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Optical measurements as projection synthesis
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We present an extension of the projection synthesis technique which allows us, at least in principle, to
determine the probability distribution for any physical observable associated with a quantized optical field
mode. This probability can be inferred from the photodetection statistics obtained by causing the field mode to
be measured to interfere with a second mode prepared in a suitable reference state. We give an explicit
expression for the required reference state. Weak-field homodyne detection using photon counting is, perhaps,
the simplest system to which projection synthesis can be applied. We find the complete set of synthesized
projectors for this system and show that they form a probability operator measure. We apply this set of
projectors to study the discrimination between coherent states and to measure a quasiprobability distribution.
[S1050-294®8)01110-X]

PACS numbd(s): 42.50.Dv, 03.65.Bz

[. INTRODUCTION ability distributions of quantum optical observables. The
method was originally proposed as a means for measuring
Homodyne detectiofl—3] is a measurement scheme that the optical phase probability distributi¢@3,24. It involves
can be used to detect nonclassical phase dependent featut@8 Synthesis of a projection operator, the expectation value
of a quantum optical field. The measurement is performed bf Which is proportional to the canonical phase probability
coupling the input field to a coherent state local oscillatordiStribution. A measurement of th@ function by projection
using a beam splitter. This local oscillator acts as a phast%ynthes'S ha; also beeq propof2s. We have also de”.“’”?
reference which enables the phase-sensitive properties of tryated phys!cal trL‘J‘ncann of an Opt',(fal state by. projection
signal field to be obtained by realizing a measurement of th€Ythesis using a “quantum scissors” device which acts to

quadrature phasef4—7]. Homodyne detection has also prepare a chosen S‘%'pefpos“io” Of. thg vacuum and one-
found applications in, for example, the direct measuremenphoton state$26]. Projection synthesis, like homodyne de-

of quasiprobability distribution functiong8—10] and in the tection, exploits the interference between the field mode to

deduction of the photon statisti¢&1,12 of a field mode. be measured and a second field mode prepared in a reference

Homodyne detection has been applied to obtain a completdate: With projection synthesis, however, the straqgasi-

description of the state of a field mode by constructing eitheFIaSSica) cohere_nt state local oscillator is r_eplaced by a
its Wigner functio 13—17 or its density matri¥18—21]. In mode prepared in a known quantum state with S”.‘a” mean
conventional homodyne detection the local oscillator field isphotgn nuerir. This m(ra]anshthat the signal cgmprr]|ses small
prepared in a strong coherent state. It follows that the bealﬂuzjn ﬁrs orp oto_ns rat r?r.t an a magcroscoplnc pd otocurrent
splitter output beams are large in amplitude and approxi®" phF’tO” counting r:eﬁ glque% carr: € erl'_‘p oye ¢ oroi
mately equal in intensity, allowing for their detection as pho- . In this paper we shall describe the application of projec-
tocurrents. In balanced homodyne detection the differenclOn synthesis to obtain the probabll{ty ass_omated with any
between the two output photocurrents is taken to obtain th&§i9envalue of any observable of a single field mode. Weak

difference photoelectron count probability distribution. This coherent Ztates akr]e tr}e most readily dfellvallab_llebpl)ur? quantum
difference photocurrent distribution is proportional to theSttes and are, therefore, most readily available for use as

quadrature probability distribution for the input lighit—4]. ~ 'eference states in projection synthesis. We will analyze pro-
It was shown in a seminal paper by Yuen and Cfg] that jection synthesis with weak coherent states using inefficient
the local oscillator noise in the output is eliminated when alghotodetectors a!"d compare and contrast our results with
50-50 beam splitter is used. Any resulting quantum fluctua: omodyne Qgtect|on using strong coherent states. Wg present
tions in the output of this balanced homodyne detector arg;]e probgbmtyhopergtor measur®’OM) [27-29 which
necessarily related to the quantum noise of the input stat&._l?raCtTr'zﬁ_s the entire rr?easurtimentfp:jqces_,s._ln _Sec.bIV we
This highlights the usefulness of homodyne detection in thaf"!ll apply this POM to the problem of discriminating be-

it allows the quantum properties of a system to be amp"ﬁe&ween(non(?rthogonfs)l cobhet:_?nt jcath%Oj and to the mea-
enabling a measurement in the macroscopic environment o-rement of a quasiprobability distribution.

