom through the cavity. Linear oscillator
tion rate of the reservoir. In quantum optics it is customary tamodels of the medium and reservoir had been studied earlier
employ the “rotating wave approximation’{RWA), in by Walls[14] and Perind15] for arbitrary dispersion and for
which the coupling involves both conjugate variables of thethe limiting case of large linewidth, where the medium os-
observable system in a symmetric fashion. In this approxicillators are eliminated adiabatically. These studies were
mation, single-mode squeezing is absent, and decohereno®inly concerned with photon statistics, and give no explicit
occurs on the longer, dissipative time sci@el0]. The cav- discussion of squeezing. The first detailed study of squeezing
ity SRS amplifier studied here is in this category. in this type of model was done by Chizhet al, who stud-

So far, studies of quantum amplifiers in the RWA haveied quadrature and higher-order squeezing for the case of
emphasized either the process of state reduction, or the gerero dispersion in a cavity16,17. A free-propagation am-
eration of squeezed states. However, both aspects are infiifier was studied by Yeongt al.[18]. In the limit of large
mately connected. The authors found[itil] that, for the linewidth [16], quadrature squeezing was reported to be ab-
simplest case of a single mode amplifier coupled to an infisent, while such squeezing was found for the case of small
nite reservoir, the time evolution results in two-mode squeezlinewidth in [17] and [18]. These studies discuss conven-
ing for the amplifier mode and a single, time-dependent restional two-mode quadrature squeezing in terms of the vari-
ervoir mode. If only the amplifier mode is observed, noance of one of the two-mode quadratures.
squeezing is found, and the density matrix contains a large Our present work studies the linear cavity SRS model for
number of pure components, proportional to the amplifica-arbitrary values of linewidth and dispersioflhe case of
tion factor. If, on the other hand, both the amplifier mode andzero dispersion is rather special, in that the Stokes mode,
the large-time limit of the special reservoir mode are ob-anti-Stokes mode, and the medium undergo damped oscilla-
served, the density matrix contains only a small number ofions. For nonzero dispersion, exponential amplification oc-
squeezed pure components. Similar results were found for @irs) Two-mode quadrature squeezing is defined in terms of
model of a single mode laser, comprising a single radiatiorihe ratio of the variances of two conjugate two-mode quadra-
mode, an inverted medium, and a reservoir. To the best dires, with arbitrary mode coefficients. We give explicit ex-
our knowledge, these connections between the choice of olpressions for the Wigner characteristic function of the en-
served mode combinations, the degree of state reduction, af@ngled state of Stokes and anti-Stokes modes, and determine
the degree of squeezing have not been systematically ethose values of the mode coefficients for which maximal
plored so far. squeezing and minimal state reduction occur.

The linear cavity Raman amplifier studied here is of par- In Sec. Il A, we give the model equations for the ampli-
ticular interest, both because of the type of interactions foundude operators, derive the general form of solutions, and cal-
in this system, and as an object for experimental study. Theulate the variance of a general Hermitean combination of
medium is assumed to contain a large number of unsaturatétie two optical modes for the case where the initial state at
Raman active molecules or atom, and is modeled by &me t=0 is the vacuum. As is well known, this uniquely
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determines the Wigner characteristic function, and thereby .~ « * O = og+n3
the Schrdinger state at later times>0. In Sec. Il B, we States <4 f

show that the reduced state of the Stokes and anti-Stokes * 0 =wo
modes is a product of the vacuum and a canonical ensemble \

of number states for two uncorrelated normal modes. These anti-Stokes

. .. . = A
normal modes are obtained from the original optical modes AT 02 GoresT

by an “antisqueezing” transformation, and we show that this Pump - Py ® = Opro3
transformation can be realized by a linear parametric ampli- @=w

fier. In Sec. Il C, we study “nonsqueezed” linear combina-
tions of the two optical modes, and generalize the corre-
sponding notion of two-mode squeezing by admitting
arbitrary mode coefficients. We show that, at any given time
t, it is possible to choose optimal mode coefficients in such a ®=w
way that one of the quadratures has minimal variance belowGround State l 00
the vacuum level at that time. This choice also leads to mini- - -
mal decoherence. In situations where the system shows ex- FIG. 1. Shown are the two levels of the Raman transition at
ponential amplification, the number of photons in the optimalfrequenciesn=0 andw= w3, and two intermediate levels at fre-
mode is proportional to the square root of the number ofiuenciesw=wy and w=w,+ w3 for Stokes and anti-Stokes gen-
Stokes photons, indicating a much higher level of quamumaration. The corresponding absorption of pump radiation and gen-
coherence than for the Stokes mode. In Sec. Il D, we Cone_rra_tion of Stokes and anti-Stokes modes is indicated by vertical and
sider amplification of an initial coherent state of the Stoked'0rzontal arrows. The anti-Stokes mode at frequeneywo+ ws
mode. The coherent state is maximally amplified if it is at > 21d Its driving polarization ab=w, + s are represented by

