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Threshold laws for the breakup of atomic particles into several charged fragments

M. Yu. Kuchiev and V. N. Ostrovsky*
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 16 December 1997!

Processes with three or more charged particles in the final state exhibit a particular threshold behavior, as
inferred by the famous Wannier law for a (2e1 ion! system. We formulate a general solution which determines
the threshold behavior of the cross section for multiple fragmentation. Applications to several systems of
particular importance with three, four, and five leptons~electrons and positrons! in the field of a charged core,
and two pairs of identical particles with opposite charges, are presented. Threshold exponents for these systems
are predicted, while some previously suggested threshold laws are revised.@S1050-2947~98!04007-4#

PACS number~s!: 32.80.Fb, 34.80.Dp, 34.80.Kw
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I. INTRODUCTION

The famous Wannier@1# threshold law has quite an un
usual status among other threshold laws in quantum mec
ics. Being based on an appealing mechanism, it has insp
a large number of studies where the law was rederived,
tended, tested or rebutted. The intensity of these studies
not show a decrease with time, as shown in some re
publications@2–21#. A complete bibliography on the subjec
would be immense.

In this paper, we suggest a method which generalizes
Wannier mechanism when breakup of the quantum sys
on a large number~four or more! of charged fragments is
concerned. Apparently, the particular case of the prob
was treated for the first time in 1976 in an important pa
by Klar and Schlecht@22#, where the threshold law was de
rived for escape of three electrons from the charged cor
was suggested that the receding electrons form a symme
configuration of an equilateral triangle with a positive
charged core in its center. The treatment was quite involv
and based on a hyperspherical coordinate system@23#. Later
Grujić @24# rederived the same result using standard Ca
sian coordinates, where the symmetry considerations
easy to apply explicitly to a full extent. Grujic´ also consid-
ered some other systems along the same lines@25–27# ~see
more details in Sec. V!. The threshold law for the three
electron escape seems to find support in experimental da
the near-threshold double ionization of atoms by elect
impact @28#. Later, Feagin and Filipczyk@29# claimed the
existence of a complementary law which is manifested
energies somewhat above a threshold; see the critical dis
sion in Sec. V A.

Interest in the problem was renewed recently when t
electrons and a positron receding from a core withZ51
charge were considered in Ref.@30#. A brief note by Stevens
and Feagin@31# on complete fragmentation of the H2 mol-
ecule is also to be mentioned. The final state in the reac
with a positron could be produced by double ionization o
negative ion by positron impact. However, forthcoming e
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periments by Blohme, Knudsen, and Merrison@32# concern
positron impact double ionization of neutral atoms (Z52),
where the threshold law is not yet available. Its derivati
was one of the motivations for the present study. Eventu
it developed into a general approach to the multifragmen
tion problem which possesses two important advantag
First, our method describes a general situation with an a
trary number of charged fragments in simple terms in
arbitrary coordinate frame. Second, it is convenient and r
able for practical realizations. This allows us to clarify im
portant conceptual aspects of the problem which were m
understood or misinterpreted previously. Comparing o
solution with results in the literature, we reproduce a num
of threshold exponents for different systems. At the sa
time, we find that several previously published results ne
improvement; in particular, we revise the threshold law
2e21e1 escape. A general nature of the developed met
is illustrated by a consideration of new complicated situ
tions with up to six charged particles in the final state, wh
a number of threshold exponents is predicted.

In Sec. II we introduce particular configurations whic
will be calledscaling configurations~SC’s!. They describe a
multidimensional dynamic potential saddle, generalizing
Wannier ridgewhich is well known for the 2e1 ion system.
These configurations are related torectilinear trajectories of
all particles in the system, and play a crucial role for th
complete fragmentation process close to its threshold. S
embrace the essence of previous treatments of particular
tems, but avoid attachment to some special theoretical
malism and related technical complications. The closest a
log to our general approach in the particular case of thr
body Coulomb systems can be found in papers by Simono´
and Grujić@33#.

A description of small deviations from SC’s is given
terms of a set of harmonic oscillators and inverted oscillat
~Sec. III!. The latter describe unstable modes which gov
the threshold law. They are quantized following a gene
scheme suggested by Kazansky and Ostrovsky@34,35#. This
allows us to construct a reduced form of the wave funct
for the system of charged particles, and derive the thresh
law in Sec. IV, generalizing a procedure used previously
Kazansky and co-workers@4,12# for a derivation of the con-
ventional Wannier law. Application of a developed gene
scheme to some particular systems~Sec. V! is followed by a
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concluding discussion of special features of Wannier-ty
threshold laws, with an emphasis on the relation between
underlying statistical and dynamical aspects of the prob
~Sec. VI!.

II. SCALING EXPANSION

Our goal is to consider some atomic process which bre
an atomic particle into several charged fragments for l
excess energyE. In this situation the motion of the frag
ments in the final state of the reaction can be described in
semiclassical approximation, because a typical variation
the Coulomb potentialUC;1/r on the wavelengths of the
fragmentsl;1/AME, dU.l/r 2, is less than a typical ki-
netic energyT;E,

dU!T,

inside the Coulomb zoner ur C51/E where the major event
take place. Therefore the first thing to do is to find classi
trajectories which lead to the desired final state with to
fragmentation.

It is very important that for a low energyE there exists a
severe restriction on these trajectories. To see this, le
imagine what is happening with distances separating fr
ments when they move out of the reaction domain. If a d
tance separating some pair of attracting fragments diminis
with time, then one should expect that this pair of fragme
can be considered as a dipole which interacts with the
fragments. This interaction can transfer the kinetic energy
the two fragments to the other fragments. Therefore, one
to expect that eventually these two fragments will lose
ergy and form a bound state. If this event happens, then
desiredtotal fragmentation is not achieved. This discussi
shows that one should look for those trajectories which
hibit a monotonic increase of distances separating the f
ments. The point is that the lower the available abo
threshold energy, the more restrictive this condition is.

It is convenient to present this situation by considering
potential energy in multidimensional configuration spa
where its behavior can be described as ‘‘valleys separate
ridges.’’ This physical picture, first suggested by Wann
for a particular class of reactions, was discussed by F
@36,37# in a general case. If a system occupies some plac
some ridge, then its trajectory can either go down into so
valley where a bound state of some fragments is created
continue to propagate along the ridge. For the total fragm
tation, one should find a classical trajectory along the top
some ridge which leads from the region of small separa
of fragments into the final state with infinite separation. It
clear that, the lower the above-threshold energy, the clo
the trajectory should be to the top of the ridge.

Generally speaking, there might exist several such rid
which lead to the final state with total fragmentation. In th
work we study a particular ridge, which will be called th
scaling configuration. For all systems considered up to n
we have found that this configuration exists. More than th
for a given system there may exist several different SC’s
number of examples demonstrating this property is con
ered in Sec. V. Therefore, one might suspect that the SC
general feature, though this latter statement has not b
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verified so far. For two electrons in the field of an ion, th
ridge coincides with the Wannier ridge.