be performed. . . IIl. MEASUREMENTS USING PROJECTION SYNTHESIS
Projection synthesis can be used to determine the prob-
Once the state of a quantum system is known, it is pos-
sible to deduce all of its physical properties. That is, we can
*Also at NTT Basic Research Laboratories, 3-1 Morinosato-reproduce the probability distributions associated with the
Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan. measurement of any observable of that system. With the ad-
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tum optics and answers the following question: given two
known input states into a beam splitter, what is the probabil-
b ity of the photon number at each detector in the output?
Projection synthesis is perhaps most readily appreciated by
working backwardsfrom the measured photocounts. Given
—> > the output photon number counts, we can perform a transfor-
a a mationbackin time through the beam splitter to deduce that
state| ¢i,) which would produce these counts with unit prob-
ability. We then ask the question: what is the probability that
b the combined input signal and reference stéjg® |B), will
be found in|#;,)? This leads us to associate the detected
FIG. 1. Schematic representation of a beam splitter with inputnumbers of photons with the action of a projector on the
and output modea andb, as indicated by the arrows. input state. The form of this projector depends on both the
. ] numbers of photons detected and the form of input reference
vent of optical homodyne tomography4-17, a determina- state |B),. Upon evolution of the output photon number
tion of th_e ngngr function is performed to eventuglly yield giates back through the beam splitter, we can deduce the
the density matrix elements of the state. Recently, it has beegm of the reference state needed to synthesize the required

shown that the density matrix can be constructed directlyy giector. The primary aim of this section is to find the gen-
without the need to evaluate the Wigner function beforehandg 4| form of this reference state that will enable the measure-

through the use of more efficient algorithifis8—21. These  nent of the probability associated with any value of any
processes, however, are extremely information intensiv@pservable to be performed.

since a measurement of a large number of quadrature prob- The appearance of the measured photon numbgri
ability distributions is required to completely characterize theoutput arma andn, in output armb can be associated with

state[13]. For some applications, a more direct approach tQ, compined output number stdig,,) given by
measuring a specific property of the state would be desirable. ou

Also, of course, it is of interest to know how particular | o =IN1)a®[N2)p - 2

physical properties can in principle be measured without ob:-_ . .
taining sufficient information to determine the state. This combined output state can be evolved back through the

Projection synthesis provides the means to perform geam splitter to form an expression for the inferred entangled

measurement of the probability distribution associated witrPtate of input modes

any given observable. This is achieved by preparing a special i) = §T|nl>a® 1Ny
reference state so that the probability of finding specific
numbers of photons in the two output modes is proportional . 1 . .
to the expectation value of the projector formed from a par- RTﬁ(aT)“l(bU”ZIOA@IO)b
ticular eigenstate of the chosen observable. Measurement of Ny Na:

the expectation values associated with all of the eigenstates 1
then gives the associated probability distribution. We have RT——(ah"(b"H"R|0),®|0)y, 3)
previously described the application of projection synthesis vnitny!

to the measurement of the canonical phase probability distri- R R
bution[23,24. Here we derive the required form of the ref- where we have used the unitarity Bfand the fact thaR’
erence state associated with measurement of any eigenst&eting on the two-mode vacuum leaves the state unchanged.

of a given observable. It can be shown thd31]

Consider a lossless beam splitter with input and output 1
modesa andb, as shown in Fig. 1. If the input fields are RTa’TR=—(a'—ib"h), (4
guantized, then the field in each arm can be characterized by 2

an appropriate single-mode annihilation operator. The action

of a beam splitter is to transform the input field states lin-and

early, and for a 50-50 beam splitter the unitary transforma- 1

tion relating the output and input state &i] RIbTR= E(E,‘r_ig{f)_ (5)

« 1T An an
R=exp{7(bTa+aTb)

These relations allow us to write the input state as

27(n1+n2)/2

|lﬂin>=W

expia’™@). (1) (a’™—ib"H"(bT—iah"20),2|0),.

