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Threshold laws for the breakup of atomic particles into several charged fragments
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Processes with three or more charged particles in the final state exhibit a particular threshold behavior, as
inferred by the famous Wannier law for ag€2 ion) system. We formulate a general solution which determines
the threshold behavior of the cross section for multiple fragmentation. Applications to several systems of
particular importance with three, four, and five leptdaekectrons and positropg the field of a charged core,
and two pairs of identical particles with opposite charges, are presented. Threshold exponents for these systems
are predicted, while some previously suggested threshold laws are re\84€60-294{0©8)04007-4

PACS numbse(s): 32.80.Fb, 34.80.Dp, 34.80.Kw

I. INTRODUCTION periments by Blohme, Knudsen, and Merri§@2] concern
positron impact double ionization of neutral aton%=2),

The famous Wanniefl] threshold law has quite an un- where the threshold law is not yet available. Its derivation
usual status among other threshold laws in quantum mechamras one of the motivations for the present study. Eventually
ics. Being based on an appealing mechanism, it has inspirdtideveloped into a general approach to the multifragmenta-
a large number of studies where the law was rederived, exion problem which possesses two important advantages.
tended, tested or rebutted. The intensity of these studies do€%#st, our method describes a general situation with an arbi-
not show a decrease with time, as shown in some recentary number of charged fragments in simple terms in an
publications[2—21]. A complete bibliography on the subject arbitrary coordinate frame. Second, it is convenient and reli-
would be immense. able for practical realizations. This allows us to clarify im-

In this paper, we suggest a method which generalizes thgortant conceptual aspects of the problem which were mis-
Wannier mechanism when breakup of the quantum systemnderstood or misinterpreted previously. Comparing our
on alarge number(four or more of charged fragments is solution with results in the literature, we reproduce a number
concerned. Apparently, the particular case of the problenof threshold exponents for different systems. At the same
was treated for the first time in 1976 in an important papettime, we find that several previously published results need
by Klar and Schlechf22], where the threshold law was de- improvement; in particular, we revise the threshold law for
rived for escape of three electrons from the charged core. Re™ +e* escape. A general nature of the developed method
was suggested that the receding electrons form a symmetrical illustrated by a consideration of new complicated situa-
configuration of an equilateral triangle with a positively tions with up to six charged particles in the final state, where
charged core in its center. The treatment was quite involvinga number of threshold exponents is predicted.
and based on a hyperspherical coordinate sy$&dh Later In Sec. Il we introduce particular configurations which
Gruijic [24] rederived the same result using standard Cartewill be calledscaling configuration$SC'’s). They describe a
sian coordinates, where the symmetry considerations an@ultidimensional dynamic potential saddle, generalizing the
easy to apply explicitly to a full extent. Grijiglso consid-  Wannier ridgewhich is well known for the 2-+ion system.
ered some other systems along the same [i@6s-27 (see  These configurations are relatedréztilinear trajectories of
more details in Sec. )\ The threshold law for the three- all particles in the system, and play a crucial role for the
electron escape seems to find support in experimental data @mplete fragmentation process close to its threshold. SC'’s
the near-threshold double ionization of atoms by electrorembrace the essence of previous treatments of particular sys-
impact [28]. Later, Feagin and Filipczyk29] claimed the tems, but avoid attachment to some special theoretical for-
existence of a complementary law which is manifested aialism and related technical complications. The closest ana-
energies somewhat above a threshold; see the critical discugg to our general approach in the particular case of three-
sion in Sec. V A. body Coulomb systems can be found in papers by Simonovic

Interest in the problem was renewed recently when twaand Grujic[33].
electrons and a positron receding from a core with 1 A description of small deviations from SC'’s is given in
charge were considered in RE30]. A brief note by Stevens terms of a set of harmonic oscillators and inverted oscillators
and Feagirf31] on complete fragmentation of the,Hnol-  (Sec. Il). The latter describe unstable modes which govern
ecule is also to be mentioned. The final state in the reactiothe threshold law. They are quantized following a general
with a positron could be produced by double ionization of ascheme suggested by Kazansky and Ostroy3ky35. This
negative ion by positron impact. However, forthcoming ex-allows us to construct a reduced form of the wave function

for the system of charged particles, and derive the threshold
law in Sec. IV, generalizing a procedure used previously by
*Permanent address: Institute of Physics, The University of SKazansky and co-workef#,12] for a derivation of the con-
Petersburg, 198904 St. Petersburg, Russia. Electronic addresgentional Wannier law. Application of a developed general
Valentin.Ostrovsky@pobox.spbu.ru scheme to some particular syste(Bgc. V) is followed by a
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concluding discussion of special features of Wannier-typeverified so far. For two electrons in the field of an ion, this
threshold laws, with an emphasis on the relation between thedge coincides with the Wannier ridge.
underlying statistical and dynamical aspects of the problem The basic idea is simple. As stated above, one has to be
(Sec. V). sure that distances separating fragments increase monotoni-
cally with time. This condition is definitely satisfied if a tra-
jectory describingN particles which have masses; (]
=1,2, ... N) obeys the conditions

Our goal is to consider some atomic process which breaks
an atomic particle into several charged fragments for low Fj(t)zd,(t),;j, i=1,2, ... N, (1)
excess energ¥. In this situation the motion of the frag-
ments in the final state of the reaction can be described in thghich are valid in the center-of-mass reference frame

semiclassical appro>.<imation, because a typical variation O‘ijjfj(t)zo. We shall refer to a trajectory satisfying Eq.
the Coulomb potentiaU.~ 1/ on the wavelengths of the (1) as a SC. The time-independent vectgysdescribe the

fragments\~1/YME, sU=\/r?, is less than a typical ki- shape of the SC, while the functiap(t) gives the overall

netic energyl ~E, scaling factor. We will see below that this function increases

monotonically in time, thus ensuring that all distances in-
OU<T, crease as well. Therefore, this type of motion definitely re-

sults in total fragmentation, avoiding traps into potential val-

inside the Coulomb zone=r .= 1/E where the major events leys. It is convenient to normalize the scaling function to

take place. Therefore the first thing to do is to find classicalunity for some initial moment of timéy,

trajectories which lead to the desired final state with total

fragmentation. d(ty)=1. 2

It is very important that for a low enerdy there exists a

severe restriction on these trajectories. To see this, let usSor this normalization, the vectogg play a role of coordi-

imagine what is happening with distances separating fragnates of the particles at this initial moment of timgt,)

ments when they move out of the reaction domain. If a dis— 5. in the center-of-mass reference frame

tance separating some pair of attracting fragments diminishes .

with time, then one should expect that this pair of fragments

can be considered as a dipole which interacts with the rest > m;p;=0. (©)

fragments. This interaction can transfer the kinetic energy of !

the two fragments to the other fragments. Therefore, one h . . ,

to expect that eventually these two fragments will lose erﬁﬁotlcg _that in SC’s all degrees of freedom except _the one

ergy and form a bound state. If this event happens, then th escribing th? overall S.C"""F‘Q fgctor are frozen. In this sense

desiredtotal fragmentation is not achieved. This discussion'"® SC descrlbes qua5|eql_J|I|br|umof the system. :

shows that one should look for those trajectories which ex- It is obvious th_at. FO Sat'SfY EC(';L) one should appropri-

hibit a monotonic increase of distances separating the fra _tgly_choose the initial c_:oord!nat@@. Let us fprmulate re-

ments. The point is that the lower the available above- tI’ICtIOﬂS'On them. NOt'(.:e’ first of all, that in the SC the

threshold energy, the more restrictive this condition is. accelerations of the particles are

It is convenient to present this situation by considering the 9 5
potential energy in multidimensional configuration space, dorj(t)  do¢(t) |
where its behavior can be described as “valle - Pi- @
ys separated by dt2 dt?
ridges.” This physical picture, first suggested by Wannier

for a particular class of reactions, was discussed by Fange presume purely Coulomb interaction, or consider a Cou-
[36,37 in a general case. If a system occupies some place 0gmp asymptote in more complicated cases, which is pos-
some ridge, then its trajectory can either go down into SOMgjple because the important distances are largerg

valley where a bound state of some fragments is created, ar 1/E) for low above-threshold energy. Therefore the poten-

continue to propagate along the ridge. For the total fragmeny) energy of the system dff fragments is
tation, one should find a classical trajectory along the top of
some ridge which leads from the region of small separation
of fragments into the final state with infinite separation. It is u=> m (5)
clear that, the lower the above-threshold energy, the closer m>n |r ="l
the trajectory should be to the top of the ridge.