The basic idea is simple. As stated above, one has to
sure that distances separating fragments increase mono
cally with time. This condition is definitely satisfied if a tra
jectory describingN particles which have massesmj ( j
51,2, . . . ,N) obeys the conditions

rW j~ t !5f~ t !rW j , j 51,2, . . . ,N, ~1!

which are valid in the center-of-mass reference fra
( jmj rW j (t)50. We shall refer to a trajectory satisfying E
~1! as a SC. The time-independent vectorsrW j describe the
shape of the SC, while the functionf(t) gives the overall
scaling factor. We will see below that this function increas
monotonically in time, thus ensuring that all distances
crease as well. Therefore, this type of motion definitely
sults in total fragmentation, avoiding traps into potential v
leys. It is convenient to normalize the scaling function
unity for some initial moment of timet0 ,

f~ t0!51. ~2!

For this normalization, the vectorsrW j play a role of coordi-
nates of the particles at this initial moment of timerW j (t0)
5rW j in the center-of-mass reference frame

(
j

mjrW j50. ~3!

Notice that in SC’s all degrees of freedom except the o
describing the overall scaling factor are frozen. In this se
the SC describes aquasiequilibriumof the system.

It is obvious that to satisfy Eq.~1! one should appropri-
ately choose the initial coordinatesrW j . Let us formulate re-
strictions on them. Notice, first of all, that in the SC th
accelerations of the particles are

d2rW j~ t !

dt2
5

d2f~ t !

dt2
rW j . ~4!

We presume purely Coulomb interaction, or consider a C
lomb asymptote in more complicated cases, which is p
sible because the important distances are large (r;r C
51/E) for low above-threshold energy. Therefore the pote
tial energy of the system ofN fragments is

U5 (
m.n

qmqn

urWm2rWnu
. ~5!

Hereqj is a charge of aj th fragment. The forcesFW j for a SC
are time scaled as

FW j~ t !52
]U

]rW j

5
1

f~ t !2(nÞ j
qjqn

rW jn

r jn
3

, ~6!

where rW jn5rW j2rW n . Substituting Eqs.~4! and ~6! into the
Newton equation of motion, one finds the relation
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d2f~ t !

dt2
mjrW j5

1

f~ t !2(nÞ j
qjqn

rW in

r in
2

. ~7!

It is easy to see that it can be satisfied only if two conditio
are fulfilled. First, the scaling function should satisfy
equation

d2f~ t !

dt2
52

a

f~ t !2
, ~8!

where a.0 is a time-independent constant which is d
cussed in detail below. One obviously recognizes in Eq.~8!
the equation describing a one-dimensional motion of a p
ticle with unit mass and unit charge in the attractive Co
lomb field created by the chargea. Second, the validity of
Eq. ~7! requires that the vectorsrW j satisfy the following sys-
tem of equations:

arW j52aW j[2
1

mj
(
kÞ j

qjqk

rW jk

r jk
3

. ~9!

These equations state that accelerations of each fragmeaW j
are proportional to its coordinate vector at the initial mom
of time. Equations~9! are shown to arise as conditions whic
are necessary for existence of a SC. It is easy to see that
provide sufficient conditions as well. To verify this stat
ment, let us assume that we have a solution of Eq.~9!. Then
we can consider a trajectory with the following initial co
ditions. First, we can choose initial coordinates asrW j (t0)
5rW j . Second, we can always choose initial velocities t
are proportional to coordinates,

drW j~ t0!

dt
5br j~ t0!, ~10!

where b is some positive constant which depends on
energyb;AE. From Eq.~9!, we find that accelerations a
the initial moment of time are also proportional to coord
nates,

d2rW j~ t0!

dt2
52arW j~ t0!. ~11!

Thus, for the considered trajectory, both the velocities a
accelerations depend linearly on coordinates at the in
moment of time. Combining this fact with the Newton equ
tions of motion, we conclude that the velocities~and accel-
erations! remain proportional to the coordinates for any m
ment of time,

drW j~ t !

dt
5b~ t !rW j~ t !. ~12!

Here b(t) is some positive functionb(t0)5b. Integrating
Eq. ~12!, we conclude that the time variation of distanc
does exhibit the scaling condition~1!, in which ḟ(t)
5b(t).

This discussion shows that the SC defined in equation~1!
exists if and only if Eqs.~9! are satisfied. There areN vector
s
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variablesrW j , j 51,2, . . . ,N and one scalar variablea in
these equations. Obviously not all of them are independ
because there are seven transformations which do not ch
the given SC. Three of them correspond to shifts of the
center of mass. Three others describe rotations of the SC
whole. One more transformation describes the overall s
ing of the SC

rW j→rW j85lrW j , j 51,2, . . . ,N, ~13!

a→a85l23a, ~14!

with l.0. According to Eq.~8!, the scaling ofa @Eq. ~14!#
should be accompanied by a corresponding scaling off(t),
namely, f(t)→f8(t)5l21f(t). Notice that the latter
transformation can be interpreted as a shift of the initial m
ment of time,

t0→t08 , ~15!

where, according to Eq.~2!, t08 should satisfy

f8~ t08!5l21f~ t08!51. ~16!

It is easy to see that Eqs.~9! remain invariant under the
seven transformations discussed above, i.e., the shifts,
tions, and scaling, allowing one to consider them as a se
3N27 equations for 3N27 independent variables. Whe
solving these equations it is convenient to treata as a con-
stant parameter which governs the overall scale, and ca
chosen arbitrary~for example,a51).

At the SC, the system Hamiltonian

H5(
j 51

N pW j
2

2mj
1U, pW j5mj

drW j

dt
~17!

is reduced to

H05
1

2
MS df

dt D
2

2
Q0

f
, ~18!

where

M5(
j 51

N

mjrW j
2 , ~19!

Q052(
i . j

qiqj

urW i2rW j u
. ~20!

Clearly the Hamiltonian~18! describes the one-dimension
motion of a particle with the massM and unit charge in the
attractive field of a Coulomb center with the charge2Q0 .
The corresponding equation of motion is given by Eq.~8!,
considered previously, in which the constanta proves to be
equal to

a5
Q0

M . ~21!

The interesting physical events take place if there is su
cient Coulomb attraction in the system. That is why we su
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pose that the effective Coulomb chargeQ0 is attractive,Q0
.0, resulting in a positive value ofa.

Equations~19!–~21! show that arbitrary scaling ofa can
be compensated for by the corresponding scaling of coo
natesr j . This fact agrees with Eqs.~13! and ~14!.

The scaling functionf(t) is defined by straightforward
integration of Eq.~8!,

1

2
MS df

dt D
2

2
Q0

f
5E, ~22!

where E is the system energy. Combined with the initi
conditionf(t0)51, this fixes the scaling function unambigu
ously.

It is important to emphasize that Eqs.~1! and ~9! present
the idea of a SC in an invariant form independent of
chosen coordinate frame. To see this more clearly, let
introduce grand vectors in the 3N-dimensional configuration
space. The grand vectorr (t)5„rW1(t), . . . ,rWN(t)… defines
the time-dependent coordinates, the vectorr
5(rW 1 , . . . ,rW N) gives the initial coordinates anda
5(aW 1 , . . . ,aW N) is the vector of accelerations at the initi
moment of time. We employ bold type to distinguish such
vector from the conventional vector in space. Equations~1!
and ~9! allow the following presentation:

r ~ t !5f~ t !r, ~23!

ar52a. ~24!

