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Resonance interaction between two atomic dipoles separated by the surface
of a dielectric nanosphere
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Studied within the framework of both classical and quantum-mechanical approaches is the resonance inter-
action between two atomic dipoles one of which is located inside a dielectric microsphere and the other near
its outer surface. The dispersion equation of this system is found. The analysis of this equation in a quasistatic
approximation has shown that the behavior of the eigenfrequencies depends in a complex manner on the
parameters of the system, and that exact resonance can be achieved, provided the parameters are suitably
selected. Based on the solutions of the above equation, relationships are found between the energy-transfer rate
and the system parameters. It is demonstrated that as the inside atom approaches the surface of the micro-
sphere, resonance excitation transfer from one atom to the other can take place. Similar results are obtained
when using the quantum-mechanical density matrix to define the atomic interaction. The results obtained can
be of use in implementing selective microscopy with a nanometer-high spatial resolution.
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PACS numbgs): 33.80—b, 42.50.Fx, 61.16.Ch, 07.79.Fc

I. INTRODUCTION involve the Foster resonance excitation transfer from a do-
nor on the nanotip surface to an acceptor on the surface of
The development of nanoscience and nanotechnology hasterest(or vice versa
made it possible to study the interaction of atoms and mol- The problem of resonance energy transfer in the vicinity
ecules with nanostructurgsanotips, nanoprobes, etcus-  Of a plane interface was considered in R¢@&-11]. The
ing for the most part scanning force microscofsee, for — authors of Ref[12] considered the influence of curvature
example, Ref[1]). Of special interest is the study of reso- effects upon the van der Waals interaction, and, in Ri],
nance interactions, that potentially may help achieve a spati@n investigation was started into the process of resonance
resolution at an atomic-molecular level simultaneously with€Nergy transfer between an oscillator located inside a micro-
spectral resolutiotfor, in other words, chemical selectivity sphere modeling a nanotip and another oscillator close to the

To illustrate, the authors of Ref2] suggested a nanometer- out_lt_arr] surfacefof the_ mlcr(;]sphere. th del of o i
resolution scanning optical microscopy technique involving. € use of a microsphere as the modetl of a nanotip IS

e . stified because the processes under consideration are local
the resonance excitation of fluorescence in the sample from'a b

. ; . .and sensitive to local curvature. If we need to consider a
single-atom-excited center on the surface of a nanotip. Th'?nore general problem, including excitation of a donor and
is essentially a combination of three techniques: scannin '

f : field ical mi q %ollection of fluorescent light, the use of a cone with a
orce microscopy, near-field optical microscopgl, and g ,othed edge as a nanotip model is necessary. The point is

fluorescence resonant energy tran$féRET) [4,5]. __ that processes of excitation and registration are due to the
It has been known at the same time that the emissioRotons propagation over distances exceeding the wave-
characteristics of a dipol@mission frequency and ratsuf-  |ength. As a result the global nanotip geometry comes into
fer substantial modifications in microstructures of a size orp|ay. Within the spherical model of a nanotip we foUld]
the order of the optical wavelength (the so-called cavity approximate analytical expressions for energy transfer be-
QED effects[6]). Specifically this is true in the case of an tween radialy oriented classical dipoles. In the present work,
atom inside or near a dielectric microsphere with a radius we will continue with the study of this problem within the
of the order of\ [7]. Moreover, in the vicinity of a micro- spherical model, and find the equations describing the energy
sphere with a radius ai<\, there may take place a change transfer for the arbitrary orientation of dipole momentum
in the selection rules for the radiation, so that the quadrupolevithin classical as well as quantum mechanics. The solutions
radiation probability will increaseN/a)? times, approaching of the obtained equations are found analytically and numeri-
the dipole radiation probability8]. The question therefore cally.
naturally arises as to what part can be played by such effects Generally speaking, the energy-transfer process should be
in the near-field FRET microscopy techniq# that should — analyzed within the framework of quantum mecharjiés
However, in the case of homogeneous space, the final results
for the energy-transfer rate prove independent of Planck’s
*Electronic address: klimov@rim.phys.msu.su constant, and can be obtained within the framework of the

1050-2947/98/581)/323513)/$15.00 PRA 58 3235 © 1998 The American Physical Society



3236 V. V. KLIMOV AND V. S. LETOKHOV PRA 58

AZ equilibrium position. Note that since the atomic oscillators
are located in matter, their oscillation frequencies and line-
i widths differ substantially from their counterparts for iso-
e, 7 K lated atoms, the linewidths being, as a rule, much in excess
& of the radiative IinewidthyiR in free space. In deriving Egs.