Generally speaking, there might exist several such ridgepiereq; is a charge of 4th fragment. The forceg; for a SC
which lead to the final state with total fragmentation. In thisgre time scaled as

work we study a particular ridge, which will be called the

II. SCALING EXPANSION

scaling configuration. For all systems considered up to now, JU 1 .
we have found that this configuration exists. More than that, Ifj(t): - q]'an—?, (6)
for a given system there may exist several different SC’s. A ar; B(1)%n7] Pin

number of examples demonstrating this property is consid-
ered in Sec. V. Therefore, one might suspect that the SC iswahere p;,=p;—p,. Substituting Eqs(4) and (6) into the
general feature, though this latter statement has not beddewton equation of motion, one finds the relation
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d2 (1) 1 5 variablesp;, j=1,2, ... N and one scalar variable in
> m;p;= 22_ qjqn%. (7)  these equations. Obviously not all of them are independent,
dt G(t)n# Pin because there are seven transformations which do not change

_ . - ) ... the given SC. Three of them correspond to shifts of the SC
Itis easy to see that it can be satisfied only if two conditionsyeter of mass. Three others describe rotations of the SC as a
are fulfilled. First, the scaling function should satisfy annsle. One more transformation describes the overall scal-
equation ing of the SC

d2¢(t):_ a ® 5]._>5j'=)\,3j, i=12, ... N, (13
2 2’7
dt o(1)

a—a' =\"3a, (149
where o>0 is a time-independent constant which is dis- ) )
cussed in detail below. One obviously recognizes in@y. With A>0. According to Eq(8), the scaling ofx [Eq. (14)]
the equation describing a one-dimensional motion of a parshould be accompanied by a corresponding scaling(of,
ticle with unit mass and unit charge in the attractive Cou-namely, ¢(t)—@’'(t)=\"'¢(t). Notice that the latter
lomb field created by the charge Second, the validity of transformatmn can be interpreted as a shift of the initial mo-
Eq. (7) requires that the vectog satisfy the following sys- ment of time,
tem of equations:

to—>t6, (15)
- 1 0
apj=—aj=— o i kp—?. (99  where, according to Eq2), t; should satisfy
i k#] p;
' B (1) =\"1p(th)=1. 16

These equations state that accelerations of each fragiment

are proportional to its coordinate vector at the initial momentlt is easy to see that Eq$9) remain invariant under the

of time. Equationg9) are shown to arise as conditions which seven transformations discussed above, i.e., the shifts, rota-
are necessary for existence of a SC. It is easy to see that th&gns, and scaling, allowing one to consider them as a set of
provide sufficient conditions as well. To verify this state- 3N—7 equations for BI—7 independent variables. When
ment, let us assume that we have a solution of(83.Then  solving these equations it is convenient to treahs a con-

we can consider a trajectory with the following initial con- stant parameter which governs the overall scale, and can be

ditions. First, we can choose initial coordinates ragt) chosen arbitraryfor example,a=1).

=4;. Second, we can always choose initial velocities that At the SC, the system Hamiltonian
are proportional to coordinates,

N p2 dr.
=S 0 =m: —
dr;(to) H_jgl 2mj+U' Pi=m, dt 17
is reduced to
where B8 is some positive constant which depends on the )
energy 8~ JE. From Eq.(9), we find that accelerations at H :EM(d_‘ﬁ) _ % (18)
the initial moment of time are also proportional to coordi- 072 dt ¢’
nates,
where
dry(to) - N
——=—arj(ty). (17 R
dt? M=J§1 ms?, (19
Thus, for the considered trajectory, both the velocities and
accelerations depend linearly on coordinates at the initial aiQ;
moment of time. Combining this fact with the Newton equa- Qo= & e (20
i Pi

tions of motion, we conclude that the velocitiead accel-

eration remain proportional to the coordinates for any mo-cjearly the Hamiltoniar(18) describes the one-dimensional
ment of time, motion of a particle with the mass1 and unit charge in the
attractive field of a Coulomb center with the charge,.

dr;(t)

=B(t)F-(t). (12) The corresponding equation of motion is given by E&),
dt ! considered previously, in which the constanproves to be
equal to
Here B(t) is some positive functiorB(ty) =B. Integrating
Eqg. (12), we conclude that the time variation of distances Qo
does exhibit the scaling conditiofil), in which &(t) a= @D

=B(t).
This discussion shows that the SC defined in equdtipn The interesting physical events take place if there is suffi-
exists if and only if Eqs(9) are satisfied. There ak vector  cient Coulomb attraction in the system. That is why we sup-
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pose that the effective Coulomb chargy is attractive,Q, electron atom in hyperspherical coordinaté]. However,

>0, resulting in a positive value af. generally speaking, these coordinates do not possess funda-
Equations(19)—(21) show that arbitrary scaling af can ~ mental advantages over other coordinate frames for the frag-

be compensated for by the corresponding scaling of coordimentation problem.

natesp; . This fact agrees with Eq$13) and (14). Another well-known reference frame provides Jacoby co-
The scaling functiong(t) is defined by straightforward ordinates used in the approach developed by Fdddih For
integration of Eq(8), multiparticle fragmentation, the choice of the breakup coor-
dinate is not obvious, and some special procedure was devel-
1 [(de\? Qq oped for its constructiof29,30,19. This problem becomes
> (E) - ?:E’ (22 more sophisticated the more complicated the system is. In

conclusion, it should be stressed once more that our ap-
where E is the system energy. Combined with the initial proach provides an invariant definition for the idea of a SC
condition¢(to) =1, this fixes the scaling function unambigu- which is given in Eqs(23) and (24)
ously.
It is important to emphasize that Eq4) and (9) present lll. SMALL DEVIATIONS FROM SCALING
the idea of a SC in an invariant form independent of the CONFIGURATION
chosen coordinate frame. To see this more clearly, let us

introduce grand vectors in the\Bdimensional configuration ~ ASSuming that the functior(t) is defined as described in

space. The grand vecta(t)=(y(t), ... fn(t)) defines Sec. II, we switch fronr; to the new coordinateér,

the time-dependent coordinates, the vectop - - -

=(py, ... .pn) Oives the initial coordinates anch rj=¢Up;+ory, @7
=(a;, ... ,ay) is the vector of accelerations at the initial which have the obvious meaning of deviations from the SC.

moment of time. We employ bold type to distinguish such aPresuming that these deviations are small, we write linear-

vector from the conventional vector in space. Equatids  ,oq classical Newtonian equations f&?(t) as
and (9) allow the following presentation: )

d2er, 13 R
r(t)=¢(tp, (23) m——=———> V;ér, (28)
dt? (1)3=1
ap=—a. (29
_ . & Gmin
Obviously, these relations betweem 3rectors do not de- Vij=—/— E—— (29
pend on a reference frame. This shows that the scaling coor- IpiIp; =" | Pm= pn|

dinate ¢(t) is described in an invariant way. These equations of motion are generated by the time-
It has been presumed by previous authors that some C%fependent Hamiltonian function

ordinate which describes fragmentation is to be singled out,

and the potential extremum point is to be found for a fixed 1 N 55_2 1 N
value of this “breakup coordinate.” The latter has been cho- SH=2=S> L 5 2 Vi 5Fi . 5Fj ,
sen in most cases as the system hyperrdd@s 39 defined 2= M 24(1)%0=1 (30
asR?=3N mir?. In the hypercoordinate reference frame, .
the potential energy > or
Clw)
V=—— (25 . : . 2
R It is convenient to introduce scaled deviatiofjsand re-

lated momentar; as
is proportional to the hypercharg® ), which depends on !