Obviously, these relations between 3N vectors do not de-
pend on a reference frame. This shows that the scaling c
dinatef(t) is described in an invariant way.

It has been presumed by previous authors that some
ordinate which describes fragmentation is to be singled
and the potential extremum point is to be found for a fix
value of this ‘‘breakup coordinate.’’ The latter has been ch
sen in most cases as the system hyperradius@36–39# defined
as R25( i 51

N mir i
2 . In the hypercoordinate reference fram

the potential energy

V5
C~v!

R
~25!

is proportional to the hyperchargeC(v), which depends on
a set of hyperanglesv5(v1 , . . . ,v3N27). It is easy to
verify that definition of the SC equation~24! in the hyper-
spherical coordinates is reduced to

]C~v!

]v i
50, ~26!

which shows that the SC is a saddle point of the hypercha
C(v). The functionf(t) in hyperspherical coordinates
proportional to the hyperradiusf(t)5R/R0 , whereR0 is the
initial value of the hyperradius. The effective chargeQ0 and
the effective massM can be expressed in terms ofR0 and
the hyperchargeM5R0

2 , Q052C0 /R0 , whereC0 is the
hypercharge evaluated for SC. A description of the system
hypercoordinates has a long tradition and list of achie
ments; see, for example, recent calculations of the th
i-
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electron atom in hyperspherical coordinates@40#. However,
generally speaking, these coordinates do not possess fu
mental advantages over other coordinate frames for the f
mentation problem.

Another well-known reference frame provides Jacoby
ordinates used in the approach developed by Feagin@41#. For
multiparticle fragmentation, the choice of the breakup co
dinate is not obvious, and some special procedure was de
oped for its construction@29,30,19#. This problem becomes
more sophisticated the more complicated the system is
conclusion, it should be stressed once more that our
proach provides an invariant definition for the idea of a S
which is given in Eqs.~23! and ~24!.

III. SMALL DEVIATIONS FROM SCALING
CONFIGURATION

Assuming that the functionf(t) is defined as described i
Sec. II, we switch fromrW j to the new coordinatesdrW j ,

rW j5f~ t !rW j1drW j , ~27!

which have the obvious meaning of deviations from the S
Presuming that these deviations are small, we write line
ized classical Newtonian equations fordrW j (t) as

mi

d2drW i

dt2
52

1

f~ t !3(j 51

N

Vi j drW j , ~28!

Vi j 5
]2

]rW i]rW j
(

m.n

qmqn

urW m2rW nu
. ~29!

These equations of motion are generated by the tim
dependent Hamiltonian function

dH5
1

2(
j 51

N dpW j
2

mj
1

1

2f~ t !3 (
i , j 51

N

Vi j drW i•drW j ,

~30!

dpW j[mj

drW j

dt
.

It is convenient to introduce scaled deviationsjW j and re-
lated momentapW j as

jW j5
1

f~ t !3/4
drW j , pW j5f~ t !3/4dpW j , ~31!

since this allows us to factor out the time dependence in
Hamiltonian:

dH5
1

f~ t !3/2F1

2 (
j 51

N pW j
2

mj
1

1

2(i j Vi j jW ijW j

2
3

8
Af

df

dt (j 51

N

~jW j•pW j1pW j•jW j !G . ~32!

The derivation of this formula could be traced via
quantum-mechanical analog of the problem~which for many
readers nowadays is more convenient than the pure clas
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consideration!. In quantum mechanics, the transformati
rules for momenta and the Hamiltonian follow, respective
from the formulas for the partial derivatives:

]

]rW j

5f~ t !23/4
]

]jW j

,

S ]

]t D
drW j

5S ]

]t D
jW j

1
3

4f~ t !1/4

df

dt (j 51

N

jW j•
]

]drW j

. ~33!

In Eq. ~32!, we use a symmetrized representation wh
should be employed in the quantum version of the formu
~the latter also implies a corresponding gauge transforma
for the wave function!.

From Eq.~22!, one obtains

Af
df

dt
5A2@Ef~ t !1Q0#

M , ~34!

which becomes time independent forE50. In this case the
time dependence isexactly factored out in the Hamiltonian
~32!, justifying the choice of the scaling~31!. This implies
that the originalnonstationaryproblem becomesstationary,
provided one replaces timet by an effective timet. A rela-
tion betweent andt in differential form is

dt5f~ t !23/2dt. ~35!

For some applications it is necessary to keep the energy
pendence of the trajectory. For these cases a convenient
nique was developed recently by Kuchiev@17#. We have
applied it to the case considered, and verified that it result
the same threshold indexes as the ones obtained below b
stationary approach.

The Hamiltonian describing propagation in the effecti
time ~35! reads

dHt5
1

2 (
j 51

N pW j
2

mj
1

1

2 (
i j

Vi j jW ijW j1
a

2 (
j 51

N

~jW j•pW j1pW j•jW j !,

~36!

a52
3

4
Af

df

dt
. ~37!

The HamiltoniandHt @Eq. ~36!# is quadratic in coordi-
nates and momenta, thus describing a set of harmonic o
lators or inverted oscillators. This shows that our goal is
describe the behavior of the system in terms of these o
lators and inverted oscillators. Before proceeding, we mod
our notation. The set of components of the displaceme
vectors drW j ( j 51,2, . . . ,N) comprise a 3N-dimensional
grand vectord r . In this formulation, for instance,Vi j corre-
sponds to grand 3N33N square matrix denoted below asV.
We also introduce 3N33N unit matrix I and the diagona
matrix K of the same size with diagonal elements cor
sponding to the inverse mass 1/mj of each particle.

This notation takes into account an obvious fact that
total number of all modes coincides with the number of d
grees of freedom in the system (k51,2, . . . , 3N). There
are, however, seven particular degrees of freedom: tran
,

h
s
n

e-
ch-

in
the

il-
o
il-
y
ts
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e
-

la-

tions, rotations, and the scaling transformation. They do
change the shape of a SC and do not describe a devia
from a SC. These degrees of freedom may be called
collective modes. They obviously should be considered se
rately from the oscillating modes which describe deviatio
from the SC. In order to distinguish the collective mode
one can use the following interesting property. All collecti
degrees of freedom are described by the eigenvectors o
grand matrixKV with particular eigenvalues. First, the thre
modes which correspond to the system translations in sp
have obviously zero eigenvalues. Second, the modes co
sponding to rotations of the system in space have eigen
ues equal toQ0 /M, as shown in the Appendix. There a
three such modes in the general case, while for a linear
there are only two modes. Third, the mode corresponding
the scaling transformation Eqs.~13! and ~14! has an eigen-
value 22Q0 /M, as also shown in the Appendix. Usin
these eigenvalues, one can separate the collective mode
ther from the very beginning, or at the end of calculation

There is another way, useful for applications, to separ
the collective modes. For translations and rotations the se
ration can be fulfilled by conventional methods choosing
propriately the coordinates, as demonstrated in a numbe
examples below. Separation of the scaling mode can
achieved with the help of the operator of projection on t
mode P and the complementary projection operatorQ5I
2P. The operatorP is readily constructed from the un
vectorsnW j5rW j /r j , which define the shape of a SC:

Pi j 5nW i•nW j . ~38!