: : : . (6)
The signal statéf) input in modea is coupled to a general
reference stat¢B)=Zb,|r) entering modeb of the beam This is the entangled input state required to produce the mea-
splitter. The probability of detecting; andn, photons inthe sured photoelectron counts at the outputs of a 50-50 beam
output modesa and b can be found from an ensemble of splitter. It can be readily seen that the probability of finding
measurements using two photodetectors. This is the usual andn, photocounts in the output modasandb is simply
way of analyzing measurements with beam splitters in quanthe modulus squared of the projection of the combined input

A n2 ... ...
=expib'a)ex T(bfb—a*a)
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state|f),®|B),, onto the entangled stal;,). This probabil- large enough for this effective truncation of the signal state
L - to have a negligible effect. As the sum|bf|?> must be unity

ity is given by P(ny,n,) = (f|TI(ny,ny)|f)a, theA expecta- . find from Eq.(10) that

tion value of the projection operatorII(n;,n,) ng+n,
=(B|¢in){¥in|B). This in turn is equal tdA|~2 multiplied IA2= 201020 1t S
by the projection operator onto a pure StAtB|;,) where P20 & (ng+n,—n)tr!
the factorA normalizes the state and, from E)

|Cn1+n2—r|2

My, n, n, -1|2
27(n1+n2)/2 ng Ny ny\(n, X )( )iZm—n2+r
<B|¢in>: T ( | )(m m=Mz \M+r—ny/\ m
nl. n2. =0 m=0
11
X, (=D _ _ . :
2 This allows us to find, and also provides us with the factor
X +m=D1(1+ny—m)!ng+m—1)g, we r_leed to multipl_y the me_zasured_ probabill?jnl,n_z) to
obtain the probability associated with the desired eigenvalue
(7 of the chosen observable. This factor is expressed in terms of
where the coefficients of the corresponding eigenstat¢. Con-

versely, if we have a known reference state combined with
n, the signal state, expressi@) can be exploited to deduce the
( | ) nature of the observable whose distribution is measured by
the beam splitter and photodetectors.

is the binomial coefficient. To obtain the probability associ- N Summary, we have found that the technique of projec-

ated with the desired eigenvalue of the chosen observable vi#oN Synthesis proposed to measure canonical phase can be
set extended to determine probabilities associated with any

physical observable of a quantized field mode. Projection
RN synthesis has a distinct advantage over other schemes in that
A(B| ¢‘“>_|¢>_% cp|p>, ®) only one device is needed to measure any physical property
of the system; it provides a means to generalize the measure-
where| ¢) is the eigenstate of the Hermitian operator for thement process. However, this benefit is offset by the necessity
chosen observable that corresponds to this eigenvalue. Tloé having to prepare general reference states. This problem
required probability is then equal {&\|? multiplied by the has been addressed in our previous p&@d}l where it was
measured output photon number probabiftyn,,n,). Pro-  shown that, in principle, any reference state can be fabricated
jecting both sides of Eq8) onto the number stafe) yields, provided one can generate an arbitrary superposition of the

using Eq.(7), |0) and|1) states. We have also proposed a scheme to physi-
cally truncate quantum statg®6]. These techniques, based
2—(n1+n2)/2 he i £ " | h h
N et n,—r)irt upon the ideas of conditional output measurements, have the
' nin,t et EE potential for fabricating exotic quantum stafdd,32,.
M
% 22 ng Ny _ng+2mer 9 IIl. HOMODYNE MEASUREMENT AS PROJECTION
7, \ng+m=r/\ m (=1 NG SYNTHESIS

The signal in balanced homodyne detection is the differ-
ence between two photocurrents produced by the interfer-
ence between the field mode being measured and an intense,
coherent local oscillator. In projection synthesis, both the

where M;=max(0r —n,) that is, the larger of 0 and
—n;, andM,=min(r,n,). Thus the coefficients of the re-
quired input reference state are