. L .~ two different lines, separated by the frequency detumin
90° relative to the minimal two-mode quadrature, and glvesW ! ' P Y quEncy Ceieng

the same output as the vacuum if it is parallel to that quadra- The medium is assumed to be only weakly excited, with
ture. In the former case, amplitude fluctuations are enhancegyost of its population in the ground state. It can therefore be
while phase fluctuations are below the vacuum level. modeled by a single harmonic oscillator. We write the

In Sec. Il A we give the general solution to the linear Heisenberg operat0|~1sn(t), n=1,..N for all variables in-

equations of motion for optical modes and medium in terms,g|yed as products of time-dependent phase factors and am-
of the eigenvalues of the>83 matrix of coefficients. We  jityde operators,(t):

discuss the special cases of zero and large linewidth in Secs.

P @] = We—03
Stokes

Excited State -

Il B and 1l C, and the intermediate case of finite linewidth Bl(t)ze*i(“’of“’?»)tbl(t),

in Sec. Il D. In particular, we consider the influence of dis-

persion on the long-time behavior of the system. For zero Bz(t)=e“(°’0+‘”3)tb2(t),
linewidth, there exists a critical value of dispersion, below

which the system shows periodic or quasiperiodic behavior, be(t)=e kb (t) (k=3,...N).

and above which exponential amplification occurs. For non-

zero linewidth, the system always shows exponential ampliThe Heisenberg equations of motion for the amplitude op-
fication at large times, except for zero dispersion, where therators in the Markov approximation ar&6,17)

behavior is that of damped oscillations.

In Sec. IV, we summarize our findings and discuss some bJ{z K1b3, (@h]
possible implications for a deeper understanding of state re- )
duction in more general systems. b,=—iAb,— k5bg, 2
N
h o — T — —iA
Il. MODEL EQUATIONS, STATE REDUCTION, 3= k1b;+ Kby —T'bs+F, F—s; gse '*<'by(0),
AND SQUEEZING &)

A. Model equations and characteristic functions . At
. . . b,=—g,e%b r=4,.N), 4
Our model of a cavity Raman laser contains the following ' Gr 3 ( N) @
variables: a classical pump at frequengy, a Raman-active \herex,, «,, andg, are the coupling coefficients for the

medium with transition frequencys, a reservoir of oscilla-  medijum with the Stokes, anti-Stokes, and reservoir variables.

tors With-frequenCieﬁ)r , = 4""N.’ .mOde”ng homogeneous The frequency detunings ak= wy— w3— Wy and Ar =w,
broadening of the Raman transition, a Stokes mode at fre- ;. The solutions of these equations take the form

guencyw;= wy— w3, and an anti-Stokes mode at frequency

w,=wo+ w3+ A. The parameteA is a frequency detuning N

of the anti-Stokes mode, which results from dispersion in the bI(t)ZTn(t)aIJr; Ti(t)ag,
Raman-active medium. Figure 1 shows a level diagram of -2

the medium, including the Raman transition, two transient N ®
intermediate states, and the three optical frequencigs bi(t):Til(t)aI_"Z To(Da, (i=2,...N),

wq, andwz. k=2
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wherea,=b,(0), n=1,...N, and the coefficient$,(t) are = Here we have used E{L0) to eliminate the dependence on

c-number solutions of Eq$1)—(4), which satisfy all coefficientsB; with i>1. If only the Stokes and anti-
Stokes modes are observed, we ggt 0 for i>2, and ob-
Tom(0)=1, n=m, tain