Thus all seven collective modes can be easily identified
separated using any of the two techniques described ab

Some modes in the 3N27 subspace orthogonal to th
collective modes are stable and describe small oscillati
around the SC; the related oscillating frequenciesvk are real.
The object of our major interest is unstable modes w
imaginary oscillating frequencies. It is shown below that u
stable modes exist for any SC. It is convenient to introdu
for unstable modes, a parameterak5 ivk (Re ak.0). In
order to find the oscillating frequencies, one can presum
harmonic time dependence of the coordinatesj and mo-
mentap,

j5exp~ ivt !J, p5exp~ ivt !P, ~39!

where J and P are time-independent grand vectors. T
Hamiltonian equations of motion give

ivJ5KP1aJ, i P52VJ2aP, ~40!

wherea @Eq. ~37!# is a scalar coefficient. The latter equatio
could also be written as

ivS J

P
D 5S a K

2V 2aD S J

P
D . ~41!

Excluding the grand vectorP, one comes to the eigenvalu
problem for the square of frequencyv2,

~v21a2!J5KV J, ~42!
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or, in symmetrized form,

~v21a2!J̃5K1/2VK 1/2J̃, K1/2J̃5J. ~43!

Denoting a set of eigenvalues of the matrixKV as vk , k
51,2, . . . ,3N, we obtain

vk
25vk2a2, ~44!

ak5Aa22vk. ~45!

This formula shows how the oscillation frequencies depe
on the eigenvalues of the matrixKV .

Let us verify now that a SC is always unstable. With th
purpose, let us show that the matrixKV always possesse
negative eigenvalues which describe instability. Consider
trace of the grand matrixV,

TrV5(
j

]2

]rW j]rW j
(

m.n

qmqn

urW m2rW nu

5(
j

nrW j (m.n

qmqn

urW m2rW nu
50, ~46!

which vanishes since the Coulomb potential satisfies
Laplace equation

DrW j

1

urW j2rW nu
50, rW jÞrW n .

It is easy to see also that Eq.~46! results in Tr(KV )50
which means that

Tr~KV !5(
k

vk50. ~47!

We see that the spectrum of the matrixKV always contains
both positive and negative eigenvalues. This fact in itsel
not sufficient to make a statement about instability, beca
trace ~47! includes a contribution from collective mode
which do not change the shape of the SC. However, it is e
to exclude collective modes. Remember that the eigenva
corresponding to translations are zero, and rotations give
genvaluesQ/M, while the scaling transformation provide
the eigenvalue22Q/M; see the Appendix. The sum of e
genvalues of collective modes is

(
collective modes

vk5HQ/M in the general case

0 for a linear SC.
~48!

Subtracting this result from Eq.~47!, we find the trace of the
matrix KV in the subspace orthogonal to the collecti
modes,

Tr~K V !orth5 (
orthogonal

vk5H 2Q/M in the general case

0 for a linear SC.
~49!

Since this trace is nonpositive, we conclude that the ma
KV inevitably possesses negative eigenvalues which
scribe deviations from the SC. This shows that any SC
d
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unstable. This property is closely related to the fact that h
monic functions, i.e., those which satisfy the Laplace eq
tion, cannot have maxima or minima. Remember also
Earnshow theorem, well known in electrostatics: stable eq
librium is impossible for systems where the Coulomb forc
are operative. Although SC’s describe expanding nonst
configurations, the conclusion about inevitable instability
mains valid in this case as well. This fact can be interpre
as a dynamic analogue of the Earnshow theorem.

IV. QUANTIZATION OF DEVIATIONS FROM SCALING
CONFIGURATION AND THRESHOLD INDICES

Section III reduces description of small deviations fro
SC to the set of coupled harmonic oscillators which could
quantized straightforwardly. This procedure provides
‘‘energy’’ levels

eknk
5vk~nk1 1

2 !. ~50!

Here the first subscriptk51,2, . . . ,3N27 indicates the
mode, andnk50,1, . . . shows a number of quanta in th
mode. For a given set of the quantum numbers$nk% the
system wave function is given by

C$nk%;expS 2(
k

i E
t0

t

eknk
dt D

5expS 2(
k

i E
t0

t eknk

f~ t !3/2
dtD , ~51!

where we omit the common time-dependent phase fac
The wave function is prepared at some initial momentt0 by
preceding strong interaction of all fragments. In t
Wannier-type approach it is presumed that these proce
depend smoothly on the energyE. Hence they do not influ-
ence the form of the threshold law, and thus could be eff
tively excluded from consideration; it is sufficient to co
sider only thet.t0 domain.

For unstable modes the ‘‘energies’’eknk
are complex val-

ued which leads to the loss of probability in the expand
SC. This should be interpreted@34,35# as a sliding from the
potential saddle in multidimensional configuration space t
eventually leads to formation of bound states of two~or
more! fragments. Such an outcome implies that the rela
part of the probability is lost for the process of comple
system fragmentation which is an object of our study. T
cross section of the latter is proportional to thesurvival prob-
ability

P$nk%[uC$nk%u t→`u2

5expF2A2M

3(
k
E

f~ t0!

` aknk

fAEf1Q0

dfS nk1
1

2D G , ~52!

where summation overk runs over all unstable modes. No
that the original quantum problem is stationary. The timet in
Eq. ~52! plays the role of an effective variable which d
scribes the scaling of the system in accordance with Eq.~22!.
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Small deviations from the SC are described quantum
chanically. Our treatment generalizes to a multimode c
the scheme developed by Kazansky and Ostrovsky@4# for
the two-electron escape~see also Ref.@12#; some ideas used
were also elaborated by Watanabe@2#!. Note that the cited
paper @4# also provides a description of deviations from
pure power threshold law, but we do not pursue this po
here.

For our objectives it is sufficient to note that Eq.~52! has
the form of a product of contributions coming from ea
individual mode; hence the threshold law of interest is

s;P$nk%;Em, ~53!

m[(
k

mknk
. ~54!

Thepartial threshold indicesmknk
stem from ‘‘eigenfrequen-

cies’’ of unstable modes, being related to thenegativeeigen-
valuesvk,0 of theKV matrix,

mknk
52FA2

M
2Q0

vk1
9

16
2

1

4G S nk1
1

2D . ~55!

