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Optical measurements as projection synthesis
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We present an extension of the projection synthesis technique which allows us, at least in principle, to
determine the probability distribution for any physical observable associated with a quantized optical field
mode. This probability can be inferred from the photodetection statistics obtained by causing the field mode to
be measured to interfere with a second mode prepared in a suitable reference state. We give an explicit
expression for the required reference state. Weak-field homodyne detection using photon counting is, perhaps,
the simplest system to which projection synthesis can be applied. We find the complete set of synthesized
projectors for this system and show that they form a probability operator measure. We apply this set of
projectors to study the discrimination between coherent states and to measure a quasiprobability distribution.
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I. INTRODUCTION

Homodyne detection@1–3# is a measurement scheme th
can be used to detect nonclassical phase dependent fea
of a quantum optical field. The measurement is performed
coupling the input field to a coherent state local oscilla
using a beam splitter. This local oscillator acts as a ph
reference which enables the phase-sensitive properties o
signal field to be obtained by realizing a measurement of
quadrature phases@4–7#. Homodyne detection has als
found applications in, for example, the direct measurem
of quasiprobability distribution functions@8–10# and in the
deduction of the photon statistics@11,12# of a field mode.
Homodyne detection has been applied to obtain a comp
description of the state of a field mode by constructing eit
its Wigner function@13–17# or its density matrix@18–21#. In
conventional homodyne detection the local oscillator field
prepared in a strong coherent state. It follows that the be
splitter output beams are large in amplitude and appro
mately equal in intensity, allowing for their detection as ph
tocurrents. In balanced homodyne detection the differe
between the two output photocurrents is taken to obtain
difference photoelectron count probability distribution. Th
difference photocurrent distribution is proportional to t
quadrature probability distribution for the input light@1–4#.
It was shown in a seminal paper by Yuen and Chan@22# that
the local oscillator noise in the output is eliminated when
50-50 beam splitter is used. Any resulting quantum fluct
tions in the output of this balanced homodyne detector
necessarily related to the quantum noise of the input st
This highlights the usefulness of homodyne detection in t
it allows the quantum properties of a system to be amplifi
enabling a measurement in the macroscopic environmen
be performed.

Projection synthesis can be used to determine the p
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ability distributions of quantum optical observables. T
method was originally proposed as a means for measu
the optical phase probability distribution@23,24#. It involves
the synthesis of a projection operator, the expectation va
of which is proportional to the canonical phase probabil
distribution. A measurement of theQ function by projection
synthesis has also been proposed@25#. We have also demon
strated physical truncation of an optical state by project
synthesis using a ‘‘quantum scissors’’ device which acts
prepare a chosen superposition of the vacuum and o
photon states@26#. Projection synthesis, like homodyne d
tection, exploits the interference between the field mode
be measured and a second field mode prepared in a refer
state. With projection synthesis, however, the strong~quasi-
classical! coherent state local oscillator is replaced by
mode prepared in a known quantum state with small m
photon number. This means that the signal comprises s
numbers of photons rather than a macroscopic photocur
and photon counting techniques can be employed.

In this paper we shall describe the application of proje
tion synthesis to obtain the probability associated with a
eigenvalue of any observable of a single field mode. We
coherent states are the most readily available pure quan
states and are, therefore, most readily available for use
reference states in projection synthesis. We will analyze p
jection synthesis with weak coherent states using ineffic
photodetectors and compare and contrast our results
homodyne detection using strong coherent states. We pre
the probability operator measure~POM! @27–29# which
characterizes the entire measurement process. In Sec. IV
will apply this POM to the problem of discriminating be
tween~nonorthogonal! coherent states@30# and to the mea-
surement of a quasiprobability distribution.

II. MEASUREMENTS USING PROJECTION SYNTHESIS

Once the state of a quantum system is known, it is p
sible to deduce all of its physical properties. That is, we c
reproduce the probability distributions associated with
measurement of any observable of that system. With the

-
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3260 PRA 58PHILLIPS, BARNETT, AND PEGG
vent of optical homodyne tomography@14–17#, a determina-
tion of the Wigner function is performed to eventually yie
the density matrix elements of the state. Recently, it has b
shown that the density matrix can be constructed direc
without the need to evaluate the Wigner function beforeha
through the use of more efficient algorithms@18–21#. These
processes, however, are extremely information intens
since a measurement of a large number of quadrature p
ability distributions is required to completely characterize
state@13#. For some applications, a more direct approach
measuring a specific property of the state would be desira
Also, of course, it is of interest to know how particul
physical properties can in principle be measured without
taining sufficient information to determine the state.

