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Effects of atomic diffraction on the collective atomic recoil laser

M. G. Moore and P. Meystre
Optical Sciences Center and Department of Physics, University of Arizona, Tucson, Arizona 85721

~Received 12 March 1998!

We formulate a wave-atom-optics theory of the collective atomic recoil laser~CARL! where the atomic
center-of-mass motion is treated quantum mechanically. By comparing the predictions of this theory with those
of the ray-atom-optics theory, which treats the center-of-mass atomic motion classically, we show that for the
case of a far off-resonant pump laser the ray-optics model fails to predict the linear response of the CARL
when the temperature is of the order of the recoil temperature or less. This is due to the fact that in this
temperature regime one can no longer ignore the effects of matter-wave diffraction on the atomic center-of-
mass motion.@S1050-2947~98!00510-1#

PACS number~s!: 42.55.2f, 42.50.Vk, 03.75.2b
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I. INTRODUCTION

The collective atomic recoil laser, or CARL, is the atom
equivalent of the free-electron laser@1#. Developed theoreti-
cally by Bonifacio and co-workers@2–6#, the CARL device
has three main components:~1! the active medium, which
consists of a gas of two-level atoms,~2! a strong pump lase
which drives the two-level atomic transition, and~3! a ring
cavity which supports an electromagnetic mode~the probe!
counterpropagating with respect to the pump. Under suita
conditions, the operation of the CARL results in the gene
tion of a coherent probe field due to the following mech
nism. First, a weak probe field is initiated by noise, eith
optical in the form of spontaneously emitted light, or atom
in the form of density fluctuations in the atomic gas whi
backscatters the pump. Once initiated, the probe comb
with the pump field to form a weak standing wave which a
as a periodic optical potential~light shift!. The center-of-
mass motion of the atoms on this potential results in a bun
ing ~modulation! of their density, very much like the com
bined effects of the wiggler and the light field leads
electron bunching in the free-electron laser. This bunch
process is then seen by the pump laser as the appearanc
polarization grating in the active medium, which results
stimulated backscattering into the probe field. The result
increase in the probe strength further increases the magn
of the standing wave field, resulting in more bunching f
lowed by an increase in stimulated backscattering, etc. T
positive feedback mechanism results in an exponen
growth of both the probe intensity and the atomic bunchi
This leads to the perhaps surprising result that the pres
of the ring cavity turns the ordinarily stable system of
atomic gas driven by a strong pump laser into an unsta
system.

Various experiments related to the CARL have been c
ducted recently. Using hot sodium atoms, Lippiet al. @7#
observed amplification of an injected probe laser, which th
interpreted in terms of scattering off an atomic density gr
ing resulting from atomic recoil. Also using hot sodium a
oms, Hemmeret al. @8# reported spontaneous probe oscil
tions in the absence of an injected signal. These were
interpreted as resulting from the CARL mechanism. Th
has, however, been some controversy regarding the inte
PRA 581050-2947/98/58~4!/3248~11!/$15.00
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tation of these experiments@9#, mostly concerning the pres
ence of a large Doppler broadening, and the possibility
gain mechanisms not necessarily related to atomic recoil.
unambiguous demonstration of the recoil related gain mec
nism was performed by Courtoiset al. @10#, who observed
small signal probe gain in a gas of cold cesium atoms. T
absence of a ring cavity for probe feedback in this expe
ment, however, means that the observed gain was main
single-atom recoil effect, not the collective gain of th
CARL system.

The CARL theory developed by Bonifacioet al. consid-
ers the atoms either as classical point particles moving in
optical potential generated by the light fields, or, in a ‘‘h
brid’’ version @11#, as particles whose center of mass is
beled by their classical position, but with quantum fluctu
tions about that position included. From an atom-optics po
of view, such theories can be described as ‘‘ray-ato
optics’’ treatments of the atomic field, in analogy with th
ordinary ray-optics treatment of electromagnetic fields.

Like ordinary ray optics, the ray-atom-optics descripti
of CARL is expected to be valid provided that the charact
istic wavelength of the matter-wave field remains mu
smaller than the characteristic length scale of any ato
optical element in the system. The characteristic wavelen
of the atomic field is its de Broglie wavelength, determin
by the atomic mass and the temperatureT of the atomic gas.
The central atom-optical element of the CARL is the pe
odic optical potential, which acts as a diffraction grating f
the atoms, and has the characteristic length scale of half
optical wavelength. Hence the classical ‘‘ray-atom-optic
description is intuitively expected to be valid provided th
the temperature is high enough that the thermal de Bro
wavelength is much smaller than the optical waveleng
This gives the conditionT@TR , the recoil temperature o
the atoms, as the domain of ray-atom optics. In particula
is certainly expected to hold under the temperature con
tions of the experiments performed so far.

However, the spectacular recent progress witnessed
atomic cooling techniques makes it likely that CARL expe
ments using ultracold atomic samples can and will be p
formed in the future. In particular, subrecoil temperatu
can now be achieved almost routinely. The purpose of
paper is to extend the CARL theory to this ‘‘wave-atom
3248 © 1998 The American Physical Society
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optics’’ regime@12#. In this regime it becomes necessary
treat the atomic center-of-mass motion fully quantum m
chanically, in order to preserve the wave nature of the ato
motion. Thus the interaction between the atoms and
standing wave light field should no longer be thought of
terms of particles moving in a periodic potential, but inste
as diffraction of matter waves by a grating. As the grati
amplitude is initially asssumed to be zero~or at least infini-
tesimal!, the system starts in the Bragg regime, where
free space evolution~kinetic energy term! plays an important
dynamical role. Similar in origin to the free space diffractio
which limits the spot size of a focused beam, this type
diffraction effect can counteract the bunching process
which the atomic density grating is established. It is our g
to determine the precise limitations which this aspect
matter-wave diffraction imposes on CARL operation.

