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Resonance interaction between two atomic dipoles separated by the surface
of a dielectric nanosphere
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Studied within the framework of both classical and quantum-mechanical approaches is the resonance inter-
action between two atomic dipoles one of which is located inside a dielectric microsphere and the other near
its outer surface. The dispersion equation of this system is found. The analysis of this equation in a quasistatic
approximation has shown that the behavior of the eigenfrequencies depends in a complex manner on the
parameters of the system, and that exact resonance can be achieved, provided the parameters are suitably
selected. Based on the solutions of the above equation, relationships are found between the energy-transfer rate
and the system parameters. It is demonstrated that as the inside atom approaches the surface of the micro-
sphere, resonance excitation transfer from one atom to the other can take place. Similar results are obtained
when using the quantum-mechanical density matrix to define the atomic interaction. The results obtained can
be of use in implementing selective microscopy with a nanometer-high spatial resolution.
@S1050-2947~98!12009-7#

PACS number~s!: 33.80.2b, 42.50.Fx, 61.16.Ch, 07.79.Fc
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I. INTRODUCTION

The development of nanoscience and nanotechnology
made it possible to study the interaction of atoms and m
ecules with nanostructures~nanotips, nanoprobes, etc.!, us-
ing for the most part scanning force microscopy~see, for
example, Ref.@1#!. Of special interest is the study of res
nance interactions, that potentially may help achieve a sp
resolution at an atomic-molecular level simultaneously w
spectral resolution~or, in other words, chemical selectivity!.
To illustrate, the authors of Ref.@2# suggested a nanomete
resolution scanning optical microscopy technique involv
the resonance excitation of fluorescence in the sample fro
single-atom-excited center on the surface of a nanotip. T
is essentially a combination of three techniques: scann
force microscopy, near-field optical microscopy@3#, and
fluorescence resonant energy transfer~FRET! @4,5#.

It has been known at the same time that the emiss
characteristics of a dipole~emission frequency and rate! suf-
fer substantial modifications in microstructures of a size
the order of the optical wavelengthl ~the so-called cavity
QED effects@6#!. Specifically this is true in the case of a
atom inside or near a dielectric microsphere with a radiua
of the order ofl @7#. Moreover, in the vicinity of a micro-
sphere with a radius ofa!l, there may take place a chang
in the selection rules for the radiation, so that the quadrup
radiation probability will increase (l/a)2 times, approaching
the dipole radiation probability@8#. The question therefore
naturally arises as to what part can be played by such eff
in the near-field FRET microscopy technique@2# that should
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involve the Fo¨rster resonance excitation transfer from a d
nor on the nanotip surface to an acceptor on the surfac
interest~or vice versa!.

The problem of resonance energy transfer in the vicin
of a plane interface was considered in Refs.@9–11#. The
authors of Ref.@12# considered the influence of curvatu
effects upon the van der Waals interaction, and, in Ref.@13#,
an investigation was started into the process of resona
energy transfer between an oscillator located inside a mi
sphere modeling a nanotip and another oscillator close to
outer surface of the microsphere.

The use of a microsphere as the model of a nanotip
justified because the processes under consideration are
and sensitive to local curvature. If we need to conside
more general problem, including excitation of a donor a
collection of fluorescent light, the use of a cone with
smoothed edge as a nanotip model is necessary. The po
that processes of excitation and registration are due to
photons propagation over distances exceeding the w
length. As a result the global nanotip geometry comes i
play. Within the spherical model of a nanotip we found@13#
approximate analytical expressions for energy transfer
tween radialy oriented classical dipoles. In the present wo
we will continue with the study of this problem within th
spherical model, and find the equations describing the ene
transfer for the arbitrary orientation of dipole momentu
within classical as well as quantum mechanics. The soluti
of the obtained equations are found analytically and num
cally.

Generally speaking, the energy-transfer process shoul
analyzed within the framework of quantum mechanics@4#.
However, in the case of homogeneous space, the final re
for the energy-transfer rate prove independent of Planc
constant, and can be obtained within the framework of
3235 © 1998 The American Physical Society
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purely classical approach@4,14#. In our case, the presence
the interface leads, generally speaking, to the occurrenc
purely quantum corrections to the shifts of the partial f
quencies@15#, which in the case of microspheres turn out
be @16# of a higher order of smallness (1/z2) in comparison
with the dipole interaction (1/z3) as the atoms approach th
surface (z→0). ~Herez is the distance from the atom to th
surface of the microsphere.! The plan of the rest of the work
is as follows. In Sec. II, the equations describing the inter
tion between two oscillators in the presence of a dielec
microsphere are analyzed with due regard for delay effe
and the corresponding dispersion equation is derived. In
III, the dispersion equation is simplified as applied to t
quasistatic case of nanometer-scale dielectric spheres, th
havior of the eigenfrequencies is examined as a function
the mutual arrangement of atoms and the size of the mi
sphere, and conditions necessary for the occurrence of e
resonance in the system are found. In Sec. IV, the electr
excitation energy-transfer process is studied within
framework of the classical approach, and, in Sec. V, the p
cess is investigated within the framework of an approa
based on the quantum-mechanical density matrix. In Sec
the results obtained are analyzed, and the quant
mechanical and classical approaches are compared. Th
ometry of the problem is illustrated in Fig. 1.

II. GENERAL EQUATIONS. THE DYNAMICS
OF COUPLED OSCILLATORS SEPARATED

BY A SPHERICAL INTERFACE

In the absence of interaction between the dipoles th
selves and between the dipoles and the spherical interf
the equations of motion of the dipoles treated as class
oscillators have the form

m1~d r̈11g1d ṙ11v1
2dr1!50,

~1!
m2~d r̈21g2d ṙ21v2

2dr2!50.

