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Effects of atomic diffraction on the collective atomic recoil laser
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We formulate a wave-atom-optics theory of the collective atomic recoil I@3ARL) where the atomic
center-of-mass motion is treated quantum mechanically. By comparing the predictions of this theory with those
of the ray-atom-optics theory, which treats the center-of-mass atomic motion classically, we show that for the
case of a far off-resonant pump laser the ray-optics model fails to predict the linear response of the CARL
when the temperature is of the order of the recoil temperature or less. This is due to the fact that in this
temperature regime one can no longer ignore the effects of matter-wave diffraction on the atomic center-of-
mass motion| S1050-294®8)00510-]

PACS numbgs): 42.55—f, 42.50.Vk, 03.75-b

I. INTRODUCTION tation of these experimenf8], mostly concerning the pres-
ence of a large Doppler broadening, and the possibility of
The collective atomic recoil laser, or CARL, is the atomic gain mechanisms not necessarily related to atomic recoil. An
equivalent of the free-electron laddr]. Developed theoreti- unambiguous demonstration of the recoil related gain mecha-
cally by Bonifacio and co-worker2—6], the CARL device nism was performed by Courto&t al. [10], who observed
has three main componentd) the active medium, which small signal probe gain in a gas of cold cesium atoms. The
consists of a gas of two-level atom&) a strong pump laser absence of a ring cavity for probe feedback in this experi-
which drives the two-level atomic transition, af@ a ring  ment, however, means that the observed gain was mainly a
cavity which supports an electromagnetic mdtlee probé  single-atom recoil effect, not the collective gain of the
counterpropagating with respect to the pump. Under suitabl€ARL system.
conditions, the operation of the CARL results in the genera- The CARL theory developed by Bonifacet al. consid-
tion of a coherent probe field due to the following mecha-ers the atoms either as classical point particles moving in the
nism. First, a weak probe field is initiated by noise, eitheroptical potential generated by the light fields, or, in a “hy-
optical in the form of spontaneously emitted light, or atomicbrid” version [11], as particles whose center of mass is la-
in the form of density fluctuations in the atomic gas whichbeled by their classical position, but with quantum fluctua-
backscatters the pump. Once initiated, the probe combind#ns about that position included. From an atom-optics point
with the pump field to form a weak standing wave which actsof view, such theories can be described as ‘“ray-atom-
as a periodic optical potentidlight shift). The center-of- optics” treatments of the atomic field, in analogy with the
mass motion of the atoms on this potential results in a buncherdinary ray-optics treatment of electromagnetic fields.
ing (modulation) of their density, very much like the com- Like ordinary ray optics, the ray-atom-optics description
bined effects of the wiggler and the light field leads toof CARL is expected to be valid provided that the character-
electron bunching in the free-electron laser. This bunchingstic wavelength of the matter-wave field remains much
process is then seen by the pump laser as the appearance afraaller than the characteristic length scale of any atom-
polarization grating in the active medium, which results inoptical element in the system. The characteristic wavelength
stimulated backscattering into the probe field. The resultingf the atomic field is its de Broglie wavelength, determined
increase in the probe strength further increases the magnitudy the atomic mass and the temperatfiref the atomic gas.
of the standing wave field, resulting in more bunching fol- The central atom-optical element of the CARL is the peri-
lowed by an increase in stimulated backscattering, etc. Thiedic optical potential, which acts as a diffraction grating for
positive feedback mechanism results in an exponentiahe atoms, and has the characteristic length scale of half the
growth of both the probe intensity and the atomic bunchingoptical wavelength. Hence the classical “ray-atom-optics”
This leads to the perhaps surprising result that the presenctescription is intuitively expected to be valid provided that
of the ring cavity turns the ordinarily stable system of anthe temperature is high enough that the thermal de Broglie
atomic gas driven by a strong pump laser into an unstablevavelength is much smaller than the optical wavelength.
system. This gives the conditiolT>Tg, the recoil temperature of
Various experiments related to the CARL have been conthe atoms, as the domain of ray-atom optics. In particular, it
ducted recently. Using hot sodium atoms, Lipgtial. [7] is certainly expected to hold under the temperature condi-
observed amplification of an injected probe laser, which theyions of the experiments performed so far.
interpreted in terms of scattering off an atomic density grat- However, the spectacular recent progress witnessed by
ing resulting from atomic recoil. Also using hot sodium at- atomic cooling techniques makes it likely that CARL experi-
oms, Hemmeet al. [8] reported spontaneous probe oscilla- ments using ultracold atomic samples can and will be per-
tions in the absence of an injected signal. These were alsiormed in the future. In particular, subrecoil temperatures
interpreted as resulting from the CARL mechanism. Therecan now be achieved almost routinely. The purpose of this
has, however, been some controversy regarding the interprpaper is to extend the CARL theory to this “wave-atom-
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optics” regime[12]. In this regime it becomes necessary to Il. RAY-ATOM-OPTICS MODEL
treat the atomic center-of-mass motion fully quantum me-
chanically, in order to preserve the wave nature of the atomic The ray-atom-opticéRAO) model of the CARL has been
motion. Thus the interaction between the atoms and théeveloped and extensively studied by Bonifacio and co-
standing wave light field should no longer be thought of inworkers[2—6]. It begins with the classical-particle Hamil-
terms of particles moving in a periodic potential, but insteadtonian
as diffraction of matter waves by a grating. As the grating
amplitude is initially asssumed to be zdiar at least infini-
tesima), the system starts in the Bragg regime, where the
free space evolutiotkinetic energy terrplays an important
dynamical role. Similar in origin to the free space diffraction wherez; andp; are the classical position and momentum of
which limits the spot size of a focused beam, this type ofthe jth atom, obeying the canonical equations of motion
diffraction effect can counteract the bunching process bydz /dt=dHy/dp; and dp;/dt=—dHy/dz;. The single-
which the atomic density grating is established. It is our goaparticle HamiltoniarH, is given explicitly by
to determine the precise limitations which this aspect of
matter-wave diffraction imposes on CARL operation. p,-2 fhwg . . kg
The wave-optics theory of the CARL is similar to the Hi(z.p)) =5+ 5 oz tiklgiare ™o
analysis of atomic diffraction by standing waJds], except .
that the electromagnetic field is now treated as a dynamical +g,a3 e""ZZJcr,j—c.c.], (2)
variable. It is also similar to the theory of recoil induced
resonancefl4], which describes the stimulated scattering ofwherem is the atomic massy, is the natural frequency of
light off a standing wave induced polarization grating, butthe atomic transition being driven by the pump and probe
the absence of a feedback mechanism for the probe feedbatdsers, and; is the atom-probe electric dipole coupling con-
in that case means that it models only single-atom gain efstant. It is given byg, = ui[cky /(2% €,V)]Y2, wherep, is
fects, and not the collective gain of the CARL. the projection of the atomic dipole moment along the probe
In this paper we focus on the case of a far off-resonanpolarizationk; is the probe wave number, atis the quan-
pump laser, thus permitting us to neglect the excited statéization volume. The atom-pump coupling constgatis de-
population and therefore to ignore the effects of spontaneouined analogously tg,, but depending o, the projection
emission(except as a hypothetical source of noise for probeof the atomic dipole moment along the pump polarization,
initiation). We further concentrate on the linear regime,andk, the pump wave number. The normal varialkdgsand
where both the probe field and the atomic bunching are cora, describe the probe and pump laser fields, respectively.
sidered as infinitesimal quantities, since it is this regime thaThey obey Maxwell’'s equation
determines whether or not the exponential instability occurs.
Finally, we restrict our analysis to atomic densities low . N ik
enough that collisions between atoms may be ignored, and aaiz—lclkilaﬁgi;l e oy, ©)
neglect the transverse motion of the atoms, which in the
absence of collisions is dgcoupled f_rom the longitudinal de'vvherec|ki| is the natural frequency of the probe=<(1) or
gree of freedom along which bunching occurs. _the pump {=2) field. Note that these equations are also
We note at the outset that our theory is semiclassical i) for quantized electromagnetic fields, provided that
that it treats the electromagnetic field classically. While this, o jnterpreted as annihilation operators, but we describe the
approximation cannot.fu'lly despnbe the statls_tlcal propertleqight fields classically in this paper.
of the CARL output, it is sufficient to describe the small- ™ 1,4 variablesr_; and a; are the expectation values of