The wave-optics theory of the CARL is similar to th
analysis of atomic diffraction by standing waves@13#, except
that the electromagnetic field is now treated as a dynam
variable. It is also similar to the theory of recoil induce
resonances@14#, which describes the stimulated scattering
light off a standing wave induced polarization grating, b
the absence of a feedback mechanism for the probe feed
in that case means that it models only single-atom gain
fects, and not the collective gain of the CARL.

In this paper we focus on the case of a far off-reson
pump laser, thus permitting us to neglect the excited s
population and therefore to ignore the effects of spontane
emission~except as a hypothetical source of noise for pro
initiation!. We further concentrate on the linear regim
where both the probe field and the atomic bunching are c
sidered as infinitesimal quantities, since it is this regime t
determines whether or not the exponential instability occu
Finally, we restrict our analysis to atomic densities lo
enough that collisions between atoms may be ignored,
neglect the transverse motion of the atoms, which in
absence of collisions is decoupled from the longitudinal
gree of freedom along which bunching occurs.

We note at the outset that our theory is semiclassica
that it treats the electromagnetic field classically. While t
approximation cannot fully describe the statistical proper
of the CARL output, it is sufficient to describe the sma
signal gain of the system, provided that one makes the
plicit assumption that small fluctuations will trigger it, a
approach familiar from conventional laser theory and non
ear optics. We also emphasize that it is not inconsisten
treat the matter waves quantum mechanically while trea
the light classically, since the limits under which a quantu
description is required are independent. For light, this limi
usually associated with weak intensities, while for mat
waves it is normally a low temperature limit.

The rest of this paper is organized as follows. Section
briefly reviews the ray-atom-optics model of the CARL, e
tablishing the notation and setting the stage for a compar
of its predictions with those of the wave-atom-optics theo
which is introduced in Sec. III. Section IV discusses the c
lective instability leading to CARL operation, compares t
ray-atom optics and the wave-atom optics predictions,
determines the domain of validity of the former theory. Se
tion V is a discussion and Sec. VI offers a conclusion a
outlook.
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II. RAY-ATOM-OPTICS MODEL

The ray-atom-optics~RAO! model of the CARL has been
developed and extensively studied by Bonifacio and
workers@2–6#. It begins with the classicalN-particle Hamil-
tonian

HN5(
j 51

N

H1~zj ,pj !, ~1!

wherezj andpj are the classical position and momentum
the j th atom, obeying the canonical equations of moti
dzj /dt5]HN /]pj and dpj /dt52]HN /]zj . The single-
particle HamiltonianH1 is given explicitly by

H1~zj ,pj !5
pj

2

2m
1

\v0

2
sz j1 i\@g1a1* e2 ik1zjs2 j

1g2a2* e2 ik2zjs2 j2c.c.#, ~2!

wherem is the atomic mass,v0 is the natural frequency o
the atomic transition being driven by the pump and pro
lasers, andg1 is the atom-probe electric dipole coupling co
stant. It is given byg15m1@ck1 /(2\e0V)#1/2, wherem1 is
the projection of the atomic dipole moment along the pro
polarization,k1 is the probe wave number, andV is the quan-
tization volume. The atom-pump coupling constantg2 is de-
fined analogously tog1 , but depending onm2 , the projection
of the atomic dipole moment along the pump polarizatio
andk2 the pump wave number. The normal variablesa1 and
a2 describe the probe and pump laser fields, respectiv
They obey Maxwell’s equation

d

dt
ai52 icuki uai1gi (

j 51

N

e2 iki zjs2 j , ~3!

wherecuki u is the natural frequency of the probe (i 51) or
the pump (i 52) field. Note that these equations are al
valid for quantized electromagnetic fields, provided thatai
are interpreted as annihilation operators, but we describe
light fields classically in this paper.

The variabless2 j and sz j are the expectation values o
the quantum mechanical Pauli pseudospin operators w
describe the internal state of thej th atom. They obey the
familiar optical Bloch equations, appropriately modified
include the center-of-mass motion of the atoms and w
spontaneous emission neglected,1

d

dt
s2 j52 iv0s2 j1@g1* a1eik1zj1g2* a2eik2zj #sz j ~4!

and

d

dt
sz j522@g1a1* e2 ik1zj1g2as* e2 ik2zj #s2 j1c.c. ~5!

1Spontaneous emission is neglected in anticipation of the fu
approximation that the pump lasers are far off-resonant, and th
fore the excited state population may be safely neglected.
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3250 PRA 58M. G. MOORE AND P. MEYSTRE
It is convenient to introduce slowly varying variables v
the transformationsa15a18e

2 iv2t, a25a28e
2 iv2t, and s2 j

5s2 j8 e2 i (v2t2k2zj ), wherev2 is the pump frequency. The
relation betweenv2 andk2 will be derived shortly in a self-
consistent manner, so as to include the dispersive effec
the polarized atoms on the pump propagation. These
variables obey the equations of motion

d

dt
zj5

pj

m
, ~6!

d

dt
pj52\@g1k1a18* e2 i ~k12k2!zj1g2k2a28* #s2 j8 1c.c.,

~7!

d

dt
a185 i ~v22cuk1u!a181g1(

j 51

N

e2 i ~k12k2!zjs2 j8 , ~8!

d

dt
a285 i ~v22cuk2u!a281g2(

j 51

N

s2 j8 , ~9!

d

dt
sz j522@g1a18* e2 i ~k12k2!zj1g2a28* #s2 j8 1c.c.,

~10!

and

d

dt
s2 j8 5 i S v22v02

k2

m
pj Ds2 j8

1@g1* a18e
i ~k12k2!zj1g2* a28#sz j . ~11!