2M+M2)2 1 lc* field under investigation and the reference state are in the
n1+n27r .
b,= quantum regime of low photon number and the number of
A*J(ng+n,—n)lr! photocounts registered at each detector forms the signal. In
My 1 this section we investigate the weak local oscillator limit of
" n; ny i2m-nyr (10) homodyne detection as an example of projection synthesis.
m=M; \M+r—ny/\m ’ As with conventional balanced homodyne detection, we

have a local oscillator in a coherent state), acting as a
where M3;=max(0n,—r) and M,=min(n;+n,—r,n,), reference state, input into armof a beam splitter. This local
provided the term in the square brackets is not zero. If it isoscillator is combined with the signal state input into am
zero for a particular choice afi; and n, then a different of the beam splitter. We do not subtract the output photode-
choice ofn; or n, should be made. It has been shown thattector counts but instead we record individual photons in
for the particular case of the measurement of the canonicadach output arm. The technique of projection synthesis will
phase distribution with the choia®,=0 a reciprocal bino- be used to obtain an expression for the probability operator
mial state is needed for the reference sf2®&24. The val- measurg27-29 characterizing the homodyne detection pro-
ues ofr range from zero ta;+n, so only the firsin;+n,  cess using photoelectron counting techniques. The probabil-
+1 terms in the photon number expansion of the signal statiéy operator measure approach is an extension of the standard
will contribute to P(n4,n,). Thusn;+n, must be chosen von Neumann picture of measurement in quantum optics in
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which the initial system is coupled to a probe system. Atween the two photocurrents. It follows that, unlike balanced
standard von Neumann measurement is performed on thiomodyne detectiof22], projection synthesis is sensitive to
combined system and provides a more general view of meaioise associated with the reference state.

suremen{see Appendix A Once the POM for a system has  In projection synthesis with a weak coherent reference
been found we can find the probabilities associated with alptate, the detected signal is in the form of discrete photoelec-
possible experimental outcomes. It should be noted that thi§on counts and this can be measured using perfect photode-
set of possible outcomes, and therefore the form of the asséctors. By applying the analysis of the preceding section we
ciated POM, is different from that found for balanced homo-find & representation of the POM element formed using per-
dyne detection, which depends only on the difference befect detectordIp(n;,n,) in the form

Tp(N1,02) = p{ ] in){ tin] @)= b @] R[N 1)al N2 Nzl a1 Rl )

= o{alRT@")"(b") " exp( —a'a)exp —b'b):a™b™R|a)s, (12)
1-112:

where the colons denote normal ordering. We can write the > =

operator product appearing in Ed.2) as > S M(ny,n,)
n;=0 ny,=0
(ahHM(bh"2:exp—a'a)exp —b'b):a"b" ©
a\na —g\ne =2 2 (alvn) (i)
2 T2 " exn —nath TR 1=0 na=
(&)\> (&M rexp(—\a'a)exp(— ub'b):[ - -1, o
(13 =u(aRT| X > [n)alny)p(nala(nl |Rla)y
n1=0 ny,=0

so that Eq.(12) can be expressed in terms of a moment =1. a7

generating operatdr, _ _ o
The formation of the resolution of the identity proves that

- —9\"( =g\, I1(n4,n,) is indeed a POM element.
Ilp(ny,nz)= W( 5) (m) L\ p)y=p=1 For practical purposes, it is necessary to account for the
(14)  effects of finite detector efficiencies. It is possible to recover
the ideal detector statistics from the detected statistics using
where sufficiently good detector§33] although here we adopt a

different approach(see Appendix B The detection ofn
photons is equivalent to projecting the state entering the non-
ideal photodetector onto the mixed-state proje¢8aH

. 1 -
L(a,)\,,u)Zexp{— E()\—,u)iaaT

1 . ~pn A
anm(r;a’r)”:exp(—na’ra):a”. (18

1 o 1 A
X :ex —E()\+,u)a’ra ‘ex E()\—,u)la*a

For an ideal photodetector with=1 the state that enters the
) (15)  detector is projected down onto the)(n| projector as ex-

pected. By applying the result in E¢L8) to the analysis of

homodyne measurement using projection synthesis(.

1
Xexr{—i()\+u)|a|2

To prove that the projection operatofi;(nl,nz) form a becomes
POM that describes the photoelectron count measurement irl;[ (ny.no) =y alIT, TI, |a)
the presence of the reference state, we must ensure that'™ *" 2/~ P nttn,l @/p

