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Relativistic free-electron dynamics and light-emission spectra in the simultaneous presence
of a superintense laser field and a strong uniform magnetic field

Yousef I. Salamin*
Physics Department, Birzeit University, P. O. Box 14, Birzeit, West Bank

Farhad H. M. Faisal
Fakultät für Physik, Universita¨t Bielefeld, 33615 Bielefeld, Germany

~Received 22 January 1998; revised manuscript received 28 August 1998!

We present exact analytic trajectories for a relativistic electron in the presence of an elliptically polarized
superintense laser fieldand a strong uniform magnetic field. Also derived are expressions for the velocity
components of the electron and for its energy as functions of the phase of the laser field as a parameter. The
analytic trajectory solutions are illustrated by numerical calculations employing laser-field parameters and
magnetic-field strengths currently available for laboratory experiments. The trajectory solutions are useful for
~among other things! the study of the related problem of emission of radiation in the combined laser and
magnetic fields. An exact expression for the cross section of light scattered by an electron initially moving
along the laser propagation direction and in a magnetic field is given. It is found that, for observation along the
common direction of laser propagation and the magnetic field, light at two frequenciesv5v0 and V0 is
scattered, whereV05g0(11b0)vc , vc is the cyclotron frequency of the electron motion in the magnetic
field, b0 is the initial speed of the electron normalized by the speed of light,g05(12b0

2)2 1/2, andv0 is the
laser frequency. Using the analytic solutions, we also study numerically the spectrum of radiation emitted
along observation directions parallel to the electric and parallel to the magnetic components of the laser field.
In each case, we present and discuss the dependence of the spectra on~a! the increase of the electron initial
velocity, ~b! the intensity and the frequency of the laser, and~c! the strength of the magnetic field.
@S1050-2947~98!09409-8#

PACS number~s!: 42.65.Ky, 52.40.Nk, 42.50.Vk, 52.75.Di
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I. INTRODUCTION

In a series of papers@1–4# we have recently studied th
problem of generation of radiation by the scattering of sup
intense laser light from fast free electrons. We have stud
analytically the electron dynamics as well as the light em
sion cross sections corresponding to linearly and circula
polarized incident light. In the present paper we investig
similar physical situations, but with the added feature o
strong uniform magnetic field parallel to the laser propa
tion direction. This problem is important for the understan
ing of laser-plasma interactions and the related problem
high-energy electron emission@5–7#, as well as for the inter-
pretation and understanding of current laser-assisted fu
experiments@8#.

The problem of harmonic generation~or, more generally,
emission of radiation! due to the interaction of an atomi
electron with a superintense laser field has been the su
of recent theoretical investigations, via Monte Carlo class
simulations, by Keitel and Knight@9#. They studied numeri-
cally the trajectories and harmonic spectra of an elect
initially bound in a ground-state hydrogen atom, within va
ous approximations that they described in their paper.
interesting finding of their simulations is that the results o
tained in the case of an~initially ! free electron hardly dif-
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fered from their counterparts for an initially bound hydr
genic electron subjected to a strong magnetic field an
superintense laser field. This is because, for field intens
greater than 1 a.u.I 0'3.5131016 W/cm2, the force of the
laser becomes stronger than the binding force of the nucl
and hence the resulting dynamics tends to resemble that
free electron@10# in superintense fields. In a more rece
paper, Connerade and Keitel@11# have investigated the sam
problem for an initially bound electron, but in the adde
presence of a strong uniform magnetic field, again empl
ing Monte Carlo simulations. In their paper the authors a
make a remark to the effect that pulsed magnetic fields
strength up to 75 T~and laser-field intensities in excess
1016 W/cm2, needed for such experiments! have been real-
ized in their laboratory. Magnetic fields of such streng
were realized by Foner and Kolm@12# a long time ago.

The main purpose of this paper is to derive and pres
exact analytic solutions for the fully relativistic electron tr
jectories in the presence of a superintense plane-wave
field and a strong uniform magnetic field and to illustra
their usefulness by considering the generation of radiat
The scattered radiation cross sections are also obtained
lytically for the case of observation along the laser direct
of propagation. The use of the trajectories derived here
further illustrated by calculating~by quadrature of the rel-
evant formulas! the emission spectra to be observed alo
the transverse directions. The trajectories in the laser
magnetic fields are found to differ significantly from tho
obtained in the absence of a magnetic field. Thus, for
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ample, it is found that for a field strengthB0'30 T, currently
available @11,12#, the electron follows a helical trajector
~with its axis along the direction of the magnetic field! with
superimposedlittle wiggles on it. The presence of th
wiggles on the trajectory is expected to lead, in general
rich structures in the emission spectra, although for spec
geometries it may give a simple spectrum. An example o
simple emission spectrum is obtained in the case in wh
the initial electron motion is parallel to the magnetic-fie
direction and the scattered light is also along that direction
is found that the emission occurs at two frequencies, nam
at the fundamental frequencyv5v0 and atv5V0, where
v0 is the frequency of the laser andV0 ~to be defined ex-
plicitly below! depends on the magnetic-field strength. Su
a line has been found by a Monte Carlo simulation@11#. We
note that, in the absence ofB0, one gets only the fundamen
tal frequencyv5v0 in the forward direction. As further
illustrations of the use of the analytic solutions derived he
we also study the emission spectra for observation direct
along the electric- and magnetic-field components of the
ser field. These spectra are evaluated by quadrature o
cross-section formula using the experessions of the traje
ries. The dependence of the spectra on the initial elec
kinetic energy, on the laser intensity and frequency, and
the strength of the uniform magnetic field is obtained a
discussed.