a set of hyperangle®=(wq, ... ,w3y_7). It is easy to

S 1 - - -
verify that definition of the SC equatiof24) in the hyper- E=——75,0, m=¢p1)¥p;, (31
spherical coordinates is reduced to o(1)

IC(w) since this allows us to factor out the time dependence in the
=0, (26) Hamiltonian:
F?(L)i
1 187 1

which shows that. the SC i_s a saddle poipt of the hyperchgrge SH= - E i + _2 Vijgi *J_
C(w). The function¢(t) in hyperspherical coordinates is ()32 2= mp 25
proportional to the hyperradius(t) = R/Ry, whereR is the N
initial value of the hyperradius. The effective char@g and 3 —d¢ 2 = - 2
the effective mass\t can be expressed in terms Bf and n §\/E E]Zl (&-m+ &) |- (32)

the hypercharge\/lzRg, Qo=—Cy/Ry, wWhereCy is the
hypercharge evaluated for SC. A description of the system iThe derivation of this formula could be traced via a
hypercoordinates has a long tradition and list of achievequantum-mechanical analog of the problémhich for many
ments; see, for example, recent calculations of the threeeaders nowadays is more convenient than the pure classical
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consideration In quantum mechanics, the transformationtions, rotations, and the scaling transformation. They do not
rules for momenta and the Hamiltonian follow, respectively,change the shape of a SC and do not describe a deviation
from the formulas for the partial derivatives: from a SC. These degrees of freedom may be called the
collective modes. They obviously should be considered sepa-
_ 34 rately from the oscillating modes which describe deviations
7_‘1’(0 E from the SC. In order to distinguish the collective modes,
I ! one can use the following interesting property. All collective
degrees of freedom are described by the eigenvectors of the
(i) :(i> s 2 £ ‘9» . (33 grand matrixKV with particular eigenvalues. Firs_t, the_ three
ot ot 4¢(t)1’4 dt . modes which correspond to the system translations in space
have obviously zero eigenvalues. Second, the modes corre-
In Eq. (32, we use a symmetrized representation whichsponding to rotations of the system in space have eigenval-
should be employed in the quantum version of the formulagies equal toQ,/M, as shown in the Appendix. There are
(the latter also implies a corresponding gauge transformatiothree such modes in the general case, while for a linear SC

for the wave function there are only two modes. Third, the mode corresponding to
From Eq.(22), one obtains the scaling transformation Eq€l3) and (14) has an eigen-
value —29,/M, as also shown in the Appendix. Using
do¢ [2[E(t)+ Qo] these eigenvalues, one can separate the collective modes ei-
¢ at - M ' (34 ther from the very beginning, or at the end of calculations.

There is another way, useful for applications, to separate
which becomes time independent f&r=0. In this case the the collective modes. For translations and rotations the sepa-
time dependence isxactlyfactored out in the Hamiltonian ration can be fulfilled by conventional methods choosing ap-
(32), justifying the choice of the scaling1). This implies  propriately the coordinates, as demonstrated in a number of
that the originalnonstationaryproblem becomestationary ~ examples below. Separation of the scaling mode can be
provided one replaces tinteby an effective timer. A rela-  achieved with the help of the operator of projection on this

tion betweent and 7 in differential form is mode P and the complementary projection opera@: |
o —P. The operatorP is readily constructed from the unit
dr= (1) *dt. (39 vectorsn =, /p;, which define the shape of a SC:

For some applications it is necessary to keep the energy de-
pendence of the trajectory. For these cases a convenient tech-
nigue was developed recently by Kuchigl/7]. We have
applied it to the case considered, and verified that it results in
the same threshold indexes as the ones obtained below by thé
stationary approach.

The Hamiltonian describing propagation in the effective
time (35) reads

.Thus all seven collective modes can be easily identified and
rgeparated using any of the two techniques described above.
Some modes in the B—7 subspace orthogonal to the
collective modes are stable and describe small oscillations

around the SC; the related oscillating frequencigsre real.
The object of our major interest is unstable modes with
N imaginary oscillating frequencies. It is shown below that un-
2 - stable modes exist for any SC. It is convenient to introduce,
= e for unstable modes, a parametef=iw, (Re o >0). In

(36)  order to find the oscillating frequencies, one can presume a
harmonic time dependence of the coordinafesnd mo-

3 d¢ mentar,
a——Z (ﬁa (37)

3| 3
I\JII—\
—M
e
<rm
l\)lm

=expiot)E, m=expiot), (39
The HamiltoniansH , [Eq. (36)] is quadratic in coordi-
nates and momenta, thus describing a set of harmonic oscilvhere £ and IT are time-independent grand vectors. The
lators or inverted oscillators. This shows that our goal is toHamiltonian equations of motion give
describe the behavior of the system in terms of these oscil-

lators and inverted oscillators. Before proceeding, we modify ioE=KII+aE, ill=—VE-all, (40
our notation. The set of components of the displacements
vectors 5Fj (j=1,2, ... N) comprise a 8l-dimensional Wherea [Eq. (37)] is a scalar coefficient. The latter equation

iw

grand vectorsr. In this formulation, for instancey;; corre-  could also be written as
sponds to grandI$X 3N square matrix denoted below ¥s _ _
We also introduce R X 3N unit matrix | and the diagonal = [ a K& 41
matrix K of the same size with diagonal elements corre- n \-v -—-a/lm/) (41)
sponding to the inverse massri/of each particle.

This notation takes into account an obvious fact that theExcluding the grand vectdd, one comes to the eigenvalue
total number of all modes coincides with the number of de-problem for the square of frequenay,
grees of freedom in the systenk=€1,2, ..., 3N). There
are, however, seven particular degrees of freedom: transla- (w?>+a%)E=KVE, (42
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or, in symmetrized form, unstable. This property is closely related to the fact that har-
monic functions, i.e., those which satisfy the Laplace equa-

(w?+a?)E=KVA/KVE, KVE=ZE. (43)  tion, cannot have maxima or minima. Remember also the
Earnshow theorem, well known in electrostatics: stable equi-

Denoting a set of eigenvalues of the matl¥ aswvy, k librium is impossible for systems where the Coulomb forces
=1,2, ... ,3, we obtain are operative. Although SC'’s describe expanding nonstatic
5 5 configurations, the conclusion about inevitable instability re-

w=vg—as, (44 mains valid in this case as well. This fact can be interpreted

as a dynamic analogue of the Earnshow theorem.

ap= \/az—vk. (45)
IV. QUANTIZATION OF DEVIATIONS FROM SCALING
This formula shows how the oscillation frequencies depend CONFIGURATION AND THRESHOLD INDICES
on the eigenvalues of the matrig/ .