2 — 2_ 2 2
T.m(0)=0, n#m. e (1) =2|B41|"—|ay|*+]ay|?, 1
* _ *
Because Eq(3) for bs involves only the initial values, (0), B (D =a1 Tyy(t) + azTa(1).
r=4,..N, of the reservoir variables, the coefficieftg(t)  Equations(11) and(12) for the characteristic function of the
for i, k=1,2,3 can be calculated from Eqgd), (2) and @ two optical modes are the main results of this subsection,

modified version of Eq(3), for which F=0: They show that the reduced state of these modes is com-
: pletely determined by the two complex coefficiefitg and
bs=k1b]+ kb, —T'by. (6)  T,,. For observation of the Stokes mode alone, one sgts
=0 and finds
In the following, we will study the coherence properties of
the Stokes and anti-Stokes modes in the dfe)) at time ?(H)=(2|Ty?~D]ay|*=(2n;+D)]ay?. (13

t. The state is uniquely characterized by its Wigner charac- b . f1h i_Stok de al
teristic function y, depending ort and arbitrary complex OF observation of the anti-Stokes mode alone, one @gts

coefficientsa, : =0 and finds

2 — 2 2_ 2
(bt )= (D[ HO O 0y P(0)=(2Tal?+ Dl = (204 D]az2. (14

_ Heren; is the average photon number:
=(p(O)|e V¢ W y0)), (@)

(b (0 = |Ty?—1 fori=1
where the operatog(t) is defined by N = (4 (0)[bybif ¢:(0)) = |Ti1)2 fori>1.
N N The characteristic functiofil1l) of each of these modes is a
¢(t)=a’{b{(t)+2 ajbj(t)Z,B’{(t)aIJrz Bi(t)ay. canonical ensemble of number states, which is uniquely
j=2 k=2 characterized by, (see Appendix A From Eq.(10), the
(8 following relationship is derived for the coefficients; :

From Eq.(5), the time-dependent coefficiengs, are given ) ) N ,
by Tul?=Ta?= 2 [Ta(OP=R?=1. (19

N

In terms of photon numbers, this is equivalent to
FI=ai T+ 2, aiTi(h), P f

) .
n;—n,= >, n=R2—1=0 (16)
k=3

N
D=afTy(t)+ 2, aiTy(t) (k=2,..N).
Al 1Tl 122 T ( showing that the difference between Stokes and anti-Stokes

photon numbers is equal to the total number of medium and
From the canonical commutation relations for the amplitudereservoir phonons.
operators, one finds
B. “Antisqueezing,” normal modes, and decoherence

N N
[(1),d (D)= =82+ D |B8l2=—|as2+ D |ai|2 Fort>0, the Stokes and anti-Stokes modes are correlated.
1Bl k=2 1B el j=2 o Equating the coefficients af; a5 in Egs.(11) and(12), we
(10 find
If the initial state|{0)) is a product of vacuum states for all ((0)|byby| (0)) =TT 1. 17
amplitude operators,,, the characteristic functioly takes ] ) )
the form We now seek to write the two modés as linear combina-
tions of uncorrelated normal modes:
_ 2
X(t,an,a:):e (1/2)(P (t), bI:UCI+V*CZ,
(18)
where b,=Vci+U*c;, |U[2—|V|?=1.
o*()=(p(0)|[ (1) + &"(1)1?|¥(0)) In terms of the normal modes, the mode operatap of Eq.

N N (8) takes the form
_ 2_ 2_ 2 12
_n§=:1 [Bol*=211|" ] +22 |al*. (1D d(t)=aibl+asb,=yici+y,c, (19



3272

with complex coefficientsy; given by

Y=atU+ayV,
Y1=ay ap (20)

Yo=ai V¥ +a,U*,
and

2=

—|ag|?+|ag|?= = |y1|2+] 2|~

Equation(12) for the variancep? suggests to choose

U=R!T;;, V=R T,. (21)
With this choice,¢? is diagonalized:
9?=(2R?—1) 5+ (22)

and the characteristic functigp(y,,7y,) of the two normal
modes factorizes:
e~ (U2(2R-1)|y1 2= (12|,

X(v1,72)= (23

This shows that the reduced state for the two normal modes
is the product of a canonical ensemble of humber states f

c, (see Appendix Aand the vacuum state fap. In particu-

lar, the normal modes are uncorrelated and not squeeze

The numbem; of photons in mode, is equal to
n;=R%?—1=n;—n,. (24)

For the special situation wheR¢ =1, the coefficientd;, for
i>2 vanish. The normal modes are then just the Schro
dinger operatory;(0)=a;, and Eq.(18) is the original time

evolution, Eq.(5). As we shall see below, this situation oc-

curs for'=A=0 periodically at certain time$>0. It is

remarkable that, even f@&®2> 1, one of the normal modes is

always found in the vacuum state.
A physical interpretation of the normal modescan be

given in terms of an “antisqueezing” experiment, performed

on the output of the cavity Raman laser. Inverting E@8),
we find

cl=U*bl—V*b,,
c,=—Vbl+Ub,.