Small positive values ofvk could formally also lead to a rea
mknk

, but have to be discarded. Obviously, if some~imagi-

nary! eigenfrequencies areNk-fold degenerate, the relate
contributions appearNk times in the~54!. In principle, the
wave function is a superposition of terms corresponding
various sets of quantum numbers$nk%, since all of them are
populated by processes in the inner interaction dom
Clearly, the threshold law is defined by the least poss
values ofnk @42#, which are equal to zero unless the symm
try considerations forbid this choice, as exemplified in t
next paragraph. If the initial SC is scaled by the factorl @see
Eqs. ~13! and ~14!#, then KV ;l23, M;l2, and Q 0
;l21, but the threshold indicesmknk

, as anticipated, remain
scale-independent. Note also that the threshold index is
variant under simultaneous scaling of all charges or
masses in the system.

In the original Wannier problem two electrons esca
from infinitely heavy atomic core with the chargeZ. The
configuration found by Wannier@1# gives the simplest ex
ample of a SC in which the electrons reside at equal
tancesr and in opposite directions from the core. The m
tion is unstable with respect to the stretching mode, whic
separated from the~stable! bending mode. Thus it is suffi
cient for our purposes to consider the motion of electro
along the line passing through the core. This motion is
scribed by two coordinates and the matrixV takes the form

V5
1

r3S 22Z1
1

4
2

1

4

2
1

4
22Z1

1

4

D ,

andQ05(2Z2 1
2 )r21 andM52r2 ~we use an atomic sys

tem of units, K5I ). The eigenvalues ofV are v1
522Z/r3 and v25(22Z1 1

2 )/r3. The eigenvaluev2 is
seen to coincide with22Q/M. Hence it corresponds to SC
e-
e

t

o

n.
le
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e

n-
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e
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s
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expansion~see the Appendix! and should be discarded. Th
eigenvaluev1 , upon substitution into Eq.~55!, reproduces
the well-known result

m1n1
5

1

2 FA100Z29

4Z21
21G S n11

1

2D . ~56!

The choicen150 provides the famous Wannier law valid fo
1S symmetry of the final two-electron continuum stat
whereasn151 corresponds to the threshold law for3Se ~and
3Pe) symmetry@43#.

Feagin and Filipczyk@29# and Poelstra, Feagin, and Kla
@30# put forward another formula for the threshold index
the multimode case. According to this, the Wannier index
N22 times larger than Eq.~54!. The factorN22 is de-
scribed as a ‘‘phase-space factor forN21 outgoing par-
ticles’’ being justified by the reference to the earlier paper
Feagin@41#. We were unable to find the derivation of such
factor in the cited paper; in any case, it deals only with t
conventionalN53 case where the factorN22 is insignifi-
cant. Our treatment provides a purely dynamic approxim
tion for the wave function, and does not leave any room
the statistical arguments. The other aspects of relation
tween dynamic and statistical threshold laws are discusse
Sec. VI.

V. PARTICULAR SYSTEMS

In practical applications of our scheme, the less obvio
part corresponds to finding SC’s. Numerical solution of t
set of nonlinear equations~9! could be cumbersome, an
implies a reasonable initial guess. The question of whet
all the solutions are found is even more difficult. In realit
one has to appeal to intuitive reasoning, and to limit t
search to some symmetrical configuration. This allows on
reduce effectively the number of equations~9! to be consid-
ered. Since the initial step of finding SC’s in most cas
could not be done in closed form, we do not pursue the g
of obtaining analytical formulas, but resort to numerical c
culations which are performed using theMATHEMATICA @44#
program. We find it easier to avoid preliminary separation
rotational and translational coordinates, since they could
easily distinguished in the eigensystem of the complete
trix KV . Moreover, the known eigenvalues of this matr
corresponding to rotations~see the Appendix! provide a
good test for consistency of calculations.

The systems practically accessible nowadays in ato
physics are not very diverse, consisting of several electr
and positrons in the field of heavy~positively charged!
atomic core. Since three-particle systems~such asA1Z

12e2 or A1Z1e21e1) have already been studied in gre
detail @1,38,39,45–47,33# ~see also references in Sec. I!, we
start from four-particle systems. We do not impose any sy
metry constraints on the system state, thus presuming
nk50 for all modes contributingm @Eq. ~54!#.

A. Three-electron escape from the charged core

The systemA1Z13e was thoroughly investigated b
Klar and Schlecht@22# and Grujić @24#. They considered a
configuration of electrons forming an equilateral triang
with an infinitely massive core in the center, which is obv
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ously a SC. The out-of-plane motion is separated. It co
sponds to stable modes, and does not affect the thres
law. The in-plane motion is described by six coordinates
electrons, or by four ‘‘oscillatory’’ modes plus a uniform
expansion of the SC and its rotation. The eigenfrequen
obtained by us, as well as in the cited papers, are pairw
degenerate due to SC symmetry. One pair correspond
stable motion, and the other pair to unstable motion. T
latter pair produces two equal terms in sum~54!. Klar and
Schlecht@22# and Grujić@24# succeeded in deriving analyt
cal expressions for the Wannier index@48#. In this paper we
do not pursue analytical formulations but check that our
merical results coincide with those cited by Grujic´, namely,
m52.826 24 forZ51, m52.270 43 forZ52, m52.161 96
for Z53, etc. The experiment for electron-impact doub
ionization of atoms (Z53) seems to agree with the thresho
law @28#.

The two pairs of modes discussed above are already
known. Combined with rotation and scaling expansion, th
represent a complete set of six in-plane coordinates. S
the number of modes is a physical parameter which is in
pendent of the theoretical technique used, we do not see
possibility to obtain additional unstable modes which wou
lead to another Wannier index and thus to the complem
tary threshold law as announced by Feagin and Filipc
@29# ~in fact our conclusion could be drawn from the pap
by Grujić @24#, who used plain Cartesian coordinate
whereas the less transparent treatment by Klar and Sch
@22# is based on hyperspherical coordinates!. Since no details
of the analysis by Feagin and Filipczyk@29# were ever pub-
lished, a more detailed discussion of this issue is not p
sible.

B. 2e21e1 escape from the charged core

The plausible symmetric SC’s for the systemA1Z12e2

1e1 were considered in Ref.@30# ~note that the calculation
in this paper were carried out only forZ51). The authors
comprised two different linear arrangements and one p
configuration@49#. All these configurations belong to the SC
and, therefore, can be easily handled by the technique de
oped above. We consider below these SC’s successivel

1. Linear configuration La

The linear SCLa is shown in Fig. 1. The frame origin i
placed into an infinitely massive core having the chargeZ.
The coordinates of two electrons and a positron arex1 , x2 ,
andx3 , respectively; all of them are positive. It is convenie
to introduce two dimensionless parametersx5r 1 /r 3 and y
5r 2 /r 3 (0,x,1,y), which have to satisfy the system o
equations obtained from Eq.~9!:

m3

m1

Z/x221/~12x!211/~y2x!2

2Z11/~12x!221/~12y!2
5x,

~57!

m3

m2

Z/y211/~12y!221/~y2x!2

2Z11/~12x!221/~12y!2
5y

~equations are presented for more general case when all
particles have different massesmi , while the core remains
infinitely heavy!.
-
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2. Linear configuration Lb

A distinction from the previous case is that the coordin
of one of the electrons is negative (x2,0). The system of
equations defining the SC is somewhat different (y,0,x
,1):

m3

m1

Z/x221/~12x!221/~y2x!2

2Z11/~12x!211/~12y!2
5x,

~58!

m3

m2

2Z/y221/~12y!211/~y2x!2

2Z11/~12x!211/~12y!2
5y.