Let us verify now that a SC is always unstable. With this
purpose, let us show that the mathk¥/ always possesses
negative eigenvalues which describe instability. Consider th
trace of the grand matri¥/,

Section 11l reduces description of small deviations from
SC to the set of coupled harmonic oscillators which could be
quantized straightforwardly. This procedure provides the
®energy” levels

7 a0 €kn, = k(N T 7). (50
m™n
TrV=; 359 T ] Here the first subscripk=1,2, ... ,&N—7 indicates the
PicPp] Pm= Pn mode, andch,=0,1, ... shows a number of quanta in this
90 mode. For a given set of the quantum numbgmg} the
=> Aﬁj > %20, (46) system wave function is given by
] m>N | Pm~— Pn
which vanishes since the Coulomb potential satisfies the \If{nk}~exp(—2k iL fknde)
Laplace equation 0
t €kn
1 . =exp( -> if —kdt), (51)
——=7=0. pj#pn. K Jop()*?

fi |ﬁj - 5n|
) ) where we omit the common time-dependent phase factor.
It is easy to see also that E(6) results in TrkV)=0  The wave function is prepared at some initial mormigrivy
which means that preceding strong interaction of all fragments. In the
Wannier-type approach it is presumed that these processes
Tr(KV)=E v=0. 47 depend smoothly on the ener§y Hence they do not influ-
k ence the form of the threshold law, and thus could be effec-

. tively excluded from consideration; it is sufficient to con-
We see that the spectrum of the matki¥ always contains  ¢jqar only thet>t, domain.

both positive and negative eigenvalues. This fact in itself is £\ \nstable modes the “

> ) L energiegy, are complex val-
not sufficient to make a statement about instability, because . g ky P .
trace (47) includes a contribution from collective modes U€d Which leads to the loss of probability in the expanding

which do not change the shape of the SC. However, it is eaic' This should be interpret¢84,39 as a sliding from the

to exclude collective modes. Remember that the eigenvalu otential saddle in multidimensional configuration space that
corresponding to translations are zero, and rotations give e?_ventufally Iea(tjs g) f(r)]rmatlont of bo.undl_ sta;[ﬁst ?:] tml ted
genvaluesQ/ M, while the scaling transformation provides morg fragments. Such an outcome implies that the relate

; ) ; .~ part of the probability is lost for the process of complete
;heem?;?j 2:%':3 i;ﬁ ch/ti/\\//(la, rf](e)z etgeisAppendlx. The sum of i system fragmentation which is an object of our study. The

cross section of the latter is proportional to thevival prob-

Q/M inthe general case 4 ability
collective modesvk_ 0 for alinear SC. ( ) P{n }E|\I’{n }|tﬂw|2
k- k
Subtracting this result from E@47), we find the trace of the
matrix KV in the subspace orthogonal to the collective =expg —v2M
modes,
5 — /M inthe general case fw Qkn, 4 1 52
Tr(K V) grin= = _ —————d¢|n+ =] |,
(KV)orn ortfsgonal” 0 for a linear SC. K Jotg dpVED+ Qp Mt %2
(49

where summation ovek runs over all unstable modes. Note
Since this trace is nonpositive, we conclude that the matrixhat the original quantum problem is stationary. The ttnre
KV inevitably possesses negative eigenvalues which deEq. (52) plays the role of an effective variable which de-
scribe deviations from the SC. This shows that any SC iscribes the scaling of the system in accordance with(Ez).
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Small deviations from the SC are described quantum meexpansion(see the Appendixand should be discarded. The
chanically. Our treatment generalizes to a multimode caseigenvaluev;, upon substitution into Eq(55), reproduces
the scheme developed by Kazansky and Ostroydfyfor  the well-known result

the two-electron escapgsee also Ref.12]; some ideas used

were also elaborated by Watanal®). Note that the cited 1} /10@Z-9 1

paper[4] also provides a description of deviations from a Hin, =5 47—1 —1j{ 2/ (56)
pure power threshold law, but we do not pursue this point

here. The choicen; =0 provides the famous Wannier law valid for

For our objectives it is sufficient to note that E§2) has 'S symmetry of the final two-electron continuum state,
the form of a product of contributions coming from eachwhereas;=1 corresponds to the threshold law ft8° (and

individual mode; hence the threshold law of interest is 3pe) symmetry[43].
Feagin and Filipczyk29] and Poelstra, Feagin, and Klar
o~Ping~E (53)  [30] put forward another formula for the threshold index in

:Ufknk:2

the multimode case. According to this, the Wannier index is
_2 N—2 times larger than Eq(54). The factorN—2 is de-
K= Pinye (54) scribed as a “phase-space factor fdr—1 outgoing par-
ticles” being justified by the reference to the earlier paper by
Thepartial threshold indicegsy,, stem from “eigenfrequen- Feagin[41]. We were unable to find the derivation of such a
cies” of unstable modes, being related to tiegativeeigen- ~ factor in the cited paper; in any case, it deals only with the
valuesv, <0 of theKV matrix, conventionalN=3 case where the factdt—2 is insignifi-
cant. Our treatment provides a purely dynamic approxima-
M 9 1 1 tion for the wave function, and does not leave any room for
\Vi Z_QOUk+ 16 4 (nk+ 5] (55  the statistical arguments. The other aspects of relation be-
tween dynamic and statistical threshold laws are discussed in
Small positive values af could formally also lead to a real Se€c- V1.
Hkny» but have to be discarded. Obviously, if sofimagi-
nary) eigenfrequencies arbl,-fold degenerate, the related V. PARTICULAR SYSTEMS
contributions appeaN, times in the(54). In principle, the In practical applications of our scheme, the less obvious
wave function is a superposition of terms corresponding tgart corresponds to finding SC’s. Numerical solution of the
various sets of quantum numbedrg}, since all of them are set of nonlinear equationé) could be cumbersome, and
populated by processes in the inner interaction domainmplies a reasonable initial guess. The question of whether
Clearly, the threshold law is defined by the least possibley| the solutions are found is even more difficult. In reality,
values ofny [42], which are equal to zero unless the symme-one has to appeal to intuitive reasoning, and to limit the
try considerations forbid this choice, as exemplified in thesearch to some symmetrical configuration. This allows one to
next paragraph. If the initial SC is scaled by the fadtdsee  reduce effectively the number of equatioi® to be consid-
Egs. (13 and (14)], then KV ~\"3% M~\? and Q,  ered. Since the initial step of finding SC’s in most cases
~X\"*, but the threshold indiceg,,, as anticipated, remain could not be done in closed form, we do not pursue the goal
scale-independent. Note also that the threshold index is imef obtaining analytical formulas, but resort to numerical cal-
variant under simultaneous scaling of all charges or alculations which are performed using tlieTHEMATICA [44]
masses in the system. program. We find it easier to avoid preliminary separation of
In the original Wannier problem two electrons escaperotational and translational coordinates, since they could be
from infinitely heavy atomic core with the charge The easily distinguished in the eigensystem of the complete ma-
configuration found by Wannidrl] gives the simplest ex- trix KV. Moreover, the known eigenvalues of this matrix
ample of a SC in which the electrons reside at equal diseorresponding to rotationgsee the Appendijx provide a
tancesp and in opposite directions from the core. The mo-good test for consistency of calculations.
tion is unstable with respect to the stretching mode, which is The systems practically accessible nowadays in atomic
separated from théstable bending mode. Thus it is suffi- physics are not very diverse, consisting of several electrons
cient for our purposes to consider the motion of electronsind positrons in the field of heavipositively chargejl
along the line passing through the core. This motion is deatomic core. Since three-particle systerfsich asA*?*
scribed by two coordinates and the mafvixtakes the form +2e~ or A*?+e” +e") have already been studied in great
detail[1,38,39,45-47,33(see also references in Seg,. we

o7y E _ E start from four-particle systems. We do not impose any sym-
1 4 4 metry constraints on the system state, thus presuming that
V=— 1 1] n,=0 for all modes contributing. [Eq. (54)].
P -2 —2z+>
4 4

A. Three-electron escape from the charged core

and Qu=(2Z—3)p ' and M=2p? (we use an atomic sys-  The systemA*Z+3e was thoroughly investigated by
tem of units, K=I). The eigenvalues ofV are v, Klar and Schlechf22] and Grujic[24]. They considered a
=—2Z/p® and v,=(—2Z+3)/p3. The eigenvaluev, is  configuration of electrons forming an equilateral triangle
seen to coincide with-29Q/ M. Hence it corresponds to SC with an infinitely massive core in the center, which is obvi-
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ously a SC. The out-of-plane motion is separated. It corre-
sponds to stable modes, and does not affect the threshold
law. The in-plane motion is described by six coordinates of _
electrons, or by four “oscillatory” modes plus a uniform 4 & et X
expansion of the SC and its rotation. The eigenfrequencies
obtained by us, as well as in the cited papers, are pairwise %
degenerate due to SC symmetry. One pair corresponds to 2 x
stable motion, and the other pair to unstable motion. The
latter pair produces two equal terms in sis#). Klar and
Schlech{22] and Grujic[24] succeeded in deriving analyti-
cal expressions for the Wannier indgd8]. In this paper we
do not pursue analytical formulations but check that our nu-
merical results coincide with those cited by Gryjimmely,
n=2.826 24 forZ=1, n=2.270 43 forZ=2, ©n=2.161 96 X,
for Z=3, etc. The experiment for electron-impact double {x,<0) 3
ionization of atomsZ=3) seems to agree with the threshold
law [28].