This is a squeezing operation performed on the mbdemnd

KAI DRUHL AND CLAUDE WINDENBERGER

CRL LPA

FIG. 2. lllustration of the sequence of entangling and disentan-
gling operations performed by the cavity Raman lag&RL) and
linear parametric amplifie(LPA). The uncorrelated states of the
initial Stokes and anti-Stokes modasg and a,, and of the final
normal modes; andc,, are represented by disjoint circles, while
the entangled state of the intermediate, amplified Stokes and anti-
Stokes moded, and b, is represented by a single ellipse. The
guantitiesn, andn, are the corresponding photon numbers.

cl(z)=coshgzb}+e ' 7sinhgzbh,,

o (27)
c,(z)=e'"sinh gzb; + coshgzb,.

Equation(25) is obtained, apart from a common phase factor
of c; andc,, for
(28)

coshgz=|U|, p=argV)—argu).

0fgquations(lg) and (23) show that, at any given time this

peration will disentangle the state of Stokes and anti-Stokes

iodes, leading to zero correlation between the new modes
¢, andc, and to zero photon count for moag. We illus-
trate the sequence of squeezing and “anti-squeezing” opera-
tions performed by the cavity Raman lag€RL) and the
LPA in Fig. 2.

By adjusting the pump amplitude and phase of the LPA,
arbitrary “anti-squeezing” transformations can be per-
formed on the optical fields. For example, if the pump phase
7 is changed by an amountZrom the value given in Eq.
(28), we find for the number of photons in the exit mode

cy(2):
n=argV)—argU)+2e¢ (29
and

(ni+1)n

2 .
Trni—n, Sir? €>2n, sir? e.
(30

(¥(0)|ch(2)ca(2)|9(0))=2

For n,>1, a single photon is counted fer= (2n,) "2 and
a very stringent condition om is obtained. Similar restric-

b,, which can be implemented, for example, by a nondegentions are found for the pump amplitude

erate linear parametric amplifidcPA) [3]. If the Stokes and

anti-Stokes modes are used as idler and signal in a phase: Generalized two-mode squeezing for Stokes and anti-Stokes

matched linear amplifier, the equations for propagation in the

z direction arg[ 3]

d

g, ci=9e '"c;, ci(0)=bi,
(26)
d _
33 C2=9€7c,  cx(0)=by,

where 7 is the pump phase, anglis the product of pump
amplitude and gain coefficient. The solutions are

Two-mode squeezing for two oscillatdsg andb,, is con-
ventionally defined in terms of the variance of the Hermitian
component$1]:

Xo=3(by+bl+b,+Db)),
__i t t
Xp=— (b;=bi+b,—b}). (32)

These operators are just the quadratures of a linear combina-
tion b of b; andb,:
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1 1 This corresponds to a canonical ensemble of squeezed num-
b=—b;+—bh,, (32 ber states with average photon numiver 3(Q%—1) and
V2 V2 squeezing parametsr For |a|=1A2, we find the maximal

and minimal variances of the corresponding quadratures
1 —i from Eqgs.(40) and (41):
xQ=E (b+b"), xng (b—Db"). (33 0s-(40) and(41)
% =(rRi* 1Ry 2+ 3(r3—17)=3Q%"%, (42
A state is two-mode squeezed foy andb, if it is squeezed
for b. The conventional definition of squeezing is that thewhere
variance of one of the Hermitian components is below the

vacuum values: ri=[z| and Ri=|[Tji. (43
(AXp)?)<} for F=P or Q. (34)  This gives for the coefficient®? ande ™%
Because of the uncertainty relations, this implies that Q%=2¢2 9%, e =\p?/p % (44)
((AXp)?) #((AXq)?). (35 We now consider a situation where
In this paper, we use the term “squeezed state” for states R
satisfying the weaker conditioi85). If the state is a minimal R;,Ry—, R—2—>q< 1 ast—» (45)
uncertainty state, e.g., the vacuum state, one has 1
1 and give the results for various choices of mode coefficients
((AXp)2N{(AXQ)%)=7 (36) 7.