Projection synthesis provides the means to perform
measurement of the probability distribution associated w
any given observable. This is achieved by preparing a spe
reference state so that the probability of finding spec
numbers of photons in the two output modes is proportio
to the expectation value of the projector formed from a p
ticular eigenstate of the chosen observable. Measureme
the expectation values associated with all of the eigenst
then gives the associated probability distribution. We ha
previously described the application of projection synthe
to the measurement of the canonical phase probability di
bution @23,24#. Here we derive the required form of the re
erence state associated with measurement of any eigen
of a given observable.

Consider a lossless beam splitter with input and out
modesa and b, as shown in Fig. 1. If the input fields ar
quantized, then the field in each arm can be characterize
an appropriate single-mode annihilation operator. The ac
of a beam splitter is to transform the input field states l
early, and for a 50-50 beam splitter the unitary transform
tion relating the output and input states is@31#

R̂5expF ip

4
~ b̂†â1â†b̂!G

5exp~ i b̂†â!expF ln 2

2
~ b̂†b̂2â†â!Gexp~ i â†b̂!. ~1!

The signal stateu f & input in modea is coupled to a genera
reference stateuB&5(br ur & entering modeb of the beam
splitter. The probability of detectingn1 andn2 photons in the
output modesa and b can be found from an ensemble
measurements using two photodetectors. This is the u
way of analyzing measurements with beam splitters in qu

FIG. 1. Schematic representation of a beam splitter with in
and output modesa andb, as indicated by the arrows.
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tum optics and answers the following question: given t
known input states into a beam splitter, what is the proba
ity of the photon number at each detector in the outp
Projection synthesis is perhaps most readily appreciated
working backwardsfrom the measured photocounts. Give
the output photon number counts, we can perform a trans
mationback in time through the beam splitter to deduce th
stateuc in& which would produce these counts with unit pro
ability. We then ask the question: what is the probability th
the combined input signal and reference stateu f &a^ uB&b will
be found in uc in&? This leads us to associate the detec
numbers of photons with the action of a projector on t
input state. The form of this projector depends on both
numbers of photons detected and the form of input refere
state uB&b . Upon evolution of the output photon numbe
states back through the beam splitter, we can deduce
form of the reference state needed to synthesize the requ
projector. The primary aim of this section is to find the ge
eral form of this reference state that will enable the measu
ment of the probability associated with any value of a
observable to be performed.

The appearance of the measured photon numbersn1 in
output arma andn2 in output armb can be associated with
a combined output number stateucout& given by

ucout&5un1&a^ un2&b . ~2!

This combined output state can be evolved back through
beam splitter to form an expression for the inferred entang
state of input modes

uc in&5R̂†un1&a^ un2&b

5R̂†
1

An1!n2!
~ â†!n1~ b̂†!n2u0&a^ u0&b

5R̂†
1

An1!n2!
~ â†!n1~ b̂†!n2R̂u0&a^ u0&b , ~3!

where we have used the unitarity ofR̂ and the fact thatR̂†

acting on the two-mode vacuum leaves the state unchan
It can be shown that@31#

R̂†â†R̂5
1

A2
~ â†2 i b̂†!, ~4!

and

R̂†b̂†R̂5
1

A2
~ b̂†2 i â†!. ~5!

These relations allow us to write the input state as

uc in&5
22~n11n2!/2

An1!n2!
~ â†2 i b̂†!n1~ b̂†2 i â†!n2u0&a^ u0&b .

~6!

This is the entangled input state required to produce the m
sured photoelectron counts at the outputs of a 50-50 b
splitter. It can be readily seen that the probability of findi
n1 andn2 photocounts in the output modesa andb is simply
the modulus squared of the projection of the combined in

t
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PRA 58 3261OPTICAL MEASUREMENTS AS PROJECTION SYNTHESIS
stateu f &a^ uB&b onto the entangled stateuc in&. This probabil-

ity is given by P(n1 ,n2)5a^ f uP̂(n1 ,n2)u f &a , the expecta-

tion value of the projection operatorP̂(n1 ,n2)
5^Buc in&^c inuB&. This in turn is equal touAu22 multiplied
by the projection operator onto a pure stateA^Buc in& where
the factorA normalizes the state and, from Eq.~6!