signal gain of the system, provided that one makes the iMge quantum mechanical Pauli pseudospin operators which

plicit assumption that small fluctuations will trigger it, an describe the internal state of théh atom. They obey the

approa(_:h familiar from conve.ntional Ia}sc_ertheo_ry and_non“n'familiar optical Bloch equations, appropriately modified to
ear optics. We also emphasize that it is not inconsistent t

. : ' %¥helude the center-of-mass motion of the atoms and with
treat the matter waves quantum mechanically while treat'n%pontaneous emission neglected

the light classically, since the limits under which a quantum
description is required are independent. For light, this limit is d
usually associated with weak intensities, while for matter gt
waves it is normally a low temperature limit.

The rest of this paper is organized as follows. Section Il
briefly reviews the ray-atom-optics model of the CARL, es-
tablishing the notation and setting the stage for a comparison
of its predictions with those of the wave-atom-optics theory, — 0= 2[g,af e_iklzj—l—gza: (.;-—ikzzj]a_j +c.c. (5
which is introduced in Sec. lll. Section IV discusses the col- dt
lective instability leading to CARL operation, compares the
ray-atom optics and the wave-atom optics predictions, and
determines the domain of validity of the former theory. Sec- Spontaneous emission is neglected in anticipation of the future
tion V is a discussion and Sec. VI offers a conclusion andapproximation that the pump lasers are far off-resonant, and there-
outlook. fore the excited state population may be safely neglected.

N
Hszzl H1(z,p)), (1

o_j=—iweo_;+[giae*%i+g5ae" o, (4)

and
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It is convenient to introduce slowly varying variables via and

the transformations, =aje '“?', a,=aje '*?, ando_;

=g’ e (w2ke%) where w, is the pump frequency. The -
relation betweenw, andk, will be derived shortly in a self-
consistent manner, so as to include the dispersive effects of
the polarized atoms on the pump propagation. These new
variables obey the equations of motion