For both linear configurations, the bending modes are sta
There are two stretching modes for each configuration, b
unstable. The results of our calculations are summarize
Table I. ForZ51 parametersx and y and partial threshold
indicesm1 andm2 coincide with those obtained in Ref.@30#;
our threshold indicesm are less by a factor of 2, as discuss
at the end of Sec. IV. Notice a nontrivial behavior of th
parameters withZ: for instance, in the SCLa , x and m1
increase withZ, whereasy andm2 decrease. The threshol
index m increases withZ, which is opposite to the well-
known behavior for the simplest systemAZ12e, and for 3e
escape wherem diminishes asZ grows~see more discussion
in Sec. VI!.

3. Plane configuration P

The symmetric plane configuration shown in Fig. 1
conveniently characterized by two anglesa andb. From Eq.
~9!, we deduce the system of equations

FIG. 1. Two linear and plain scaling configurations for the sy
tem A1Z12e21e1.
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TABLE I. Parameters of scaling configurations and Wannier indices for theA1Z12e21e1 system.

Z SC parameters m1 m2 m

SC La

1 x50.506 100, y51.692 952 4.442 178 2.193 945 6.636 123
2 x50.587 468, y51.636 629 4.767 141 2.064 237 6.831 377
3 x50.633 155, y51.609 587 5.024 502 1.966 884 6.991 386
4 x50.664 214, y51.594 313 5.242 328 1.88 483 7.127 158

SC Lb

1 x50.441 380, y520.677 611 2.577 720 1.025 435 3.603 155
2 x50.539 724, y520.847 969 2.888 492 1.009 213 3.897 705
3 x50.594 480, y520.949 091 3.193 559 1.005 040 4.198 599
4 x50.631 720, y521.023 071 3.475 766 1.003 244 4.479 010

SC P
1 2a576.7338°, 2b555.1969° 1.884 950 1.562 234 3.447 184
2 2a555.1741°, 2b561.3793° 2.045 028 1.793 101 3.838 128
3 2a545.4233°, 2b564.1787° 2.206 553 1.972 092 4.178 645
4 2a539.5138°, 2b565.8916° 2.351 217 2.123 469 4.474 686
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m1 sin3 g~Z sin2 a2 1
4 sin a1sin2 b cosg!

5m2 sin3 b~2 cosb sin2 g2Z sin2 a!, ~59!

sin2 b sin g5 1
4 cosa ~g5p2a2b!,

where the masses of light particles with negative (m2) and
positive (m1) charges generally could be different. The r
sults of calculations are presented in Table I. ForZ51, the
anglesa andb coincide with those extracted from Ref.@30#.
However, the difference between the threshold indices
drastic. Poelstra, Feagin, and Klar had found a single
stable mode which corresponds to our partial Wannier in
m2 . Our calculations give two unstable modes, similar to
case of 3e escape~in the latter case the modes were dege
erate due to a symmetry which is absent for the system u
consideration!. The reason for this disagreement remains
clear. The plane SCP governs the threshold behavior, a
though it provides a threshold indexm only slightly less than
the linear configurationLb .

C. Four-electron escape from the charged core

Basing on symmetry considerations, we analyze th
configurations: linear, plane, and three-dimensional SC’s
could be shown rigorously that for a symmetric linear
rangement, a SC does not exist for all values ofZ, i.e., Eqs.
~9! have no solution.

1. Plane configuration P

In the plane configuration the electrons are located in
apexes of a square; the core lies in its center. The out
plane motion is separated, and corresponds to stable mo
For in-plane motion in the general case, we find nondeg
erate and doubly degenerate unstable modes~Table II!. For
the particular caseZ51, an additional nondegenerate mo
becomes unstable.
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2. 3D configuration V

The SC describes electrons located at the apexes of t
hedron. We find a single triply degenerate mode~Table II!.
Interestingly, the threshold indexm proves to be quite close
for plane and three-dimensional~3D! configurations, al-
though the 3D SC provides a somewhat lower value ofm and
thus governs the threshold behavior. AsZ increases, the rela
tive importance of electron-electron interaction decreas
andm approaches the valuem53 which corresponds to non
interacting electrons.

The smallest practically attainable value of the cha
seems to beZ52. It could be realized via triple ionization o
negative ion by electron impact. However, theoretically t
caseZ51 proves be very interesting due to unusual prop
ties. In this case the threshold index becomes much la
than in other cases, particularly for the plane SC. This is
to a small value of the ‘‘charge’’Q0 in this case. Another
interesting feature is the appearance of an additional unst
mode in the plane SC. An analysis of the eigenvectorJ

TABLE II. Wannier indices forA1Z14e system. The numbers
in parentheses indicate the degree of unstable mode degenera

Z m1 m2 m3 m

SC P
1 4.877 419 4.248 225~2! 2.071 837 15.445 71
2 1.356 093 1.273 381~2! — 3.902 855
3 1.192 808 1.145 660~2! — 3.484 128
4 1.132 414 1.099 316~2! — 3.331 046
5 1.100 871~2! 1.075 346 — 3.251 563

SC V
1 3.075 960~3! — — 9.227 870
2 1.257 986~3! — — 3.773 958
3 1.139 795~3! — — 3.419 384
4 1.095 940~3! — — 3.287 819
5 1.073 040~3! — — 3.219 120
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shows that it corresponds to the out-of-plane motion. Tha
a pair of electrons lying on a diagonal of the square sh
upwards, whereas another pair shifts downwards.

The tetrahedric configuration was considered earlier
Grujić @26#, who obtained approximate analytical expre
sions for the threshold indexes. The partial threshold inde
obtained by him reveals only an approximate degenera
The numerical results form are in reasonable agreement wi
our data.

D. 3e21e1 escape from the charged core

We failed to find a symmetrical plane SC for this syste

1. Linear configuration L

A linear SC ~Fig. 2! corresponds to alternating positiv
and negative charges and could be characterized by t

FIG. 2. Linear and 3D scaling configuration for the syste
A1Z13e21e1.
s,
s

y
-
es
y.

.

ee

parameters:x5x1 /x4 , y5x2 /x4 , z5x3 /x4 (y,0,x,1
,z). They have to satisfy a set of equations which follo
from Eq. ~9!:

2
Z

x2
1

1

~x2y!2
1

1

~12x!2
2

1

~z2x!2

5x FZ2
1

~12x!2
1

1

~z21!2
2

1

~12y!2G ,

Z

y2
2

1

~x2y!2
1

1

~12y!2
2

1

~z2y!2

5y FZ2
1

~12x!2
1

1

~z21!2
2

1

~12y!2G , ~60!

2
Z

z2
1

1

~z2x!2
1

1

~z2y!2
2

1

~z21!2

5z FZ2
1

~12x!2
1

1

~z21!2
2

1

~12y!2G .

The parameters of the SC and the Wannier indices are sh
in Table III.