In the above equations,mi , g i , andv i are the parameter
characterizing an individual atomic dipole in a boundle
medium with the appropriate dielectric constant« i , anddr i
are the displacements of the moving charges relative to t

FIG. 1. Geometry of the problem.
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equilibrium position. Note that since the atomic oscillato
are located in matter, their oscillation frequencies and li
widths differ substantially from their counterparts for is
lated atoms, the linewidths being, as a rule, much in exc
of the radiative linewidthg i

R in free space. In deriving Eqs
~1!, we have disregarded the positional oscillations of
dipoles ~nuclei!. Note that the oscillation amplitude of th
moving charge in an atomic dipole is of the order of the Bo
radius ~0.053 nm!, and so it can be neglected within th
framework of the nanometer scale of interest to us~Rydberg
atoms being an exclusion!.

Equations~1! change materially if account is taken of th
field reflected from the interface and the field emitted by
other dipole:

m1~d r̈11g1d ṙ11v1
2dr1!5e@E1

R~r1 ,t !1E2
T~r1 ,t !#,

~2!

m2~d r̈21g2d ṙ21v2
2dr2!5e@E2

R~r2 ,t !1E1
T~r2 ,t !#.

In these equations,e is the charge of the oscillating par
ticle, andEi

T,R(r j ) is the total~T! or only the reflected~R!
field due to thei th dipole in the position of thej th dipole.

Assuming that the oscillation direction remains u
changed with time, each one of Eq.~2! can additionally be
multiplied in a scalar fashion by the unit oscillation directio
vector ni5di /di5dr i /dr i , as a result of which the equa
tions describing the change of the dipole moment will ta
on the forms

~ d̈11g1ḋ11v1
2d1!5

e2

m1
@n1•E1

R~r1!1n1•E2
T~r1!#,

~3!

~ d̈21g2ḋ21v2
2d2!5

e2

m2
@n2•E2

R~r2!1n2•E1
T~r2!#.

Assuming that all the quantities vary in proportion
e2 ivt, and expressing the fields in terms of the appropri
Green functions, i.e.,ni•Ej5niGJnjdj , we obtain the follow-
ing equations:

~2v22 ig1v1v1
2!d1

5
e2

m1
@n1•GJ 1

R~r1 ,v!•n1d11n1•GJ 2
T~r1 ,v!•n2d2#,

~4!

~2v22 ig2v1v2
2!d2

5
e2

m2
@n2•GJ 1

T~r2 ,v!•n1d11n2•GJ 2
R~r1 ,v!•n2d2#,

whose consistency condition gives us the dispersion equa
of the system:
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U2v22 ig1v1v1
22

e2

m1
n1•GJ 1

R~r1 ,v!•n1 2
e2

m1
n1•GJ 2

T~r1 ,v!•n2

2
e2

m2
n2•GJ 1

T~r2 ,v!•n1 2v22 ig2v1v2
22

e2

m2
n2•GJ 2

R~r1 ,v!•n2

U50. ~5!

If we solve this equation forv and find the eigenfrequenciesV1,2, we then can easily find all the characteristics of the syst
To solve dispersion equation~5!, one must know the expressions for the fields on the right-hand side. The expressio

the additional reflected fields were found in Refs.@7, 17# to be as follows:

n2•GJ 2
R~r2 ,v!•n25 ik0

3A«2H (
l 51

`

b l
2,extl ~ l 11!~2l 11!S hl

~1!~ r̃ 2!

r̃ 2
D 2

n2,r
2 1(

l 51

`

~ l 11/2!Fa l
2,ext

„hl
~1!~ r̃ 2!…2

1b l
2,extS d„r̃ 2hl

~1!~ r̃ 2!…

r̃ 2dr̃2
D 2

@n2,u
2 1n2,w

2 #G J ~6!

n1•GJ 1
R~r1 ,v!•n15 ik0

3A«1H n1,r
2 (

l 51

`

a l
1,intl ~ l 11!~2l 11!

j l
2~ r̃ 1!

r̃ 1
2 1@n1,q

2 1n1,w
2 #(

l 51

`

~ l 11/2!Fb l
1,intj l

2~ r̃ 1!1a l
1,int „r̃ 1 j l~ r̃ 1!…82

r̃ 1
2 G J

~7!

b l
1,int5

«1@z2hl
~1!~z2!#8hl

~1!~z1!2«2@z1hl
~1!~z1!#8hl

~1!~z2!

«2@z1 j l~z1!#8hl
~1!~z2!2«1@z2hl

~1!~z2!#8 j l~z1!
, ~8!

a l
1,int5

@z2hl
~1!~z2!#8hl

~1!~z1!2@z1hl
~1!~z1!#8hl

~1!~z2!

@z1 j l~z1!#8hl
~1!~z2!2@z2hl

~1!~z2!#8 j l~z1!
, ~9!

b l
2,ext52

«1

d

dz2
@z2 j l~z2!# j l~z1!2«2

d

dz1
@z1 j l~z1!# j l~z2!

«1

d

dz2
@z2hl

~1!~z2!# j l~z1!2«2

d

dz1
@z1 j l~z1!#hl

~1!~z2!

, ~10!

a l
2,ext52

d

dz2
@z2 j l~z2!# j l~z1!2

d

dz1
@z1 j l~z1!# j l~z2!

d

dz2
@z2hl

~1!~z2!# j l~z1!2
d

dz1
@z1 j l~z1!#hl

~1!~z2!