* N
—j 9192 a)> eizkos,
(wp— o) =1

(16)

d o] where we have introducek= (k; —ky)/2.
_Hi i o
i m (6) We now introduce the undepleted pump approximation,
valid in the linear regime whera; remains small. This is
o achieved by dropping the term proportionaktpin Eq. (16).
giPi= —hlaikiag* e T Dh 4+ gokaz* 1o+ cc, This yields
" Ea’=i ) —M—dk IEY (17)
N dt 2 2 ((1)2_(1)0) 2 2
—aj=i(w,—clky)aj+ e llmk)zg’ (8
groa=i(@2—clkihay 91121 it ® hich has the steady state solutiaf(t)=a,(0) provided
. that the dispersion relation
S ap=i(wr-clihart 8,3, o', © Nlg
S S E clky| = wy— (18)
(w2~ wq)
Zo=—2 1+ a=iki=k2)Z 4 o 2/ * o' +C.C. is satisfied. Equatiolil8) thus determines the magnitude of
dt 72 [9:2,7e 1+037 o tec, the pump wave number as a function of the pump frequency
(10) and other known experimental parameters.
To proceed analytically past this point, it is convenient to
and introduce the dimensionless variables;=2kyz;, P;
d K, =p;/fiko, A=010085(0)aj/[20 (w2~ wg)], and 7
aa"]—=i(w2—wo— Epj)g’j =4w,.t, where the recoil frequenay, is given by
— 2
+[graje a1 g ag]oy,. (11) o, =hky/2m. (19
These variables obey the equations of motion
In the case where the lasers are tuned far off-resonance,
and the atoms are initially in the ground state, the excited
state population remains small and can be neglected. This is 3. %i=Pi (20)
equivalent to describing the atoms as classical Lorentz at-
oms, and is accomplished by setting;=—1 in Eq. (11). d .
Assuming further that the detuning,— w, is much larger d_P‘: —iAe'%i+c.c., (21
than any other frequency in E¢L1) allows one to adiabati- T
cally eliminateo’ ; with and
’ [ [ * o/ i(kl—kz)z-+ * r] (12) d 1 N
o i~——[g]q,€ i as], A IAA—iy —i6;
j (wp— wg) g1y 92a; drA_IAA |aNJZle ', (22)

where we have in addition neglected the Doppler shiftyhere we have introduced the dimensionless control param-
kop;/m compared tav,— wgo. This leads to the reduced set

eters
of equations
N 2
d_ p A=| wy— 94| —c|k1|) / do, (23)
T4 (13 w2~ @o
and
d . tho * 1'% ot Al 2Kgzi 2 2 2 2 2
api:_'m[gl%az a;e'?f—ccl], (14 a=N|g1|*g2|*|az(0)|*/8wy (wz— wp)*. (24)
d N|gyl We note that bothA and « are real numbers, and further-
—al=i| w, 91 —clky| |a} more thata=0. The termc|ky|+N|g1|%/(w,— wg) in Eq.
dt (w2—wo) (23 is simply the natural frequency of the probe plus the
* N shift to atomic dispersion, i.e., it is the frequency of the
9% arS eizke, (15  Probe fieldw;. This means that = (w,— w1)/4o; is simply
(wy—wp) 251 the pump-probe detuning in units ofw4.
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We seek solutions of these equations which are perturba- . WAVE-ATOM-OPTICS MODEL

tions about the casa=0. Thus we make the substitutions . .
In order to quantize the center-of-mass motion of a gas of

6,= 6,(0)+ P;(0) 7+ 56, (25) bosonic atoms,' one may either utilize firgt quantiz'atio.n, and
replace the variableg andp; in the N-particle Hamiltonian
and (1) with operators satisfying the canonical commutation re-
lations [z;,p; ]1=i#%6j;,, or equivalently we can second
P;=P;(0)+ 6P;, (26)  quantize the single-particle Hamiltoni&®), introducing cre-

ation and annihilation operators for excited and ground state
where 6;(0) is randomly taken from a uniform distribution atoms of a given center-of-mass momentum. It is this second
andP;(0) is randomly taken from the initial momentum dis- method which we will adopt in deriving the wave-atom-
tribution. The new variableg6; and 6P; give the perturba- optics (WAO) model. In the absence of collisions, the
tions on the atomic center-of-mass motion due to a nonzergecond-quantized Hamiltonian is simply
A(0). We introduce finally the linearized velocity group
bunching parameter and its “conjugate” momentum accord-

ing to ﬂ:; H(k), (34
1 Ny
B(k)= N; 3p,(0) (1= 166;)e” 14O+ ROT(27) whereH (k) is given by
" . 22, 12k? fr o a
and H(k)= %c;(k)cg(k)Jr(%Jrhwo ci(K)ce(k)

N . ~t -~ ~t -~
H(k)= iz 5P . Zkapjefi[gj(oyrpj(o),-] +2kB(k) _Hﬁ[glaf Cg(k_ kl)ce(k)'i'gza; Cg(k_ kZ)Ce(k)
Nj:]_ o '

(28) —H.c], (35
We note that The field operatoc,(k) annihilates a ground state atom of
momentum#k, and f:e(k) annihilates an excited atom of
ik momentunvi k. We assume that the atoms in the sample are
Zk B(k)=(e™""?), (29) bosonic, so that these operators obey the commutation rela-
tions
and the amplitude of Eq29) is a measure of the degree of . - . -
bunching of the atomic gas. A magnitude of zero indicates [cg(k),cq(k")]=[Ce(k),Ce(K")]= Sk, (36)
no bunching, while a magnitude of one indicates maximum
bunching. This leads to the equations all other commutators being equal to zero.
With the atomic polarization now expressed in terms of
d ) field operators, Maxwell's equatior8) for the classical la-
g7 Bk =—ill(k), (30 ser fields become
d
d N(k —a=—iclkla+a clik=k) e
E-l'l(k):I[‘]_I(ZB(I()_4k1—[(k)_ |(\| )A}, (31) dtal IC|kl|al+gl2k <Cg(k kl)ce(k)> (37)
and Hence, all that is required to determine the field evolution are
the expectation values of bilinear combinations of atomic
d creation and annihilation operators. The evolution of these
d—A=i[AA—a2 B(k) |, (32 expectation values is easily obtained by introducing the
T K “single-particle” atomic density operatdfs
where N(k) is the number of atoms in the velocity group ~ N At A
with momentum 2 kyk and we have assumed that Pag(K. k") =Cg(kT)Cg(k), (38)
N _ peg kK )=[pge(k' K)]T=cy(k )ca(k), (39
>, S o€ 210=0, (33
=1 and
an assumption that requires thé¢k)> 1. Note that this for- E»ee(k,k’)=f:l(k’)6e(k). (40)