(1), we have disregarded the positional oscillations of the
dipoles (nucle)). Note that the oscillation amplitude of the
moving charge in an atomic dipole is of the order of the Bohr
radius (0.053 nm, and so it can be neglected within the
framework of the nanometer scale of interest tqRgdberg
atoms being an exclusign

Equations(1) change materially if account is taken of the
field reflected from the interface and the field emitted by the
other dipole:

microsphere ) _
My (8F 1+ 71671+ widry) =e[EN(ry,t) +E3(ry,b)],
FIG. 1. Geometry of the problem. ®)

purely classical approadH,14]. In our case, the presence of My(SF 5+ 501 5+ w28 ,) = e[ EX(r,,t) + EL(r,,1)].

the interface leads, generally speaking, to the occurrence of

purely quantum corrections to the shifts of the partial fre-

quencieq15], which in the case of microspheres turn out to  |n these equation is the charge of the oscillating par-
be[16] of a higher order of smallness £} in comparison ticle, and E;*R(r;) is the total(T) or only the reflectedR)
with the dipole interaction (17) as the atoms approach the field due to theith dipole in the position of théth dipole.
surface {—0). (Hereis the distance from the atom to the  Assuming that the oscillation direction remains un-
surface of the microsphejeThe plan of the rest of the work  changed with time, each one of E@) can additionally be
is as follows. In Sec. II, the equations describing the interacmytiplied in a scalar fashion by the unit oscillation direction
tion between two oscillators in the presence of a dielectrigector n,=d, /d;= or;/sr;, as a result of which the equa-
microsphere are analyzed with due regard for delay effectgjons describing the change of the dipole moment will take
and the corresponding dispersion equation is derived. In Segq the forms

lll, the dispersion equation is simplified as applied to the

guasistatic case of nanometer-scale dielectric spheres, the be-

havior of the eigenfrequencies is examined as a function of . . ) g2 R T
the mutual arrangement of atoms and the size of the micro- (di+ y10d1+ wid))= m [n1-Ef(ry)+ng-Ex(ra)l,
sphere, and conditions necessary for the occurrence of exact 3)

resonance in the system are found. In Sec. IV, the electronic

excitation energy-transfer process is studied within the ) ) e?

framework of the classical approach, and, in Sec. V, the pro-  (d,+ y,d,+ w3d,) = - [ny-EX(ro)+ny-Ef(ry)].
cess is investigated within the framework of an approach 2

based on the quantum-mechanical density matrix. In Sec. VI,

the results obtained are analyzed, and the quantum- . - . .
y q Assuming that all the quantities vary in proportion to

mechanical and classical approaches are compared. The ge-j ; i ' X .
ometry of the problem is illustrated in Fig. 1. ge , and expressing the fields in terms of the appropriate

Green functions, i.en;- Ej=n;Gn;d;, we obtain the follow-

Il. GENERAL EQUATIONS. THE DYNAMICS Ing equations:

OF COUPLED OSCILLATORS SEPARATED

BY A SPHERICAL INTERFACE (—wz—i‘ylw-f-wi)dl

In the absence of interaction between the dipoles them- o2
selves and between the dipoles and the spherical interface, =— ;- GR(ry,w)-nydy+ny-Gl(ry, ) - nyds,],
the equations of motion of the dipoles treated as classical my
oscillators have the form (4)
My (8F 1+ ¥, 87+ wi6r,) =0, (—w?—iy,0+ w3)d,
1) 2

My( 8 5+ ¥ 01 5+ w587 ) =0. e < <
2(OrgH 70T w20r7) :m_2 [nZ'GI(rz,w)'nldl"' n2'GzR(r1,w)'n2d2],
In the above equationsy;, y;, andw; are the parameters
characterizing an individual atomic dipole in a boundless
medium with the appropriate dielectric constant and or; whose consistency condition gives us the dispersion equation
are the displacements of the moving charges relative to theisf the system:
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2 2 <R ST
- _'71w+w1_m_ln1'61(r1,w)'n1 _m_lnl'Gz(rlrw)'nZ
=0. (5)
- m_ n2~GI(r2,w)- ny —wz—i'yzw-l- (,()g_ m_ n2~G§(r1,w)- Ny
2 2

If we solve this equation fow and find the eigenfrequenci€k, ,, we then can easily find all the characteristics of the system.
To solve dispersion equatigh), one must know the expressions for the fields on the right-hand side. The expressions for
the additional reflected fields were found in R4f&,. 17] to be as follows:

(2 ) 2,r+|21(|+1/2)

af(hiM(T,))?

n, ég(rZ:w)'nzzikg@[IZl ,3 S (1 +1)(21+1)

d(Fh{" ()|

+ﬁ%‘“(% [ng,ﬁn%@]} (®)
) 6§*<r1,w>-n1=ik8Js—1|nir§1 a ™ +1><2|+1>"(11 +[n 1ﬁ+”1¢]2 <|+1/2>[/3.1"“ Fa)+ 1'“(“'(11)) “
7)
1,im:81[22h|(1)(22)]’hfl)(zl)_sz[zlhfl)(zl)]’hfl)(zz) ®

| £2[24J1(20) 1NV (22) —21[ 2,01 (2,)]'j1(20)
al,im:[zzhf”(zzﬂ'hf”(zl)—[zlhf“(zl)]’hf“(zz) .

| [24)1(20) 1M (2) —[ 2,01 P(25)] 1 (22)

d d
€1 d_ [Z2]1(22)1j1(21) — &2 d_ [21)1(z1)1i1(22)
B — (10
' d
€1 1~ d [Zzh(l (z)]j(z1)— & 7 dz, [lel(zl)]h| (Zz)

d d
[Zzll(zz)]ll(zl)_ [21]|(21)]J|(22)
a2 — (11)

d (1) d (1)
[Zzh (z2)1j1(z1)— [211|(21)]h (22)

wherez,=koae;, Ti=rko\e;, ko=wlc.
The expressions for the fields describing the delayed interaction between the dipoles can be found using the approaches
presented in Refg7, 17], and by virtue of the reciprocity theoref8]