In the case where the lasers are tuned far off-resona
and the atoms are initially in the ground state, the exci
state population remains small and can be neglected. Th
equivalent to describing the atoms as classical Lorentz
oms, and is accomplished by settingsz j521 in Eq. ~11!.
Assuming further that the detuningv22v0 is much larger
than any other frequency in Eq.~11! allows one to adiabati-
cally eliminates2 j8 with

s2 j8 '2
i

~v22v0!
@g1* a18e

i ~k12k2!zj1g2* a28#, ~12!

where we have in addition neglected the Doppler s
k2pj /m compared tov22v0 . This leads to the reduced s
of equations

d

dt
zj5

pj

m
, ~13!

d

dt
pj52 i

2\k0

~v22v0!
@g1* g2a28* a18e

i2k0zj2c.c.#, ~14!

d

dt
a185 i Fv22

Nug1u2

~v22v0!
2cuk1uGa18

2 i
g2* g1

~v22v0!
a28(

j 51

N

e2 i2k0zj , ~15!
of
w

e,
d
is
t-

t

and

d

dt
a285 i Fv22

Nug2u2

~v22v0!
2cuk2uGa28

2 i
g1* g2

~v22v0!
a18(

j 51

N

ei2k0zj , ~16!

where we have introducedk05(k12k2)/2.
We now introduce the undepleted pump approximati

valid in the linear regime wherea18 remains small. This is
achieved by dropping the term proportional toa18 in Eq. ~16!.
This yields

d

dt
a285 i Fv22

Nug2u2

~v22v0!
2cuk2uGa28 , ~17!

which has the steady state solutiona28(t)5a2(0) provided
that the dispersion relation

cuk2u5v22
Nug2u2

~v22v0!
~18!

is satisfied. Equation~18! thus determines the magnitude
the pump wave number as a function of the pump freque
and other known experimental parameters.

To proceed analytically past this point, it is convenient
introduce the dimensionless variablesu j[2k0zj , Pj

5pj /\k0 , A5g1* g2a2* (0)a18/@2v r(v22v0)#, and t
54v r t, where the recoil frequencyv r is given by

v r5\k0
2/2m. ~19!

These variables obey the equations of motion

d

dt
u j5Pj , ~20!

d

dt
Pj52 iAeiu j1c.c., ~21!

and

d

dt
A5 iDA2 ia

1

N(
j 51

N

e2 iu j , ~22!

where we have introduced the dimensionless control par
eters

D5S v22
Nug1u2

v22v0
2cuk1u D Y 4v r ~23!

and

a5Nug1u2ug2u2ua2~0!u2/8v r
2~v22v0!2. ~24!

We note that bothD and a are real numbers, and furthe
more thata>0. The termcuk1u1Nug1u2/(v22v0) in Eq.
~23! is simply the natural frequency of the probe plus t
shift to atomic dispersion, i.e., it is the frequency of t
probe fieldv1 . This means thatD5(v22v1)/4v r is simply
the pump-probe detuning in units of 4v r .
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We seek solutions of these equations which are pertu
tions about the caseA50. Thus we make the substitutions

u j5u j~0!1Pj~0!t1du j ~25!

and

Pj5Pj~0!1dPj , ~26!

whereu j (0) is randomly taken from a uniform distributio
andPj (0) is randomly taken from the initial momentum di
tribution. The new variablesdu j anddPj give the perturba-
tions on the atomic center-of-mass motion due to a nonz
A(0). We introduce finally the linearized velocity grou
bunching parameter and its ‘‘conjugate’’ momentum acco
ing to

B~k!5
1

N(
j 51

N

dPj ~0!,2k~12 idu j !e
2 i [u j ~0!1Pj ~0!t] ~27!

and

P~k!5
1

N(
j 51

N

dPj ~0!,2kdPje
2 i [u j ~0!1Pj ~0!t]12kB~k!.

~28!

We note that

(
k

B~k!5^e2 i2k0z&, ~29!

and the amplitude of Eq.~29! is a measure of the degree
bunching of the atomic gas. A magnitude of zero indica
no bunching, while a magnitude of one indicates maxim
bunching. This leads to the equations

d

dt
B~k!52 iP~k!, ~30!

d

dt
P~k!5 i F4k2B~k!24kP~k!2

N~k!