mulation implies a discretization of the initial momentum

distribution, and furthermore assumes that the atomic posi-

tions in each velocity group are initially randomly distributed

along the CARL cavity. Fluctuations in the initial distribu- 2These are single-particle operators in the sense of many-body
tions can of course readily be included into the initial condi-theory, since they only involve the annihilation of an atom in a
tions of the perturbation variables. given state and its creation in some other state.
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Note that, e.g., the expectation value of the diagonal operator N( k)

([)gg(k,k)> gives the mean number of ground state atoms plr,k’,7)= N O’ s (46)
with momentum#ik. The expectation values of these opera-

tors obey the equations of motion whereN(«), the number of atoms with initial wave number

2kok, is given by a thermal distribution function. We intro-

d L , duce the perturbation variablé(«,«’) according to
&ijf(k,k ):g<[H,ijr(k,k s (41
N
k)= L5t B (47

wherepj; ,(k,k’)=<;)“ +(k,k")). The full form of these equa-
tions is given in the Appendix. The important point is that 3nq opserve that Maxwell’s equatiéad), which becomes
they depend only op;;-(k,k"), hence they form a closed set
of equations which describe the response of the atomic field d ] .
to the driving laser fields. We note that had we included EAI'AA—WE’; op(Kk,k—=1), (49)
collisions in our model, this would no longer be the case.
Introducing in analogy to the ray-optics description thetogether with the linearized equation
rotating variables a;=aje”'“?', a,=aje '“?', and
" — o/ _ ! —iw . . d
peg(k,K')=peg(k—kz,k")e™'“2', neglecting the excited a PN _
state population, and solving adiabatically fpgy(k,k’) drép(K’K D=-1@x=1)dplx,k=1)
yields L INGO=NG=D)]
2N ’

(49

[
Peg(k,K')~————[g7aipgg(k—2Ko k")
° (= wg) =+ 71708 form a closed set of equations which underlies the dynamics
e KKk 42 of the CARL in the linear regime of wave-atom optics. We
92 32P g )] 42 note that the sum of the spatial coherence terms has the

Substituting Eq.(42) into Maxwell's equation(37) for the physical interpretation

pump and making once more the undepleted pump approxi- _
mation leads to the solutioam)(t) = a,(0) provided thatk,)| > Sp(k,k—1)=(e1%ko2), (50)
satisfies the dispersion relatigh8). We then substitute Eq. “
(42) into the equation of motion fggg(k,k’), and introduce  hich in analogy to Eq(29) measures the degree of bunch-
the dimensionless wave numbetk/2k, and the mean den- jng of the atomic gas.
sity p(x, k") = pgg(K,K")/N, in addition to the dimensionless
variables already defined in the ray-atom-optics model. We IV. COLLECTIVE INSTABILITY
arrive at the wave-optics equations of motion
The most important feature of the CARL is the appear-
) . ) ance of a collective instability, which gives rise to exponen-
Pl ) =—i(k"= k" )p(k, k") tial gain under appropriate parameter settings. This instabil-
ity is characterized by an imaginary frequency component in
i . , ) the spectrum of the probe field(7). As has been demon-
+5A Pk k"= 1) = p(x+1u")] strated in Ref[4], one needs not solve the complete set of
equations derived in the previous sections in order to deter-
mine the necessary conditions for the collective instability.
Instead, by taking the Laplace transform of these equations
one can derive a “characteristic equation” which allows one
and to determine whether exponential gain occurs, and if so what
the exponential growth rate is.

— S ALp(k— 1)~ p(’ +1)]  (43)

d For the ray-atom-optics model, the Laplace transform of
d—TA=iAA—ia2 p(k,k+1), (44)  Eq.(32) yields
~ A(0)
where the parameters and « are given by Eqs(23) and Ar(S)= R(s) " (51)

(24), respectively.
As in Sec. Il, we seek a solution which is a perturbationwhereR(s) is given by
about the cas@=0. From Eq.43), the unperturbed solution
o f(k)dk
s—iA—ia f S

is readily found to be
(s+i2k)?