Ny Gi(ra,®)-N=n3-G3(ry, )Ny (12

it is sufficient to find any one of these expressions. When the orientations and positions of the dipoles are random, these
expressions are cumbersome, and therefore here for brevity we will analyze only the case where the dipoles are arranged along
a single line passing through the center of the microsphere. In that case, the interaction of the dipoles with the identical
orientations fi;=n,=n) will be defined by the expression

) . (F2)ii(Fo)
n, GI(rz,w>-n1=n1-GZ(rl,m-nz—J_E |<|+1>(2|+1>ﬂ1'3*‘% n?
TikG\ez 2 (14+1/2)al i (F) ] (Fo) G+ nf]
(1)
_E (|+1/2)Blextr2 ()1 1ji(ry)Y [n g+ni]- (13

rorq

In the above expression, the coefficients for the passage of the field due to the external dipole into the microsphere have the
forms
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o= — (14)

Z, d
_[Zzh( (22)151(z)— _[Z1J|(21)]h| (Zz)

| €9 1
IZI.eX'(_ 2 5 (15)
o1 g d [22{"(22)1ji(20) ~ &2 - [ (20) I 2
|
Ill. QUASISTATIC APPROXIMATION F180x; o) = F Bxq ,Xp)
Generally speaking, to determine the energy-transfer rate, 2 o
it is necessary to analyze exact dispersion equdatpnBut _ X X1X5)" w
in our case of small microspheres, one may first consider a 2X1 n=1 eiN+ey(n+1)
guasistatic electric-field approximation wherein no allow- (24)
ance is made for delay. In that case, the dispersion equation
describing the dynamics of the atomic dipoles is substan- w 9
tially simplified. In the case of radially oriented dipoles Flany )= (e1—82) XS x n“(n+1) 25
(head to tail geometpy this equation may be represented in 2287207 9g, T2 81n+82(n+ 1)’
the form

(@ +iy10- ) (0 +iy20- 53 =0:0,f% . (16
where the partial frequenciés; and @, are defined by the
expressions

~2_ 2 ra
W= W~ 91f11d(X1)y

17
'(I) wz 925 d(Xz)-

Herex,=r,/a, x,=alr,, g;=e?/m;a® are the coupling co-
efficients and

E1— € on n?(n+1)

=" 2 ey 09
frﬁd(xlyxz):frﬁd(xl,xz)
n(n+1)(2n+1)
X nZ ) e ey 19
2
d(Xz)— (g1 82) 42 n(n+1) 20

=1 sln+82(n+l)'

In the case of tangential orientation of the dipolsand-
wich geometry, we have

(02+ i y10—B2) (02 +iy0— 52 =0:0,{%, (21)

where the partial frequencies are given by the relations

~2

_ 2 t
07= 01— 0:f17(X1),

~2_ 2 ta (22)
5= w5—gof55(X,).
Here
o0 2
€17 &2 2n n(n+ 1)
Fi(x) = 281X1 n=1 X eiN+ey(n+1)’ @3

To solve dispersion Eqg16) or (21), it is necessary to
calculate sumg18)—(20). Generally speaking, these sums
are expressed in terms of hypergeometric functions whose
exact calculation is somewhat difficult to make. However,
for any rationale’s, these sums can be expressed in terms of
elementary functions. In the case of heavy glass=(3,
g,=1), which will be analyzed, we havd 9]

+X 1/2
1—x)

and the above sums of interest to us can be expressed in
terms of the derivatives of this function.

An important feature of the quasistatic approximation
used is the fact that here the interactions of the dipoles with
the reflected waves and with each other are independent of
frequency(no microsphere resonanc)—22 are exciteg)
and so the dispersion equation has four r@gtt® with posi-
tive real parts and another two with negative real parts
From physical considerations, these roots must have negative
imaginary parts corresponding to damping. But in our case a
situation is possible where one of the normal modes ceases
to be oscillating. One can easily see that this occurs as the
external atom approaches the surface of the microsphere in
the vicinity of the point, at which the free term in dispersion
equationg16) or (21) changes sign, i.e., at the point defined
by the equation

4k+l

” 1
2 k+1 2

arctarix) +1In , (26)

[wl 01 ] d(xl)][wz ngrad(xz)] glngradz- (27)

At this point one of the solutions of dispersion equations
(16) or (21) goes to zero, and the system becomes unstable in
the neighborhood of this point. Physically this means that the
interaction of the oscillating charge with its ‘“mirror-
reflection” counterpart proves stronger than the intraatomic
interaction. In this region, our approximation becomes inad-
equate, and one must take account of the atomic structure of
the interface.
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The involved behavior of the system under consideratioriors, but also on their position. As the atoms draw closer to
is due largely to the fact that the partial frequencies are dethe interface, the partial frequencies always fall off reso-
pendent on the position of the dipoles, and differ substannance.
tially from the partial frequencies of the same dipoles in free  |n the case of weak damping, the solution of the disper-

space: sion equation can easily be written in explicit form:
wi= -0 2> o} 9 o
3+ D3 (@2 - 03)2+ 4910, 5|
. = 5 . (30
5= 030t B 2 <ol 29

and so the condition for the equality of the partial frequen- When the oscillator frequencies are equal, i@~ w;
cies will depend not only on the frequencies of the oscilla-= wg, expression(30) is even more simple:

1/2

( 5 9111+ 9of 207 V(9111 92F 202+ 40:0,f7,
CUO_
2

91f11+ 9o 207 V(92 11— 02f 202+ 4910,f%,

but even these simple expressions show that the relationships Figure 2 shows the solutions of the dispersion equation as
between the eigenfrequencies of the system and the absoluefunction of the position of the acceptor at such problem
and relative positions of the dipoles are fairly complex, theparameters as maximize the equalization of the frequencies.
coefficients f;; being dependent on the same parametersOne can easily see the intensification of frequency splitting
Nevertheless, the analysis of the case of negligibly smal(“line repulsion”), going in line with the increase of the
damping[Eg. (30)] allows one to conclude that it is impos- dipole-dipole interaction, and the vanishing of one of the
sible in the given case to attain exact resonance in the systormal modes at,~0.5 nm. The dashed line in the figure
tem, i.e., the eigenfrequencies will never coincide, no matteshows the solution of the dispersion equation in the case of a
what the parameters of the problem.

To make numerical calculations, we will measure all the 120
frequencies and linewidths involved in terms of some line-
width y* =3.14x 10" s, and take the dimensionless coef- 115} outside atom

ficients to be equal: 1ol =T

e? e? 105 o
9:,= =0,= ; 32 I
91 myady* 2 92 myad,*2 (32) - .
AL
that is, we will assume that the masses of the oscillating nside atom
charges are the same.
Note that if the charge and mass of an oscillating particle ool
are expressed in terms of the radiative linewidth
85
R 2e? a)iz 33
YiT3¢ m; (33 83 1 15
& (nm)

(we take it that the transition oscillator force is equal to

unity), the expressions for the dimensionless coupling coef- F!G- 2. Eigenfrequencies as a function of the position of the
ficients can be reduced to the form acceptor{, in the case of partial frequencies resonatreelial ori-

entation; w;/y*=100, w,/y*=115, y,/y*=y,/y*=1, a

3 ,yR c3 =4.75nm, and/,=7.4 nm. One can easily see the “line repul-
01=0>,=%= 5 357, (39 sion,” going in line with the increase of the dipole-dipole interac-
2 [0t wp|” @’y tion, and the vanishing of one of the normal modes at
2 ~0.5 nm. The dashed line shows the eigenfrequencies in the case

of a plane interface. Comparing between these curves allows one to
where yR is some effective radiative linewidth. In our nu- conclude that the solutions of the dispersion equations in the given
merical calculations, we assume that/ y* =104, case behave qualitatively alike.
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plane interface. Comparing between these curves allows one 130
to conclude that the solutions of the dispersion equations in

the given case behave qualitatively alike. 120}
More complex relationships will occur if we consider the
damping of the oscillators. In that case, it is possible to dem- 10r
onstrate that there exist conditions under which the partial Ey
frequencies are not equal, and the force of interaction be- 4l

tween the oscillators is such that exact resonance occurs in
the system. If we fix the atoms in some random positions and

. . . . 90H
select their frequencies to satisfy the equations

80
49192fr132d2(X1 1X2) A & (nm)
(y1—72)°

1
wi:Z Yi+ 9. f (%)) +

(39

49192fr1%d2(X1aX2)
(y1— ’)’2)2

1
wg:z Y5+ 0o 5 (%)

’ 8

the solutions of the dispersion equation will become degen- ..
=

erate. If we assume thél;= —i(y;/2)+ w;, then A
— _— Nty ol
Y1=72 2
(36) 0 ‘i 1;5 é 2;5 ('3 3;5 4
aizag 2 (nm)

FIG. 3. Eigenfrequencies as a function of the position of the
acceptor{, in the case of exact resonan¢edial orientation;
w,/y* =100, w,/y*=114.1,y,/y*=0.1, y,/y*=10,a=1 nm,

Figure 3 shows the solutions of the dispersion equation aand ;=1 nm). It can be seen from this figure that as the second
a function of the position of the external atom at a certainatom approaches the microsphere, no frequency repulsion takes
choice of the problem parameters providing for the occurplace at first, and it is only the imaginary parts of the solutions that
rence of exact resonance when the second atom is 2 nmhange until they coincide completely at the point of resonance.
distant from the surface of the microsphere. It can be seefnce resonance is reached, the frequencies rapidly move apart.
from this figure that as the second atom approaches the mi-
crosphere, no frequency repulsion takes place at first, and ihat after having drawn closer in the region of resonance,
is only the imaginary parts of the solutions that change, untithey start approaching their initial values.
they coincide completely at the point of resonance. Once Up to now we have considered the case of radially ori-
resonance is reached, the frequencies rapidly move apart. ented dipoleghead to tail geometjy but the situation with

When one of the parameters of the system changes, thibe tangential orientation of the dipoles, i.e., when the oscil-
latter falls off resonance. Figure 4 shows the behavior of thdation direction is normal to the radiysandwich geometjy
eigenfrequencies and linewidths as the frequency of the exs exactly the same. In that case, there take place the same
ternal atom (in free spacg rises from w,/y* =114 to effects, the only difference being that the interaction force
w,/y* =116 (the dashed lines represent the partial frequendecreases and the resonance occurs at closer distances to the
cies®y ,). In that case, all the dependencies are of monotonisurface of the microsphere. Figure 6 illustrates the behavior
character: as the extern@cceptoy atom draws closer to the of the atomic frequencies and linewidths at the same system
surface of the microsphere, its frequency and the linewidth oparameters as in the case of radial dipole orientation. It can
the internal atom increase, whereas the frequency of the irbe seen that exact resonance in this case occurs when the
ternal atom and the linewidth of the acceptor atom decreas@xternal atom comes within some 1.4 nm of the microsphere;
At very small distancegnot shown in the figure the oscil- i.e., at smaller distances from the surface of the lditethe
latory condition of the internal atom vanishes altogether. case of radial orientation, resonance occurs at a distance of