^Buc in&5
22~n11n2!/2

An1!n2!
(
l 50

n1

(
m50

n2 S n1

l D S n2

mD
3bl 1n22m* ~2 i ! l 1m

3A~n11m2 l !! ~ l 1n22m!! un11m2 l &a ,

~7!

where

S n1

l D
is the binomial coefficient. To obtain the probability asso
ated with the desired eigenvalue of the chosen observabl
set

A^Buc in&5uf&5(
p

cpup&, ~8!

whereuf& is the eigenstate of the Hermitian operator for t
chosen observable that corresponds to this eigenvalue.
required probability is then equal touAu2 multiplied by the
measured output photon number probabilityP(n1 ,n2). Pro-
jecting both sides of Eq.~8! onto the number stateur & yields,
using Eq.~7!,

cr5A
22~n11n2!/2

An1!n2!
bn11n22r* A~n11n22r !! r !

3 (
m5M1

M2 S n1

n11m2r D S n2

mD ~2 i !n112m2r , ~9!

where M15max(0,r 2n1) that is, the larger of 0 andr
2n1 , and M25min(r ,n2). Thus the coefficients of the re
quired input reference state are

br5
2~n11n2!/2An1!n2!cn11n22r*

A* A~n11n22r !! r !

3F (
m5M3

M4 S n1

m1r 2n2
D S n2

mD i 2m2n21r G21

, ~10!

where M35max(0,n22r ) and M45min(n11n22r ,n2),
provided the term in the square brackets is not zero. If i
zero for a particular choice ofn1 and n2 then a different
choice ofn1 or n2 should be made. It has been shown th
for the particular case of the measurement of the canon
phase distribution with the choicen250 a reciprocal bino-
mial state is needed for the reference state@23,24#. The val-
ues ofr range from zero ton11n2 so only the firstn11n2
11 terms in the photon number expansion of the signal s
will contribute to P(n1 ,n2). Thus n11n2 must be chosen
-
we

he

s

t
al

te

large enough for this effective truncation of the signal st
to have a negligible effect. As the sum ofubr u2 must be unity
we find from Eq.~10! that

uAu252~n11n2!n1!n2! (
r 50

n11n2 ucn11n22r u2

~n11n22r !! r !

3UF (
m5M3

M4 S n1

m1r 2n2
D S n2

mD i 2m2n21r G21U2

.

~11!

This allows us to findbr and also provides us with the facto
we need to multiply the measured probabilityP(n1 ,n2) to
obtain the probability associated with the desired eigenva
of the chosen observable. This factor is expressed in term
the coefficients of the corresponding eigenstateuf&. Con-
versely, if we have a known reference state combined w
the signal state, expression~9! can be exploited to deduce th
nature of the observable whose distribution is measured
the beam splitter and photodetectors.

In summary, we have found that the technique of proj
tion synthesis proposed to measure canonical phase ca
extended to determine probabilities associated with
physical observable of a quantized field mode. Project
synthesis has a distinct advantage over other schemes in
only one device is needed to measure any physical prop
of the system; it provides a means to generalize the meas
ment process. However, this benefit is offset by the neces
of having to prepare general reference states. This prob
has been addressed in our previous paper@24# where it was
shown that, in principle, any reference state can be fabrica
provided one can generate an arbitrary superposition of
u0& andu1& states. We have also proposed a scheme to ph
cally truncate quantum states@26#. These techniques, base
upon the ideas of conditional output measurements, have
potential for fabricating exotic quantum states@11,32#.

III. HOMODYNE MEASUREMENT AS PROJECTION
SYNTHESIS

The signal in balanced homodyne detection is the diff
ence between two photocurrents produced by the inter
ence between the field mode being measured and an inte
coherent local oscillator. In projection synthesis, both
field under investigation and the reference state are in
quantum regime of low photon number and the number
photocounts registered at each detector forms the signa
this section we investigate the weak local oscillator limit
homodyne detection as an example of projection synthes