Below we also consider the so-called ponderomotive s
tering in the presence of a magnetic field. Specifically,
pressions for the dependence, on the field parameters, o
scattering angle of the electronu relative to the laser direc
tion of propagation and an appropriate azimuth anglef are
derived. It is shown thatu depends only on the laser-fiel
parameters~not on the magnetic field!, whereas the azimuth
f depends on the magnetic field as well, as might be
pected@3#.

The rest of the paper is organized as follows. In Sec
parametric equations, employing the phase of the laser
as a parameter, for the relativistic trajectory of an electron
the presence of both the laser and the magnetic fields
derived. In Sec. III explicit expressions for the velocity com
ponents of the electron, its energy, and the ponderomo
scattering angles are given for the special case in which
electron initially moves along the direction of propagation
a linearly polarized laser field. In the same section we sh
graphically the electron trajectories, velocity componen
and energy for two cases of laser-field polarization. In S
IV a general expression for the light-emission cross sec
will be given, which will also be the starting point for der
vations involving special cases in the Appendixes. Emiss
spectra calculated numerically on the basis of the gen
expression will be presented and discussed for a numbe
cases in this section too. The corresponding expression
the case of circular polarization of the laser will also
given. We conclude by giving a brief discussion of the
sults obtained, in Sec. V.

II. ELECTRON DYNAMICS

The relativistic motion of an electron in the presence
plane wave and pulsed laser fields is well understo
@1,2,13#. About ten years ago Kyrala@14# gave a numerica
o
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h
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study of the motion of a~hydrogen! atomic electron after
ionization in the field of an intense laser pulse, using a cl
sical model for the binding potential. More recently, Co
nerade and Keitel@11# presented the results of a numeric
calculation of the trajectory of the same system, in the ad
presence of a strong magnetic field pointing along the dir
tion of laser-field propagation, within the context of the
study of high harmonic generation. It has been conclud
from these studies that, in very intense laser fields, the
namics of the ionized electron differs in no significant w
from that of an initially free electron. In this section w
derive analytic trajectories for afreeelectron in a plane-wave
laser fieldand a strong magnetic field.

A. Preliminaries

We wish to study the motion of, and the scattering
radiation from, a relativistic electron, of massm and charge
2e, in the simultaneous presence of an intense plane-w
laser field and a strong uniform magnetic field. The ener
momentum four-vector of the electron will be denoted byp
5(E/c,p), where

E5gmc2, p5gmcb. ~1!

In Eq. ~1!, b is the electron velocity normalized byc, the
speed of light, andg5(12b2)2 1/2. The electric and mag-
netic fields will be derived from a vector potentialA via the
equations

E52
1

c

]A

]t
, B5¹3A. ~2!

The dynamics of the electron will be studied on the basis
the energy-momentum transfer equations

dp

dt
52e~E1b3B! ~3!

and

dE
dt

52ecb•E. ~4!

B. General

In this subsection we develop the electron dynamics
sulting from interaction with a superintense plane-wave la
field and a strong uniform magnetic field aligned in the
rection of propagation of the laser field. The vector poten
in the present situation is given by

A5A0@ îdcosh1 ĵA12d2sinh#2
B0

2
~ îy2 ĵx!. ~5!

The first term in Eq.~5! represents a plane-wave, elliptical
polarized laser field of peak field strengthA0, frequencyv0,
and wave vectork pointing in the positive coordinatez di-
rection. The second term represents a magnetic field of c
stant magnitudeB0 and direction also alongz. Furthermore,
the phase of the fieldh stands for the invariant combinatio
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v0t2k•r andd gives the degree of ellipticity~with d51 for
linear andd51/A2 for circular polarizations!.

Using Eq.~5! in Eqs.~3! and~4!, we get the equations o
motion

d~gbx!

dt
52qdv0~12bz!sinh2vcby , ~6!

d~gby!

dt
5qA12d2v0~12bz!cosh1vcbx , ~7!

d~gbz!

dt
5qv0@A12d2bycosh2dbxsinh#, ~8!

dg

dt
5qv0@A12d2bycosh2dbxsinh#, ~9!

wherevc5eB0 /mc is the cyclotron frequency of the elec
tron motion in the magnetic fieldB0 andq5eA0 /mc2 is the
dimensionless intensity parameter of the laser field (q51
corresponds to a laser intensity ofI'1018 W/cm2). Note
that the right-hand sides of Eqs.~8! and~9! are identical, so
if we equate the left-hand sides and carry out the single
tegration, we arrive at the useful relation

g~12bz!5g0~12bz0!, ~10!

where the subscript 0 signifies an initial value, att50, for
the quantity in question. Another useful relation may be o
tained from differentiating the phaseh once with respect to
time

dh

dt
5v0~12bz!. ~11!

A third relation, which will prove to be important for th
calculation of the electron trajectories below, can be obtai
by considering the derivative of a typical Cartesian coor
nate with respect to the phaseh, aided by Eqs.~10! and~11!.
With Q standing forx,y, or z, we have

dQ

dh
5

dQ

dt

dt

dh
5

c

v0

gbQ

g0~12bz0!
. ~12!