N
AG , ~31!

and

d

dt
A5 i FDA2a(

k
B~k!G , ~32!

where N(k) is the number of atoms in the velocity grou
with momentum 2\k0k and we have assumed that

(
j 51

N

dPj ~0!,2ke
2 i2u j ~0!50, ~33!

an assumption that requires thatN(k)@1. Note that this for-
mulation implies a discretization of the initial momentu
distribution, and furthermore assumes that the atomic p
tions in each velocity group are initially randomly distribute
along the CARL cavity. Fluctuations in the initial distribu
tions can of course readily be included into the initial con
tions of the perturbation variables.
a-

ro

-

s
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-

III. WAVE-ATOM-OPTICS MODEL

In order to quantize the center-of-mass motion of a gas
bosonic atoms, one may either utilize first quantization, a
replace the variableszj andpj in theN-particle Hamiltonian
~1! with operators satisfying the canonical commutation
lations @ ẑj ,p̂ j 8#5 i\d j j 8 , or equivalently we can secon
quantize the single-particle Hamiltonian~2!, introducing cre-
ation and annihilation operators for excited and ground s
atoms of a given center-of-mass momentum. It is this sec
method which we will adopt in deriving the wave-atom
optics ~WAO! model. In the absence of collisions, th
second-quantized Hamiltonian is simply

Ĥ5(
k

Ĥ~k!, ~34!

whereĤ(k) is given by

Ĥ~k!5
\2k2

2m
ĉg

†~k!ĉg~k!1S \2k2

2m
1\v0D ĉe

†~k!ĉe~k!

1 i\@g1a1* ĉg
†~k2k1!ĉe~k!1g2a2* ĉg

†~k2k2!ĉe~k!

2H.c.#, ~35!

The field operatorĉg(k) annihilates a ground state atom
momentum\k, and ĉe(k) annihilates an excited atom o
momentum\k. We assume that the atoms in the sample
bosonic, so that these operators obey the commutation
tions

@ ĉg~k!,ĉg
†~k8!#5@ ĉe~k!,ĉe

†~k8!#5dkk8 , ~36!

all other commutators being equal to zero.
With the atomic polarization now expressed in terms

field operators, Maxwell’s equations~3! for the classical la-
ser fields become

d

dt
ai52 icuki uai1gi(

k
^ĉg

†~k2ki !ĉe~k!&. ~37!

Hence, all that is required to determine the field evolution
the expectation values of bilinear combinations of atom
creation and annihilation operators. The evolution of the
expectation values is easily obtained by introducing
‘‘single-particle’’ atomic density operators2

r̂gg~k,k8!5 ĉg
†~k8!ĉg~k!, ~38!

r̂eg~k,k8!5@ r̂ge~k8,k!#†5 ĉg
†~k8!ĉe~k!, ~39!

and

r̂ee~k,k8!5 ĉe
†~k8!ĉe~k!. ~40!

2These are single-particle operators in the sense of many-b
theory, since they only involve the annihilation of an atom in
given state and its creation in some other state.
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3252 PRA 58M. G. MOORE AND P. MEYSTRE
Note that, e.g., the expectation value of the diagonal oper

^r̂gg(k,k)& gives the mean number of ground state ato
with momentum\k. The expectation values of these ope
tors obey the equations of motion

d

dt
r j j 8~k,k8!5

i

\
^@Ĥ,r̂ j j 8~k,k8!#&, ~41!

wherer j j 8(k,k8)5^r̂ j j 8(k,k8)&. The full form of these equa
tions is given in the Appendix. The important point is th
they depend only onr j j 8(k,k8), hence they form a closed se
of equations which describe the response of the atomic fi
to the driving laser fields. We note that had we includ
collisions in our model, this would no longer be the case

Introducing in analogy to the ray-optics description t
rotating variables a15a18e

2 iv2t, a25a28e
2 iv2t, and

reg(k,k8)5reg8 (k2k2 ,k8)e2 iv2t, neglecting the excited
state population, and solving adiabatically forreg8 (k,k8)
yields

reg8 ~k,k8!'2
i

~v22v0!
@g1* a18rgg~k22k0 ,k8!

1g2* a28rgg~k,k8!#. ~42!

Substituting Eq.~42! into Maxwell’s equation~37! for the
pump and making once more the undepleted pump appr
mation leads to the solutiona28(t)5a2(0) provided thatuk2u
satisfies the dispersion relation~18!. We then substitute Eq
~42! into the equation of motion forrgg(k,k8), and introduce
the dimensionless wave numberk5k/2k0 and the mean den
sity r(k,k8)5rgg(k,k8)/N, in addition to the dimensionles
variables already defined in the ray-atom-optics model.
arrive at the wave-optics equations of motion

d

dt
r~k,k8!52 i ~k22k82!r~k,k8!

1
i

2
A* @r~k,k821!2r~k11,k8!#

2
i

2
A@r~k21,k8!2r~k,k811!# ~43!

and

d

dt
A5 iDA2 ia(

k
r~k,k11!, ~44!

where the parametersD and a are given by Eqs.~23! and
~24!, respectively.

As in Sec. II, we seek a solution which is a perturbati
about the caseA50. From Eq.~43!, the unperturbed solution
is readily found to be

r~k,k8,t!5r~k,k8,0!e2 i ~k22k82!t. ~45!

We consider specifically an atomic sample initially in the
mal equilibrium, so that Eq.~45! becomes
or
s
-

t

ld
d

i-

e

r~k,k8,t!5
N~k!

N
dk,k8 , ~46!

whereN(k), the number of atoms with initial wave numbe
2k0k, is given by a thermal distribution function. We intro
duce the perturbation variablesdr(k,k8) according to

r~k,k8!5
N~k!

N
dk,k81dr~k,k8! ~47!

and observe that Maxwell’s equation~44!, which becomes

d

dt
A5 iDA2 ia(

k
dr~k,k21!, ~48!

together with the linearized equation

d

dt
dr~k,k21!52 i ~2k21!dr~k,k21!