R(s)= . (52

p(K,K’,T)=p(K,K',0)e_i("2_"’2)7. (45)

In obtaining this result we have taken the continuum limit
We consider specifically an atomic sample initially in ther-and assumed th&(k) andII(k) vanish atr=0, which cor-
mal equilibrium, so that Eq45) becomes responds to an initially homogeneousmbuncheg distribu-
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tion of atoms. Herd (k) is simply the normalized thermal . [ g s
distribution function for the dimensionless wave numker 5—'A—|afo e’ PSsin(p)dp=0. (58
We note that in original units an atom with dimensionless

wave numbeik has momentum 2kok. The roots ofR(s) By examining Eq.(58) we see that in the case<1 we

give the characteristic exponents of the CARL. Stability re-ore justified in expanding sip] to lowest order inp. This

quires that all roots be purely imaginary. When the collec'[ive(_:,)((,jlctIy reproduces E@56), thus showing that the WAO and

instability occurs, however, there will be one root with a g gescriptions make indistinguishable predictions about
positive real part .Th's regl part IS the RAQ exponenualthe exponential growth rate in the limit>Tg. However, for
growth ratel’s. This result is identical to that obtained by (omneratures comparable to or less than the recoil tempera-
Bonifacio and De Salv_@4]. L ture, we will see that the RAO theory fails to correctly pre-
The wave-atom-optics model, which includes the effeCtsyjqt the nehavior of the CARL in the linear regime. Physi-
of atomic diffraction, yields the Laplace transform cally, this is due to the fact that it does not account for the
effects of atomic diffraction, which tends to counteract the

Aw(s)= ﬂ (53  bunching process. Finally, we note that upon integration, Eq.
W(s) (58) becomes the transcendental equation
W(s) is given by N
i N7 BA(s2—1) s Ai2p%s :
s—iA+ > ape {e'*FSerfd B(s+i)]
Wes) = A f f(k)dk
(8)=|s=iA~ia | o o st i(2kt 1] e 126%rtq B(s— )]} =0. (59

(54)

In the next subsection we will examine in more detail the
recise manner in which diffraction interferes with the
bunching process for the special case of a zero temperature
i i ) atomic gas. But before turning to this extreme situation, we
positive real part exists, that real part is the WAO eXponen'present numerical results comparing RAO and WAO models

tial growth ratel’yy . - Vi
We see by comparing Eqé1) and(53) that the effect of :LQ (()gg)ero temperature, as determined by solving .

atomic diffraction is to lift the degeneracy of the singularity
under the integral. This expression also leads us immediatel%r
to the conclusion that if the width of the momentum distri-
butionf (k) is large compared tolkZ then the singularity will
appear as essentially degenerate, and the effects of matt
wave diffraction will be negligible. Thus the RAO and WAO
models should agree for large enough temperatures.

where we have again taken the continuum limit and assume
that p(k,k+ 1) vanishes at-=0, which corresponds to an
initially unbunched atomic sample. If a root @f(s) with a

Figures 1b)—1(d) comparel g with I'\y, at =10 for the
ee different temperature regimés-Tg, T=10Tg, and
T=100Tg, respectively. Figures(B)—2(d) show the same
comparison fore=10"1. While we see that the behavior of
%r;z andI'\, depends strongly ow (recall thata is propor-
tional to both the pump intensity and the atomic densitye
discrepancies between the two models as a function of tem-
o perature are very similar. Ak=Tg there are significant dif-
A. Finite temperatures ferences between the predictions of the RAO and WAO

In the absence of quantum degeneracies, the thermal m@2odels, but these differences become minimal atl0Tg,

mentum distribution is given by the Maxwell-Boltzmann dis- and insignificant aT =100T . We also observe that the dif-

tribution ferences are more pronounced for lower values pfnean-
ing that at lower densities and/or pump intensities, the quan-
2B ez tum mechanical behavior becomes more apparent. The
f(k)= \/—;e 7, (55 reason for this is that at high intensities the bunching pro-

cess, driven by the probe field, dominates, while at low in-
tensities the antibunching effects of atomic diffraction play a

2: — . .
whereB“=Tgr/T andTr=7% w, /Kg is the recoil temperature, larger role.

Kg being the Boltzmann constant. By substituting Esp)
into Eq. (52) and using the Fourier convolution theorem we

find that the RAO exponential growth ral& is determined B. The T=0 limit
by the equation For a typical atom, the recoil temperature is of the order
of microkelvins, e.g., for sodium we havEz=2.4 uK.
s—iA—iaf pe- p2i4p2~ psy p=0, (56) However, recent advances in cooling tec.hmque.s havg led to
0 measured temperatures as low as the picokelvin regime. At

these extreme temperatures the condifieaTy, is satisfied,
which can be integrated to give the transcendental equatione., we are effectively in th& — 0 limit. In this section we
study theT=0 case in detail in order to gain further insight
s—iA—i2a,32+i2\/;a33eﬁzszerfc(ﬁs)=o_ (570  into the exact role of matter-wave diffraction in the CARL
system.
In contrast, substituting Eq55) into Eqg. (54) and again For the RAO model, we have a single velocity group at
using the convolution theorem we find that the WAO expo-k=0. Thus by differentiating Eq.30) with respect tor and
nential growth ratd’y is determined by the equation using Eg. (31, we see that the bunching parametr
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FIG. 1. Comparison of the exponential growth rate as a function of pump-probe detutietyveen the RAJsolid line) and the WAO
(dashed ling models, for the caser=10. (a) shows the results fof=0 (see Sec. llI B, (b) shows the cas@=Tg, (c) showsT
=10Tg, and(d) showsT=100Tg. We see that the ray-atom-optics model gives the correct result only in theTlimilis .
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FIG. 2. Identical to Fig. 1, except we have now taken 10~ 1. Sincea gives the strength of the bunching process, when it is small the
effects of atomic diffracton play a larger role, leading to stronger discrepancies between the predictions of wave-atom optics and ray-atom
optics. However, we see that the RAO limit, given By Ty, is independent ofr.