The following ~fourth! relation may also be derived as ind
cated below with relative ease,

g2~bx
21by

2!2g0
2~bx0

2 1by0
2 !52g0~12bz0!~g2g0!.

~13!

The steps leading to Eq.~13! are as follows. First Eq.~6! is
multiplied through bygbx and the resulting equation is the
added to Eq.~7! times gby . The result is then rearrange
and use is made of Eqs.~10! and ~9!. Finally, a single inte-
gration yields Eq.~13!.

We are now in a position to calculate the exact elect
trajectories. Using Eq.~11! in the first term on the right hand
side of Eq.~6! and writingby5dy/cdt in the second results
in a simple differential equation. A single integration th
yields
-

-

d
-

n

gbx5g0bx01qd~cosh2cosh0!2
vc

c
~y2y0!. ~14!

Similarly,

gby5g0by01qA12d2~sinh2sinh0!

1
vc

c
~x2x0!. ~15!

Using Eqs.~14! and~15! in Eq. ~12! results in the following
coupled differential equations forx andy, respectively,

dx

dh
5

c

v0g0~12bz0! Fqd~cosh2cosh0!

2
vc

c
~y2y0!1g0bx0G , ~16!

dy

dh
5

c

v0g0~12bz0! FqA12d2~sinh2sinh0!

1
vc

c
~x2x0!1g0by0G . ~17!

When Eq.~17! is multiplied by i and the result is added t
Eq. ~16!, a simple first order differential equation for th
quantityr5x1 iy results. The solution of this equation ma
best be achieved by an integrating factor. The idea is to
the equation into the form

dr

dh
1P~h!r5R~h!, ~18!

whose solution may be written as

r5e2I ~h!H Eh
R~h8!eI ~h!dh81CJ , ~19!

where I (h)5*hP(h8)dh8 and C is a complex constant to
be determined from the initial conditions. The real a
imaginary parts ofr finally give expressions forx(h) and
y(h), respectively. After some lengthy algebra, we get

x~h!5
qc

v0g0~12bz0! Fd1rA12d2

12r 2 Gsinh1
c

v0g0~12bz0!

3F2g0by01
vc

c
x01qA12d2sinh0

r
G

1acos~rh!2bsin~rh!, ~20!

y~h!52
qc

v0g0~12bz0! F rd1A12d2

12r 2 Gcosh

1
c

v0g0~12bz0!
F g0bx01

vc

c
y02qdcosh0

r
G

1asin~rh!1bcos~rh!. ~21!
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In Eqs. ~20! and ~21!, a and b are the real and imaginar
parts, respectively, of the constantC and r stands for the
frequency ratio

r 5V0 /v05
vc /v0

g0~12bz0!
. ~22!

V0 may be thought of as areduced cyclotron frequencyfor
the relativistic electron motion in the magnetic field. An a
ternative way of arriving at Eqs.~20! and ~21! would be to
decouple Eqs.~16! and ~17! by differentiating one of them
once more with respect toh and then using the other one
get a second-order ordinary differential equation whose
lution may then be found using standard techniques.

Our equations, derived so far in most generality, con
tute a set of basic working expressions from which a f
account of the electron motion, in the intense plane-w
laser field and strong magnetic field, may be made. The
pressions forgbx andgby are again given by Eqs.~14! and
~15!, respectively, wherex andy are now given byx(h) and
y(h) as shown in Eqs.~20! and ~21!, respectively. An ana-
lytic expression for the Lorentz factorg, and hence the elec
tron energygmc2, may also be found by substituting th
expressions found forgbx andgby in Eq. ~13!. The expres-
sion for g, thus obtained, may then be used in Eq.~10! in
order to obtainbz(h). Finally, whengbz is used in Eq.~12!
for Q5z and after the integration overh has been carried
out, one obtainsz(h). With z(h) known, the set of paramet
ric equations giving the particle trajectory in terms of t
parameterh is complete. We now elect to apply the abo
o-

i-
l
e
x-

results to a specialized situation corresponding to a spe
set of initial conditions on the electron position and veloc
vectors and work through it in detail.

III. INITIAL MOTION PARALLEL
TO THE PROPAGATION DIRECTION
OF A LINEARLY POLARIZED FIELD

This section is devoted to a detailed study of the dynam
of an electron initially moving parallel to the laser propag
tion direction at the speedvz05cb0. We take the zero of
time at the instant the electron passes the origin of coo
nates. Thus the initial position of the electron correspond
x05y05z050 and the initial velocity is given bybx0
5by050 andbz05b0. This choice of initial conditions im-
plies h050 andg05(12b0

2)2 1/2. Let us specialize further
to the case of a linearly polarized laser field withd51. This
situation has been studied recently in the absence of the
plied strong magnetic field. So we shall have the chance
compare our equations and other results for the electron
jectory with those of Refs.@2,3,15# in the limit of r→0.