, ~11!

wherezi5k0aA« i , r̃ i5r ik0A« i , k05v/c.
The expressions for the fields describing the delayed interaction between the dipoles can be found using the ap

presented in Refs.@7, 17#, and by virtue of the reciprocity theorem@18#

n2•GJ 1
T~r2 ,v!•n15n1•GJ 2

T~r1 ,v!•n2 ~12!

it is sufficient to find any one of these expressions. When the orientations and positions of the dipoles are rando
expressions are cumbersome, and therefore here for brevity we will analyze only the case where the dipoles are arran
a single line passing through the center of the microsphere. In that case, the interaction of the dipoles with the
orientations (n15n25n) will be defined by the expression

n2•GJ 1
T~r2 ,v!•n15n1•GJ 2

T~r1 ,v!•n25
ik0

A«2
(
l 51

`

l ~ l 11!~2l 11!b l
1,ext

hl
~1!~ r̃ 2! j l~ r̃ 1!

r 2r 1
nr

2

1 ik0
3A«2(

l 51

`

~ l 11/2!a l
1,exthl

~1!~ r̃ 2! j l~ r̃ 1!@nu
21nw

2 #

1
ik0

A«2
(
l 51

`

~ l 11/2!b l
1,ext

@ r̃ 2hl
~1!~ r̃ 2!#@ r̃ 1 j l~ r̃ 1!#8

r 2r 1
@nu

21nw
2 #. ~13!

In the above expression, the coefficients for the passage of the field due to the external dipole into the microsphere
forms
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a l
1,ext5

i

z2

1

d

dz2
@z2hl

~1!~z2!# j l~z1!2
d

dz1
@z1 j l~z1!#hl

~1!~z2!

, ~14!

b l
1,ext5

i«2

z2

1

«1

d

dz2
@z2hl

~1!~z2!# j l~z1!2«2

d

dz1
@z1 j l~z1!#hl

~1!~z2!

. ~15!
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III. QUASISTATIC APPROXIMATION

Generally speaking, to determine the energy-transfer r
it is necessary to analyze exact dispersion equation~6!. But
in our case of small microspheres, one may first consid
quasistatic electric-field approximation wherein no allo
ance is made for delay. In that case, the dispersion equa
describing the dynamics of the atomic dipoles is subst
tially simplified. In the case of radially oriented dipole
~head to tail geometry!, this equation may be represented
the form

~v21 ig1v2ṽ1
2!~v21 ig2v2ṽ2

2!5g1g2f 12
rad2

, ~16!

where the partial frequenciesṽ1 and ṽ2 are defined by the
expressions

ṽ1
25v1

22g1f 11
rad~x1!,

~17!
ṽ2

25v2
22g2f 22

rad~x2!.

Herex15r 1 /a, x25a/r 2 , gi5e2/mia
3 are the coupling co-

efficients and

f 11
rad~x1!52

«12«2

«1x1
2 (

n51

`

x1
2n n2~n11!

«1n1«2~n11!
, ~18!

f 12
rad~x1 ,x2!5 f 21

rad~x1 ,x2!

5
x2

2

x1
(
n51

`

~x1x2!n
n~n11!~2n11!

«1n1«2~n11!
, ~19!

f 22
rad~x2!5

~«12«2!

«2
x2

4(
n51

`

x2
2n n~n11!2

«1n1«2~n11!
. ~20!

In the case of tangential orientation of the dipoles~sand-
wich geometry!, we have

~v21 ig1v2ṽ1
2!~v21 ig2v2ṽ2

2!5g1g2f 12
tan2

, ~21!

where the partial frequencies are given by the relations

ṽ1
25v1

22g1f 11
tan~x1!,

~22!
ṽ2

25v2
22g2f 22

tan~x2!.

Here

f 11
tan~x1!52

«12«2

2«1x1
2 (

n51

`

x1
2n n~n11!2

«1n1«2~n11!
, ~23!
te,

a
-
on
-

f 12
tan~x1 ,x2!5 f 21

tan~x1 ,x2!

52
x2

2

2x1
(
n51

`

~x1x2!n
n~n11!~2n11!

«1n1«2~n11!
,

~24!

f 22
tan~x2!5

~«12«2!

2«2
x2

4(
n51

`

x2
2n n2~n11!

«1n1«2~n11!
. ~25!

To solve dispersion Eqs.~16! or ~21!, it is necessary to
calculate sums~18!–~20!. Generally speaking, these sum
are expressed in terms of hypergeometric functions wh
exact calculation is somewhat difficult to make. Howev
for any rational«’s, these sums can be expressed in terms
elementary functions. In the case of heavy glass («153,
«251!, which will be analyzed, we have@19#

(
k50

`
x4k11

4k11
5

1

2 Farctan~x!1 lnS 11x

12xD 1/2G , ~26!

and the above sums of interest to us can be expresse
terms of the derivatives of this function.

An important feature of the quasistatic approximati
used is the fact that here the interactions of the dipoles w
the reflected waves and with each other are independen
frequency~no microsphere resonances@20–22# are excited!,
and so the dispersion equation has four roots~two with posi-
tive real parts and another two with negative real par!.
From physical considerations, these roots must have nega
imaginary parts corresponding to damping. But in our cas
situation is possible where one of the normal modes cea
to be oscillating. One can easily see that this occurs as
external atom approaches the surface of the microspher
the vicinity of the point, at which the free term in dispersio
equations~16! or ~21! changes sign, i.e., at the point define
by the equation

@v1
22g1f 11

rad~x1!#@v2
22g2f 22

rad~x2!#5g1g2f 12
rad2

. ~27!