2. 3D configuration V

The symmetrical 3D configuration is shown in Fig. 2. It
characterized by two anglesa and b defined by equations
similar to Eq.~59!:

m1 sin3 gS Z sin2 a2
1

A3
sin a1sin2 b cosg D

5m2 sin3 b~3 cosb sin2 g2Z sin2 a!, ~61!

sin2 b sin g5
1

A3
cosa ~g5p2a2b!.

We found two doubly degenerate unstable modes and
nondegenerate unstable mode, as shown in Table III.
-

9
8
8
6

TABLE III. Parameters of SC’s and Wannier indices forA1Z13e21e1 system. The numbers in paren
theses indicate the degree of unstable mode degeneracy.

Z SC parameters m1 m2 m3 m

SC L
1 x50.580 448,y521.070 391z51.627 861 4.412 13 2.309 76 1.068 90 7.790 7
2 x50.580 448,y521.070 391z51.627 861 4.738 44 2.132 21 1.033 43 7.904 0
3 x50.628 772,y521.162 883z51.602 043 4.999 54 2.017 66 1.022 70 8.039 9
4 x50.661 096,y521.224 38z51.587 485 5.219 72 1.925 98 1.017 46 8.163 1

SC V
1 a560.5698°,b532.2041° 1.575 84~2! 1.031 94 0.604 93~2! 5.393 48
2 a540.5400°,b541.7154° 1.563 54~2! 1.200 43 0.663 02~2! 5.653 56
3 a532.3675°,b544.9869° 1.709 57~2! 1.337 11 0.627 71~2! 6.011 66
4 a527.6668°,b546.7663° 1.851 29~2! 1.450 98 0.573 27~2! 6.300 11
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TABLE IV. Parameters of SC’s and Wannier indices for theA1Z15e system. The numbers in paren
theses indicate degree of unstable mode degeneracy.

Z SC parameters m1 m2 m3 m

SC P
2 — 1.818 250~2! 1.575 289~2! 0.701 595~2! 6.787 079
3 — 1.363 938~2! 1.245 279~2! — 5.218 433
4 — 1.235 701~2! 1.156 156~2! — 4.783 715
5 — 1.174 520~2! 1.114 540~2! — 4.578 120
6 — 1.138 614~2! 1.090 432~2! — 4.458 093
7 — 1.114 982~2! 1.074 705~2! — 4.379 373

SC V
2 a545.15762° 1.606 923 1.504 688 1.493 106~2! 6.097 823
3 a545.09672° 1.280 163 1.228 075 1.223 717~2! 4.955 672
4 a545.06976° 1.182 908 1.147 576 1.145 087~2! 4.620 659
5 a545.05455° 1.135 887 1.109 091 1.107 406~2! 4.459 790
6 a545.04479° 1.108 127 1.086 528 1.085 274~2! 4.365 202
7 a545.03799° 1.089 794 1.071 698 1.070 708~2! 4.302 909
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threshold law is governed by the 3D SCV. Note that the
threshold index grows withZ.

E. Five-electron escape from the charged core

1. Plane configuration P

In the plane SC, the electrons are located in the apexe
an equilateral pentagon; the core lies in the same plane
the in-plane motion we have found two doubly degener
unstable modes~Table IV!. For Z52, an additional pair of
unstable modes appears.

2. 3D configuration V

Here three electrons lie in the apexes of an equilat
triangle with the core in its center. Perpendicular to t
plane, above the plane and below it, another pair of electr
is located symmetrically~Fig. 3!. The SC can be characte
ized by the anglea between the line which joins the out-o
plane electron with the core and the line which joins it w
the in-plane electron. The angle is defined by the equati

1

A3
12 sin3 a2Z

5tan aS 3 sin2 a cosa1
1

4
tan2 a2Z tan2 a D . ~62!

Quite unexpectedly,a proves to be very close to 45°, exhib
iting a weak dependence on the core chargeZ ~Table IV!.
This means that in-plane and out-of-plane electrons are
cated at almost the same distance from the core. The 3D
generates somewhat lower values ofm than the plane SC
thus governing the threshold behavior. However, the diff
ence is quite small. This feature is common to that fou
above for the four-electron case.

The 3D configuration for five-electron system was cons
ered previously in Ref.@27#. However, the equation derive
for the SC anglea differs from Eq.~62!.
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F. Fragmentation in two pairs of identical particles
with opposite charges

In this subsection we consider fragmentation into the fi
state 2Xm

1Z12e, whereXm
1Z is a positively charged particle

with chargeZ and massm ~all results below hold if the
electrons are replaced by any other charged particles; theZ
and m have the meaning of a ratio of charges and mas
respectively!. In the applications considered above, the ze
eigenvalues of the matrixV do not emerge due to the pre
ence of infinitely massive core. In the 2Xm

1Z12e system,
such modes are present. Another distinction is that for eq
masses of leptons in previous applications, we always
K5I , andvk were the eigenvalues of theV matrix. Now we
have to diagonalize the complete matrixKV . Neither of
these features create substantial difficulties.

From symmetry considerations, it is clear that the sha
of the SC is a rhombus, with an angle 2a at the apexes
where the particlesXm

Z are situated~Fig. 4!. The single SC
parametera is defined by the equation

8Z2
Z

cos3 a
5mS 8Z2

1

sin3 a
D , ~63!

which follows from ~9!. Several examples are shown
Table V. The simplest practical realization is the comple
fragmentation of the H2 molecule by photons, wherea is
close to 30° in agreement with Feagin and Filipczyk@29#,
and the threshold index proves to be huge. Apparently
threshold behavior could not be observed in experime
@50#. Another feasible realization with a moderate Wann
index is ionization of a negative positronium ion by positr
impact (Z51, m51). We fail to find the linear configura
tion discussed by Stevens and Feagin@31#.

VI. DISCUSSION AND CONCLUSION

This paper formulates the idea of the SC. Defined by
~1!, the SC is shown to arise when a nonlinear set of Eqs.~9!
is satisfied. Propagation of the system in the vicinity of t



i
al

ni
m

th
b
v

he

ia

r-

en

u
i.
s
re

o
tio
ar
es

if-

sid-
ing
able
de-

gen-

odes

ro-
the
nd
ger
of
s in
re,
ve.

n
hold
se-

all

that
not
s.
nd

the

s
to

ses

332 PRA 58M. YU. KUCHIEV AND V. N. OSTROVSKY
SC configuration governs the threshold law which is found
Eqs.~53!, ~54!, and~55!. These results permit direct practic
calculations of the threshold indexm for any system.

In many cases, the threshold laws in quantum mecha
can be deduced from general considerations without dyna
cal treatment. For instance, the breakup cross section wiN
fragments in the final state and a short-range interaction
tween them could be estimated from simple phase-space
ume ~i.e., statistical! arguments as

ss;E~3/2! ~N21!21. ~64!

If one presumes that all fragments~‘‘electrons’’! are at-
tractedby Coulomb forces to one fragment~‘‘core’’ !, but the
interaction between the ‘‘electrons’’ is negligible, then t
phase-space arguments could be easily modified to give

sC;EN22. ~65!