PRA 58 EFFECTS OF ATOMIC DIFFRACTION ON THE ... 3255

=B(0)=(exp(—i2ks2)) obeys the equation of motion diffraction effects, we now see that the correct “cold-beam”
cubic equation, derived from Eg&2) and(61), is given by
d? the WAO model to be
—B=—-A, (60
dr? S—iAs?+s—i(a+A)=0. (64)

where we have takeR(0)=0 andN(0)=N to indicate that These equations can also be derived from the Laplace trans-
all atoms are initially at rest. form method of Sec. lll, with the substitutiof{k) = 6(k),

In the WAO description, settiny(«)/N= 6, in Eq. (49) indicating a zero temperature momentum distribution.
shows that two variables are coupled to the probe field, From these cubic equations it is possible to determine the
op(—1,0), andép(0,1). They describe the recoil of atoms point of transition between the stable and the unstable re-
initially at rest as a result of their interaction with the light gimes of the CARL. For the RAO model the collective in-
fields. We proceed then by introducing the new varidble stability occurs provided that the threshold condition
=Jp(—1,0)+ 6p(0,1), which has the same physical mean- )
ing as in the RAO model, namel® = (exp(—i2ky2)). But in a>ﬂ 65)
contrast to that case, the time evolutiorBofs now governed 27

by the equation of motion ) o i
is satisfied, and above threshold the exponential growth rate

d2 is given by
d7_ZB B—-A. (61) B a1
= (Z) (1+0)*-(1-VO)™9,  (66)
This result shows that in contrast to the predictions of clas-
sical mechanics, where the bunching param&ehas dy- whereC=1—4A%27«. For the WAO theory the threshold
namics similar to dree particledriven by the probe field\, condition is
guantum mechanicallp behaves as aimple harmonic os- )
cillator of frequency 4o, (in original time unity, and subject < 232 3
to that same driving force. In the linear reginieis assumed a>27[(3JFA ) 9A+47, 67
to be a small perturbation about its initial value of zero, and ) o
the forces resulting from a nonzero probe fidddtend to ~ and above threshold the exponential growth rate is given by
causeB to increase. But this mechanism is opposed by the 3
“restoring force” due to atomic diffraction. r :\/_§< E)
In addition to opposing any increase in the magnitude of Wo 214
B, the diffraction term also modifies its phase, which may
upset any phase relation betwe&nand B which might be )
required for the collective instability to occur. ~|(1-D)*+
The RAO model only makes accurate predictionsTat
=0 in the limit o, — 0. Therefore, if we were to increase the \yhere
mass of the atoms, thus decreasing, the behavior afl
=0 would become more and more classical. This is because 4A
heavier atoms suffer less diffraction than lighter atoms. We D=1- 3
also note that the correspondence principle states that quan-
tum mechanics should agree with classical mechanics in the
limit #— 0, which would also cause, to tend to zero. These
considerations can also be derived from the statement th
the RAO model is valid whem>Tg, if we note that as
w,— 0 the recoil temperature also goes to zero.
In both the RAO and WAO models, the probe fiedd
obeys the equation

1/3
4
(1+D)*+ ﬁ(l—Az)2

1/3]
4

_A2\2
27612(1 A%

, (68)

(1-A?)?2 (69)

AZ
! 9 ) 2707
In Fig. 3(a) we examine the CARL operating regime, de-
gped as the region in parameter space where the exponential
instability occurs, alf=0 as it would be if ray-atom optics
were valid. We contrast this with Fig(l3 which shows the
actual CARL operating regime dt=0, as calculated using
wave-atom optics. From this figure we see that the operating
regime of the CARL is drastically reduced at low pump in-
tensities and/or atomic densities when the effects of atomic

iA: i(AA—aB). (62) diffraction are included.
dr Figure Xa) compared ' with 'y, for the casex=10 at
T=0, and Fig. 2a) shows the same comparison far
For the RAO model we combine E¢52) with Eq.(60), and  =10"1. We see that atomic diffraction leads to the appear-
find that the solutions are exponentials with exponents giveance of a second threshold below which the collective insta-
by the roots of the cubic equation bility does not occur. From Fig.(8) we see that this second
threshold may even be aboxe=0 for low intensities and/or
s*—iAs’—ia=0. (63 densi\t/igs. In fact, the threshold crosses 0 at preciselya
=2/3y3.

This is exactly the “cold-beam” cubic equation of Bonifacio  Figure 2a) shows that in the limit of weak pump intensi-
and De Salvg4]. However, with the inclusion of atomic ties and/or atomic densities the peak gain for the WAO
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20 . . various normal modes of oscillation are coupled via the

,/ @ atom-photon interactions.

/ Quantum thermodynamics tells us that in thermal equilib-

o | ] rium, the uncertainty in position of each atom completely
/ fills the volume of its container, independent of the tempera-

10 | 1 ture. Therefore, from the quantum field point of view, even

/ at high temperatures it makes no seims@rinciple to con-

/ sider the atoms as localized or even as distinguishable par-

/ 1 ticles, even thoughn practice such a picture works quite

/ well. The differences between the two points of view lead to

0 . s . : different physical interpretations of CARL behavior, even

20 10 A 0 1 though quantitatively they agree completely in the proper
limit.