A different situation occurs when the dimensionless fre-around 2.1 nm from the surface of the microsphere
guency of the external atom drops from,/y* =114.1 to
w,/y* =112 (Fig. 5 (the dashed lines represent the partial |\, £\ErGY TRANSFER BETWEEN THE OSCILLATORS
frequencieso, ). In that case, the monotonic behavior of the (CLASSICAL THEORY )
atomic frequencies as a function of the position of the exter-
nal atom persist&hough the frequency of the external atom  With the solutions of the dispersion equation known, one
becomes decreasing, and that of the internal one increasingan easily find all the characteristics of the classical system.
As for the linewidths, their behavior is not monotonic, so To illustrate, the oscillation equation of the second oscillator

= wi—gs (%)) + 03— 0of B xa) — $(v1— 72)21.
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130 T T T T T T 130

s20F outside atom | 120F inside atom

110

e inside atom . L, .
3 3 outside atom
100 100 J
90 90}
80 . \ . N \ \ 80 . . . \ . .
1 15 2 25 3 3.5 4 1 15 2 25 3 3.5 4
& (nm) & (nm)
10 T 10
L i 4 8t " 4
8 outside atom outside atom
6 6 L
. & . &
4r 4
2t inside atom 1 2r inside atom 1
0 . L N . ; n 0 . : " . : :
1 15 2 2.5 3 3.5 4 1 15 2 25 3 35 4
&2 (nmy) &2 (nm)

FIG. 4. Eigenfrequencies as a function of the position of the FIG. 5. Eigenfrequencies as a function of the position of the
acceptor{, near exact resonan¢eadial orientation;w, / y* =100, acceptor{, near exact resonand¢eadial orientation;w, / y* =100,
Wy y* =116, y,/y*0.1, y,/y*=10,a=1 nm, and{;=1 nm). In Wyl y* =112, y,/y*=0.1, y,/y*=10,a=1 nm, and{,=1 nm).
that case, all the dependencies are of monotonic character: as thethat case, the monotonic behavior of the atomic frequencies as a
external(acceptoyr atom draws closer to the surface of the micro- function of the position of the external atom persiétsough the
sphere, its frequency and the linewidth of the internal atom in-frequency of the external atom becomes decreasing and that of the
crease, whereas the frequency of the internal atom and the linewidihternal one, increasingThe dashed lines correspond to no inter-
of the acceptor atom decrease. At very small distafresshown, action case, i.e., to partial frequencies. As for the linewidths, their
the oscillatory condition of the internal atom vanishes altogetherbehavior is not monotonic, so that after having drawn closer in the
The dashed lines correspond to no interaction case, i.e., to partiaégion of resonance, they start to approach their initial values.
frequencies.

. . . 9210
(acceptoy may be described by the equation €1=C3=0; C;=— CFw- (39
2 1
dy(t)=e" "¢ sin(w;t)+¢, cogw;t)] In the case of resonance, we haaebitrary damping
+e "2 ¢, sin(wot) +c4 cOSwot)] (37 9of1A37—272)
Ci=———F=3—, C=0,
in the case where the system is off exact resonance, and by 4o
the equation (40)
c _ ez C4=—wC
dy(t)=e " ¢, sin(@t)+c, cogat)] ¥ 20 v
+e‘7"2t[c3 sin(wt) + ¢, cogot)] (39 It is only natural to take the ratio between the energy of

the second oscillator and the initial energy of the first oscil-
at exact resonanc@gvhen it is the eigenfrequencies and not lator as a measure of excitation of the second oscillator:
partial frequencies that coincigdeln the above equations, . —
Q=—i(v/2)+w. The coefficients; can be readily found if CEx(t) My(X5+ w5X5) _ X5
we assume that it is only the first oscillator that is excited at n2= E1(0)  my(wixi(0)) - x2(0)
the initial instantt=0 [d,(0)=1, d;(0)=0], while the sec-
ond is at resfd,(0)=0, d,(0)=0]. In the general case, the The overscored symbol in E¢41) denotes averaging over
resultant expressions for these coefficients are rather cumbdrigh frequency.
some, and therefore we will only give them for the case of Substituting expressiof87) into Eq.(41), and averaging,
weak dampingnonresonance case we obtain the following expression for the measure of exci-