I1(ny,n,) forms a resolution of the identity 1 (—07)”1( -9

N2
= —| |=—| L(an\, 1
WL (m) (a, N, )|\ =p=1

oo o

> 1I(ny,n,)=1. (16) (19
n1=0 ny,=0
The POM element formed],(ny,n,), is the projector that
Upon expansion of the left hand side of E@6) and appli- corresponds to the finite-efficiency detectionngfcounts in
cation of the resolution of the identity on the number statedetectorc andn, counts in detectod for a weak homodyne
basis, we obtaifill] measurement. Equivalently, this result can be found by con-
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sidering the effect of finite-efficiency detectors on the form
of the moment-generating operator in Eff5).
We have seen that the individual photon number counts

can be used to form a POM in a variant of conventional
homodyne detection. The projection synthesis description

differs from that associated with balanced homodyne detec- b

tion in that only a weak local oscillator is employed and that | +0>

the measurement comprises the numbers of photons obtained — - DJ
in both output modes. We can obtain the projection synthesis a a

description of balanced homodyne detection by adding to-

gether all of the POM elements corresponding to the same b | io>

photon number differencen{ —n,) and then taking the limit

of a large amplitude coherent reference state. In effect, the FIG. 2. Schematic representation of the Huttner-Imoto-Gisin-
projectors in balanced homodyne detection form a subset dfor beam splitter arrangement for discriminating between coherent
the elements formed in the above example of projection synstates.

thesis. We obtain more information in our method than just

the difference in the output photon counts and therefore it igneasurement input states. We analyze this state discrimina-
possible to perform more general measurements on the inption technique by using projection synthesis to form the
state. In the next section we will apply this POM to charac-POM that fully describes the possible results of the measure-
terize a measurement that cannot be performed by measurimigent and show that these POM elements can be recast into

a quadrature component of the input state. an expression for a quasiprobability function of the input
state.
The 50-50 beam splitter depicted in Fig. 2 transforms the
IV. DISTINGUISHING BETWEEN COHERENT STATES input state] = a),|i @)y, into the output state

In this section we apply the results derived above to form R 1 i
a POM that fully characterizes the outcomes of measure- R|i‘a>a|ia>b=‘—(ia—a)> —(a=x a)> . (20
ments on a nontrivial system used to discriminate between \/E a \/E b
(nonorthogonal coherent states. The difficulties inherent in _ o
the measurement of nonorthogonal states ensure the securﬁ%ﬂe of the resulting output modes is in its vacuum state,
of certain quantum cryptographic protocgss). If a system W ile the otherisin a coherent state with mean photon num-
is known to be in either of two nonorthogonal states, then i€ 2a|?. It follows that ideal photon counting will unam-
is impossible to determine with certainty which one of thesebiguously reveal the unknown input stafe, or |- a), un-
states the system is in. Consider a single system prepared pss there are no photons detected at either detector. The
one of two nonorthogonal statés) and|b), each with ara probability for this inconclusive result to occur is simply
priori probability of occurrence of one-half. These are not _ 2_ 1Al 2_ _ 2
the nondegenerate eigenstates of a Hermitian operator and Kol \/Eaﬂ _KO"\/Ea)l =exp(—2]af%). (21)

therefore cannot be distinguished with complete certaintypoy perfect photodetectors, this is equal to the modulus of the
There are two approaches that can be used to dlscr|m|na{ﬁler|ap of the two coherent stathg) and|— ) and there-
between these nonorthogonal states; one is by allowing for fyre achieves the Ivanovic-Dieks-Peres bound for error-free
minimum probability of error and the other is by perfo.rmmg state discriminatiof30]. There are, in principle, four pos-

an optimum error-free measuremef86]. With the first  gjhie outcomes of the measurement, although only three of
scheme, we can determine in which state the system Wafese are actually possible. These outcomes can be charac-
prepared, leaving us with a minimum probability of error orizeq by a POM.

given by the Helstrom boun(®7]. The second scheme was e can form the nonorthogonal projector corresponding
devised by Ivanovi¢37] and subsequently refined by Dieks n, counts recorded in the detector in output @randn,

[38] and Pere439]. This measurement scheme leads t0 NOyetected in arnb, as described in the preceding section. This
errors but has the possibility that the result of the measurgg given by

ment will be inconclusive. The minimum allowed probability
for the inconclusive outcome is equal to the modulus of theﬂl(nl,nz):baamfﬁn f[n Rli )y
overlap betweefia) and|b). This bound provides a way to v
determine whether a measurement scheme is an optimal one. 1 —9\Mf—9\"2