1 i
@N~k!2N~k21!#

2N
A, ~49!

form a closed set of equations which underlies the dynam
of the CARL in the linear regime of wave-atom optics. W
note that the sum of the spatial coherence terms has
physical interpretation

(
k

dr~k,k21!5^e2 i2k0z&, ~50!

which in analogy to Eq.~29! measures the degree of bunc
ing of the atomic gas.

IV. COLLECTIVE INSTABILITY

The most important feature of the CARL is the appe
ance of a collective instability, which gives rise to expone
tial gain under appropriate parameter settings. This insta
ity is characterized by an imaginary frequency componen
the spectrum of the probe fieldA(t). As has been demon
strated in Ref.@4#, one needs not solve the complete set
equations derived in the previous sections in order to de
mine the necessary conditions for the collective instabil
Instead, by taking the Laplace transform of these equati
one can derive a ‘‘characteristic equation’’ which allows o
to determine whether exponential gain occurs, and if so w
the exponential growth rate is.

For the ray-atom-optics model, the Laplace transform
Eq. ~32! yields

ÃR~s!5
A~0!

R~s!
, ~51!

whereR(s) is given by

R~s!5Fs2 iD2 iaE f ~k!dk

~s1 i2k!2G . ~52!

In obtaining this result we have taken the continuum lim
and assumed thatB(k) andP(k) vanish att50, which cor-
responds to an initially homogeneous~unbunched! distribu-
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tion of atoms. Heref (k) is simply the normalized therma
distribution function for the dimensionless wave numberk.
We note that in original units an atom with dimensionle
wave numberk has momentum 2\k0k. The roots ofR(s)
give the characteristic exponents of the CARL. Stability
quires that all roots be purely imaginary. When the collect
instability occurs, however, there will be one root with
positive real part. This real part is the RAO exponent
growth rateGR . This result is identical to that obtained b
Bonifacio and De Salvo@4#.

The wave-atom-optics model, which includes the effe
of atomic diffraction, yields the Laplace transform

ÃW~s!5
A~0!

W~s!
. ~53!

W(s) is given by

W~s!5Fs2 iD2 iaE f ~k!dk

@s1 i ~2k21!#@s1 i ~2k11!#G ,
~54!

where we have again taken the continuum limit and assu
that dr(k,k11) vanishes att50, which corresponds to a
initially unbunched atomic sample. If a root ofW(s) with a
positive real part exists, that real part is the WAO expon
tial growth rateGW .

We see by comparing Eqs.~51! and~53! that the effect of
atomic diffraction is to lift the degeneracy of the singular
under the integral. This expression also leads us immedia
to the conclusion that if the width of the momentum dist
bution f (k) is large compared to 2k, then the singularity will
appear as essentially degenerate, and the effects of ma
wave diffraction will be negligible. Thus the RAO and WAO
models should agree for large enough temperatures.

A. Finite temperatures

In the absence of quantum degeneracies, the thermal
mentum distribution is given by the Maxwell-Boltzmann di
tribution

f ~k!5
2b

Ap
e24k2b2

, ~55!

whereb25TR /T andTR5\v r /kB is the recoil temperature
KB being the Boltzmann constant. By substituting Eq.~55!
into Eq. ~52! and using the Fourier convolution theorem w
find that the RAO exponential growth rateGR is determined
by the equation

s2 iD2 iaE
0

`

pe2p2/4b22psdp50, ~56!

which can be integrated to give the transcendental equa

s2 iD2 i2ab21 i2Apab3eb2s2
erfc~bs!50. ~57!

In contrast, substituting Eq.~55! into Eq. ~54! and again
using the convolution theorem we find that the WAO exp
nential growth rateGW is determined by the equation
s
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s2 iD2 iaE
0

`

e2p2/4b22pssin~p!dp50. ~58!

By examining Eq.~58! we see that in the caseb!1 we
are justified in expanding sin(p) to lowest order inp. This
exactly reproduces Eq.~56!, thus showing that the WAO and
RAO descriptions make indistinguishable predictions ab
the exponential growth rate in the limitT@TR . However, for
temperatures comparable to or less than the recoil temp
ture, we will see that the RAO theory fails to correctly pr
dict the behavior of the CARL in the linear regime. Phys
cally, this is due to the fact that it does not account for t
effects of atomic diffraction, which tends to counteract t
bunching process. Finally, we note that upon integration,
~58! becomes the transcendental equation

s2 iD1
Ap

2
abeb2~s221!$ei2b2serfc@b~s1 i !#

2e2 i2b2serfc@b~s2 i !#%50. ~59!

In the next subsection we will examine in more detail t
precise manner in which diffraction interferes with th
bunching process for the special case of a zero tempera
atomic gas. But before turning to this extreme situation,
present numerical results comparing RAO and WAO mod
at nonzero temperature, as determined by solving Eqs.~57!
and ~59!.

Figures 1~b!–1~d! compareGR with GW at a510 for the
three different temperature regimesT5TR , T510TR , and
T5100TR , respectively. Figures 2~b!–2~d! show the same
comparison fora51021. While we see that the behavior o
GR andGW depends strongly ona ~recall thata is propor-
tional to both the pump intensity and the atomic density!, the
discrepancies between the two models as a function of t
perature are very similar. AtT5TR there are significant dif-
ferences between the predictions of the RAO and WA
models, but these differences become minimal atT510TR ,
and insignificant atT5100TR . We also observe that the dif
ferences are more pronounced for lower values ofa, mean-
ing that at lower densities and/or pump intensities, the qu
tum mechanical behavior becomes more apparent.
reason for this is that at high intensities the bunching p
cess, driven by the probe field, dominates, while at low
tensities the antibunching effects of atomic diffraction play
larger role.