The two pairs of modes discussed above are already well @
known. Combined with rotation and scaling expansion, they
represent a complete set of six in-plane coordinates. Since e

the number of modes is a physical parameter which is inde- /\
pendent of the theoretical technique used, we do not see any 78 B o
possibility to obtain additional unstable modes which would \/
lead to another Wannier index and thus to the complemen- -

tary threshold law as announced by Feagin and Filipczyk
[29] (in fact our conclusion could be drawn from the paper FIG. 1. Two linear and plain scaling configurations for the sys-
by Grujic [24], who used plain Cartesian coordinates,temA*Z+2e™ +e™.

whereas the less transparent treatment by Klar and Schlecht

[22] is based on hyperspherical coordinat&ince no details 2. Linear configuration L,

Qf the analysis by F?ag'” _and FIJIpCZﬂRg]. were ever pub- A distinction from the previous case is that the coordinate
lished, a more detailed discussion of this issue is not pos-

sible of one of the electrons is negative,&0). The system of
' equations defining the SC is somewhat differeptcQ<x
<1):

ey z e7 e+

B. 2e” +e™ escape from the charged core

The plausible symmetric SC’s for the systéxii?+ 2e~ 2 2 2
+e™ were considered in Reff30] (note that the calculations Mg ZIX"~ 11 =x)"—~ Uy —x) —x
in this paper were carried out only far=1). The authors My —Z+1U(1-x)2+1(1-y)2
comprised two different linear arrangements and one plain
configuration(49]. All these configurations belong to the SC,
and, therefore, can be easily handled by the technique devel- mg —Zly*—1(1—-y)*+1Uy—x)*
oped above. We consider below these SC's successively. m, —z+ U(1-x)2+1(1-y)2

(58)

1. Linear configuration L For both linear configurations, the bending modes are stable.

The linear SCL, is shown in Fig. 1. The frame origin is There are two stretching modes for each configuration, both
placed into an infinitely massive core having the chafge unstable. The results of our calculations are summarized in
The coordinates of two electrons and a positronxarex,, Table |. Forz=1 parameters andy and partial threshold
andxs, respectively; all of them are positive. It is convenientindicesu; andu, coincide with those obtained in R¢B0;
to introduce two dimensionless parametgrsr,/r; andy  our threshold indiceg are less by a factor of 2, as discussed
=r,/r3 (0<x<1<y), which have to satisfy the system of at the end of Sec. IV. Notice a nontrivial behavior of the

equations obtained from E¢Q): parameters withZ: for instance, in the SQ@ ., x and w4
increase withZ, whereasy and u, decrease. The threshold
mg ZIX>—1/(1—x)%+ 1/(y—X)2_ index u increases withZ, which is opposite to the well-
My —Z+1(1—x)2—1(1—y)? =X known behavior for the simplest syste®d+ 2e, and for 3
(57)  escape wherg diminishes agZ grows(see more discussion
Mg Z/y2+1/(1_y)2_1/(y_x)2_ in Sec. VD
My —Z+1/(1-x)?~1(1~y)? 3. Plane configuration P

(equations are presented for more general case when all light The symmetric plane configuration shown in Fig. 1 is
particles have different masseg, while the core remains conveniently characterized by two anglesand 8. From Eq.
infinitely heavy. (9), we deduce the system of equations
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TABLE |. Parameters of scaling configurations and
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Wannier indices foAtifer 2e~ +e* system.

VA SC parameters M Mo m
SCL,
1 x=0.506 100, y=1.692 952 4.442 178 2.193 945 6.636 123
2 x=0.587 468, y=1.636 629 4.767 141 2.064 237 6.831 377
3 x=0.633 155, y=1.609 587 5.024 502 1.966 884 6.991 386
4 x=0.664 214, y=1.594 313 5.242 328 1.88 483 7.127 158
SCL,
1 x=0.441 380, y=-0.677611 2.577720 1.025 435 3.603 155
2 x=0.539 724, y=—0.847 969 2.888 492 1.009 213 3.897 705
3 x=0.594 480, y=-0.949 091 3.193 559 1.005 040 4.198 599
4 x=0.631 720, y=-1.023 071 3.475 766 1.003 244 4.479 010
SCP
1 2a=76.7338°, $=55.1969° 1.884 950 1.562 234 3.447 184
2 2a=55.1741°, $=61.3793° 2.045 028 1793101 3.838 128
3 2a=45.4233°, $=64.1787° 2.206 553 1.972 092 4.178 645
4 2a=39.5138°, $=65.8916° 2.351 217 2.123 469 4.474 686
m, sin® y(Z sir® a— % sin a+sir? B cosy) 2. 3D configuration V
—m_ sin® B(2 cos sir y—Z sir? a), (59) The SC describes electrons located at the apexes of tetra-

hedron. We find a single triply degenerate mddable II).

Interestingly, the threshold index proves to be quite close

sir? Bsiny=3%cosa (y=m—a—f),

for plane and three-dimension#BD) configurations, al-
though the 3D SC provides a somewhat lower valug aind

thus governs the threshold behavior. Asncreases, the rela-

where the masses of light particles with negative | and

tive importance of electron-electron interaction decreases,

positive (m,) charges generally could be different. The re-andu approaches the valye=3 which corresponds to non-

sults of calculations are presented in Table |. Berl, the
anglesa andg coincide with those extracted from RERO0.

interacting electrons.

The smallest practically attainable value of the charge

However, the difference between the threshold indices i§€€MS to b&=2. It could be realized via triple ionization of
drastic. Poelstra, Feagin, and Klar had found a single unf€gative ion by electron impact. However, theoretically the
stable mode which corresponds to our partial Wannier inde£aSe€Z=1 proves be very interesting due to unusual proper-
. Our calculations give two unstable modes, similar to theli€s. In this case the threshold index becomes much larger
case of 2 escapdin the latter case the modes were degen-han in other cases, particularly for the plane SC. This is due

erate due to a symmetry which is absent for the system undé®

a small value of the “charge’Qy in this case. Another

consideration The reason for this disagreement remains uninteresting feature is the appearance of an additional unstable
clear. The plane S® governs the threshold behavior, al- mode in the plane SC. An analysis of the eigenvedor

though it provides a threshold indexonly slightly less than
the linear configuratior., .

TABLE II. Wannier indices forA*Z+ 4e system. The numbers

in parentheses indicate the degree of unstable mode degeneracy.

C. Four-electron escape from the charged core

z M1 M2 M3 ®
Basing on symmetry considerations, we analyze three
configurations: linear, plane, and three-dimensional SC’s. | SCP
S ! . 4.877 419 4.248 22B) 2.071 837 1544571
could be shown rigorously that for a symmetric linear ar- 1.356 093 1.27338() = 3.002 855
rangement, a SC does not exist for all valueZpf.e., Egs. : : '
(9) have no solution. 1.192 808 1.145 66(@) — 3.484 128
4 1.132 414 1.099 31@) — 3.331 046
In the plane configuration the electrons are located in the SCV
apexes of a square; the core lies in its center. The out-oft 3.075 960(3) — — 9.227 870
plane motion is separated, and corresponds to stable modes.  1.257 986(3) — — 3.773 958
For in-plane motion in the general case, we find nondegens 1.139 795(3) — — 3.419 384
erate and doubly degenerate unstable mddesble Il). For 4 1.095 940(3) — — 3.287 819
the particular cas@=1, an additional nondegenerate modes 1.073 040(3) — — 3.219 120

becomes unstable.
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@ parametersx=xX;/X,, Y=X5/X4, Z=X3/X, (Yy<0<x<1
<Zz). They have to satisfy a set of equations which follow

e* from Eq. (9):

A z 1 1 1

X2 (><—y)2+(1—x)2_(z—x)2

| TN 1 1 1

3 =X|Z- -

g X{ A7 @17 (1-y)?
Z 1 1 1

— + —_
y2 (x=y)? (1-y)? (z-y)?