At this point one of the solutions of dispersion equatio
~16! or ~21! goes to zero, and the system becomes unstab
the neighborhood of this point. Physically this means that
interaction of the oscillating charge with its ‘‘mirror
reflection’’ counterpart proves stronger than the intraatom
interaction. In this region, our approximation becomes in
equate, and one must take account of the atomic structur
the interface.
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The involved behavior of the system under considerat
is due largely to the fact that the partial frequencies are
pendent on the position of the dipoles, and differ subst
tially from the partial frequencies of the same dipoles in fr
space:

ṽ1
25v1

22g1f 11
radS r 1

a D.v1
2 ~28!

ṽ2
25v2

22g1f 22
radS a

r 2
D,v2

2, ~29!

and so the condition for the equality of the partial freque
cies will depend not only on the frequencies of the osci
h
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tors, but also on their position. As the atoms draw close
the interface, the partial frequencies always fall off res
nance.

In the case of weak damping, the solution of the disp
sion equation can easily be written in explicit form:

V65S ṽ1
21ṽ2

26A~ṽ1
22ṽ2

2!214g1g2f 12
2

2
D 1/2

. ~30!

When the oscillator frequencies are equal, i.e.,v15v2

5v0 , expression~30! is even more simple:
V65S v0
22

g1f 111g2f 227A~g1f 112g2f 22!
214g1g2f 12

2

2
D 1/2

'v02
g1f 111g2f 227A~g1f 112g2f 22!

214g1g2f 12
2

4v0
, ~31!
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but even these simple expressions show that the relations
between the eigenfrequencies of the system and the abs
and relative positions of the dipoles are fairly complex, t
coefficients f i j being dependent on the same paramet
Nevertheless, the analysis of the case of negligibly sm
damping@Eq. ~30!# allows one to conclude that it is impos
sible in the given case to attain exact resonance in the
tem, i.e., the eigenfrequencies will never coincide, no ma
what the parameters of the problem.

To make numerical calculations, we will measure all t
frequencies and linewidths involved in terms of some lin
width g* 53.1431013 s21, and take the dimensionless coe
ficients to be equal:

g̃15
e2

m1a3g* 2 5g̃25
e2

m2a3g* 2 ; ~32!

that is, we will assume that the masses of the oscillat
charges are the same.

Note that if the charge and mass of an oscillating part
are expressed in terms of the radiative linewidth

g i
R5

2e2

3c3

v i
2

mi
~33!

~we take it that the transition oscillator force is equal
unity!, the expressions for the dimensionless coupling co
ficients can be reduced to the form

g̃15g̃25
3

2

gR

S v11v2

2 D 2

c3

a3g* 2 , ~34!

wheregR is some effective radiative linewidth. In our nu
merical calculations, we assume thatgR/g* 51024.
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Figure 2 shows the solutions of the dispersion equation
a function of the position of the acceptor at such probl
parameters as maximize the equalization of the frequenc
One can easily see the intensification of frequency splitt
~‘‘line repulsion’’!, going in line with the increase of the
dipole-dipole interaction, and the vanishing of one of t
normal modes atz2'0.5 nm. The dashed line in the figur
shows the solution of the dispersion equation in the case

FIG. 2. Eigenfrequencies as a function of the position of
acceptorz2 in the case of partial frequencies resonance~radial ori-
entation; v1 /g* 5100, v2 /g* 5115, g1 /g* 5g2 /g* 51, a
54.75 nm, andz157.4 nm!. One can easily see the ‘‘line repu
sion,’’ going in line with the increase of the dipole-dipole intera
tion, and the vanishing of one of the normal modes atz2

'0.5 nm. The dashed line shows the eigenfrequencies in the
of a plane interface. Comparing between these curves allows on
conclude that the solutions of the dispersion equations in the g
case behave qualitatively alike.
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plane interface. Comparing between these curves allows
to conclude that the solutions of the dispersion equation
the given case behave qualitatively alike.

More complex relationships will occur if we consider th
damping of the oscillators. In that case, it is possible to de
onstrate that there exist conditions under which the pa
frequencies are not equal, and the force of interaction
tween the oscillators is such that exact resonance occu
the system. If we fix the atoms in some random positions
select their frequencies to satisfy the equations

v1
25

1

4
g1

21g1f 11
rad~x1!1

4g1g2f 12
rad2

~x1 ,x2!

~g12g2!2 ,

~35!

v2
25

1

4
g2

21g2f 22
rad~x2!1

4g1g2f 12
rad2

~x1 ,x2!

~g12g2!2 ,

the solutions of the dispersion equation will become deg
erate. If we assume thatV i52 i (ḡ i /2)1v̄ i , then

ḡ15ḡ25
g11g2

2
,

~36!

v̄1
25v̄2

2

5 1
2 @v1

22g1f 11
rad~x1!1v2

22g2f 22
rad~x2!2 1

4 ~g12g2!2#.

Figure 3 shows the solutions of the dispersion equation
a function of the position of the external atom at a cert
choice of the problem parameters providing for the occ
rence of exact resonance when the second atom is 2
distant from the surface of the microsphere. It can be s
from this figure that as the second atom approaches the
crosphere, no frequency repulsion takes place at first, an
is only the imaginary parts of the solutions that change, u
they coincide completely at the point of resonance. O
resonance is reached, the frequencies rapidly move apa

When one of the parameters of the system changes
latter falls off resonance. Figure 4 shows the behavior of
eigenfrequencies and linewidths as the frequency of the
ternal atom ~in free space! rises from v2 /g* 5114 to
v2 /g* 5116 ~the dashed lines represent the partial frequ
ciesṽ1,2!. In that case, all the dependencies are of monoto
character: as the external~acceptor! atom draws closer to the
surface of the microsphere, its frequency and the linewidth
the internal atom increase, whereas the frequency of the
ternal atom and the linewidth of the acceptor atom decre
At very small distances~not shown in the figure!, the oscil-
latory condition of the internal atom vanishes altogether.