Huttneret al. [30] have shown that an optimal error-free (5) (m) L(ia, 7\, nu)|y=p=1,
discrimination between two coherent states and |—«)
can be performed using a 50-50 beam splitter to superpose (22
the field mode known to be in one of these states with a . L .
mode prepared in the coherent stite) (see Fig. 2 We can wherea is replaced with « in Eq. (19). The POM projectors
view this state discrimination scheme as a special case of t formed can b.e grouped together and assougted with four
analysis presented in Sec. Ill with the input state being on ifferent con_clu5|ons. When we observe counts n output arm
of the two coherent statéa) and| — ). Instead of using the and none in output arm, then we can be certain that our
photon number distribution to synthesize a probability distri-C"iginal input state wagw). For brevity, this outcome can be
bution, we simply distinguish between the two possible pre-denoted by the POM elemeniil(«). Similarly, for the situ-

T nglny!
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ations where we measure zero counts in &rwith n;#0  where denotes a zero probability of occurring, and ? de-
counts in arma, the premeasurement state|is a) with notes an inconclusive result. We can now deduce the prob-
certainty and the corresponding POM elements are labeleabilities of the various outcomes for the two possible input
1,(— ). As we have seen, the inconclusive outcome occur§tates. The probabilities resulting from an input statgagf
when we observe zero counts in both output arms and thid’® SIMPly given by the expectation value of the relevant

) ~ ) POM elements and these are
POM element is termedl,(?). Finally, for completeness,

we include the physically unrealistic case where the POM P(?)=exp(—279|al?), (29
elementl],(®) describes the measurement when we detect P(a)=1—exp—27|al?), (30)
photoelectrons iboth output arms. The first two POM ele-

ments are clearly sums of individual projectors but neverthe- P(—a)=0, (31
less, we can construct each of these elements explicitly and P(0)=0 32)

then verify the probabilities obtained for each different out-
come. The inconclusive POM element is found simply byThese probabilities, for unit detector efficiency, are exactly
settingn; andn, equal to zero in Eq(22), the same as those given [B80] and verify that the POM
- - - elements constructed above are indeed correct. Similarly, for
IL(?)=11,(0,0=L(ie, p\, 7pt) [\ =1 an input state of —«), the expected probabilities are ob-
tained. The POM elements associated with projection syn-
=:exp(— na'a):exp(— 7|al?). (23)  thesis using weak coherent states can therefore be combined
in order to coincide with the outcomes of the state discrimi-
The POM element representing measurement of the initiahation scheme devised by Huttnetral. [30]. The inclusion

state|a) can be found from of the factors in the moment-generating operatorhas a
~ A -~ A - detrimental effect on the possibility of discriminating be-
() =11,(ny=0n#0) =I1,(0,any ~I1,(0,0). (24) tween coherent states. We note, however, that finite detector
efficiency does not introduce any errors in tit— «)=0.
We find that the inconclusive probabilit(?) no longer
reaches the Ivanovic-Dieks-Peres bound. Re°=1, the
probability of the inconclusive result for the ideal detector is
. 1 =g\ 0.135, whereas the corresponding probability with a detector
I1(0,any= >, —|( —) L(ia, 7N, )|\ = =1 efficiency of one-half is 0.368. The latter probability is more
nz=0 N2\ It than twice the probability required to satisfy the lvanovic-

The POM elemenﬁ,(o,any), associated with zero counts
recorded in output moda and any number of counts in
modeb, can be obtained from E@22) as

—9\. Dieks-Peres bound.
=exp< _) Lo, pN, pu) |y = et It has recently been proposed that a measurement of the
I s-parametrized quasiprobability distributions can be per-

=C(ia, m\, p(pu— 1))|)\=,u=1 Tormed .using simple photon counting tgchniq(&sl()]. Ij[ is
interesting to note that the POM eleméh(0,any) obtained
from the sum of synthesized projecta¥sII,(0,n) is also

- (29 related to a quasiprobability distribution. A general expres-
sion for the s-parametrized quasiprobability distributions

Hence the POM element associated with the conclusive réA(«,s), for s<1, is given by[31],

sult that the input state wag) is W(as) = (B(a)F(9)DT(a)). 33

::exp{ - g(éT—a*)(é—a)

fl,(a)= :exp[— g(éT—a*)(é—a)

: where

A 2 2 ...