® . .
—y|z- + - . (60
y{ 12 (217 (1) 1
ey Z ey e+ & z 1 1 1
N + —
< o 2 (z=x)? (z-y)? (z-1)?
2
(XZ<0) )(3
X, 1 1 1
=z|Z- + - .
FIG. 2. Linear and 3D scaling configuration for the system (1-x)? (z—1)2 (1-y)?

AtZ+3e +e'.
The parameters of the SC and the Wannier indices are shown

shows that it corresponds to the out-of-plane motion. That is',n Table Il

a pair of electrons lying on a diagonal of the square shifts
upwards, whereas another pair shifts downwards.

The tetrahedric configuration was considered earlier by The symmetrical 3D configuration is shown in Fig. 2. Itis
Gruijic [26], who obtained approximate analytical expres-characterized by two angles and 8 defined by equations
sions for the threshold indexes. The partial threshold indexeSimilar to Eq.(59):
obtained by him reveals only an approximate degeneracy.
The numerical results foi are in reasonable agreement with
our data.

2. 3D configuration V

1
m, si® y| Z sirf a— — sin a+sir? B cosy

V3

=m_ sin® B(3 cosp sir’ y—Z sirf a), (61)
D. 3e” +et escape from the charged core p A 4

We failed to find a symmetrical plane SC for this system. ) ) 1
sir B sin y= NG cosa (y=m—a—p).

1. Linear configuration L ‘/—

A linear SC(Fig. 2) corresponds to alternating positive We found two doubly degenerate unstable modes and one
and negative charges and could be characterized by thremndegenerate unstable mode, as shown in Table lll. The

TABLE lIl. Parameters of SC’s and Wannier indices fof?+3e~ +e* system. The numbers in paren-
theses indicate the degree of unstable mode degeneracy.

z SC parameters M1 Mo M3 n
SCL
1 x=0.580 448,y=—1.070 391z=1.627 861 441213 2.309 76 1.068 90 7.790 79
2 x=0.580 448,y=—1.070 391z=1.627 861 4.738 44 213221 1.03343 7.904 08
3 x=0.628 772,y=—1.162 883z=1.602 043 4.999 54 2.017 66 1.022 70 8.039 98
4 x=0.661 096,y=—1.224 38z=1.587 485 5.21972 1.92598 1.017 46 8.163 16
SCV
1 a=60.5698°,8=32.2041° 1.575842) 1.03194 0.604932) 5.39348
2 a=40.5400°,8=41.7154° 1.563542) 1.20043 0.663022) 5.65356
3 a=32.3675°,8=44.9869° 1.709572) 1.33711 0.627712) 6.01166
4 a=27.6668°,8=46.7663° 1.851292) 1.45098 0.573272) 6.30011
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TABLE IV. Parameters of SC’s and Wannier indices for #hé?+ 5e system. The numbers in paren-

theses indicate degree of unstable mode degeneracy.

THRESHOLD LAWS FOR THE BREAKUP OF ATOMIC ...

VA SC parameters M1 Mo M3 M
SCP
2 — 1.818 250(2) 1.575 289(2) 0.701 595(2) 6.787 079
3 — 1.363 9382) 1.245 279(2) — 5.218 433
4 — 1.235 701(2) 1.156 156(2) — 4.783 715
5 — 1.174 5202) 1.114 540(2) — 4.578 120
6 — 1.138 614(2) 1.090 432(2) — 4.458 093
7 — 1.114 982(2) 1.074 705(2) — 4.379 373
SCV
2 a=45.15762° 1.606 923 1.504 688 1.493 126 6.097 823
3 a=45.09672° 1.280 163 1.228 075 1.223 12y 4.955 672
4 a=45.06976° 1.182 908 1.147 576 1.145 0@y 4.620 659
5 a=45.05455° 1.135 887 1.109 091 1.107 426 4.459 790
6 a=45.04479° 1.108 127 1.086 528 1.085 224 4.365 202
7 a=45.03799° 1.089 794 1.071 698 1.070 128 4.302 909

threshold law is governed by the 3D SC Note that the
threshold index grows wit.

F. Fragmentation in two pairs of identical particles
with opposite charges

In this subsection we consider fragmentation into the final
state 2(,;Z+ 2e, wherexrfqZ is a positively charged particle
with chargeZ and massm (all results below hold if the
electrons are replaced by any other charged particles;Zhen

In the plane SC, the electrons are located in the apexes @hd m have the meaning of a ratio of charges and masses,
an equilateral pentagon; the core lies in the same plane. Iespectively. In the applications considered above, the zero
the in-plane motion we have found two doubly degeneratgjgenvalues of the matri¥ do not emerge due to the pres-
unstable modesTable IV). For Z=2, an additional pair of gnce of infinitely massive core. In thexZ?+ 2e system,
unstable modes appears. such modes are present. Another distinction is that for equal
masses of leptons in previous applications, we always had
K=1, andv, were the eigenvalues of thé matrix. Now we

Here three electrons lie in the apexes of an equilaterdhave to diagonalize the complete math¥/. Neither of
triangle with the core in its center. Perpendicular to thisthese features create substantial difficulties.
plane, above the plane and below it, another pair of electrons From symmetry considerations, it is clear that the shape
is located symmetricallyFig. 3). The SC can be character- of the SC is a rhombus, with an anglex2at the apexes
ized by the angler between the line which joins the out-of- where the particleXZ, are situatedFig. 4). The single SC
plane electron with the core and the line which joins it with parametewr is defined by the equation
the in-plane electron. The angle is defined by the equation

E. Five-electron escape from the charged core

1. Plane configuration P

2. 3D configuration V

87—

= m( 87— ) , (63

1
—_4+2siPa-2Z cos a
%

which follows from (9). Several examples are shown in
Table V. The simplest practical realization is the complete
fragmentation of the K molecule by photons, where is
close to 30° in agreement with Feagin and FilipcZ9],
and the threshold index proves to be huge. Apparently this
Quite unexpectedlyy proves to be very close to 45°, exhib- threshold behavior could not be observed in experiments
iting a weak dependence on the core chafg€Table IV).  [50]. Another feasible realization with a moderate Wannier
This means that in-plane and out-of-plane electrons are landex is ionization of a negative positronium ion by positron
cated at almost the same distance from the core. The 3D Simpact =1, m=1). We fail to find the linear configura-
generates somewhat lower valuesofthan the plane SC, tion discussed by Stevens and Feadi].
thus governing the threshold behavior. However, the differ-
ence is quite small. This feature is common to that found
above for the four-electron case.