A different situation occurs when the dimensionless f
quency of the external atom drops fromv2 /g* 5114.1 to
v2 /g* 5112 ~Fig. 5! ~the dashed lines represent the part
frequenciesṽ1,2!. In that case, the monotonic behavior of t
atomic frequencies as a function of the position of the ex
nal atom persists~though the frequency of the external ato
becomes decreasing, and that of the internal one increas!.
As for the linewidths, their behavior is not monotonic,
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that after having drawn closer in the region of resonan
they start approaching their initial values.

Up to now we have considered the case of radially o
ented dipoles~head to tail geometry!, but the situation with
the tangential orientation of the dipoles, i.e., when the os
lation direction is normal to the radius~sandwich geometry!,
is exactly the same. In that case, there take place the s
effects, the only difference being that the interaction for
decreases and the resonance occurs at closer distances
surface of the microsphere. Figure 6 illustrates the beha
of the atomic frequencies and linewidths at the same sys
parameters as in the case of radial dipole orientation. It
be seen that exact resonance in this case occurs when
external atom comes within some 1.4 nm of the microsphe
i.e., at smaller distances from the surface of the latter~in the
case of radial orientation, resonance occurs at a distanc
around 2.1 nm from the surface of the microsphere!.

IV. ENERGY TRANSFER BETWEEN THE OSCILLATORS
„CLASSICAL THEORY …

With the solutions of the dispersion equation known, o
can easily find all the characteristics of the classical syst
To illustrate, the oscillation equation of the second oscilla

FIG. 3. Eigenfrequencies as a function of the position of
acceptorz2 in the case of exact resonance~radial orientation;
v1 /g* 5100, v2 /g* 5114.1,g1 /g* 50.1, g2 /g* 510, a51 nm,
and z151 nm!. It can be seen from this figure that as the seco
atom approaches the microsphere, no frequency repulsion t
place at first, and it is only the imaginary parts of the solutions t
change until they coincide completely at the point of resonan
Once resonance is reached, the frequencies rapidly move apa
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~acceptor! may be described by the equation

d2~ t !5e2ḡ1t/2@c1 sin~v̄1t !1c2 cos~v̄1 t !#

1e2ḡ2t/2@c3 sin~v̄2t !1c4 cos~v̄2t !# ~37!

in the case where the system is off exact resonance, an
the equation

d2~ t !5e2ḡt/2@c1 sin~v̄t !1c2 cos~v̄t !#

1e2ḡt/2t@c3 sin~v̄t !1c4 cos~v̄t !# ~38!

at exact resonance~when it is the eigenfrequencies and n
partial frequencies that coincide!. In the above equations
V52 i (ḡ/2)1v̄. The coefficientsci can be readily found if
we assume that it is only the first oscillator that is excited
the initial instantt50 @d1(0)51, d1(0)50#, while the sec-
ond is at rest@d2(0)50, d2(0)50#. In the general case, th
resultant expressions for these coefficients are rather cum
some, and therefore we will only give them for the case
weak damping~nonresonance case!:

FIG. 4. Eigenfrequencies as a function of the position of
acceptorz2 near exact resonance~radial orientation;v1 /g* 5100,
v2 /g* 5116,g1 /g* 0.1, g2 /g* 510, a51 nm, andz151 nm!. In
that case, all the dependencies are of monotonic character: a
external~acceptor! atom draws closer to the surface of the micr
sphere, its frequency and the linewidth of the internal atom
crease, whereas the frequency of the internal atom and the linew
of the acceptor atom decrease. At very small distances~not shown!,
the oscillatory condition of the internal atom vanishes altogeth
The dashed lines correspond to no interaction case, i.e., to pa
frequencies.
by

t

er-
f

c15c350; c252c45
g2f 12

~V2
22V1

2!
. ~39!

In the case of resonance, we have~arbitrary damping!

c15
g2f 12~3ḡ22g2!

4v̄3 , c250,

~40!

c35
g2f 12

2v̄
, c452v̄c1 .

It is only natural to take the ratio between the energy
the second oscillator and the initial energy of the first os
lator as a measure of excitation of the second oscillator:

h25
E2~ t !

E1~0!
5

m2~ ẋ2
21v2

2x2
2!

m1~v1
2x1

2~0!!
'2

x2
2

x1
2~0!

. ~41!

The overscored symbol in Eq.~41! denotes averaging ove
high frequency.

Substituting expression~37! into Eq. ~41!, and averaging,
we obtain the following expression for the measure of ex

e

the

-
th

r.
ial

FIG. 5. Eigenfrequencies as a function of the position of
acceptorz2 near exact resonance~radial orientation;v1 /g* 5100,
v2 /g* 5112, g1 /g* 50.1, g2 /g* 510, a51 nm, andz151 nm!.
In that case, the monotonic behavior of the atomic frequencies
function of the position of the external atom persists~though the
frequency of the external atom becomes decreasing and that o
internal one, increasing!. The dashed lines correspond to no inte
action case, i.e., to partial frequencies. As for the linewidths, th
behavior is not monotonic, so that after having drawn closer in
region of resonance, they start to approach their initial values.
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tation of the second oscillator in the nonresonance c
which only includes low-frequency terms:

h25~c1
21c1

2!e2ḡ1t1~c3
21c4

2!e2ḡ2t

12e2~ ḡ21ḡ1!t/2$~c1c42c2c3!sin@~v̄12v̄2!t#

1~c1c31c2c4!cos@~v̄12v̄2!t#%. ~42!