A. Equations

Using the above-mentioned initial conditions in Eqs.~20!
and ~21! fixes the values of the constantsa and b. In this
case,a50 and b5(qc/v0)g0(11b0)/r (12r 2). This re-
sult, together with algebraic manipulations along the lin
sketched at the end of Sec. II, lead to the trajectory equat
ce

r
tor
x~h!5
l

2p
qg0~11b0!F rsinh2sin~rh!

r ~12r 2!
G , ~23!

y~h!5
l

2p
qg0~11b0!F2r 2cosh1cos~rh!1r 221

r ~12r 2!
G , ~24!

z~h!5
l

2p S 11b0

12b0
D H F b0

11b0
1

q2

4

31r 2

~12r 2!2Gh1
q2

8

sin~2h!

~12r 2!
2

q2

2 F ~11r !2sin@~12r !h#1~12r !2sin@~11r !h#

~12r 2!3 G J ,

~25!

wherel is the laser field wavelength. In the absence of the applied strong magnetic fieldB0, these equations exactly reprodu
the results of Hartemannet al. @15#. To show this, one simply takes the limit asr→0 in Eqs. ~23!–~25!, employing
l’Hospital’s rule in Eqs.~23! and ~24!.

Next, we use the same initial conditions, together with Eqs.~23!–~25!, in Eqs.~14! and~15! in order to find expressions fo
gbx andgby . Furthermore, an expression forgbz follows from Eq.~10!. Thus the components of the electron velocity vec
b(h) are found to be

bx~h!5
q

g~h! Fcosh2cos~rh!

12r 2 G , ~26!

by~h!5
q

g~h! F rsinh2sin~rh!

12r 2 G , ~27!

bz~h!5
g0

g~h! H b01
1

2
q2~11b0!F @cosh2cos~rh!#21@rsinh2sin~rh!#2

~12r 2!2 G J , ~28!

where the Lorentz factor, or the electron energy scaled by the rest energymc2, is
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g~h!5g0H 11
1

2
q2~11b0!F @cosh2cos~rh!#21@rsinh2sin~rh!#2

~12r 2!2 G J . ~29!
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Again, Eqs.~26!–~29! reproduce the known results in th
absence of the applied magnetic field (r→0) @15#. Note also
that, viewed as a function of the phaseh, the scaled energy
oscillates between a minimum value ofgmin'g0 and a
maximum value ofgmax'g0$112q2(11b0)%, as the elec-
tron interacts with the applied laser field.

We would like to make the remark, at this point, th
simpler expressions corresponding to Eqs.~23!–~29! may be
arrived at very easily for the case of a circularly polariz
laser field. The results will be shown only in graphical for
in Sec. III B.

We close this subsection by deriving expressions for
ponderomotive scattering angles of the electron in terms
its escape kinetic energy and other parameters relevant t
initial conditions of interest. The angleu, measured relative
to thez axis, is given by

u~g!5tan21HA~bx!
21~by!2

bz
J

5tan21HA 2

11b0
S g

g0
21D

g2g0~12b0!
J . ~30!

The easiest way to arrive at Eq.~30! is by using Eqs.~13!
and ~10! after the initial conditions have been inserted
both. Equation~30! is identical to the expression reporte
recently by Hartemannet al. @15# without the addedB0 field.
In terms of the escape kinetic energyK5(g21)mc2 where
g is given in Eq.~29!, the scattering angle is given by

u~K !5tan21H A2~12b0!~K2K0!/g0mc2

b01~K2K0!/g0mc2 J , ~31!

where K05(g021)mc2 is the initial kinetic energy with
which the electron is injected into the field. An equation w
the same functional dependence onK as Eq.~31! has also
recently been derived by us@1,2# in the absence of the field
B0.

The added magnetic fieldB0 will alter the azimuthal angle
f, measured in the present situation relative to thex axis.
The expression forf is

f5tan21S by

bx
D

5tan21H rsinh2sin~rh!

cosh2cos~rh! J . ~32!

Note that in the absence of the added magnetic fieldr 50,
Eq. ~32! yields f50. In this case, the electron motion
e
of
the

entirely confined to thexz plane. We have recently obtaine
the same expression as well, using a different approach@2#.

B. Numerical analysis

Some of the analytical results obtained so far will now
shown in graphical form. We will show the actual trajecto
of the electron in the presence of a strong laser field an
magnetic field of strength currently being used in laborat
experiments@9,11#. The electron energy and velocity com
ponents will also be shown as functions of the number
cyclesh/2p of the laser field. Let us first make the remind
that the laser-field propagation direction is thez axis. The
added uniform magnetic fieldB0 also points in that direction
Hence the electric field component of the laser field will
alongx and the magnetic field component will point alongy.

Note as well that the case of an electron initially at res
the origin may be studied using the same equations arrive
in this section, withb0 set equal to zero everywhere. Such
electron will be accelerated from rest by the electric com
nent of the laser field and will start moving in the negativex
direction following turn-on of the laser. However, from th
moment on the electron will start to ‘‘feel’’ the bending e
fects of the magnetic component of the laser field andB0.
The former will tend to bend the electron trajectory arou
the y axis while the latterB0 will tend to make the electron
follow a helix around thez axis. The net result is the helica
trajectory shown in Fig. 1~a!.