Case 1:The conventional choice of mode coefficients is
and Eq.(35) implies Eq.(34). For states satisfying E¢35)  |zi/=1#2 and gives
but not Eq.(36), however, the variance of both components

2 _ 1 2 12
may exceed the vacuum value. ¢i=3(Ri=Ry)“—3R1(1xQq),
To generalize the notion of two-mode squeezing, we first (46)
admit arbitrary coefficientg; in the definition of the linear 2 5?2 D2 D21 A2 s 170
combinationb QT =Ri-Re—Ri(1-0"), e =1
b=2z1b;+2,bp, [24]?+]2|?=1. (37 In this case, the quantum noise in both quadratures increases

2
Second, we allow arbitrary phase factors in the definition of> RY, a:jndhg?es ab%ve _the vacuum Ievelé_(;kl'ﬁhe r:]a_\llerage
guadratures. We thus consider a general Hermitian linea queezed photon number increases in proportidyy favhile

combination ob andb' as in the definitior{7) and(8) of the the squeegl?ghcoefflc(:jlent g(;]?s_ to a finite I'rg_'t' d
characteristic function Case 2:If the mode coefficientg; are adjusted at any

given time to make the first term in the expressionddrin

$1=a*b’+ab. (38)  Eq. (42 vanish, we obtain
Fora=1W2 or a=—i/v2, one hasp;=Xq or ¢1=Xp. TO |2} T1d =125T 24,
determine the degree of squeezing of a given state, one needs
to find those values of with |a|=1A2, for which the vari- , 1, . 1(1-¢% 1
ance of ¢, assumes maximal and minimal valuaé and ¢-=3 (rz—rl)ﬂz 1+—qz <§,
©%. We now apply this procedure to the Stokes and anti-
Stokes modes defined above. 9
From Egs.(38) and (8) we find that the characteristic @2 —4riRZ2=4R? ——,
function of the modeb in Eq. (37) is obtained from the 1+q
general expressiondl) and (12) by settinga;=az; and
ar,=aZ,. Thus 1 .1
2 2 QZHZ‘QRll_’_LqZ /1_q2, e*ZS_)%Rlla 1_q2

IBI = a* Z;_r Tll+ a22T21. (39) (47)
In this case, the quantum noise in the quadrature correspond-
ing to > stays below the vacuum limit. The average
squeezed photon number increases in proportiorRio
%h”e the squeezing coefficient decreases in proportion to

This gives for the variance? of ¢, [see Eq(12)]:
0i=2|a*Z; Tyi+ az, Tl %+ | e|?(12,|°~|z1]?). (40)

To quantify the amounts of state reduction and squeezin
we rewrite this in the form{see Appendix A

-1
1
Case 3:ltis possible to choose the mode coefficientat

©3=Q%a*U’'+aV'|?, |U’'|=coshs, |V'|=sinhs. any given time so as to minimize the variangé. This
(41)  minimal value is given by



3274 KAI DRUHL AND CLAU

1 1
¢nin=7 (RI+R;—V(RI—R;— 1)+ 4RIR) <5
(48)

In the limit of large times where Ed45) holds, this gives
the same results as for the choice of coefficients in(Ed).
above.

Case 4:1t turns out that, in many situations, noise reduc-
tion below the vacuum level can be achieved with constant

mode coefficients and quadratures. For the choice
—i/v2, we get for the variance in this case

0h =125 T1— 2, T2+ 3 (|25)%— |2]?). (49

D. Amplification of coherent states

In this section, we calculate the final state for the linear
combination mode, as discussed in Sec. Il C, for the cas

where the initial state is a coherent state for the Stokes fiel
and the vacuum state for all other variables

ay|(0))=v1|(0)),

In this case, the characteristic function takes the form

a|(0))=0 for i>1. (50)
X(t’a’a*):ei(ﬁlylw*{ V’l*)—(l/zypi (51)