In the case of resonance, it is necessary to substitute
pression~38! into Eq. ~41!, to obtain

h2
reson5e2ḡt@~c11c3t !21~c21c4t !2#. ~43!

The behavior of expressions~42! and~43! as a function of
time is governed by the ratio between the frequency diff
ence and damping. Where damping is small in compari
with the difference between the eigenfrequencies, exp
sions ~39! hold true, and we obtain the following simpl
expression for the degree of excitation of the second osc
tor:

h25S 2g2f 12

~V2
22V1

2! D
2

sin2@~V12V2!t/2#. ~44!

In the case of resonance, we have

FIG. 6. Eigenfrequencies as a function of the position of
acceptorz2 in the case of exact resonance~tangential orientation;
v1 /g* 5100, v2 /g* 5114.2,g1 /g* 50.1, g2 /g* 510, a51 nm,
andz151 nm!.
e,

x-

r-
n
s-

a-

h2
res5S g2f 12

4v̄3 D 2

e2ḡt@~3ḡ22g212v̄2t !2

1~3ḡ22g2!2v̄2t2#. ~45!

There are no beats in this case.
In any case, the energy of the second oscillator treate

a function of time has at least one maximum~see Fig. 7!.
This circumstance allows us to define, according to Ref.@4#,
the energy-transfer rate~or excitation probability for the sec
ond particle! as the ratio between the maximum degree
excitation and the time it takes for excitation to reach
maximum, i.e.,

n1→25
h2,max

tmax
. ~46!

In the case of weak damping~strong interaction!, we have

h2,max5S 2g2f 12

~V2
22V1

2! D
2

, ~47!

tmax5
p

uV12V2u
, ~48!

and, for the energy-transfer rate~excitation probability!, we
obtain the expression

e

FIG. 7. Resonance energy-transfer illustration.
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n1→25
1

p S 2g2f 12

~V2
22V1

2! D
2

uV12V2u. ~49!

In the case of strong interaction, i.e., when the amplitude
the second dipole~acceptor! is equal to that of the first dipole
~donor!, the energy-transfer rate between the atomic
poleswill only be governed by the maximum timetmax ~see,
for example, Ref.@23#!:
ic
th
th
f

-

t.

er

t

f

i-

n1→2
res 5UV22V1

p U. ~50!

Expressions~49! and~50! agree fully with the results ob
tained by Fo¨rster@4#. In the case of exact resonance@see Eq.
~45!#, the time it takes for the oscillation amplitude of th
second oscillator to reach its maximum is defined by
expressions
tmax
reson5

v̄@A22ḡ~3ḡ22g2!#1A~v̄A!21~3ḡ22g2!2

gvA
, A5~2v̄ !21~3ḡ22g2!2, ~51!

and the energy-transfer rate is given by

n1→2
reson5

h2
reson~ tmax

reson!

tmax
reson 5S g2f 12

4v̄3 D 2 2v̄2A@v̄A1A~v̄A!21~3ḡ22g2!2#

ḡ$v̄@A22ḡ~3ḡ22g2!#1A~v̄A!21~3ḡ22g2!2%
e2ḡtmax

reson
. ~52!
x-

ied
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rgy

the
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V. ENERGY TRANSFER BETWEEN THE OSCILLATORS
„QUANTUM THEORY …

In Sec. IV, we found energy-transfer rates in the class
approximation. Similar results can also be obtained in
case of quantum mechanics if we restrict ourselves to
analysis of two-level donor and acceptor atoms. Indeed,
the three states of our two-level systems@24#, if we introduce
the density matrix

^1u5w18w2 ;^2u5w28w1 ;^3u5w2w1 ~53!

~where the prime denotes an excited state!, the general equa
tion for the density matrix will assume the forms

ṙ115
1

i\
~V12r212V21r12!2g1r11,

ṙ2252
1

i\
~V12r212V21r12!2g2r22,

ṙ125
1

i\
V12~r222r12!2G12r121

DE

i\
r12, ~54!

ṙ215
1

i\
V21~r112r22!2G12r212

DE

i\
r21,

r111r221r3351.

HereV125^1uVu2& is the interaction energy matrix elemen
DE5(E182E1)2(E282E2), and g1 , g2 , and G12 are the
longitudinal and transverse relaxation rates. It is not v
difficult to understand that one should useDE as the differ-
ence between the partial frequencies with due regard for
interaction with the microsphere:

DE5~ṽ12ṽ2!\5Dṽ\, ~55!
al
e
e

or

y

he

where the partial frequenciesṽ1 and ṽ2 are defined by ex-
pressions~17! in the case of radial orientation, and by e
pressions~22! in the case of tangential orientation.

To find the interaction energy matrix element as appl
to our problem, we write down the classical system’s L
grangian corresponding to equations of motion~3! without
damping:

L5L11L21L int ,

L15
m1~ ḋ1

22ṽ1
2d1

2!

2
,

~56!

L25
m2~ ḋ2

22ṽ2
2d2

2!

2
,

L int5
e2

a3 f 12~x1x2!d1d2 .