B. The T50 limit

For a typical atom, the recoil temperature is of the ord
of microkelvins, e.g., for sodium we haveTR52.4 mK.
However, recent advances in cooling techniques have le
measured temperatures as low as the picokelvin regime
these extreme temperatures the conditionT!TR is satisfied,
i.e., we are effectively in theT→0 limit. In this section we
study theT50 case in detail in order to gain further insig
into the exact role of matter-wave diffraction in the CAR
system.

For the RAO model, we have a single velocity group
k50. Thus by differentiating Eq.~30! with respect tot and
using Eq. ~31!, we see that the bunching parameterB
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FIG. 1. Comparison of the exponential growth rate as a function of pump-probe detuningD between the RAO~solid line! and the WAO
~dashed line! models, for the casea510. ~a! shows the results forT50 ~see Sec. III B!, ~b! shows the caseT5TR , ~c! shows T
510TR , and~d! showsT5100TR . We see that the ray-atom-optics model gives the correct result only in the limitT@TR .

FIG. 2. Identical to Fig. 1, except we have now takena51021. Sincea gives the strength of the bunching process, when it is small
effects of atomic diffracton play a larger role, leading to stronger discrepancies between the predictions of wave-atom optics and
optics. However, we see that the RAO limit, given byT@TR , is independent ofa.
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[B(0)5^exp(2i2k0z)& obeys the equation of motion

d2

dt2
B52A, ~60!

where we have takenP(0)50 andN(0)5N to indicate that
all atoms are initially at rest.

In the WAO description, settingN(k)/N5dk,0 in Eq. ~49!
shows that two variables are coupled to the probe fie
dr(21,0), anddr(0,1). They describe the recoil of atom
initially at rest as a result of their interaction with the lig
fields. We proceed then by introducing the new variableB
[dr(21,0)1dr(0,1), which has the same physical mea
ing as in the RAO model, namely,B5^exp(2i2k0z)&. But in
contrast to that case, the time evolution ofB is now governed
by the equation of motion

d2

dt2
B52B2A. ~61!

This result shows that in contrast to the predictions of cl
sical mechanics, where the bunching parameterB has dy-
namics similar to afree particledriven by the probe fieldA,
quantum mechanicallyB behaves as asimple harmonic os-
cillator of frequency 4v r ~in original time units!, and subject
to that same driving force. In the linear regime,B is assumed
to be a small perturbation about its initial value of zero, a
the forces resulting from a nonzero probe fieldA tend to
causeB to increase. But this mechanism is opposed by
‘‘restoring force’’ due to atomic diffraction.

In addition to opposing any increase in the magnitude
B, the diffraction term also modifies its phase, which m
upset any phase relation betweenA and B which might be
required for the collective instability to occur.

The RAO model only makes accurate predictions aT
50 in the limit v r→0. Therefore, if we were to increase th
mass of the atoms, thus decreasingv r , the behavior atT
50 would become more and more classical. This is beca
heavier atoms suffer less diffraction than lighter atoms.
also note that the correspondence principle states that q
tum mechanics should agree with classical mechanics in
limit \→0, which would also causev r to tend to zero. These
considerations can also be derived from the statement
the RAO model is valid whenT@TR , if we note that as
v r→0 the recoil temperature also goes to zero.

In both the RAO and WAO models, the probe fieldA
obeys the equation

d

dt
A5 i ~DA2aB!. ~62!

For the RAO model we combine Eq.~62! with Eq. ~60!, and
find that the solutions are exponentials with exponents gi
by the roots of the cubic equation

s32 iDs22 ia50. ~63!

This is exactly the ‘‘cold-beam’’ cubic equation of Bonifac
and De Salvo@4#. However, with the inclusion of atomic
,
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diffraction effects, we now see that the correct ‘‘cold-beam
cubic equation, derived from Eqs.~62! and~61!, is given by
the WAO model to be

s32 iDs21s2 i ~a1D!50. ~64!

These equations can also be derived from the Laplace tr
form method of Sec. III, with the substitutionf (k)5d(k),
indicating a zero temperature momentum distribution.

From these cubic equations it is possible to determine
point of transition between the stable and the unstable
gimes of the CARL. For the RAO model the collective in
stability occurs provided that the threshold condition

a.
4D2

27
~65!

is satisfied, and above threshold the exponential growth
is given by

GR5
A3

2 S a

4 D 1/3

u~11AC!2/32~12AC!2/3u, ~66!

whereC5124D3/27a. For the WAO theory the threshold
condition is

a.
2

27
@~31D2!3/229D1D3#, ~67!

and above threshold the exponential growth rate is given

GW5
A3

2 S a

4 D 1/3UF ~11AD !21
4

27a2
~12D2!2G 1/3

2F ~12AD !21
4

27a2
~12D2!2G 1/3U , ~68!

where

D512
4D

3a S 12
D2

9 D2
4

27a2
~12D2!2. ~69!