(41)
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130 T T T T T T weak interaction
{fast dephasing)
120} | di(t)/ 4,(0)
1 ‘ ‘
110-/ ] A |
s tangential ol [ M ﬂ r [\ M hh /\UAVAUA AR
100} orientation 1 N U \J v W/ Uv KL
90+ 1 -1 ; . .
0 5 10 15 20
a0 , (Q+Q,)/2 |
1 15 2 25 3 35 4 | dz
L (nm) ! L, = —2m
dy(1)/ d(0) G t ‘
10 tmax |
1 —
st o T T T T T T "
i d
'\ FIRtN ﬂﬂ 2,max
6F tangentia i 0 AVI\‘/HHH} ‘\,\ l!\fﬂwl‘\%ﬂ\jﬂ\/ﬂw\” A
§: orientation \ }U W J U | I
4 4 | ) . .
0 5 10 15 20
2} (@ +Q,)/2
0 . . . n : FIG. 7. Resonance energy-transfer illustration.
1 15 2 25 3 35 4
& (nm)
e[ 9202 2e*V‘[(s_—z +202t)?
FIG. 6. Eigenfrequencies as a function of the position of the 2 7\ 403 YT YT ew
acceptor{, in the case of exact resonang@angential orientation; _ S,
wy/y* =100, w,/y* =114.2, y,/y* =0.1, y,/y* =10, a=1 nm, +(3y—2y,) 0 t]. (45

andZ;=1nm).

tation of the second oscillator in the nonresonance casd,N€re are no beats in this case.
which only includes low-frequency terms: In any case, the energy of the second oscillator treated as

a function of time has at least one maximysee Fig. 7.
This circumstance allows us to define, according to REf.
the energy-transfer rater excitation probability for the sec-
ond particle as the ratio between the maximum degree of
excitation and the time it takes for excitation to reach its
+(CqC3+C5Ch)C08 (01— wy)t]}. (42  maximum, i.e.,

n,=(C2+c2)e M+ (ci+c2)e 72

+ 2e*(72+?1)“2{(clc4— CZC3)Si|'[(51_ aZ)t]

In the case of resonance, it is necessary to substitute ex-

pression(38) into Eq. (41), to obtain ny_,= 772,max. (46)

] tmax
nrzeson: e 7‘[(C1+03t)2+(02+ C4t)2], (43

] . ] In the case of weak dampir(gtrong interactioy we have
The behavior of expressiorn42) and(43) as a function of

time is governed by the ratio between the frequency differ-

ence and damping. Where damping is small in comparison 29,f1, \?
with the difference between the eigenfrequencies, expres- M2,max— <(Qz )) (47)
sions (39) hold true, and we obtain the following simple 0
expression for the degree of excitation of the second oscilla-
tor:
tmax— T 48
( 205f1, )2 ? M Q= Q| “8)
=| ————-| sinf[(Q;—Q,)t/2]. 44
72 (Q%—Q%) [(Q4q 2)U2] (44)

and, for the energy-transfer rafexcitation probability, we
In the case of resonance, we have obtain the expression
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Q-

T

1 29,f
( Jol12 . (50)

2
Ni2=— m) |Q1—Qy). (49) nrleiZZ‘

In the case of strong interaction, i.e., when the amplitude of Expressiong49) and(50) agree fully with the results ob-
the second dipoléacceptoyis equal to that of the first dipole tained by Foster[4]. In the case of exact resonarisee Eq.
(donop, the energy-transfer rate between the atomic di{45)], the time it takes for the oscillation amplitude of the
poleswill only be governed by the maximum timg,, (see, second oscillator to reach its maximum is defined by the
for example, Ref[23]): expressions

treson_ o[A— 27( 37_ 2')’2)]_"'\/(5'6\)2"’ (37— 2 ’)/2)2
max YA

. A=(20)%+(3y—2y,)?, (51)

and the energy-transfer rate is given by

reson_
1-2 treson
max

SO LE0 (nglz)z 20°A[ oA+ (@A) 2+ (37— 27,)2] e .
40° | JG[A-29(3y-27) ]+ (@A) Z+(3y—2v,)3)

V. ENERGY TRANSFER BETWEEN THE OSCILLATORS where the partial frequencies; and @, are defined by ex-
(QUANTUM THEORY ) pressions(17) in the case of radial orientation, and by ex-
essiong22) in the case of tangential orientation.
To find the interaction energy matrix element as applied
our problem, we write down the classical system’s La-
rangian corresponding to equations of moti@h without
damping:

In Sec. IV, we found energy-transfer rates in the classical"
approximation. Similar results can also be obtained in tht%0
case of quantum mechanics if we restrict ourselves to th
analysis of two-level donor and acceptor atoms. Indeed, fo
the three states of our two-level systej@4], if we introduce

the density matrix L=Ly+Lo+Lin,
(1= 0102:(2|= ¢201:(3|= @201 (53 ] m, (d?—®2d?)
1= 5
2
(where the prime denotes an excited statee general equa- (56)
tion for the density matrix will assume the forms 2 ~2.2
m,(d5—®3d3)
L2: ’
) 1 2
pllzm (V12021= V21012 — v1p11, 9
e
Lintzg f12(X1X2)d ;.
P22= = 77 (V12p21=V21p12) = Y2P22, One can see from this Lagrangian that the interaction energy
matrix element is given by the expression
1 AE
s L, d d
P12~y Vidp2o—p12) —T'1op1ot T3 P12 (54) Vo= < 1’ - e—lgt 2> = —Tf15(X1,X2) —( 1)82(3 2)98,
(57)
. 1 AE ) . .
P~ Voi(p11— p22) — 12021~ 7 P where we mean either radial or tangential components of the

transition dipole moment matrix elements. The density ma-
trix dynamics thus proves to be fully determinate.
P11t pat paa=1. The detailed analysis of all the conditions of the system of
equations(54) is the subject of an individual investigation.
HereV,=(1|V|2) is the interaction energy matrix element. Nevertheless, one can find, without solving this system in
AE=(E;—E;)—(E3—E,), and y;, y,, andI'y, are the explicit form, the quantity
longitudinal and transverse relaxation rates. It is not very .
difficult to understand that one should us& as the differ- _ J"” (hdt| —
ence between the partial frequencies with due regard for the N N "N
interaction with the microsphere:
2|V ?I(I %)