. __(Ata 2\7. _ . _ 4.
exg — n(a'a+|al9)]:. (26) T(s) —w(l—s)'eXF< 1= 2 (34)
Similarly, the POM element which is realized in a measure-,

: . (a,s) can be reexpressed in terms of the expectation value
ment of the| — &) input state is

of a normally ordered operat8],

(39

M1,(—a)= :exp[— g@ua*)(am)

. — 2 . 2 At *\( A
W(a,S)—m .ex —E(a —a*)(a—a)

—exd — p(afa+|a|)]:. (27)
) R The Wigner function and th® function can be constructed

We note thatll,(— «) can be obtained fronfil,(a) by the = when the parametes has the values of 0 and 1, respec-
simple replacement ofr with —«. Since POM elements tively. The formation of the probability operator measure in
form the resolution of the identity, the last remaining ele-the coherent state discrimination scheme enables us to con-
ment is struct a quasiprobability distribution function characterizing

. . N N the input state. The expectation value of the projector given

I,(@)=1-11,(?) - I (a) - II,(— a), (28 in Eq. (25) is
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field mode quasiprobability distributiaisee alsd8-10,25).
1> An analysis of the effects of using finite-efficiency detectors
in projection synthesis has been performed.
n—4 We have described projection synthesis in terms of the
a:—)- (36) evolution of a state corresponding to the detected photon
numbers back through the beam splitter and then projecting
this onto the product state formed from the state to be mea-
sured and the reference state. This view of measurement is in
some ways reminiscent of retrodictiphl] and we shall ex-
plore this idea more fully elsewhere.

P(0,any = (I1,(0,any) = < :ex;{ - g(éﬂ— a*)(a-a)

Upon rearrangement, we can deduce thel—4/5 qua-
siprobability distribution function

n—4 _7n
W( «, T) = EP(O,any). (37)
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siprobability distribution measured using ideal detectors. APPENDIX A: PROBABILITY OPERATOR MEASURES
V. CONCLUSION In quantum mechanics, an observable is any physical
quantity that can be measured. Such a quantity can be repre-
The projection synthesis approach involves deducing thgented by a Hermitian operatérthat acts on its associated

probability distribution for any observable of an unknown . . A
field by measuring the properties of a two-field Systemelgenvectors|ai> to form the eigenvalue equatiod|a;)

coupled by a beam splitter, where the state of the probe field @il@i) in the Hilbert spacét. SinceA is Hermitian, the
is known. In this context it can be seen that there is som&igenvaluesa; are real numbers and the eigenvectiag
parallel with a recent suggesti®40] for deducing an atomic form a complete set allowing a pure state to be represented

field system, where the initial state of the probe field isOrthonormal and complete so that they form the resolution of

Known. the identity in anN-dimensional Hilbert spacgty given by

In this paper we have shown how projection synthesis can
be applied to obtain the probability associated with any N -
eigenstate of any observable associated with a single field ZO lai)(ay|=1, (A1)
mode. A series of such measurements will yield the probabil- '
ity distribution for any observable. The method relies on co-
herently mixing the field to be measured with a suitably pre-where|a;){(a;| are the projection operators that characterize
pared reference state using a 50-50 beam splitter followed bine measurement.
high efficiency photon counting. We have given an explicit The standard quantum mechanical picture of a measure-
expression for the number state amplitudes of the requirethent is based upon the ideas of von Neump#g). An ideal
reference state. Such states can, in principle, be synthesiz&dn Neumann measurement transforms the premeasurement
using a succession of beam splitters and a superposition sfate to the eigenstate of the measured observable which cor-
the vacuum stat¢0) and the one-photon number stdfeé  responds to the observed eigenvalue. The probability of ob-
[24]. The necessary state preparation can also be performdaining the eigenvalue; is
using a “quantum scissors” devid@6]. We have examined
the connectipn between homodyne detection r?md_projection P(ai)ITrN(ﬁ|ai><ai|), (A2)
synthesis using weak coherent states. The projection synthe-
sis differs from balanced homodyne detection in that the ref- R
erence coherent state for projection synthesis must be in theherep is the density operator of the state immediately be-
guantum regime of low photon number and in that the phofore measurement and the trace is performed over the
tocounts registered at both detectors are required and not justdimensional Hilbert spacé{y of the system. With this
the difference between them. We have given the POM eleeonventional von Neumann view of the measurement pro-
ments associated with projection synthesis using coheremess in quantum mechanics, we can obtain all of the statisti-
states and have shown how these can be applied to analyzal data needed to determine the probability distributions of
the discrimination between two possible coherent sf@@@s  observables of the quantum state under investigation.
We have also shown how they can be applied to make a The idea of a probability operator measure can be used to
connection between the measured photon statistics and povide a more general description of measurements
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[27-29. Essentially, a POM is an extension of the von Neu-in the higher dimensional spaé,® Hp as described above.
mann approach in which the measurement is described bxs a result, every POM corresponds to an orthogonal projec-
the coupling of the quantum system under investigation to gon, albeit in a larger Hilbert space, in line with standard
probe systent. The combined density matrix of the coupled quantum measurement theory.