20 © For example, in the classical model the dynamics of a

single atom differs vastly from the dynamics of a large num-
L ] ber of atoms, hence leading to a distinction between effects
o which rely on the presence of many atoms and effects which
would occur for even a single atom. We note that in our
derivation of the RAO model we have made averaging ap-
\ proximations which assume that the atom number is very
large, thus it cannot be used as a single-atom theory just by
settingN=1. In contrast, in the quantum picture the atom
number appears only as the amplitude of the Sdiliger
0.5 : =0 : 5 : 0 field, and due to the fact that the atoms are delocalized, no
A averaging is necessary and the WAO mathet be used as a
single-atom theory by simply setting= 1. Thus we see that,
FIG. 3. The CARL operating regiméshaded regionas pre-  excluding high intensity effects and collisions not included

dicted by the RAO mode(a), and the actual operating reginfia), in our model, a single-atom CARL will exhibit all possible

as given by the WAO model. CARL behavior, provided that the pump intensity is in-
creased to compensate for the small atom number.

model tends taA =1, while that of the RAO model is ak Using the quantum picture, it is relatively easy to under-

=0. This result can actually be understood quite simply: Thestand the effects of Doppler broadening on the CARL. These
atomic center-of-mass dispersion curve tells us that the atgffects have been studied in detail within the framework of
sorption of a pump photon and the emission of a probe phothe RAO model by Bonifacio and co-workers and Brown
ton by an atom initially at rest creates an energy defect ot al. [4,6,9, and we present arguments here only to illus-
4w, due to atomic recoil. This defect can be compensated birate the utility of the quantum picture as well as to discuss
a detuning between the pump and probe, which in dimenwhat happens to the Doppler broadening effect as one enters
sionless units occurs &= 1. Therefore the fact thdt, isa the subrecoil regime.

sharply peaked function arountl=1 is simply an expres- The fundamental interaction which gives rise to probe
sion of energy-momentum conservation. If we are to take th@mplification in the CARL involves the absorption of a pump
ray-atom-optics model seriously @t=0, then we must con- Photon and the emission of a probe photon, together with the
cede that we are in the limit whete,— 0, therefore energy- transfer of an atom from an initial mode with dimensionless
momentum conservation would predict the maximuni'af ~wave numbek to a final modek—1. As can be seen from

to occur atA =0. In other words, in that limit the center-of- Ed. (49) this transition rate is proportional to the population

mass dispersion curve is flat over the range of a few photofifference between the initial and final atomic field modes.
momenta. This population difference is maximized when the initial

atomic field mode coincides with the maximum population
gradient, given byk= — o+ 1/2, whereo,= \T/4Tg is the
half-width of the Maxwell-Boltzmann distribution function.
We have argued that the classical description of atomidiowever, this interaction carries an energy defect given in
center-of-mass motion actually corresponds to a ray-opticgnits of 4w, by AE=20y+A, whereA is the pump-probe
description of the atomic Schdnger field. At high tempera- detuning defined by Eq23). Therefore the maximum gain
tures it adequately describes the CARL dynamics, howevewill occur when the pump-probe detuning is chosen to con-
at subrecoil temperatures the wave nature of the atomic fiel@erve energy for transitions between atomic field modes cen-
becomes apparent, and the ray-optics approximation ntgred around the maximum population gradient. This leads to
longer suffices. Even at high temperatures, where the ray arttie conditionA =2¢,= /T/Tg as maximizing the exponen-
wave pictures make indistinguishable predictions, theitial growth rate for the CARL.
physical interpretations are different: the first considers the The previous argument applies only to atomic fields with
atoms as localized distinguishable particles which follow tra-a velocity spread much larger than the recoil velocity. For
jectories in phase space, and the other considers the collefields where the spread in velocity is small compared to the
tion of atoms as a quantum Schinger field in which the recoil velocity a slightly different mechanism occurs. Here, a

V. DISCUSSION
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transition involving atomic field modes separated by two re-greatly when using laser lighfcharacterized by coherent,
coil momenta can no longer be centered around the maxi-single-mode” optical field$ as opposed to incoherent light.
mum population gradient, as this would result in both levelsBy analogy, one should greatly benefit in atom optics when
involved having virtually zero population. Instead, the maxi-using coherent atomic fields. This has been the primary mo-

mum population difference occurs between the mode withivation behind the recent interest in developing the*atom
the largest populationk=0) and a virtually empty mode laser” as a source of coherent atomic fields. While the search

(k=—1). This transition carries an energy defect given byfor @ cw atom laser continues, the current state of the art in
AE=1—A, so the maximum exponential growth rate occurscoherer_1'[ atomic field generation involves the creation of
for pump-probe detuningd =1, as discussed in Sec. IV B. Bose-Em_stem condensates. A trapped BEC can b_e t_hought of
Thus we see that the physics of the CARL at high tem-2S & stationary “atom laser” pulse, and as such is ideal fo_r
peratures is different from that at low temperatures. For Studying systems of coupled atomic and electromagnetic
>Tr maximum gain comes from transitions centered on thdi€lds, such as the CARL. However, the temperature of a
maximum population gradient, characterized by the condiBOSe-Einstein condensate typically falls well below the

tion A=\T/Tg, while for T<Tg maximum gain comes atomic recoil temperature, and thus outside of the regime of

from transitions starting from the mode with the Iargestthe_l_%u”ent_ CARLIEhe??r’]'_ has b o develop th
population, characterized by the conditiar= 1. e main result of this paper nas been (o develop the