As with conventional balanced homodyne detection,
have a local oscillator in a coherent stateua&, acting as a
reference state, input into armb of a beam splitter. This loca
oscillator is combined with the signal state input into arma
of the beam splitter. We do not subtract the output photo
tector counts but instead we record individual photons
each output arm. The technique of projection synthesis
be used to obtain an expression for the probability opera
measure@27–29# characterizing the homodyne detection pr
cess using photoelectron counting techniques. The proba
ity operator measure approach is an extension of the stan
von Neumann picture of measurement in quantum optics
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3262 PRA 58PHILLIPS, BARNETT, AND PEGG
which the initial system is coupled to a probe system.
standard von Neumann measurement is performed on
combined system and provides a more general view of m
surement~see Appendix A!. Once the POM for a system ha
been found we can find the probabilities associated with
possible experimental outcomes. It should be noted that
set of possible outcomes, and therefore the form of the a
ciated POM, is different from that found for balanced hom
dyne detection, which depends only on the difference
th
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tween the two photocurrents. It follows that, unlike balanc
homodyne detection@22#, projection synthesis is sensitive t
noise associated with the reference state.

In projection synthesis with a weak coherent referen
state, the detected signal is in the form of discrete photoe
tron counts and this can be measured using perfect phot
tectors. By applying the analysis of the preceding section
find a representation of the POM element formed using p

fect detectorsP̂P(n1 ,n2) in the form
P̂P~n1 ,n2!5b^auc in&^c inua&b5b^auR̂†un1&aun2&bb^n2ua^n1uR̂ua&b

5
1

n1!n2! b^auR̂†~ â†!n1~ b̂†!n2:exp~2â†â!exp~2b̂†b̂!:ân1b̂n2R̂ua&b , ~12!
at

the
er

sing
a

on-

e

on-
where the colons denote normal ordering. We can write
operator product appearing in Eq.~12! as

~ â†!n1~ b̂†!n2:exp~2â†â!exp~2b̂†b̂!:ân1b̂n2

5S 2]

]l D n1S 2]

]m D n2

:exp~2lâ†â!exp~2mb̂†b̂!:ul5m51 ,

~13!

so that Eq.~12! can be expressed in terms of a mome
generating operatorL̂,

P̂P~n1 ,n2!5
1

n1!n2! S 2]

]l D n1S 2]

]m D n2

L̂~a,l,m!ul5m51 ,

~14!

where

L̂~a,l,m!5expF2
1

2
~l2m!iaâ†G

3:expF2
1

2
~l1m!â†âD :expF1

2
~l2m!ia* âG

3expF2
1

2
~l1m!uau2G . ~15!

To prove that the projection operatorsP̂(n1 ,n2) form a
POM that describes the photoelectron count measureme
the presence of the reference state, we must ensure

P̂(n1 ,n2) forms a resolution of the identity

(
n150

`

(
n250

`

P̂~n1 ,n2!51̂. ~16!

Upon expansion of the left hand side of Eq.~16! and appli-
cation of the resolution of the identity on the number st
basis, we obtain@11#
e

t

in
hat

e

(
n150

`

(
n250

`

P̂~n1 ,n2!

5 (
n150

`

(
n250

`

^auc in&^c inua&

5b^auR̂†S (
n150

`

(
n250

`

un1&aun2&bb^n2ua^n1u D R̂ua&b

51̂. ~17!

The formation of the resolution of the identity proves th

P̂(n1 ,n2) is indeed a POM element.
For practical purposes, it is necessary to account for

effects of finite detector efficiencies. It is possible to recov
the ideal detector statistics from the detected statistics u
sufficiently good detectors@33# although here we adopt
different approach~see Appendix B!. The detection ofn
photons is equivalent to projecting the state entering the n
ideal photodetector onto the mixed-state projector@34#

Pn5
1

n!
~hâ†!n:exp~2hâ†â!:ân. ~18!

For an ideal photodetector withh51 the state that enters th
detector is projected down onto theun&^nu projector as ex-
pected. By applying the result in Eq.~18! to the analysis of
homodyne measurement using projection synthesis, Eq.~14!
becomes

P̂ I~n1 ,n2!5b^auPn1
Pn2

ua&b

5
1

n1!n2! S 2]

]l D n1S 2]

]m D n2

L̂~a,hl,hm!ul5m51 .

~19!

The POM element formed,P̂ I(n1 ,n2), is the projector that
corresponds to the finite-efficiency detection ofn1 counts in
detectorc andn2 counts in detectord for a weak homodyne
measurement. Equivalently, this result can be found by c
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PRA 58 3263OPTICAL MEASUREMENTS AS PROJECTION SYNTHESIS
sidering the effect of finite-efficiency detectors on the fo
of the moment-generating operator in Eq.~15!.