The general shape of the actual electron trajectory in
case of initial motion at a speedcb0 along thez axis is the
same. Due to the initial forward momentum, however, t
electron, in this case, will describe a much longer helix o
the same number of field cycles as in Fig. 1~a!. The result for
g0510 (b0'0.995) and a set of field parameters similar
those of Fig. 1~a! is shown in Fig. 1~b!. Note that the trajec-
tory shown in Fig. 1~a! has been calculated for electron m
tion over 1000 laser field cycles, while that of Fig. 1~b! has
been calculated over 100 such cycles only. As can be s
the trajectory in Fig. 1~b! is not a perfect helix; there ar
wiggles due to the effect of the initial forward momentum
To a large forward velocity corresponds a large laser fo
magnetic component, comparable in magnitude to the e
tric component.

Extension of the electron trajectory in the transverse
rections (x and y) is determined principally by the magn
tude of the added magnetic fieldB0, while longitudinal ex-
tension~alongz) depends mostly on the size of the electr
initial speedb0. The size of the wiggles, present in Fig. 1~b!
but absent from Fig. 1~a!, seems to be controlled byb0 as
well. Those wiggles are a manifestation of the bending eff
due to the magnetic field component of the laser field.
order to better understand the electron motion, we have p
ted the projection onto thexy plane of the trajectory shown
in Fig. 1~b!. In Fig. 1~c! this projection is shown over 100
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FIG. 1. Electron trajectory in the presence of a linearly polarized (d51) superintense laser field propagating along thez axis, in addition
to a strong uniform magnetic field of strengthB0530 T, directed alongz as well. The field parameters are intensityq53 and wavelength
l51 mm. ~a! The electron is initially at rest,g51 or b050. ~b! The electron initially moves parallel to the laser propagation direction s
thatg0510 or, equivalentlyb0'0.995.~c! Projection onto the plane perpendicular to the laser propagation direction of the trajectory s
in ~b!. ~d! A repeat of~c! over 500 laser field cycles. The trajectory in~a! is plotted over 1000 field cycles and in~b! and~c! over 100 cycles.
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field cycles, while Fig. 1~d! shows the same projection, albe
over 500 cycles.

In Fig. 2 trajectories are shown for an electron movi
under conditions identical to those of Fig. 1, but in a circ
larly polarized laser field. Figure 2~a! corresponds to Fig
1~a! and so on. The two sets of trajectories correspondin
the two cases of field polarization share common features
general.

The presence of the wiggles in the electron trajectory
Figs. 1~b! and 2~b! is also evidence for oscillations in th
velocity of the electron. In Fig. 3 components of the sca
electron velocity are shown over 20 field cycles and for fi
parameters the same as those of Figs. 1 and 2. Note tha
corresponding velocity components in the two polarizat
cases oscillate roughly between the same minima
maxima. In the case corresponding to a circularly polariz
laser field,bx andby @Figs. 3~d! and 3~e!, respectively# ex-
hibit beat structures, whereasbz @Fig. 3~f!# oscillates be-
tweenb0 and a maximum value close to unity almost reg
larly.

In Fig. 4 we show the scaled electron energyg as a func-
tion of the number of laser field cyclesh/2p for the same se
-

to
in

n

d

the
n
d
d

-

of parameters used in Fig. 1 and over 20 laser field cyc
Notice that, in Fig. 4~a!, the scaled energy oscillates~in fact,
it exhibits a beat structure! between a maximum value o
roughly 370 and a minimum value of 10, as has been
marked in the discussion following Eq.~29! above. In a cir-
cularly polarized field, on the other hand, the electron ene
oscillates at the frequency (12r )v0 ~corresponding equation
not given in the text! betweeng0 and about 210. A compari
son of the maxima in Figs. 4~a! and 4~b! reveals that the
electron exchanges more energy with the linearly polari
field than it does with the circularly polarized field of th
same intensity.

IV. RADIATION SPECTRA

The trajectory calculations made in Secs. II and III, inte
esting as they are in their own right, are essential for
study of radiation emitted by the accelerated electron. T
starting point for calculating the angular and frequency d
tributions of the radiation is the radiant energy emitted p
unit solid angledV and per unit frequency intervaldv @16#
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FIG. 2. Same as Fig. 1, but for a circularly polarized laser field.
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d2E~v,V!

dVdv
5

e2

4p2c
U E

0

T n3@n2b~ t !#3ḃ~ t !]

@12n•b~ t !#2

3expH ivF t2
n•r ~ t !

c G J dtU2

5
e2

4p2c
UF S n3n3b~ t !

12n•b~ t ! D
3expH ivS t2

n•r ~ t !

c D J G
0

T

2 ivE
0

T

@n3n3b~ t !#

3expH ivS t2
n•r ~ t !

c D J dtU2

. ~33!

E is used here to denote the radiated energy,n is a unit
vector in the direction of propagation of the emitted radiat
~direction of observation!, and T is the time interval over
which the incident field is nonzero. In the calculations us
n

d

to produce the harmonic generation spectra to be repo
below, we takeT550 field cycles. In order to make Eq.~33!
easy to program, a change of integration variable has b
made fromt to h, in which case it is straightforward to show
that the interval of integration changes from (0,T) to
(0,100p).

For our purposes in this work, the harmonic generat
spectrum will be given by thedoubly differential cross sec
tion, obtained by dividing the radiant energy, emitted p
unit solid angle per unit frequency and averaged overT, by
the incident energy flux (eqv0)2/8pcr0

2, r 0 being the classi-
cal electron radius. Thus

d2s~v,V!

dVdv
5

1

T

8pcr0
2

~eqv0!2

d2E~v,V!

dVdv
. ~34!