If we take the near-optimal choice of case 2 for the mod
coefficientsz; , for which
|2 T1al =12 Tar/=11Ry, (52

we find for the phase of the characteristic funct{éa) from
Eqg. (39

Bivi+ B vy =(ad+a* 5%)

with
5= (vi+v])riR=6*. (53
For the variancepf, we obtain from Eq(40)
@2=2|a* + a|’r ;R +|a|A(r5—r). (54)
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Imv i
Img§

FIG. 3. lllustration of the effect of amplification on the coherent
tates of the near-optimal combination mdmd he coherent states
re represented by ellipses in the compleglane, which are cen-

ered at the coherent displacement parametew, for the initial
states andv= 6 for the final states. The axes of the ellipses are

proportional to the root of the variances of the corresponding
quadratures. The arrows connect the initial state to the final state
resulting from amplification. Cas@) represents the vacuum going

to a squeezed state. Cagbs (c), and(d) represent various initial
coherent states with imaginary, real, and comp¥going the cor-
responding final states, witfto) going to the same state &9, and

e(c) going to the same state &d).

S

where) are the eigenvalues of the matrix representing the
right-hand side of Eqs(l1), (2), and (6) (see Appendix B

The general form of the eigenvalues depends on the relative
size of the gain coefficientg;(i=1,2). These coefficients
contain a factor involving the frequency of the mode consid-
ered. Except for a situation where the Stokes coefficient
shows large resonant enhancement over the anti-Stokes co-
efficient, one has,> ;. We restrict our discussion to this
case.

In this case, the eigenvalues are either purely imaginary,
or there is an eigenvalue with positive real part. In the former
case, the matrix coefficieni§, show periodic or quasiperi-
odic behavior in time. In the latter case, the term involving
an eigenvalue with positive real part dominates &%) for
large times, and Eg45) holds. We now discuss some spe-

The characteristic function is that of a canonical ensemble ofial cases.
coherent, squeezed number states with coherent displace-

ment parametew (see Appendix A The parameteis is
maximal for realv,, and vanishes for imaginany, . On the
other hand, the varianag? is maximal for reaky, and mini-

mal for imaginarya. The amplified state therefore shows
phase squeezing. The amplification and squeezing transfog—re a

mations in the complex plane are illustrated in Fig. 3.

IIl. SOLUTIONS OF THE MODEL EQUATIONS
A. General case

The matrix coefficientd;,(t) are obtained as the classical
solutions to Eqgs(1), (2), and (6) with T;;(0)=4;;. They
take the form

Til(t)=; e (i=1,2,3), (55)

B. Hypertransient limit

In the hypertransient limit, we sdt=0. There are two
regimes, determined by a certain critical vallig;; of A. For
A<A., the anti-Stokes mode dominates. The eigenvalues
Il purely imaginary and the system shows quasiperiodic
behavior. ForA=0, one of the eigenvalues is zero, and the
matrix coefficientsT;,(t) are periodic, with frequency

k= K5— K.

At timest such that coxt=

(56)
—1, we have
| Tyl =Ry=x"2(ki+k3),

| T2t =Rp=2k"2k1 k7,

RI-R5=1.
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FIG. 4. (a)—(d) Shown are the variances of the minimal quadrature variable for the choice of conventional, fixed, and minimizing mode
coefficients(¢Z,,, @4, and 2, at zero linewidth [=0), for various amounts of dispersive detuning as given in the figlixes0.0,
A=0.29,A=0.4, andA=10.0. The time variable is the dimensionless parameigr

This is the special situation mentioned in Sec. Il B above. In=0.4, just above the critical value, while Figid} shows the
this case, minimal variance is found for conventional two-same forA =10, much larger thair ;. In the former case,

mode squeezinfg,|=[z;| = 1V2: @2y is Close tog?;, and less than 1/2 up to=4, while in

L ) the latter cas@2,,,>1/2 at all times. In both caseg?,;, and

_ 2 _T KTk 2 i
Plon= Phin=5 | — ) (57)  @fix 90 to different valuegless than 1/Rast—co.
2T Ky
In the following numerical examples we choosge=1 and C. Steady-state case
— H 2 2 :

x;=V2. Figure 48) showsep,, and ¢con, @s functions of In the steady-state limit, it is assumed that the homoge-
for A=0. neous linewidtH is much larger than any of the frequencies