We have seen that the individual photon number cou
can be used to form a POM in a variant of conventio
homodyne detection. The projection synthesis descrip
differs from that associated with balanced homodyne de
tion in that only a weak local oscillator is employed and th
the measurement comprises the numbers of photons obta
in both output modes. We can obtain the projection synth
description of balanced homodyne detection by adding
gether all of the POM elements corresponding to the sa
photon number difference (n12n2) and then taking the limit
of a large amplitude coherent reference state. In effect,
projectors in balanced homodyne detection form a subse
the elements formed in the above example of projection s
thesis. We obtain more information in our method than j
the difference in the output photon counts and therefore
possible to perform more general measurements on the i
state. In the next section we will apply this POM to chara
terize a measurement that cannot be performed by meas
a quadrature component of the input state.

IV. DISTINGUISHING BETWEEN COHERENT STATES

In this section we apply the results derived above to fo
a POM that fully characterizes the outcomes of measu
ments on a nontrivial system used to discriminate betw
~nonorthogonal! coherent states. The difficulties inherent
the measurement of nonorthogonal states ensure the sec
of certain quantum cryptographic protocols@35#. If a system
is known to be in either of two nonorthogonal states, the
is impossible to determine with certainty which one of the
states the system is in. Consider a single system prepar
one of two nonorthogonal statesua& andub&, each with ana
priori probability of occurrence of one-half. These are n
the nondegenerate eigenstates of a Hermitian operator
therefore cannot be distinguished with complete certain
There are two approaches that can be used to discrimi
between these nonorthogonal states; one is by allowing f
minimum probability of error and the other is by performin
an optimum error-free measurement@36#. With the first
scheme, we can determine in which state the system
prepared, leaving us with a minimum probability of err
given by the Helstrom bound@27#. The second scheme wa
devised by Ivanovic@37# and subsequently refined by Diek
@38# and Peres@39#. This measurement scheme leads to
errors but has the possibility that the result of the meas
ment will be inconclusive. The minimum allowed probabili
for the inconclusive outcome is equal to the modulus of
overlap betweenua& and ub&. This bound provides a way to
determine whether a measurement scheme is an optimal

Huttneret al. @30# have shown that an optimal error-fre
discrimination between two coherent statesua& and u2a&
can be performed using a 50-50 beam splitter to superp
the field mode known to be in one of these states wit
mode prepared in the coherent stateu ia& ~see Fig. 2!. We can
view this state discrimination scheme as a special case o
analysis presented in Sec. III with the input state being
of the two coherent statesua& andu2a&. Instead of using the
photon number distribution to synthesize a probability dis
bution, we simply distinguish between the two possible p
ts
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measurement input states. We analyze this state discrim
tion technique by using projection synthesis to form t
POM that fully describes the possible results of the meas
ment and show that these POM elements can be recast
an expression for a quasiprobability function of the inp
state.

The 50-50 beam splitter depicted in Fig. 2 transforms
input stateu6a&au ia&b into the output state

R̂u6a&au ia&b5U 1

A2
~6a2a!L

a

U i

A2
~a6a!L

b

. ~20!

One of the resulting output modes is in its vacuum sta
while the other is in a coherent state with mean photon nu
ber 2uau2. It follows that ideal photon counting will unam
biguously reveal the unknown input state,ua& or u2a&, un-
less there are no photons detected at either detector.
probability for this inconclusive result to occur is simply

z^0u2A2a& z25 z^0u iA2a& z25exp~22uau2!. ~21!

For perfect photodetectors, this is equal to the modulus of
overlap of the two coherent statesua& and u2a& and there-
fore achieves the Ivanovic-Dieks-Peres bound for error-f
state discrimination@30#. There are, in principle, four pos
sible outcomes of the measurement, although only three
these are actually possible. These outcomes can be ch
terized by a POM.