The doubly differential cross section will be calculated
the basis of Eqs.~33! and ~34! and will be plotted below
against the scattered frequency, with the latter expresse
units of the laser frequencyv0. Atomic units, with e5m
51, will be used.

Figures 5–7 give the spectra calculated numerically fr
Eqs.~33! and~34!, corresponding to three different observ
tion directions. Each set consists of five different plots, w
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each plot corresponding to a specific set of values for
parametersv0 , q, g0, and B0. The parameter values ar
collected in Table I.

For example, the spectrum that would be observed al
the laser propagation direction is shown in Fig. 5. Note th
in agreement with the analytical discussion given in App
dix A, the spectrum in this case consists of only two pea
The main~Thomson! peak is located atv5v0 in Figs. 5~a!–
5~e!, while the other~henceforth to be referred to asthe
magnetic peak, because it would be absent in the absence
the added uniform magnetic fieldB0) moves from a position
close to zero in Fig. 5~b! to nearlyv55v0 in Fig. 5~d!. In
all cases, however, the position of the magnetic peak is
termined by the value of theratio r @cf Eq. ~22!# which, in
turn is proportional to bothB0 and g0. @In Fig. 5~d!, g0
51000, while in Fig. 5~b!, g05100. Moreover, note that in
Fig. 5~b!, the magnetic peak is vanishingly small by com
parison to the Thomson peak; it has also a vanishingly sm
frequency for the chosen set of parameters.# In general, the
height of the magnetic peak increases with increasing e
tron initial kinetic energy, through a dependence upong0;
however, it seems to be insensitive, in Fig. 5 at least,
changes in the laser-field intensity orq. These two conclu-
sions may be arrived at by studying theapproximateequa-
tion ~A10! and by comparing, e.g., Fig. 5~a! with Fig. 5~c!.
Nevertheless, it is difficult to draw similar conclusions on t
basis of a similar analysis of theexactequation~33! or by
comparing Figs. 6~a! and 7~a! with Figs. 6~c! and 7~c!, re-
spectively.

For a general observation direction, the spectrum is q
rich. According to Eq.~B10!, the number of peaks to b
expected is infinite. Note that the two peaks shown in Fig
correspond to (N,M )5(1,0) ~Thomson! and (0,1) ~mag-
netic!.

FIG. 3. Components of the scaled velocity vector of the elect
whose trajectories are given in Figs. 1 and 2, shown here agains
number of laser field cyclesh/2p over 20 such cycles.~a!–~c!
Linearly polarized laser field and~d!–~f! circularly polarized laser
field.
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Unfortunately, the general situation corresponding to
arbitrary observation direction does not lend itself
straightforward analytical scrutiny. In Appendix B we sho
that working analytically with Eq.~33! would involve many
infinite sums over the product of as many ordinary Bes
functions. The analysis given in Appendix B is based on
approximate version of Eq.~33!, in which T→` and the
surface terms, the integrated part of Eq.~33!, are dropped.
We prefer to continue to work with the exact equation n
merically. However, Appendix B does serve an importa
purpose: It shows clearly that one should expect an infin
number of peaks in the spectra corresponding to observa
directions other than the forward one. This is also confirm
by the numerical investigations whose results are displa
graphically in Figs. 6 and 7.

For a set of parameters corresponding, one to one, to
set used in Fig. 5, we show harmonic generation spectra
would be observed along the electric~Fig. 6! and magnetic
~Fig. 7! components of the laser field. In producing part~b!
in each set, the aim has been to investigate the effect, on
spectrum, of changing the laser frequency fromv50.05 to
0.5 a.u. We only notice an approximately three-order-
magnitude decrease in the relative peak heights asv0 is in-
creased by one order of magnitude. We note, in this reg
that no regular basis exists for apeak-to-peakcomparison.
Similar arguments hold about changes in the general sh
of the spectra as one varies the magnitudes of the other
rameters in a similar fashion.

In Figs. 8~a! and 8~b! we present magnified portions o
the spectra shown in Figs. 6~a! and 7~a!, respectively, in the

n
the

FIG. 4. Scaled electron energy vsh/2p of the electron whose
trajectories are given in Figs. 1 and 2, shown here over 20 fi
cycles.~a! Linearly polarized laser field and~b! circularly polarized
laser field.

TABLE I. Parameter values used in Figs. 5–7.

Figure v0 ~a.u.! q g0 B0 ~T!

~a! 0.05 0.1 100 30
~b! 0.50 0.1 100 30
~c! 0.05 1.0 100 30
~d! 0.05 0.1 1000 30
~e! 0.05 0.1 100 40
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FIG. 5. Spectrum of the emitted radiation, in the presence of a laser field and a magnetic field, shown here in terms of th
differential scattering cross section, for observation along the laser propagation direction (u50). The numerical integrations were carried o
over 50 field cycles and the parameter set is given in Table I.
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frequency region approximately between 16v0 and 18v0.
They show the presence of finite linewidths and substr
tures. Figures 7 and 8 strongly suggest that the emis
spectra, observed in the direction of the electric- or the m
netic field components of the laser, have the nature o
chaotic radiation spectrum.
-
on
g-
a