Figure 4b) illustrates the quasiperiodic behavior @f;, K1, K2, andA. In this limit, the mode operatdy; is approxi-
and of, for A=0.290, just below the critical valuds;  mated by its steady-state value, and we obtain the following
=0.300. In this case, two of the eigenvalues are very close tequations:
each other, X3—\,)=i¢, |e|<|\y|, and the matrix coeffi-

cients T;;(t) are mostly dominated by the corresponding ba=T"Y(k1b]+ rob,+F),
terms with small frequency denominater Consequently,
the variancep?,. is almost constant, except for short time '
¢ min P bi=g11b] + 010, + Gy, (58)

periods, during which these terms are small due to their ex-
plicit time dependence on sit. The behavior ofpﬁx is quite )
erratic in this case. The variang€,,,, is much greater than by=—g1bl—gab,+iAb,+ Gy,
1, except for the short time periods mentioned, and is not
shown in this figure. _ N _  where

For A=A, the matrix coefficients grow linearly in
time, while forA>A;;, one of the eigenvalues has a posi-
tive real part. As mentioned above, the corresponding term in Gi=xI'F and g;=T""
Eq. (55) dominates the behavior for large times, and the vari-
anceep,;, approaches a constant value. For this situation, werhese equations are equivalent to the model studied in Refs.
also plot the variance»3, obtained for a fixed choice of [14] and [16]. The matrix coefficientsT;; are given by a
mode coefficientg; , which gives almost minimal variance formula analogous to Eq55), but involving only the two
for larget. Figure 4c) shows @ﬁﬂn, cpﬁx, and <p§onv for A eigenvalues corresponding to E§8). The eigenvalues are
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N=—3(022— 91— iA) S T T
- 0.5 A ]
= V(02— 0102 $A2-3iA(0+ 01 (59) N rs
<3 e T
Q
For A=0, one has S 0.3 .
5 02
A1=0, A=~ (g2~ 011 (60) '
0.1 -
and the matrix coefficients have finite limits for «. In this o L
case, one finds "0 5 10 15 20 25 30 35 40 45 50
TIME
R,— K‘2K§, Ry— Kk~ %Kk1K>, —
—4 A=0.1 —
2 2 K 2,2, .2 r=s
Prixs Pmin— 2 [k5(KT+ K3) = b
Z
< i
—KB—2k8k5+ k5 +4K3KS],  (B1) éf:
1/ k, \?2 1 -
Peomi— = <.
conv 2 K1+ K2 2 0.0 I I L L L L 1 1 L
[ 5 10 15 20 25 30 35 40 45 50
Figure Fa) illustrates this case. TIME
For A>0, one of the eigenvalues is positive, while the 0.60 — . . . . l
other is negative. In this case, the matrix coefficients diverge at
for t—oe, ande?2,, goes to the finite limit given by Eq47). I=5
Figures %b) and 5c) show the caseA=0.1 andA =1. They 8 -
2 2 L z -
demonstrate thapry,, and ¢5, converge to the same limit. 5 s
The conventional varianceZ,,, exceeds the vacuum value 5
1/2 for sufficiently large time. FoA>g;,, the eigenvalues T
are given by i
N1=01n and Np;=—gyptiA (62 T 4 s & 10 12 1
TIME

and the Stokes and anti-Stokes modes decouple in this limit
[14]. FIG. 5. (8)—(c) Shown are the variances of the minimal quadra-

ture variable for the choice of conventional, fixed and minimizing

mode coefficients(¢2,,, @2, and ¢2;) at large linewidth T

=5), for various amounts of dispersive detuning as given in the
In the transient case, wheie is of the same order of figures(A=0.0,A=0.1, andA=1.0). The time variable is the di-

magnitude as; and,, the cased =0 andA>T are eas- mensionless parametex; .

ily solved. ForA=0, the eigenvalues are

D. Transient case

2
A=0 \= _Ei r 2 63) IV. SUMMARY AND DISCUSSION

2 4
For the model of a linear cavity Raman amplifier studied

Ill'nere, we found two main results. First, there exist uncorre-
lated normal modes, which are obtained from the Stokes and
anti-Stokes modes by an antisqueezing transformation. Sec-
ond, there exist optimal linear combination modes, for which
the variance of one quadrature is always below the vacuum
value. The states of such optimal modes are canonical en-
) r r )
N=iA, A=——+/—+ K2 (64) ~ sembles of coherent squeezed number states, and the average
2 4 number of noise photons is proportional to the square root of
the number of Stokes noise photons. Thus, the degree of
One eigenvalue has a positive real part, and the mode coeflecoherence for the combination mode is much less than for
ficients grow exponentially for large times. Fbe K%, the the individual Stokes and anti-Stokes modes.
results of the steady-state limit are recovered. For intermedi- The reduction of variance in the minimal quadrature of
ate values of\, one eigenvalue has a positive real part, andhe optimal combination mode can be understood as result-