We can form the nonorthogonal projector correspond
to n1 counts recorded in the detector in output arma andn2
detected in armb, as described in the preceding section. T
is given by

P̂ I~n1 ,n2!5b^ iauR̂†P̂n1
P̂n2

R̂u ia&b

5
1

n1!n2! S 2]

]l D n1S 2]

]m D n2

L̂~ ia,hl,hm!ul5m51 ,

~22!

wherea is replaced withia in Eq. ~19!. The POM projectors
so formed can be grouped together and associated with
different conclusions. When we observe counts in output a
b and none in output arma, then we can be certain that ou
original input state wasua&. For brevity, this outcome can b

denoted by the POM elementsP̂ I(a). Similarly, for the situ-

FIG. 2. Schematic representation of the Huttner-Imoto-Gis
Tor beam splitter arrangement for discriminating between cohe
states.
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3264 PRA 58PHILLIPS, BARNETT, AND PEGG
ations where we measure zero counts in armb with n1Þ0
counts in arma, the premeasurement state isu2a& with
certainty and the corresponding POM elements are lab

P̂ I(2a). As we have seen, the inconclusive outcome occ
when we observe zero counts in both output arms and

POM element is termedP̂ I(?). Finally, for completeness
we include the physically unrealistic case where the PO

elementP̂ I(O” ) describes the measurement when we de
photoelectrons inboth output arms. The first two POM ele
ments are clearly sums of individual projectors but nevert
less, we can construct each of these elements explicitly
then verify the probabilities obtained for each different o
come. The inconclusive POM element is found simply
settingn1 andn2 equal to zero in Eq.~22!,

P̂ I~?!5P̂ I~0,0!5L̂~ ia,hl,hm!ul5m51

5:exp~2hâ†â!:exp~2huau2!. ~23!

The POM element representing measurement of the in
stateua& can be found from

P̂ I~a!5P̂ I~n150,n2Þ0!5P̂ I~0,any!2P̂ I~0,0!. ~24!

The POM elementP̂ I(0,any), associated with zero coun
recorded in output modea and any number of counts i
modeb, can be obtained from Eq.~22! as

P̂~0,any!5 (
n250

`
1

n2! S 2]

]m D n2

L̂~ ia,hl,hm!ul5m51

5expS 2]

]m D L̂~ ia,hl,hm!ul5m51

5L̂~ ia,hl,h~m21!!ul5m51

5:expF2
h

2
~ â†2a* !~ â2a!G :. ~25!

Hence the POM element associated with the conclusive
sult that the input state wasua& is

P̂ I~a!5:expF2
h

2
~ â†2a* !~ â2a!G :

2:exp@2h~ â†â1uau2!#:. ~26!

Similarly, the POM element which is realized in a measu
ment of theu2a& input state is

P̂ I~2a!5:expF2
h

2
~ â†1a* !~ â1a!G :

2:exp@2h~ â†â1uau2!#:. ~27!

We note thatP̂ I(2a) can be obtained fromP̂ I(a) by the
simple replacement ofa with 2a. Since POM elements
form the resolution of the identity, the last remaining e
ment is

P̂ I~B !51̂2P̂ I~?!2P̂ I~a!2P̂ I~2a!, ~28!
ed
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is
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-
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whereB denotes a zero probability of occurring, and ? d
notes an inconclusive result. We can now deduce the p
abilities of the various outcomes for the two possible inp
states. The probabilities resulting from an input state ofua&
are simply given by the expectation value of the relev
POM elements and these are

P~?!5exp~22huau2!, ~29!

P~a!512exp~22huau2!, ~30!

P~2a!50, ~31!

P~O” !50. ~32!

These probabilities, for unit detector efficiency, are exac
the same as those given in@30# and verify that the POM
elements constructed above are indeed correct. Similarly
an input state ofu2a&, the expected probabilities are ob
tained. The POM elements associated with projection s
thesis using weak coherent states can therefore be comb
in order to coincide with the outcomes of the state discrim
nation scheme devised by Huttneret al. @30#. The inclusion
of the factorh in the moment-generating operatorL̂ has a
detrimental effect on the possibility of discriminating b
tween coherent states. We note, however, that finite dete
efficiency does not introduce any errors in thatP(2a)50.
We find that the inconclusive probabilityP(?) no longer
reaches the Ivanovic-Dieks-Peres bound. Foruau251, the
probability of the inconclusive result for the ideal detector
0.135, whereas the corresponding probability with a dete
efficiency of one-half is 0.368. The latter probability is mo
than twice the probability required to satisfy the Ivanov
Dieks-Peres bound.

It has recently been proposed that a measurement of
s-parametrized quasiprobability distributions can be p
formed using simple photon counting techniques@8–10#. It is

interesting to note that the POM elementP̂ I(0,any) obtained

from the sum of synthesized projectors(nP̂ I(0,n) is also
related to a quasiprobability distribution. A general expre
sion for the s-parametrized quasiprobability distribution
W(a,s), for s,1, is given by@31#,

W~a,s!5^D̂~a!T̂~s!D̂†~a!&, ~33!

where

T̂~s!5
2

p~12s!
:expS 2

2

12s
â†âD :. ~34!