In Fig. 3~a! we examine the CARL operating regime, d
fined as the region in parameter space where the expone
instability occurs, atT50 as it would be if ray-atom optics
were valid. We contrast this with Fig. 3~b! which shows the
actual CARL operating regime atT50, as calculated using
wave-atom optics. From this figure we see that the opera
regime of the CARL is drastically reduced at low pump i
tensities and/or atomic densities when the effects of ato
diffraction are included.

Figure 1~a! comparesGR with GW for the casea510 at
T50, and Fig. 2~a! shows the same comparison fora
51021. We see that atomic diffraction leads to the appe
ance of a second threshold below which the collective ins
bility does not occur. From Fig. 2~a! we see that this secon
threshold may even be aboveD50 for low intensities and/or
densities. In fact, the threshold crossesD50 at preciselya
52/3A3.

Figure 2~a! shows that in the limit of weak pump intens
ties and/or atomic densities the peak gain for the WA
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model tends toD51, while that of the RAO model is atD
50. This result can actually be understood quite simply: T
atomic center-of-mass dispersion curve tells us that the
sorption of a pump photon and the emission of a probe p
ton by an atom initially at rest creates an energy defec
4v r due to atomic recoil. This defect can be compensated
a detuning between the pump and probe, which in dim
sionless units occurs atD51. Therefore the fact thatGW is a
sharply peaked function aroundD51 is simply an expres-
sion of energy-momentum conservation. If we are to take
ray-atom-optics model seriously atT50, then we must con-
cede that we are in the limit wherev r→0, therefore energy-
momentum conservation would predict the maximum ofGR
to occur atD50. In other words, in that limit the center-o
mass dispersion curve is flat over the range of a few pho
momenta.

V. DISCUSSION

We have argued that the classical description of ato
center-of-mass motion actually corresponds to a ray-op
description of the atomic Schro¨dinger field. At high tempera-
tures it adequately describes the CARL dynamics, howe
at subrecoil temperatures the wave nature of the atomic
becomes apparent, and the ray-optics approximation
longer suffices. Even at high temperatures, where the ray
wave pictures make indistinguishable predictions, th
physical interpretations are different: the first considers
atoms as localized distinguishable particles which follow t
jectories in phase space, and the other considers the co
tion of atoms as a quantum Schro¨dinger field in which the

FIG. 3. The CARL operating regime~shaded region! as pre-
dicted by the RAO model~a!, and the actual operating regime~b!,
as given by the WAO model.
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various normal modes of oscillation are coupled via t
atom-photon interactions.

Quantum thermodynamics tells us that in thermal equi
rium, the uncertainty in position of each atom complete
fills the volume of its container, independent of the tempe
ture. Therefore, from the quantum field point of view, ev
at high temperatures it makes no sensein principle to con-
sider the atoms as localized or even as distinguishable
ticles, even thoughin practice such a picture works quite
well. The differences between the two points of view lead
different physical interpretations of CARL behavior, eve
though quantitatively they agree completely in the prop
limit.

For example, in the classical model the dynamics o
single atom differs vastly from the dynamics of a large nu
ber of atoms, hence leading to a distinction between effe
which rely on the presence of many atoms and effects wh
would occur for even a single atom. We note that in o
derivation of the RAO model we have made averaging
proximations which assume that the atom number is v
large, thus it cannot be used as a single-atom theory jus
setting N51. In contrast, in the quantum picture the ato
number appears only as the amplitude of the Schro¨dinger
field, and due to the fact that the atoms are delocalized
averaging is necessary and the WAO modelcanbe used as a
single-atom theory by simply settingN51. Thus we see that
excluding high intensity effects and collisions not includ
in our model, a single-atom CARL will exhibit all possibl
CARL behavior, provided that the pump intensity is i
creased to compensate for the small atom number.

Using the quantum picture, it is relatively easy to und
stand the effects of Doppler broadening on the CARL. Th
effects have been studied in detail within the framework
the RAO model by Bonifacio and co-workers and Brow
et al. @4,6,9#, and we present arguments here only to illu
trate the utility of the quantum picture as well as to discu
what happens to the Doppler broadening effect as one en
the subrecoil regime.

The fundamental interaction which gives rise to pro
amplification in the CARL involves the absorption of a pum
photon and the emission of a probe photon, together with
transfer of an atom from an initial mode with dimensionle
wave numberk to a final modek21. As can be seen from
Eq. ~49! this transition rate is proportional to the populatio
difference between the initial and final atomic field mode
This population difference is maximized when the initi
atomic field mode coincides with the maximum populati
gradient, given byk52sk11/2, wheresk5AT/4TR is the
half-width of the Maxwell-Boltzmann distribution function
However, this interaction carries an energy defect given
units of 4\v r by DE52sk1D, whereD is the pump-probe
detuning defined by Eq.~23!. Therefore the maximum gain
will occur when the pump-probe detuning is chosen to c
serve energy for transitions between atomic field modes c
tered around the maximum population gradient. This lead
the conditionD52sk5AT/TR as maximizing the exponen
tial growth rate for the CARL.

The previous argument applies only to atomic fields w
a velocity spread much larger than the recoil velocity. F
fields where the spread in velocity is small compared to
recoil velocity a slightly different mechanism occurs. Here
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transition involving atomic field modes separated by two
coil momenta can no longer be centered around the m
mum population gradient, as this would result in both lev
involved having virtually zero population. Instead, the ma
mum population difference occurs between the mode w
the largest population (k50) and a virtually empty mode
(k521). This transition carries an energy defect given
DE512D, so the maximum exponential growth rate occu
for pump-probe detuningsD51, as discussed in Sec. IV B

Thus we see that the physics of the CARL at high te
peratures is different from that at low temperatures. FoT
@TR maximum gain comes from transitions centered on
maximum population gradient, characterized by the con
tion D5AT/TR, while for T!TR maximum gain comes
from transitions starting from the mode with the large
population, characterized by the conditionD51.