system is the tensor product of the initial quantum state and

the probe statp®pp. We have, in effect, an extension of APPENDIX B: FINITE DETECTION EEFICIENCY
the Hilbert space front{y to Hy® Hp upon which a von ] ) o o
Neumann measurement of an observable associated with S necessary to consider the problem of finite-efficiency

resultb; is now given by efficiency » used to measure a mode containing precisely
R photons. The consequence of this inefficiency is that not all
P(b,)=Try(pIl)), (A3)  of the incident photons are converted into photoelectrons.

This can be modeled by considering, in place of the nonideal
where ﬁi are the family of operators that form the POM detector, a combination of a lossless beam splitter and an

which describes the measurement and are defined by ~ ideal photodetectof31]. The photons are incident into one
. R arm of the beam splitter and are coherently combined with a
IT;=Trp(pp|bi){bi]), (A4)  vacuum state input from the other port. The probability that a

photon is detected is related to the transmission probabhijlity
and|b;) is a state in the spacky® Hp . of the beam splitter. Only photons that pass through the ideal

In order to ensure th&(b;) represents a true probability, peam splitter are measured by the photodetector and the loss
f[i must be nonnegative definite and self-adjoint. The noris modeled by the existence of unmeasured reflected photons.
malization of the probability distribution for all possible Them photons incident on the nonideal detector will lead to
measured states implies the following resolution of the idenn photoelectron pulse with probability
tity:

Pae(n) =

m
oL n) 7"(1=p)™ " (B1)
> =1, (A5)
=0
If, however, we have an input state with a probability of
where M can be larger than the dimension of the Hilbertcontainingm photons given by the expectation value of the
spaceH,y of the initial system. projector|m)(m|, then the corresponding output photocount

In general, we have more POM elemeﬁlsthan dimen-  Probability distribution is modified t62,3,31,44

sions of the initial Hilbert space of the system under inves- * Im
tigation. As such, the POM elements are not always orthogo- Plie(N) = E ( ) 7"(1— 7)™ "P(m). (B2)
nal even though they correspond to distinct experimental m=0 1 N

outcomes. This highlights the crucial difference between the =~ o _
two classes of measurements. POM elements are in generBis 'Sﬁ'mpw the sum of thEI? P:Plzjaglht)r’] of de'éecg!lng)ho-
nonorthogonal withlT;IT;# &;I1; and in contrast with this, tons whenm are present multiplied by the probabili(m)

tandard N i rictly orth 't[agat the input field hadn photons. The detection af pho-
standard von Neumann measurements are strictly ortnogongj,s is equivalent to projecting the state entering the nonideal

projections withIT;IT;= &;I1; . At first glance, it seems as photodetector onto the mixed-state projed@4]

though the association of the nonorthogonal POM elements 1

with different measurement outcomes is in disagreement _ ~tn. L

with fundamental measurement theory in quantum mechan- H“_ﬁ(na )iexp(— 7ata):al. (B3)

ics; to measure an observable, we need to project onto an

orthogonal basis set. This apparent paradox is resolved byhese are indeed POM elements since they are positive
invoking the Naimark theoref®3], which shows that a non- semidefinite and form a resolution of the identity. This result
orthogonal POM in the Hilbert space of the initial state cancan be applied to determine the effect of nonideal photode-
always be reexpressed in terms of @thogonalprojection  tectors on projection synthesis schemes.
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