We close this section by noting that more and more p
nounced peaks that correspond to higher and higher freq
cies keep showing up in all the spectra. We have limited
investigations to a maximum harmonic order of 20, due
the fact that the calculation is very demanding in time. P
duction of harmonics of order beyond 20 may in principle
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FIG. 6. Same as Fig. 5, but for observation along the magnetic component of the laser field (u5f5p/2).
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done by employing computing power better than what
currently available to us. Moreover, resolution of adjac
peaks, in all of the spectra, except for the one observed in
forward direction, is difficult. This has an important implic
tion with regard to the tunability of any device that ma
employ the underlying principle to generate high-frequen
radiation.
s
t
he

y

V. SUMMARY

We have derived relativistic trajectory equations for
single electron in the presence of the combined effects
magnetic and laser fields, without any restrictions on
strength of the magnetic field, the intensity of the laser,
the initial direction of motion of the electron. We hav
shown that in a superintense laser field and a strong magn
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FIG. 7. Same as Fig. 5, but for observation along the electric component of the laser field (u5p/2,f50).
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field, the electron trajectory is arough helix ~with superim-
posed wiggles! around the common direction of the laser a
magnetic fields.

Harmonic generation in the related problem has also b
analytically investigated in a special case of electron ini
motion parallel to the common directions of magnetic-fie
and laser propagation. In this restricted case, we have sh
that radiation at a frequency depending upon the magne
field intensity, the laser frequency, and the electron ini
speed, in addition to the familiar Thomson result, is gen
n
l

wn
c-
l

r-

ated. Numerical work, employing our trajectory equation
has also been carried out to study the generation of harm
ics along other emission directions. The results have b
shown in terms of the doubly differential scattering cro
section for radiation observed along the electric and m
netic components of the laser field. In general, they sh
complex spectra with no regular pattern of positions a
relative heights.

It is interesting to note that the present emission spe
differ from those found in Ref.@11#, probably because of the
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very different form of the pulses employed~we use plane-
wave fields with a sudden switch on/off, in contradistincti
to a smooth pulse used in the above reference!. We hope to
study the dependence of the emission spectra on the p
shape, as well as on the pulse duration, in greater deta
the future.
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APPENDIX A: EMISSION SPECTRUM IN THE FORWARD
DIRECTION

In this appendix and the next, we employ an approxim
version of Eq.~33!, obtained by lettingT→` and replacing
the lower limit by2` in order to make some analytic pre
dictions about the number of Compton harmonics of the la
frequency that may be observed along a certain direction.
present details of the analysis of the case of observa
along the forward direction first. In Appendix B the case
observation along an arbitrary direction will be briefly co
sidered.

Although the laser turn-on time may be brief, if we l
T→`, Eq. ~33! simplifies a great deal. First of all, the su
face terms may be safely dropped and the resulting exp
sion for the energy radiated per unit solid angle and per
frequency will then become

FIG. 8. Magnified portions of the spectra shown in Figs. 6~a!
and 7~a!.
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d2E

dVdv
5

~ev!2

4p2c
U E

2`

`

@n3~n3b!#expH ivS t2
n•r

c D J dtU2

5
~ev!2

4p2c
$uK u22un•K u2%, ~A1!

where

K5E
2`

`

b~ t !expF ivS t2
n•r ~ t !

c D Gdt. ~A2!

Implied in the derivation of Eq.~A1! is the fact that only
positive frequenciesv.0 ought to be taken into accoun
@16#. Let us confine our attention in the following analysis,
the relatively simple situation in which the point of observ
tion lies on thez axis, i.e.,n5 k̂; the analysis of more situa
tions, involving other points of observation, will follow. In
this case, Eqs.~A1! and~A2! take on a simple form and th
integrations in Eq.~A2! may easily be carried out analyt
cally. Equation~A1! becomes

d2E

dVdv
5

~ev!2

4p2c
$uKxu21uKyu2%, ~A3!

where (Q5x or y)

KQ5
1

cE2`

` dQ

dh
ei ~v/v0!hdh. ~A4!

In writing down Eq. ~A4! from Eq. ~A2!, the integration
variable has been changed fromt to h. Using Eqs.~23! and
~24! in Eq. ~A4! and after some algebra, we obtain

Kx5pq
g0~11b0!

12r 2
$d~v2v0!2d~v2rv0!%, ~A5!

Ky5 ipq
g0~11b0!

12r 2
$rd~v2v0!2d~v2rv0!%.

~A6!

Putting Eqs.~A5! and~A6! back into Eq.~A3!, we obtain the
expression for the energy per unit solid angle per unit f
quency observed along the forward direction,

d2E

dVdv
5

~eqv!2

4c Fg0~11b0!

12r 2 G 2

$~11r 2!@d~v2v0!#2

12@d~v2rv0!#2%. ~A7!

Thus the powerP observed along the forward direction p
unit solid angle per unit frequency may now be found@3#

d2P

dVdv
5

~eq!2

8pc Fg0~11b0!

12r 2 G 2

$~11r 2!v2d~v2v0!

12v2d~v2rv0!%. ~A8!

Equation~A8! says that radiation at the frequenciesv0 and
rv0 only will be observed in the forward direction. Thi
agrees quite well with ourexactnumerical results displayed
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in Fig. 5. Expression~A8! may also be used to calculate th
power observed per unit solid angle, by carrying out
integration overv, with the result

S dP

dV D
l in

5
~eqv0!2

8pc S 11b0

12b0
D 113r 2

~12r 2!2
. ~A9!