The 3D configuration for five-electron system was consid- This paper formulates the idea of the SC. Defined by Eq.
ered previously in Refl27]. However, the equation derived (1), the SC is shown to arise when a nonlinear set of Ej)s.
for the SC anglex differs from Eq.(62). is satisfied. Propagation of the system in the vicinity of the

1
=tana| 3 sirf @ cosa+ 7 tarf a—Z tarf «|. (62

VI. DISCUSSION AND CONCLUSION
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€
|7\, FIG. 4. Plane scaling configuration for the systedf.2-2e".

e :
‘ As discussed in Sec. IV, Poelstra, Feagin, and Kb
q suggested another formula for the Wannier index which dif-
e fers from our Eq.(54) by the extra “phase factorN—2.
This discrepancy remains hidden when one restricts consid-
FIG. 3. 3D scaling configuration for the systeii?+5e". eration to the case of two, three, or four electrons receding

from the positively charged core. In these cases the unstable

SC configuration governs the threshold law which is found inmode proves to be, respectively, nondegenerate, doubly de-
Eqgs.(53), (54), and(55). These results permit direct practical generate, and triply degenerate. Thus the degree of degen-
calculations of the threshold index for any system. eracyin these casesoincides withN—2. This fortuitously

In many cases, the threshold laws in quantum mechanicallows one to replace the summation over degenerate modes
can be deduced from general considerations without dynamimplied by formula(54) by multiplication over the factor
cal treatment. For instance, the breakup cross sectionNvith N—2, which corresponds to the formula in RE30]. How-
fragments in the final state and a short-range interaction besver, this coincidence is accidental and misleading. It is bro-
tween them could be estimated from simple phase-space vdken, for instance, by variation of charges and masses of the

ume (i.e., statisticgl arguments as constituent particles which violates the SC’s symmetry, and
hence lifts the mode’s degeneracy, or by considering larger
o~ ECGR(ND-1 (64)  numbers of particle®N (simply because possible degrees of

degeneracy are restricted by properties of the point groups in
If one presumes that all fragment&electrons™) are at- 3D spacg For five electrons receding from a charged core,
tractedby Coulomb forces to one fragmefitore” ), butthe  only doubly degenerate unstable modes were found above.
interaction between the “electrons” is negligible, then the Physically it is clear that if the charge of the catén the
phase-space arguments could be easily modified to give systemAZ+(N—1)e becomes larger, then the interelectron

correlations should become less important and the threshold

oc~EN"2, (65  law should approach the value obtained from the phase-

space arguments, i.eu,—(N—2) asZ—o. This conclusion
In the case of arepulsive Coulomb interaction with the is supported by all examples considered. Moreover in all
“core” (but still without other interfragment interactions these examples one can note thgtthe number of unstable
the cross section at the threshold becomes exponentialipodes accounting for their degenerdég., the number of
small, as obtained, for example, by Geltni&i] in his cal- terms in sum(54)] is equal toN—2, and(ii) each partial
culations for atom ionization by positron impact with all cor- Wannier indexu, [Eq. (55)] tends to unity from above a&
relation neglected. The threshold behavior changesE3?  increases.

[52] if one employs the so-called@wave functions for the An apparent exception from rul@ is an emergence of an
final continuum state. However, these functions do not enadditional unstable mode in the pla#e’?+4e SC for Z
sure a proper description in the near-threshold domain.  =1. However, this SC provides larger than the 3D SC, and

If one aims to obtain a correct threshold law for the Cou-therefore it does not govern the threshold behavior. Note that
lomb system, then the interaction between the fragments, i.ealthough these properties are physically very natural, it is not
the particle correlation is to be taken into account. This clear if they can be proven rigorously from first principles.
makes the phase-space arguments insufficient, but requiresAm additional observation is that the electrons in the SC tend
dynamical treatment, as was originally done by Wanflér to be distributed uniformly on the sphere, even when the
for the simplest system. In this paper we employ the mostorresponding perfectly symmetrical body does not &sisg
simple theoretical apparatus, presenting essential equatiotise five-electron case abgvé&or a large number of electrons
in an arbitrary coordinate frame. They remain valid, in par-in the field of the core, several competing SC'’s are found to
ticular, in the simplest single-particle Cartesian coordinatesproduce very close threshold indices. Still, in all the cases

TABLE V. Parameters of SC’s and Wannier indices for theﬁ} 2e system. The numbers in parenthe-
ses indicate the degree of unstable mode degeneracy.

z m a M1 M2 M3 s

1 1 a=45° 1.293 66 0.905 842) — 3.105 33

2 1 a=32.2093° 1.367 62 1.336 43 — 2.704 05
1 2 a=35.9490° 1.569 58 1.317 88 0.54315 3.430 62
1 1836 a=30.0049° 50.329 79 37.462 32 — 87.792 11
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considered, the leading SC is found to be the three- APPENDIX A: EIGENVALUES OF V MATRIX
dimensional one. CORRESPONDING TO ROTATIONS
These results hopefully should hold if the electrons are AND TRANSLATIONS IN TIME

replaced by othefpossibly differentnegatively charged par- ¢ yho N_particle system is rotated as a whole over an
ticles. However, the situation changes drastically if one Ofinfinitisemal(time—inde endehnglese around the axis
the “electrons” is replaced by a particle of positive charge, . P gieop '
. . . » then the particle coordinates receive increments
for example, a positron. It is essential that an additioeal
pulsive Coulomb interactioappears in the system. If corre- -
lations are neglected, then the cross section decreases expo- or)"=(vXr;)de. (A1)
nentially asg approaches threshold. One could expect that he f f Newtoni i f moti
although the true threshold law retains a power character foT € form ot Newtonian equations of motion
all values ofZ, it tends to mock the exponential behavior by

increasing the value oft [53]. This property holds for all szj U

positron-containing systems considered above. The threshold m a2 - o (A2)
index increases quite slowly with. In order to illustrate the .

later point quantitatively, we cite results for the’ 2+ 2e~ remains invariant under rotations. This implies that
+e* system with very large values & (cf. Sec. VB: u

=9.4 for Z=50 (a=5.60°, =37.2°), andu=11.6 forZ st Ny

=100 (@=3.95°, 8=37.8°). In general terms, one can ar- mj—21= —2 ——=0ry, (A3)
gue that a similar situation should arise when a system con- dt 1=19r;or;

tains two or more positively charged particlaad two or
more particles with negative charge. Note that the propertie
of the partial Wannier indiceg, o are less straightforward:
some of them could be less than unity, and vary with
nonmonotonically. d2er}” 1 d2¢ %)
Large values of threshold indexes are unfavorable for dt2 - EF‘SH : (A4)
an experimental observation of the threshold behavior: close

to the threshold the cross section proves to be too small to bBearing in mind that according to E(L8),

observable, and for higher excess energies the intrinsic de-

\g/hereéfj =a&rt”) . For SC's one can use Eqé1) and(1) to
obtain

viations from the threshold law become essential. An analy- a2 0
sis of the energy domain where the threshold law holds is 2_2: _=0 (A5)
beyond the scope of this paper. Still, we can note that for the dt M

electron-impact ionization of atoms or for double photoion-
ization this domain is limited to few eV above threshdior

a quantitative treatment within the Wannier mechanism, see N

Refs.[4,12)). For the positron-impact ionization the applica- 1 E =) D =)
bility domain is even les§12,13. As argued by lhreet al. _],,1 Viior T =2 0r"
[18], an agreement with experimental data could be substan-

tially improved if the interaction of different modes in the which means that the grand vectr”) is an eigenvector of
deviation from SC's is taken into account. Possibly somehe grand matrixXV with the eigenvalue,/ M. Generally
procedure to assess for the mode interaction could also here are three eigenvectors corresponding to this eigenvalue,
developed for the multifragment system; the present develput for linear SC’s only two independent rotations are pos-
opment provides a necessary first step for more advancesible.

approaches. One could also note that even very large thresh- Now consider a variation of the trajectory caused by a
old indices could(quite unexpectedlybe useful for con-  shifting of time over an infinitesimal interval-t+ 8t, using
structing formulas of interpolation character, as shown in thex similar technique. For the system in a SC, the particle

and using definitior(29), we finally obtain

(A6)

recent paper by Rost and Patta]. coordinates are incremented in this case by
(S0 _ > dé
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Differentiating Eq.(A5), we obtain 1 N 5o 20, 5o
m 21 V;j; or| e (A10)
d¢ 2Q, 1 d¢
G- M g ar (A9)  Since the grand vectodr(S® is proportional to the grand
vector p which defines the SC shape, we conclude that the
latter vector is an eigenvector of the grand makiX with
which finally brings us to the eigenvalue-29Q,/ M.
[1] G. H. Wannier, Phys. Re\80, 817 (1953. cially expression of the interaction potential in terms of new
[2] S. Watanabe, J. Phys. B, L39 (199). coordinates. The hyperspherical approach was not applied to
[3] R. I. Hall, A. G. McConkey, L. Avaldi, K. Ellis, M. A. Mac- multifragment positron-containing systems.