Because the wave-optics picture involves transitions pelvave-atom-optics model of the CARL, valid in the subrecoil

tween center-of-mass modes with different atomic velocities ¢ 3/M€: and to compare this theory to the prewous'ray-atom—
it raises the question of whether or notTa=0 sample of bptlc_s mo_del. We have s_hown that, as expected, n the sub-
atoms is actually destroyed due to the interaction with théeCOII regime the behav_lor Of. the CARL is strongly influ-
pump and probe lasers. Consider that before the interactio nced bY matter-yvave diffraction, which tends ta C‘?“”tef?‘:t
the atoms are practically at rest, but after absorbing a pum e atomic bunching process and reduce the operating regime
photon and emitting a probe photon, they are moving a f the sy_stem. However, for temperatures large compared to
twice the recoil velocity due to atomic recoil, and therefore he recoll temperature we have shown that the two models

will eventually leave the initial sample. This results in atom make indistinguishable pred_lct|ons.
losses, causing the atomic bunching to decay and reducin The present theory quantizes the matter wave, but not the

the CARL gain. We argue, however, that these losses wil ectromagnetic field. It will be of considerable interest to
remain negligible for a realistic experiment involving a ixtend Ilt t(.) regl?;es;vherte bOIh. f|eldshneed to bte quecljntlzed.
Bose-Einstein condensatBEC) with a size on the order of N analysis ol he density regimeé wnhere guantum degen-
100 um. Here the decay rate should be approximately equa‘fracy b_ecomes important will also_ b_e afascm_atlng extension,
to the atomic velocity divided by the condensate size. FO'lsrlugart;vCilLljIzrllmirrlletvrg-ﬁ\c\)/iitfc;g(t)c?swr?;? é?(f(laﬁe;.Bgzs
sodium, which has a recoil velocity of 3 cm/s, the loss rateE. Y 9a o
works out to 18-1C° s~1. The CARL growth rate, on the o condensate can be manipulated and modified in a far
other hand. can be of tI:1e ordeod or larger Wh'iCh for off-resonant CARL cqnflggratlon.. An intriguing possibility
sodium is O’f the order £0s? or larger Theréfore on the would be to generate in this fashion a coupled laser—"atom-

time scale of the exponential growth in the CARL, the Iossl"j1ser system. The st_udy of the coherem_:e properties of this
) . 7 ... —system will be the object of future investigations. Finally, a
rate due to atoms leaving the sample is negligible. Addition- . . o
. . . comparison between bosonic and fermionic CARL systems
ally, we note that in the linear regime we have shown that the ; .
. . e . in the qguantum degenerate regime should also be considered.
population of the various atomic field modes remains un-
changed, the effect of Fhe Iight-matte_r interactiqn b_eing ACKNOWLEDGMENTS
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transfer. Of course in the non-linear regime this would no
longer be the case. But here we also need to consider probe APPENDIX: HEISENBERG EQUATIONS OF MOTION

reabsorption, which plays a crucial role in the saturation be- FOR DENSITY OPERATORS
hawo: of CARL, and can reverse the spread in the atomic  pe f|| equations of motion for the expectation values of
sample. the density operators are

d if
VI. CONCLUSION AND OUTLOOK giPastkik') == %(kz—k’z)pgg(k,k’)

The CARL system represents an experimentally realizable . . . )
nontrivial example of dynamically coupled Maxwell and +0187 peg(K—Ki,K') + 0285 peg(k—k3,k")
Schralinger fields. Thus the theory of the CARL is actually * L * L
a hybrid which combines ordinary nonlinear optics with non- 01 21Pge(K K" —k1) + 87 8apeg(k K —kz),
linear atom optics. In ordinary nonlinear optics, one benefits (A1)
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d 1% ) ) and
grPed KK =) 5 (K* =K'+ wo | peg(k, k')

d if
— k,k’ - k2_kr2 k,k'
+0Tail ped K, k' —ky) = pgqg(k+Ky k)] atPed kKD =5 )pee kK"

+03 agl ped k. k' —ko) — pgg(k+ky k)], — 0187 peg(K, K" +K1) = 9283 peg(K, k' +kz)
_g.’lcalpge(k""klakl)_gzaZPge(k+k21k,)-
(A2) (A3)
[1] C. Brau, Free-Electron LasergAcademic Press, San Diego, Rev. Lett.76, 2452(1996.
1990, and references therein. [8] P. R. Hemmer, N. P. Bigelow, D. P. Katz, M. S. Shahriar, L.
[2] R. Bonifacio and L. De Salvo, Nucl. Instrum. Methods Phys. De Salvo, and R. Bonifacio, Phys. Rev. Lat?, 1468(1996.
Res. A341, 360(1994. [9] W. J. Brown, J. R. Gardner, D. J. Gauthier, and R. Vilaseca,
[3] R. Bonifacio, L. De Salvo, L. M. Narducci, and E. J. Phys. Rev. A55, R1601(1997.
D’'Angelo, Phys. Rev. A60, 1716(1994. [10] J.-Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, Phys.
[4] R. Bonifacio and L. De Salvo, Appl. Phys. B: Lasers Ggfl, Rev. Lett.72, 3017(1994).
233(1995. [11] R. Bonifacio, Opt. Commun(to be published
[5] L. De Salvo, R. Cannerozzi, R. Bonifacio, E. J. D’Angelo, and [12] M. G. Moore and P. Meystre, eprint quant-ph/9712010.
L. Narducci, Phys. Rev. 52, 2342(1995. [13] A. F. Bernhardt and B. W. Shore, Phys. Rev.28 1290
[6] R. Bonifacio, G. R. M. Robb, and B. W. J. McNeil, Phys. Rev. (1981).
A 56, 912(1997). [14] J. Guo, P. R. Berman, B. Dubetsky, and G. Grynberg, Phys.

[7] G. L. Lippi, G. P. Barozzi, S. Barbay, and J. R. Tredicce, Phys. Rev. A 46, 1426(1992.