AE= (%1~ @)h=A0h, (55) T LH[AENT 1) P+ 2V I (T 127202

(58)
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FIG. 8. Resonance energy-transfer ré®) as a function of FIG. 9. Resonance energy-transfer rate as a function of acceptor

acceptor position, (radial orientation; the dashed curve corre- position ¢, [radial orientation; the solid curve corresponds to the
sponds to the plane interface between the dipoles—{;  computer calculations; the dashed curve corresponds to the analyti-
=7.4nm, 2-{;=4.4nm, 3-{;=1.4nm, w,/y* =100, w,/y* cal solution (49)]. 1-7,=43nm, 2-{;=24nm, 3-{;

=115, y;/y*=7v,/y*=1, and a=4.75nm. Here the energy- =0.5nm, w,/y* =100, w,/y* =110, y,/y*=vy,/y*=1, anda
transfer rate curve corresponding to the case where théifisstle =4.75 nm. In the case of strong interactighe top curvg one can

atom is closer to the opposite side of the microsphetfe ( see a good agreement between the analytical formula and the exact
=7.4nm) is of resonance character. If the inside atom is close t@alculation. As the interaction weakefas the donor atom moves

the center of the microspheré,(=4.4 nm), the resonance effect away from the surface of the microsphere; see the central and bot-
diminishes, though the total energy-transfer rate increases on agem curves, the discrepancy between the results increases, although
count of the atoms drawing closer together. If the inside atom ighe analytical formula correctly describes all the qualitative charac-
located near the surface of the microsphefg=(1.4 nm), the reso- teristic features.

nance effect practically vanishes, but the total energy-transfer rate

reaches its maximum, the atoms being the closest to each other. The

dashed lines in this figure indicate energy-transfer rates correspond- (f’f; 2
ing to a plane interface. Note that the point at hand is the resonance
of the partial frequencies and a relatively weak damping. The oc-
currence of exact resonance does not mean that the energy-transfer 1+
rate will be of resonance character. This is especially true in the

case of real systems where the acceptor atom features a strogghare

damping.

0192
2wy050" 5

Ny = , (61

Aa)2+frad2 0192

NP} 2 2wy050M 12y

AB=Joi-gifix) — Joi—gfRx). (62
which can be treated as the generalized energy-transfer rate
[25]. The above expression in this form does not depend on
Expressing the squared dipole moment matrix elements ifPlanck’s constant.
terms of the oscillator frequencies by means of the relation It should be emphasized once more that being the exact
characteristic of systen(64), expression(61) provides an
adequate description only in the case of strong damping in
he? the second system.

|di,eg|2: fi, (59

2mi(1)i
VI. RESULTS AND DISCUSSION

To find the energy-transfer rate, it is sufficient to substi-
tute the eigenfrequency values found into expressidfsor
X(52), or else find exact expressions for the coefficients
and then use expressiéh2) (see Fig. 7 to find the energy-
transfer rate numerically. In the quantum-mechanical case,
use can be made of expressi@i).
_era 179202 (60) Figure 8 shows the rate of energy exchange between the
' oscillators[see expressiofd9)] as a function of the position
of the outer atom(the dashed line corresponds to a plane
interface between the dipolefor various positions of the
Substituting the above expression into E&f), we obtain  inner atom. In our case of a microsphere with a radius of
the final expression for the energy-transfer rate in the vicinity4.75 nm, of resonance character is the energy-transfer rate
of a curved surface: curve corresponding to the case where the firgtide atom

and assuming that the oscillator forcksare equal to unity,
we obtain the following expression for the squared matri
element:
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FIG. 10. Resonance energy-transfer rate as a function of accep:
tor position{, [tangential orientation; solid line corresponds to the
computer simulation, the dashed curve corresponds to the analytica
solution (49)]: 1-¢,=4.3nm, 2-{;=2.4nm, 2-{;=0.5nm,
w1 /y* =100, w,/y* =110, vy, /y* =y,/y*=1, anda=4.75 nm.

Note that all the effects occur at closer distances to the surface of
the microsphere in comparison with case of radial orientation.

is closer to the opposite side of the microsphem (
=7.4nm). If the inside atom is close to the center of the
microsphere Z;=4.4 nm), the resonance effect diminishes,
though the total energy-transfer rate increases on account o
the atoms drawing closer together. If the inside atom is lo-
cated near the surface of the microsphezg=1.4 nm) the .
resonance effect practically vanishes, but the total-energy- 1° 4
transfer rate reaches its maximum, the atoms being closest ()
each other. The dashed lines in this figure indicate the

-4

10

Ca (nm)

energy-transfer rates corresponding to a plane interface. As

one can see, the qualitative features in the plane case
generally retained, but with the parameters fixdte posi-

25 T T T T
—— exact
20t ---  asymptotg |
150 / |
%, ARV
= 77
=
"Hor o 1
S = 1 i
0 I Il 1
0 1 2 3 4 5
In[&; (nm)]

FIG. 12. Resonance energy-transfer red#) as a function of
a?gceptor positiord, (radial orientation; the solid line corresponds to
the quantum calculation; the dashed curve corresponds to the clas-
sical calculation. y,/y*=T1,/v*=7 (@ and y,/y* =T,/ y*
=10 (b), and w./y*=100, w,/y*=115, y,/y*=0.1, a
=4.75nm, and;;=4.4 nm.

tion of the acceptor fixedthe energy-transfer rates may dif-
fer substantially between the plane and spherical cases; for
the lower curve, this difference may be as great as an order
of magnitude. Note that the point in hand is the resonance of
the partial frequencies and a relatively weak damping. The
occurrence of exact resonance does not mean that the
energy-transfer rate will be of resonance character. This is
especially true in the case of real systems where the acceptor
atom features a strong damping.