W(a,s) can be reexpressed in terms of the expectation va
of a normally ordered operator@8#,

W~a,s!5
2

p~12s!K :expF2
2

12s
~ â†2a* !~ â2a!G : L .

~35!

The Wigner function and theQ function can be constructe
when the parameters has the values of 0 and21, respec-
tively. The formation of the probability operator measure
the coherent state discrimination scheme enables us to
struct a quasiprobability distribution function characterizi
the input state. The expectation value of the projector giv
in Eq. ~25! is
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P~0,any!5^P̂ I~0,any!&5 K :expF2
h

2
~ â†2a* !~ â2a!G : L

5
2p

h
WS a,

h24

h D . ~36!

Upon rearrangement, we can deduce thes5124/h qua-
siprobability distribution function

WS a,
h24

h D5
h

2p
P~0,any!. ~37!

The probability operator measure representation of the ab
scheme has provided us with enough information to rec
struct the input state via its quasiprobability distribution. T
quasiprobability distributionW(a,23) can be constructed
when using ideal photodetectors. This is a very broad q
siprobability distribution, even more so than theQ function,
but it is nevertheless a complete description of the state.
a 50% efficient photodetector, the quasiprobability distrib
tion function measured isW(a,27). This distribution is
smoother and broader than thes523 parametrized qua
siprobability distribution measured using ideal detectors.

V. CONCLUSION

The projection synthesis approach involves deducing
probability distribution for any observable of an unknow
field by measuring the properties of a two-field syste
coupled by a beam splitter, where the state of the probe fi
is known. In this context it can be seen that there is so
parallel with a recent suggestion@40# for deducing an atomic
density matrix by measuring properties of a coupled ato
field system, where the initial state of the probe field
known.

In this paper we have shown how projection synthesis
be applied to obtain the probability associated with a
eigenstate of any observable associated with a single
mode. A series of such measurements will yield the proba
ity distribution for any observable. The method relies on c
herently mixing the field to be measured with a suitably p
pared reference state using a 50-50 beam splitter followe
high efficiency photon counting. We have given an expli
expression for the number state amplitudes of the requ
reference state. Such states can, in principle, be synthes
using a succession of beam splitters and a superpositio
the vacuum stateu0& and the one-photon number stateu1&
@24#. The necessary state preparation can also be perfor
using a ‘‘quantum scissors’’ device@26#. We have examined
the connection between homodyne detection and projec
synthesis using weak coherent states. The projection syn
sis differs from balanced homodyne detection in that the
erence coherent state for projection synthesis must be in
quantum regime of low photon number and in that the p
tocounts registered at both detectors are required and no
the difference between them. We have given the POM
ments associated with projection synthesis using cohe
states and have shown how these can be applied to an
the discrimination between two possible coherent states@30#.
We have also shown how they can be applied to mak
connection between the measured photon statistics an
ve
-
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field mode quasiprobability distribution~see also@8–10,25#!.
An analysis of the effects of using finite-efficiency detecto
in projection synthesis has been performed.

We have described projection synthesis in terms of
evolution of a state corresponding to the detected pho
numbers back through the beam splitter and then projec
this onto the product state formed from the state to be m
sured and the reference state. This view of measurement
some ways reminiscent of retrodiction@41# and we shall ex-
plore this idea more fully elsewhere.
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APPENDIX A: PROBABILITY OPERATOR MEASURES

In quantum mechanics, an observable is any phys
quantity that can be measured. Such a quantity can be re
sented by a Hermitian operatorÂ that acts on its associate
eigenvectorsuai& to form the eigenvalue equationÂuai&
5ai uai& in the Hilbert spaceH. SinceÂ is Hermitian, the
eigenvaluesai are real numbers and the eigenvectorsuai&
form a complete set allowing a pure state to be represe
as a linear expansion of eigenvectors. The eigenvectors
orthonormal and complete so that they form the resolution
the identity in anN-dimensional Hilbert spaceHN given by

(
i 50

N

uai&^ai u51̂, ~A1!

whereuai&^ai u are the projection operators that character
the measurement.