Finally, when Eq. ~A9! is divided by the incident flux
(eqv0)2/(8pcr0

2), wherer 0 is the classical electron radius
the formula for the scattering cross section of the radiat
observed in the forward direction is obtained,

1

r 0
2S ds

dV D
l in

5S 11b0

12b0
D 113r 2

~12r 2!2
. ~A10!

The following expression, corresponding to the case o
circularly polarized laser field, may easily be obtained alo
the same lines:

1

r 0
2S ds

dV D
cir

5S 11b0

12b0
D 11r 2

~12r !2
. ~A11!

Note that, in both cases of laser field polarization, for
electron initially at restb050 and in the absence of th
addedB0 field r 50, the physical situation corresponds
Thomson scattering. Under these conditions, Eqs.~A10! and
~A11! yield ds/dV5r 0

2, as expected. We have also show
recently @1# that for nonzero initial velocityb0Þ0 and no
magnetic fieldB050,

1

r 0
2

ds

dV
5

11b0

12b0
. ~A12!

Equations~A10! and ~A11! have precisely this limit when
the magnetic-field intensity is set equal to zero~or, equiva-
lently, whenr→0).

APPENDIX B: EMISSION SPECTRUM ALONG
A GENERAL OBSERVATION DIRECTION

In this appendix we partially carry out the time integrati
in Eq. ~A2! for a general observation direction. Let us ta
the observation direction along the unit vectorn
[(n1 ,n2 ,n3)5(sinucosf,sinusinf,cosu). As a starting
point, we rewrite Eq.~A2! in the form

K5E
2`

` dr

dh
expH i

v

v0
Fh1

v0

c
~z2n•r !G J dh. ~B1!

Next, we rewrite the parametric equations giving the elect
trajectory, Eqs.~23!-~25!, in the more compact form, for con
venience,

x~h!5
c

v0
A1@rsinh2sin~rh!#, ~B2!

y~h!5
c

v0
$A1@2r 2cosh1cos~rh!1r 221#%, ~B3!
e

n

a
g

n

n

z~h!5
c

v0
$A2h1A3sin~2h!

2A4sin@~12r !h#2A5sin@~11r !h#%, ~B4!

where

A15
q

r ~12r 2!
g0~11b0!,

A25
b0

12b0
1

q2

4

31r 2

~12r 2!2

11b0

12b0
,

A35
q2/8

12r 2

11b0

12b0
, ~B5!

A45
q2

2

~11r !2

~12r 2!3

11b0

12b0
,

A55
q2

2

~12r !2

~12r 2!3

11b0

12b0
.

Thus, for example,

Kx5
c

v0
rA1~ I 12I 2!, ~B6!

where

I 15E
2`

`

coshexpF i
v

v0
S h1

v0

c
~z2n•r ! D Gdh,

5
1

2E2`

`

dhH expF i S 11
v

v0
[11~12n3!A2] DhG

1expF i S 211
v

v0
[11~12n3!A2] Dh G J

3expS i
v

v0
@2a02a1sinh

1a2sinrh1a3cosh2a4cosrh1a5sin2h

2a6sin~12r !h2a7sin~11r !h# D , ~B7!

where a05n2(r 221)A1 , a15n1rA1 , a25n1A1 , a3
5n2r 2A1 , a4 5 n2A1 , a5 5 (12n3)A3 , a6 5 (12 n3)A4,
anda75(12n3)A5. I 2 involves cosrh instead of cosh; oth-
erwise it is structurally the same asI 1. Next, we express the
second equality of Eq.~B7! as a product of Bessel functio
series according to the generating function

eiasinu5 (
n52`

`

Jn~a!einu. ~B8!
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The result will be a sevenfold sum involving the product of seven Bessel functions. The exponential terms in both line
~B7!, on the other hand, combine with the help of the well-known Bessel function recurrence relations into a sing
containing the fullh dependence, which then integrates immediately giving rise to ad function. A similar result forI 2 may be
obtained along similar lines. Finally,Kx becomes

Kx52pcS v0

v D rA1

@11~12n3!A2#
e2 i ~v/v0! a0 (

j 52`

`

(
k52`

`

(
l 52`

`

(
m52`

`

(
n52`

`

(
p52`

`

(
s52`

`

i m2nS k

a1

2
l

a2
D JkS va1

v0
D Jl S va2

v0
D JmS va3

v0
D JnS va4

v0
D JpS va5

v0
D Jj S va6

v0
D JsS va7

v0
D dH v2F N1rM

11~12n3!A2
Gv0J , ~B9!

whereN5k1m1 j 1s22p andM5s2( l 1n1 j ) are integers such thatN1rM .0. The samed function may, in principle,
be obtained when expressions similar to Eq.~B9! are found forKy andKz . Hence the scattered radiation will have a frequen
given by

v~N,M !5H N1rM

11~12cosu!F b0

12b0
1

q2

4

31r 2

~12r 2!2S 11b0

12b0
D G J v0 , N1rM .0. ~B10!

With N andM assuming positive and negative integer values, the condition expressed by Eq.~B10! may obviously be met by
an infinite number of combinations. This manifests itself very clearly in the presence of an enormous number of peak
spectra shown in Figs. 6 and 7.
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