One can see from this Lagrangian that the interaction ene
matrix element is given by the expression

V125 K 1U2 L int

e2 U2L 52 f 12~x1 ,x2!
~d1!eg~d2!ge

a3 ,

~57!

where we mean either radial or tangential components of
transition dipole moment matrix elements. The density m
trix dynamics thus proves to be fully determinate.

The detailed analysis of all the conditions of the system
equations~54! is the subject of an individual investigation
Nevertheless, one can find, without solving this system
explicit form, the quantity

n125F E
0

`

r11~ t !dtG21

2g1

5
2uV12u2/~G12\

2!

11@DE/~G12\!#212uV12u2/~G12g2\2!
, ~58!
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which can be treated as the generalized energy-transfer
@25#.

Expressing the squared dipole moment matrix element
terms of the oscillator frequencies by means of the relati

udi ,egu25
\e2

2miv i
f i , ~59!

and assuming that the oscillator forcesf i are equal to unity,
we obtain the following expression for the squared ma
element:

uV12u25 f 12
rad2 \2g1g2

4v1v2
. ~60!

Substituting the above expression into Eq.~58!, we obtain
the final expression for the energy-transfer rate in the vicin
of a curved surface:

FIG. 8. Resonance energy-transfer rate~49! as a function of
acceptor positionz2 ~radial orientation; the dashed curve corr
sponds to the plane interface between the dipoles!. 12z1

57.4 nm, 22z154.4 nm, 32z151.4 nm, v1 /g* 5100, v2 /g*
5115, g1 /g* 5g2 /g* 51, and a54.75 nm. Here the energy
transfer rate curve corresponding to the case where the first~inside!
atom is closer to the opposite side of the microspherez1

57.4 nm) is of resonance character. If the inside atom is clos
the center of the microsphere (z154.4 nm), the resonance effec
diminishes, though the total energy-transfer rate increases on
count of the atoms drawing closer together. If the inside atom
located near the surface of the microsphere (z151.4 nm), the reso-
nance effect practically vanishes, but the total energy-transfer
reaches its maximum, the atoms being the closest to each other
dashed lines in this figure indicate energy-transfer rates corresp
ing to a plane interface. Note that the point at hand is the reson
of the partial frequencies and a relatively weak damping. The
currence of exact resonance does not mean that the energy-tra
rate will be of resonance character. This is especially true in
case of real systems where the acceptor atom features a s
damping.
ate

in

x

y

n1,25

~ f 12
rad!2

g1g2

2v1v2G12

11S Dṽ

G12
D 2

1 f 12
rad2 g1g2

2v1v2G12g2

, ~61!

where

Dṽ5Av1
22g1f 11

rad~x1!2Av2
22g2f 22

rad~x2!. ~62!

The above expression in this form does not depend
Planck’s constant.

It should be emphasized once more that being the e
characteristic of system~54!, expression~61! provides an
adequate description only in the case of strong damping
the second system.

VI. RESULTS AND DISCUSSION

To find the energy-transfer rate, it is sufficient to subs
tute the eigenfrequency values found into expressions~49! or
~52!, or else find exact expressions for the coefficientsci ,
and then use expression~42! ~see Fig. 7! to find the energy-
transfer rate numerically. In the quantum-mechanical ca
use can be made of expression~61!.

Figure 8 shows the rate of energy exchange between
oscillators@see expression~49!# as a function of the position
of the outer atom~the dashed line corresponds to a pla
interface between the dipoles! for various positions of the
inner atom. In our case of a microsphere with a radius
4.75 nm, of resonance character is the energy-transfer
curve corresponding to the case where the first~inside! atom

to
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FIG. 9. Resonance energy-transfer rate as a function of acce
position z2 @radial orientation; the solid curve corresponds to t
computer calculations; the dashed curve corresponds to the an
cal solution ~49!#. 12z154.3 nm, 22z152.4 nm, 32z1

50.5 nm, v1 /g* 5100, v2 /g* 5110, g1 /g* 5g2 /g* 51, anda
54.75 nm. In the case of strong interaction~the top curve!, one can
see a good agreement between the analytical formula and the
calculation. As the interaction weakens~as the donor atom move
away from the surface of the microsphere; see the central and
tom curves!, the discrepancy between the results increases, altho
the analytical formula correctly describes all the qualitative char
teristic features.
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is closer to the opposite side of the microspherez1
57.4 nm). If the inside atom is close to the center of t
microsphere (z154.4 nm), the resonance effect diminishe
though the total energy-transfer rate increases on accou
the atoms drawing closer together. If the inside atom is
cated near the surface of the microsphere (z151.4 nm) the
resonance effect practically vanishes, but the total-ene
transfer rate reaches its maximum, the atoms being close
each other. The dashed lines in this figure indicate
energy-transfer rates corresponding to a plane interface
one can see, the qualitative features in the plane case
generally retained, but with the parameters fixed~the posi-

FIG. 10. Resonance energy-transfer rate as a function of ac
tor positionz2 @tangential orientation; solid line corresponds to t
computer simulation, the dashed curve corresponds to the analy
solution ~49!#: 12z154.3 nm, 22z152.4 nm, 22z150.5 nm,
v1 /g* 5100, v2 /g* 5110, g1 /g* 5g2 /g* 51, anda54.75 nm.
Note that all the effects occur at closer distances to the surfac
the microsphere in comparison with case of radial orientation.