The standard quantum mechanical picture of a meas
ment is based upon the ideas of von Neumann@42#. An ideal
von Neumann measurement transforms the premeasure
state to the eigenstate of the measured observable which
responds to the observed eigenvalue. The probability of
taining the eigenvalueai is

P~ai !5TrN~ r̂uai&^ai u!, ~A2!

wherer̂ is the density operator of the state immediately b
fore measurement and the trace is performed over
N-dimensional Hilbert spaceHN of the system. With this
conventional von Neumann view of the measurement p
cess in quantum mechanics, we can obtain all of the stat
cal data needed to determine the probability distributions
observables of the quantum state under investigation.

The idea of a probability operator measure can be use
provide a more general description of measureme
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@27–29#. Essentially, a POM is an extension of the von Ne
mann approach in which the measurement is described
the coupling of the quantum system under investigation t
probe systemP. The combined density matrix of the couple
system is the tensor product of the initial quantum state
the probe stater̂ ^ r̂P . We have, in effect, an extension o
the Hilbert space fromHN to HN^HP upon which a von
Neumann measurement of an observable associated
both systems is performed. The probability of obtaining
resultbi is now given by

P~bi !5TrN~ r̂P̂ i !, ~A3!

where P̂ i are the family of operators that form the PO
which describes the measurement and are defined by

P̂ i5TrP~ r̂Pubi&^bi u!, ~A4!

and ubi& is a state in the spaceHN^HP .
In order to ensure thatP(bi) represents a true probability

P̂ i must be nonnegative definite and self-adjoint. The n
malization of the probability distribution for all possibl
measured states implies the following resolution of the id
tity:

(
i 50

M

P̂ i51̂, ~A5!

where M can be larger than the dimension of the Hilbe
spaceHN of the initial system.

In general, we have more POM elementsP̂ i than dimen-
sions of the initial Hilbert space of the system under inv
tigation. As such, the POM elements are not always ortho
nal even though they correspond to distinct experime
outcomes. This highlights the crucial difference between
two classes of measurements. POM elements are in ge

nonorthogonal withP̂ iP̂ jÞd i j P̂ i and in contrast with this,
standard von Neumann measurements are strictly orthog

projections withP̂ iP̂ j5d i j P̂ i . At first glance, it seems a
though the association of the nonorthogonal POM eleme
with different measurement outcomes is in disagreem
with fundamental measurement theory in quantum mech
ics; to measure an observable, we need to project onto
orthogonal basis set. This apparent paradox is resolved
invoking the Naimark theorem@43#, which shows that a non
orthogonal POM in the Hilbert space of the initial state c
always be reexpressed in terms of anorthogonalprojection
EE
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in the higher dimensional spaceHN^HP as described above
As a result, every POM corresponds to an orthogonal pro
tion, albeit in a larger Hilbert space, in line with standa
quantum measurement theory.

APPENDIX B: FINITE DETECTION EFFICIENCY

It is necessary to consider the problem of finite-efficien
detectors in projection synthesis. Consider a detector with
efficiencyh used to measure a mode containing preciselym
photons. The consequence of this inefficiency is that not
of the incident photons are converted into photoelectro
This can be modeled by considering, in place of the nonid
detector, a combination of a lossless beam splitter and
ideal photodetector@31#. The photons are incident into on
arm of the beam splitter and are coherently combined wit
vacuum state input from the other port. The probability tha
photon is detected is related to the transmission probabilith
of the beam splitter. Only photons that pass through the id
beam splitter are measured by the photodetector and the
is modeled by the existence of unmeasured reflected phot
Them photons incident on the nonideal detector will lead
n photoelectron pulse with probability

Pdet~n!5S m

n Dhn~12h!m2n. ~B1!

If, however, we have an input state with a probability
containingm photons given by the expectation value of t
projectorum&^mu, then the corresponding output photocou
probability distribution is modified to@2,3,31,44#

Pdet8 ~n!5 (
m50

` S m

n Dhn~12h!m2nP~m!. ~B2!

This is simply the sum of the probability of detectingn pho-
tons whenm are present multiplied by the probabilityP(m)
that the input field hadm photons. The detection ofn pho-
tons is equivalent to projecting the state entering the nonid
photodetector onto the mixed-state projector@34#

Pn5
1

n!
~hâ†!n:exp~2hâ†â!:ân. ~B3!

These are indeed POM elements since they are pos
semidefinite and form a resolution of the identity. This res
can be applied to determine the effect of nonideal photo
tectors on projection synthesis schemes.
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