Analytical formula(49) for the energy-transfer rate is de-
rived on the assumption that the coupling between the oscil-
lators is strong and their damping is weak, and it is conve-
nient for qualitative analysis purposes. In the case of weaker
interaction, the damping effects may become important, so

FIG. 11. Resonance energy-transfer rate as a function of accep@t one has to find the energy-transfer rate numerically
tor positionZ, (radial orientation; log-log scale; the dashed curvesWithin the framework of the definition given above. Figure 9

correspond to the different decreasing Jaw; /y* =100, w,/y*
=110,y /y* =y, /y*=1,a=4.75 nm, and;=2.4 nm. It is seen
from this figure that Forster’s 19 law only starts to be obeyed after
r=20 nm, while it is the law % (1) that is more appropriate up to
a distance of 3 nm.

presents the results of such computer calculations for various
mutual arrangements of the oscillatdtse solid curve, and
the results of computations by the formula obtained on the
assumption of weak dampingtrong coupling (the dashed
curve. In the case of strong interactidthe top curvg one
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can see a good agreement between the analytical formula addnor atom to an acceptor atom in the presence of a spherical
the exact calculation. As the interaction weakfmsthe do- interface between them. The model used is a system of two
nor atom moves away from the surface of the microsphereatomic dipoles, one residing inside a dielectric microsphere
(the central and bottom curvdsthe discrepancy between and the other in the vicinity of its outer surface, interacting
the results increases, although the analytical formula corthrough the intermediary of electromagnetic field. The dis-
rectly describes all the qualitative characteristic features. persion equation of this system is found with due regard for
In the case of tangential orientation of the atomic dipolesdelay effects. The analysis of this dispersion equation in a
(Fig. 10, the situation remains generally the same, althouglyuasistatical approximation shows that, by appropriately se-
all the effects occur at closer distances to the surface of thiecting the problem parameters, one can attain both partial-
microsphere, 0.7 nm instead of the 0.9 nm characteristic dfrequency and exact resonances. Electronic excitation trans-
the radial dipole orientation. fer rates in the case of both classical and quantum-
It is well known that, according to Fster, the energy- mechanical dipole dynamics are found on the basis of the
transfer rate in a homogeneous substance decreases as dligpersion equation solutions obtained. It is demonstrated
sixth power of the interatomic distance. The only questionthat the classical and quantum-mechanical calculations yield
now arises: How does the presence of a dielectric microgqualitatively similar results. This agreement also proves very
sphere affect this law? In any case, the effect of the microgood quantitatively at a certain choice of the problem param-
sphere must be substantial, for a change in the distance beters.
tween the dipoles causes to vary not only the force of It is demonstrated that as the inside atom approaches the
coupling between them, but their oscillation frequencies asurface of the microsphere, the dipole-dipole interaction
well. Figure 11 shows, on a log-log scale, the energy-transfegrows stronger and the rate of excitation transfer from one
rate as a function of the position of the second atom. It isatom to the other increases materially. The relationship be-
seen from this figure that the lawr®/ only starts to be tween the transfer rate and the position of the outside atom
obeyed after =20 nm, while it is the law ¥F (1) that is  (acceptoy at not very strong dampings features a resonant
more appropriate up to an distance of 3 nm. This circumimaximum near the surface of the microsphere. As the dis-
stance is very important to the understanding of the operatiotance between the acceptor atom and the surface of the mi-
of the scanning FRET microscopg]. crosphere grow larger, the transfer rate decreases firstas 1/
In the preceding sections, we have presented both classind then, at farther distances, as®1ihich agrees with the
cal and quantum mechanical approaches to the determinatioasults obtained by Fster.
of the electronic excitation transfer rate. This naturally raises It is appropriate to emphasize that because of smallness of
the question as to the agreement between these two apicrosphere #<1) its resonances(whispering gallery
proaches. One can expect beforehand that the results will rmode$ [20—22 cannot be excited here. The resonances we
close, there being no dependence on Planck’s constant in tieund are due to variation of partial frequencies of atomic
guantum-mechanical expression61). However, the oscillators. In the case of large microspheres=(l) it is
guantum-mechanical result includes the transverse relaxatigrossible to excite its resonanc@shispering gallery modes
rate, and so no exact coincidence can be expected betwef20—22, and in the case of strong coupling our system will
the results. Nevertheless, as can be seen from Fi@,12 be analogous to system of three coupled oscillators. The re-
very good agreement can take place in some region of thsults of the investigation of this case will be presented in a
problem parameters. Where the parameter values are outsideparate publication.
this region, some discrepancy arises, but the behavior of the
system remains qualitatively the sarfespecially at great
distances from the microsphédé=ig. 12b)]. ACKNOWLEDGMENTS
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