FIG. 11. Resonance energy-transfer rate as a function of ac
tor positionz2 ~radial orientation; log-log scale; the dashed curv
correspond to the different decreasing law!. v1 /g* 5100, v2 /g*
5110,g1 /g* 5g2 /g* 51, a54.75 nm, andz152.4 nm. It is seen
from this figure that Forster’s 1/r 6 law only starts to be obeyed afte
r>20 nm, while it is the law 1/r 3 ~!! that is more appropriate up t
a distance of 3 nm.
,
of
-

y-
to
e
As
are

tion of the acceptor fixed! the energy-transfer rates may di
fer substantially between the plane and spherical cases
the lower curve, this difference may be as great as an o
of magnitude. Note that the point in hand is the resonanc
the partial frequencies and a relatively weak damping. T
occurrence of exact resonance does not mean that
energy-transfer rate will be of resonance character. Thi
especially true in the case of real systems where the acce
atom features a strong damping.

Analytical formula~49! for the energy-transfer rate is de
rived on the assumption that the coupling between the os
lators is strong and their damping is weak, and it is con
nient for qualitative analysis purposes. In the case of wea
interaction, the damping effects may become important,
that one has to find the energy-transfer rate numeric
within the framework of the definition given above. Figure
presents the results of such computer calculations for var
mutual arrangements of the oscillators~the solid curve!, and
the results of computations by the formula obtained on
assumption of weak damping~strong coupling! ~the dashed
curve!. In the case of strong interaction~the top curve!, one

p-

cal

of

p-
s

FIG. 12. Resonance energy-transfer rate~61! as a function of
acceptor positionz2 ~radial orientation; the solid line corresponds
the quantum calculation; the dashed curve corresponds to the
sical calculation.! g2 /g* 5G12/g* 57 ~a! and g2 /g* 5G12/g*
510 ~b!, and v1 /g* 5100, v2 /g* 5115, g1 /g* 50.1, a
54.75 nm, andz154.4 nm.
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3246 PRA 58V. V. KLIMOV AND V. S. LETOKHOV
can see a good agreement between the analytical formula
the exact calculation. As the interaction weakens@as the do-
nor atom moves away from the surface of the microsph
~the central and bottom curves!#, the discrepancy betwee
the results increases, although the analytical formula c
rectly describes all the qualitative characteristic features.

In the case of tangential orientation of the atomic dipo
~Fig. 10!, the situation remains generally the same, althou
all the effects occur at closer distances to the surface of
microsphere, 0.7 nm instead of the 0.9 nm characteristi
the radial dipole orientation.

It is well known that, according to Fo¨rster, the energy-
transfer rate in a homogeneous substance decreases a
sixth power of the interatomic distance. The only quest
now arises: How does the presence of a dielectric mic
sphere affect this law? In any case, the effect of the mic
sphere must be substantial, for a change in the distance
tween the dipoles causes to vary not only the force
coupling between them, but their oscillation frequencies
well. Figure 11 shows, on a log-log scale, the energy-tran
rate as a function of the position of the second atom. I
seen from this figure that the law 1/r 6 only starts to be
obeyed afterr>20 nm, while it is the law 1/r 3 ~!! that is
more appropriate up to an distance of 3 nm. This circu
stance is very important to the understanding of the opera
of the scanning FRET microscope@5#.

In the preceding sections, we have presented both cla
cal and quantum mechanical approaches to the determin
of the electronic excitation transfer rate. This naturally rai
the question as to the agreement between these two
proaches. One can expect beforehand that the results w
close, there being no dependence on Planck’s constant in
quantum-mechanical expression~61!. However, the
quantum-mechanical result includes the transverse relaxa
rate, and so no exact coincidence can be expected betw
the results. Nevertheless, as can be seen from Fig. 12~a!, a
very good agreement can take place in some region of
problem parameters. Where the parameter values are ou
this region, some discrepancy arises, but the behavior of
system remains qualitatively the same~especially at grea
distances from the microsphere! @Fig. 12~b!#.

VII. CONCLUSION

A theoretical investigation is conducted in the pres
work into the processes of resonance energy transfer fro
nd

e,
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donor atom to an acceptor atom in the presence of a sphe
interface between them. The model used is a system of
atomic dipoles, one residing inside a dielectric microsph
and the other in the vicinity of its outer surface, interacti
through the intermediary of electromagnetic field. The d
persion equation of this system is found with due regard
delay effects. The analysis of this dispersion equation i
quasistatical approximation shows that, by appropriately
lecting the problem parameters, one can attain both par
frequency and exact resonances. Electronic excitation tr
fer rates in the case of both classical and quantu
mechanical dipole dynamics are found on the basis of
dispersion equation solutions obtained. It is demonstra
that the classical and quantum-mechanical calculations y
qualitatively similar results. This agreement also proves v
good quantitatively at a certain choice of the problem para
eters.

It is demonstrated that as the inside atom approaches
surface of the microsphere, the dipole-dipole interact
grows stronger and the rate of excitation transfer from o
atom to the other increases materially. The relationship
tween the transfer rate and the position of the outside a
~acceptor! at not very strong dampings features a reson
maximum near the surface of the microsphere. As the
tance between the acceptor atom and the surface of the
crosphere grow larger, the transfer rate decreases first asr 3

and then, at farther distances, as 1/r 6, which agrees with the
results obtained by Fo¨rster.

It is appropriate to emphasize that because of smallnes
microsphere (a!1) its resonances~whispering gallery
modes! @20–22# cannot be excited here. The resonances
found are due to variation of partial frequencies of atom
oscillators. In the case of large microspheres (a>1) it is
possible to excite its resonances~whispering gallery modes!
@20–22#, and in the case of strong coupling our system w
be analogous to system of three coupled oscillators. The
sults of the investigation of this case will be presented in
separate publication.
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