Donald, G. Dawber, G. C. King, J. Phys. 35, 1195(1992.  [24] P. Grujig J. Phys. B16, 2567(1983.

[4] A. K. Kazansky and V. N. Ostrovsky, J. Phys. 5, 2121 [25] P. GrUJ:',C Fizika (Zagre 15, 213(1983.
(1992 [26] P. Grujic Phys. Lett. A96, 233(1983; 122, 494(1987).

[5] X. Q. Guo and M. S. Lubell, J. Phys. 5, 1221,48851993; [27] M. S. Dmitrievig, P. Grujic and N. Simonovi&. Phys. D15,

2 1 .
M. S. Lubell, Z. Phys. D30, 79 (1994; Nucl. Instrum. Meth- [28] JOi( F?.ggamson and G. C. Angel, Phys. Rev. L6tt. 1581
ods Phys. Res. B9, 177(1995; Can. J. Physr4, 713(1996. (1988; see also H. Lebius, H. R. Kozlowski, K. Wiesemann,
[6] A. K. Kazansky and V. N. Ostrovsky, Phys. Rev.48, R871 and B. A. Huber48, 103 (1992).
(1993; J. Phys. B26, 2231(1993. [29] J. M. Feagin and R. D. Filipczyk, Phys. Rev. Left, 384
[7] M. S. Dimitrievic, P. Grujig and N.S. Simonovic]. Phys. B (1990.
27, 5717 (19949; W. lhra, F. Mota-Furtado, and P. F. [30] K. A. Poelstra, J. M. Feagin, and H. Klar, J. Phys2B 781
O’Mahony, Phys. Rev. /A5, 4263(1997. (1994.
[8] A. K. Kazansky and V. N. Ostrovsky, J. Phys. 18 159 [31] R. Stevens and J. M. Feagin, Bull. Am. Phys. S88. 992
(1993; J. Phys. B27, 447 (1994); 28, 1453(1995; 28, L333 (1988.
(1999; Phys. Rev. A51, 3712(1995; 51, 3698(1995; 52, [32] H. Bluhme, H. Knudsen, and J. Merrison, XX International
1175 (1995; Few-Body Syst., Suppl8, 80 (1995; P. O. Conference on the Physics of Electronic and Atomic Colli-
Bogdanovich, A. K. Kazansky, and V. N. Ostrovsky, J. Phys. sions edited by F. Aumayr, G. Betz and H. P. Wintgmstitut
B 30, 921 (1997. fuer Allgemein Physik, Vienna, 1997p. TH 087.
[9] J. Macek and S. Yu. Ovchinnikov, Phys. Rev.48, R4273  [33] N. S. Simonovicand P. Grujic J. Phys. B20, 3427(1987.
(19949; 50, 468 (1994. [34] A. K. Kazansky and V. N. Ostrovsky, ZhkEp. Teor. Fiz95,
[10] N. S. Simonovi¢ Phys. Rev. A50, 4390(1994. 1162(1989 [ Sov. Phys. JETBS8, 670(1989].
[11] A. K. Kazansky, V. N. Ostrovsky, and L. Yu. Sergeeva, J.[35] A. K. Kazansky and V. N. Ostrovsky, iBecond International
Phys. B27, 5197(1994). Workshop on Harmonic Oscillatorsedited by D. Han and
[12] A. K. Kazansky, V. N. Ostrovsky, and L. Yu. Sergeeva, Z. K.B. Wolf, NASA Conference Publication No. 3286IASA,
Phys. D33, 181(1995. Washington, DC, 1995 pp. 349—358.
[13] P. Ashley, J. Moxom, and G. Laricchia, Phys. Rev. L&k, [36] U. Fano, Phys. Rev. 24, 2402(198)).
1250(1996. [37] U. Fano, Rep. Prog. Phy46, 97 (1983.

[14] S. Watanabe and D. Kato, J. Phys.2B, L779 (1996; S. [38] R. K. Peterkop, J. Phys. B, 513(1971).
Watanabe, D. Kato, and M. Matsuzawa, Comments At. Mol.[39] A. R. P. Rau, Phys. Rev. A, 207 (1971).
Phys.33, 95(1996; D. Kato and S. Watanabe, Phys. Rev. A [40] T. Morishita, O. I. Tolstikhin, S. Watanabe, and M. Mat-
56, 3687(1997. suzawa, Phys. Rev. B6, 3559(1997.
[15] J. Macek and W. Ihra, Phys. Rev.55, 2024(1996); W. lhra, [41] J. M. Feagin, J. Phys. B7, 2433(1984).
F. Mota-Furtado, P. F. O’'Mahony, and J. H. Macékd. 55, [42] Note that this reasoning applies only to unstable modes. For

3250(1997. the stable modegwhich are responsible for particle angular
[16] A. K. Kazansky and V. N. Ostrovsky, iBth International correlation the situation is drastically different, as discussed in

Workshop on Autoionization Phenomena in Atpetdited by detail in Ref.[6]; see also Ref.8].

V. V. Balashov, A. A. Grum-Grzhimailo, and E. A. Ro- [43] C. H. Greene and A. R. P. Rau, J. Phys1® 99 (1983; R.

manovsky (Moscow University Press, Moscow, 1996pp. Peterkop, J. Phys. B6, L587 (1983.

67-71. [44] S. Wolfram, Mathematica: A System for Doing Mathematics
[17] M. Yu. Kuchiev, J. Phys. BB0, 3499(1997. by Computer2nd ed.(Addison-Wesley, Palo Alto, CA, 1991
[18] W. lhra, J. Macek, F. Mota-Furtado, and P. F. O’Mahony, [45] H. Klar, J. Phys. Bl4, 4165(1981); H. Klar, in Electronic and

Phys. Rev. Lett78, 4027(1997). Atomic Collisions Invited Papers, XIlI International Confer-
[19] J. M. Feagin and M. J. Goddard, J. Phys3®& 693 (1997). ence on the Physics of Electronic and Atomic Collisions, ed-
[20] J. M. Rost and T. Pattard, Phys. Rev58, R5 (1997. ited by J. Eichler, I. V. Hertel, and N. StolterfokiElsevier,
[21] P. Grujic Comments At. Mol. Phys33, 351 (1997. Amsterdam, 1984 pp. 767-775.

[22] H. Klar and W. Schlecht, J. Phys. B), 1699(1976. [46] H. Klar, Z. Phys. A307, 75(1982.

[23] Some important details of the derivation were omitted, espe{47] P. Grujig J. Phys. B15, 1913(1982.



PRA 58 THRESHOLD LAWS FOR THE BREAKUP OF ATOMIC ... 335

[48] It is worth mentioning that, at variance with Klar and Schlecht, reported in the present paper.
we obtain a correct value gf without appealing to the con- [50] H. Kossmann, O. Schwarzkopf, B. ‘Kemerling, and V.
tributions from undetermined angular variabkgsand ¢; see Schmidt, Phys. Rev. Let63, 2040(1989.
p. 1709 of Ref[22]. [51] S. Geltman, J. Phys. B6, L525(1983.

[49] The SC’sLy, and P for this system were discussed originally [52] N. C. Sil and K. Roy, Phys. Rev. A4, 1360(1996.
by Grujic [25]. However the configuratio® was discarded [53] For the particular case of three-particle system the increase of
and the threshold indices evaluated fgy differ from these u with Z was noticed by Klaf45].