the behavior of the variance for large times is similar to theing from a cancellation of anticorrelated quantum noise in
steady-state case. the individual modes. To optimize the amount of cancella-

and the matrix coefficients converge to the same limits as i
the steady-state case. For smh|l two eigenvalues have
imaginary parts, and additional oscillations occur for small
times. ForA>T", the eigenvalues are, to leading order,
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tion, the mode coefficients have to be chosen appropriatelsor the expectation value and varianceggfone finds1]:
and will in general not be of equal magnitude. This corre-

sponds to a generalization of the conventional notion of two- (p)=ad+a*s*,
mode squeezing. 5 ) o
If a coherent state is used as input to the Stokes channel of ((A¢)*)=Q%laU+a™*V| (Ad)

the amplifier, the corresponding field amplitude will be can-

celed in the combination mode, if it has the same phase a‘gith
the minimal quadrature, and will be optimally amplified if its 1+e" e’
phase differs by-90°. The optimally amplified signal is thus Q?=2n+1= = n=(a'a)= o
phase squeezed. —¢€ -¢€
Th It fi t for th ti f '
ese results may be of interest for the generation o U=coshs, V=—e’ sinhs. (A5)

squeezed light through stimulated Raman scattering. They

also prowdelclear expgrlmentgl signatures for the eXpe“merEquations(AZ), (A4), and(A5) give the characteristic func-
tal observation of anticorrelation between Stokes and anti-

. . : . tion in terms of the coherent-state displacement parandeter
Stokes modes. It is of particular interest that these signatur P parand

are found for all values of the experimentally relevant paﬁﬁheoi)qnuﬁﬁﬂggeﬁ ?g?;?jzfghégughu andV, and the mean

rameters, such as pump amplitude, dispersion, and IineP
widths. Previous work on quadrature squeezing in this model
had been restricted to a limited range of parametensall
linewidth, zero dispersion

With the recent demonstration of a cw-Raman laser by
Brasseuret al. [19], experiments to verify our predictions APPENDIX B
may become feasible in the near future.

X(a'a,*):ei(a5+a*6*)—(1/2)Q2\aU+a*V\2. (AB)

The matrix coefficientsT;,(t) for i=1,2,3 satisfy equa-
tions (1), (2), and(6), with initial conditions
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Tiu(t)=2 7, =123, (B2)
X
APPENDIX A

where\ are the eigenvalues of the matrix of coefficieNts

The quantum-mechanical density matgxof a system for equations(1), (2), and(6):

with creation and annihilation operatas$ anda is uniquely
characterized by its Wigner characteristic function 0 0

K1
X(a,a*)=Tr(pe“”(“'“*))E<ei¢(“'“*)), (A1) N=| O A —«y]. (B3)
-T
where M1k
é(a,a*)=aa+a*a’. We find
2 2 _
Of special interest are Gaussian states, for which , _(Nikj+ k) __ kik2 _ral'=S)
1k dk ’ T2k dk ’ T3k dk '

=D WA Ap=—p— (). (A2) (B4)
The most general Gaussian state is a canonical ensemble \where
coherent squeezed number states. Using the notation of
Caves[1], we write this as die=(Ae=A)(N— X)) and S=Nj+\

p=D(T()puT HHDL(6) and, for fixedk, the indices andj take the two values dif-
_ ferent fromk. The eigenvalues were obtained numerically.

with Analytical solutions or approximations for the eigenval-

so 5ol Ut e (12 zal2 » ues were obtained in the special cases considered in subsec-

D(s)=e® 72, T(y=elAa-(RET r=gdf tions 1B and Il C, in particular the case§'=0, T’
>A,k?, A=0, A>T ,«?, and were used to verify the cor-
Pth:(l_e_r)z e Mn)(nl. (A3) rectness of the nume_rlcal procedu_re. The calculations are
n straightforward and will not be detailed here.
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