Because the wave-optics picture involves transitions
tween center-of-mass modes with different atomic velocit
it raises the question of whether or not aT'0 sample of
atoms is actually destroyed due to the interaction with
pump and probe lasers. Consider that before the interac
the atoms are practically at rest, but after absorbing a pu
photon and emitting a probe photon, they are moving
twice the recoil velocity due to atomic recoil, and therefo
will eventually leave the initial sample. This results in ato
losses, causing the atomic bunching to decay and redu
the CARL gain. We argue, however, that these losses
remain negligible for a realistic experiment involving
Bose-Einstein condensate~BEC! with a size on the order o
100 mm. Here the decay rate should be approximately eq
to the atomic velocity divided by the condensate size.
sodium, which has a recoil velocity of 3 cm/s, the loss r
works out to 102–103 s21. The CARL growth rate, on the
other hand, can be of the order 4v r or larger, which for
sodium is of the order 105 s21 or larger. Therefore, on the
time scale of the exponential growth in the CARL, the lo
rate due to atoms leaving the sample is negligible. Additi
ally, we note that in the linear regime we have shown that
population of the various atomic field modes remains
changed, the effect of the light-matter interaction be
solely to generate a spatial coherence, i.e., bunching, in
form of nonzero off-diagonal density matrix elemen
r(k,k21). This means that while the increase in the atom
bunching is a linear effect, the shift in atomic population is
second-order effect. The fractional population shift is in fa
given by the square of the bunching parameter. So in
linear regime, we can consider the sample to experie
bunching~spatial coherence! effectively without population
transfer. Of course in the non-linear regime this would
longer be the case. But here we also need to consider p
reabsorption, which plays a crucial role in the saturation
havior of CARL, and can reverse the spread in the ato
sample.

VI. CONCLUSION AND OUTLOOK

The CARL system represents an experimentally realiza
nontrivial example of dynamically coupled Maxwell an
Schrödinger fields. Thus the theory of the CARL is actua
a hybrid which combines ordinary nonlinear optics with no
linear atom optics. In ordinary nonlinear optics, one bene
-
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greatly when using laser light~characterized by coheren
‘‘single-mode’’ optical fields! as opposed to incoherent ligh
By analogy, one should greatly benefit in atom optics wh
using coherent atomic fields. This has been the primary m
tivation behind the recent interest in developing the‘‘ato
laser’’ as a source of coherent atomic fields. While the sea
for a cw atom laser continues, the current state of the ar
coherent atomic field generation involves the creation
Bose-Einstein condensates. A trapped BEC can be thoug
as a stationary ‘‘atom laser’’ pulse, and as such is ideal
studying systems of coupled atomic and electromagn
fields, such as the CARL. However, the temperature o
Bose-Einstein condensate typically falls well below t
atomic recoil temperature, and thus outside of the regime
the current CARL theory.

The main result of this paper has been to develop
wave-atom-optics model of the CARL, valid in the subrec
regime, and to compare this theory to the previous ray-ato
optics model. We have shown that, as expected, in the s
recoil regime the behavior of the CARL is strongly influ
enced by matter-wave diffraction, which tends to counter
the atomic bunching process and reduce the operating reg
of the system. However, for temperatures large compare
the recoil temperature we have shown that the two mod
make indistinguishable predictions.

The present theory quantizes the matter wave, but not
electromagnetic field. It will be of considerable interest
extend it to regimes where both fields need to be quantiz
An analysis of the density regime where quantum deg
eracy becomes important will also be a fascinating extens
in particular when two-body collisions are included. Th
study will allow one to investigate to what extent a Bos
Einstein condensate can be manipulated and modified in a
off-resonant CARL configuration. An intriguing possibilit
would be to generate in this fashion a coupled laser–‘‘ato
laser’’ system. The study of the coherence properties of
system will be the object of future investigations. Finally,
comparison between bosonic and fermionic CARL syste
in the quantum degenerate regime should also be conside
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APPENDIX: HEISENBERG EQUATIONS OF MOTION
FOR DENSITY OPERATORS

The full equations of motion for the expectation values
the density operators are

d

dt
rgg~k,k8!52

i\

2m
~k22k82!rgg~k,k8!

1g1a1* reg~k2k1 ,k8!1g2a2* reg~k2k2 ,k8!

1g1* a1rge~k,k82k1!1g2* a2reg~k,k82k2!,

~A1!
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d

dt
reg~k,k8!52 i F \

2m
~k22k82!1v0Greg~k,k8!

1g1* a1@ree~k,k82k1!2rgg~k1k1 ,k8!#

1g2* a2@ree~k,k82k2!2rgg~k1k2 ,k8!#,

~A2!
,

s

.

nd

v.

ys
and

d

dt
ree~k,k8!52

i\

2m
~k22k82!ree~k,k8!

2g1a1* reg~k,k81k1!2g2a2* reg~k,k81k2!

2g1* a1rge~k1k1 ,k8!2g2* a2rge~k1k2 ,k8!.

~A3!
L.

ca,

ys.
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