In the case of arepulsive Coulomb interaction with the
‘‘core’’ ~but still without other interfragment interactions!,
the cross section at the threshold becomes exponent
small, as obtained, for example, by Geltman@51# in his cal-
culations for atom ionization by positron impact with all co
relation neglected. The threshold behavior changes to;E3/2

@52# if one employs the so-called 3C wave functions for the
final continuum state. However, these functions do not
sure a proper description in the near-threshold domain.

If one aims to obtain a correct threshold law for the Co
lomb system, then the interaction between the fragments,
the particle correlation, is to be taken into account. Thi
makes the phase-space arguments insufficient, but requi
dynamical treatment, as was originally done by Wannier@1#
for the simplest system. In this paper we employ the m
simple theoretical apparatus, presenting essential equa
in an arbitrary coordinate frame. They remain valid, in p
ticular, in the simplest single-particle Cartesian coordinat

FIG. 3. 3D scaling configuration for the systemA1Z15e2.
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As discussed in Sec. IV, Poelstra, Feagin, and Klar@30#
suggested another formula for the Wannier index which d
fers from our Eq.~54! by the extra ‘‘phase factor’’N22.
This discrepancy remains hidden when one restricts con
eration to the case of two, three, or four electrons reced
from the positively charged core. In these cases the unst
mode proves to be, respectively, nondegenerate, doubly
generate, and triply degenerate. Thus the degree of de
eracy in these casescoincides withN22. This fortuitously
allows one to replace the summation over degenerate m
implied by formula ~54! by multiplication over the factor
N22, which corresponds to the formula in Ref.@30#. How-
ever, this coincidence is accidental and misleading. It is b
ken, for instance, by variation of charges and masses of
constituent particles which violates the SC’s symmetry, a
hence lifts the mode’s degeneracy, or by considering lar
numbers of particlesN ~simply because possible degrees
degeneracy are restricted by properties of the point group
3D space!. For five electrons receding from a charged co
only doubly degenerate unstable modes were found abo

Physically it is clear that if the charge of the coreZ in the
systemAZ1(N21)e becomes larger, then the interelectro
correlations should become less important and the thres
law should approach the value obtained from the pha
space arguments, i.e.,m→(N22) asZ→`. This conclusion
is supported by all examples considered. Moreover in
these examples one can note that:~i! the number of unstable
modes accounting for their degeneracy@i.e., the number of
terms in sum~54!# is equal toN22, and ~ii ! each partial
Wannier indexmk0 @Eq. ~55!# tends to unity from above asZ
increases.

An apparent exception from rule~i! is an emergence of an
additional unstable mode in the planeA1Z14e SC for Z
51. However, this SC providesm larger than the 3D SC, and
therefore it does not govern the threshold behavior. Note
although these properties are physically very natural, it is
clear if they can be proven rigorously from first principle
An additional observation is that the electrons in the SC te
to be distributed uniformly on the sphere, even when
corresponding perfectly symmetrical body does not exist~see
the five-electron case above!. For a large number of electron
in the field of the core, several competing SC’s are found
produce very close threshold indices. Still, in all the ca

FIG. 4. Plane scaling configuration for the system 2Xm
Z 12e2.
e-
TABLE V. Parameters of SC’s and Wannier indices for the 2Xm
Z 12e system. The numbers in parenth

ses indicate the degree of unstable mode degeneracy.

Z m a m1 m2 m3 m

1 1 a545° 1.293 66 0.905 84~2! — 3.105 33
2 1 a532.2093° 1.367 62 1.336 43 — 2.704 05
1 2 a535.9490° 1.569 58 1.317 88 0.543 15 3.430 62
1 1836 a530.0049° 50.329 79 37.462 32 — 87.792 11
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considered, the leading SC is found to be the thr
dimensional one.

These results hopefully should hold if the electrons
replaced by other~possibly different! negatively charged par
ticles. However, the situation changes drastically if one
the ‘‘electrons’’ is replaced by a particle of positive charg
for example, a positron. It is essential that an additionalre-
pulsive Coulomb interactionappears in the system. If corre
lations are neglected, then the cross section decreases
nentially asE approaches threshold. One could expect t
although the true threshold law retains a power character
all values ofZ, it tends to mock the exponential behavior b
increasing the value ofm @53#. This property holds for all
positron-containing systems considered above. The thres
index increases quite slowly withZ. In order to illustrate the
later point quantitatively, we cite results for theA1Z12e2

1e1 system with very large values ofZ ~cf. Sec. V B!: m
59.4 for Z550 (a55.60°, b537.2°), andm511.6 for Z
5100 (a53.95°, b537.8°). In general terms, one can a
gue that a similar situation should arise when a system c
tains two or more positively charged particlesand two or
more particles with negative charge. Note that the proper
of the partial Wannier indicesmk0 are less straightforward
some of them could be less than unity, and vary withZ
nonmonotonically.

Large values of threshold indexesm are unfavorable for
an experimental observation of the threshold behavior: c
to the threshold the cross section proves to be too small t
observable, and for higher excess energies the intrinsic
viations from the threshold law become essential. An ana
sis of the energy domain where the threshold law hold
beyond the scope of this paper. Still, we can note that for
electron-impact ionization of atoms or for double photoio
ization this domain is limited to few eV above threshold~for
a quantitative treatment within the Wannier mechanism,
Refs.@4,12#!. For the positron-impact ionization the applic
bility domain is even less@12,13#. As argued by Ihraet al.
@18#, an agreement with experimental data could be subs
tially improved if the interaction of different modes in th
deviation from SC’s is taken into account. Possibly so
procedure to assess for the mode interaction could also
developed for the multifragment system; the present de
opment provides a necessary first step for more advan
approaches. One could also note that even very large thr
old indices could~quite unexpectedly! be useful for con-
structing formulas of interpolation character, as shown in
recent paper by Rost and Pattard@20#.
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APPENDIX A: EIGENVALUES OF V MATRIX
CORRESPONDING TO ROTATIONS

AND TRANSLATIONS IN TIME

If the N-particle system is rotated as a whole over
infinitisemal~time-independent! angledw around the axisnW ,
then the particle coordinates receive increments

drW j
~n!5~nW 3rW j !dw. ~A1!

The form of Newtonian equations of motion

mj

d2rW j

dt2
52

]U

]rW j

~A2!

remains invariant under rotations. This implies that

mj

d2drW j

dt2
52(

i 51

N
]2U

]rW i]rW j

drW j , ~A3!

wheredrW j5drW j
(n) . For SC’s one can use Eqs.~A1! and~1! to

obtain

d2drW j
~n!

dt2
5

1

f

d2f

dt2
drW j

~n! . ~A4!

Bearing in mind that according to Eq.~18!,

f2
d2f

dt2
52
Q0

M ~A5!

and using definition~29!, we finally obtain

1

mj
(
i 51

N

Vji drW i
~n!5
Q0

M drW j
~n! , ~A6!

which means that the grand vectordr (n) is an eigenvector of
the grand matrixKV with the eigenvalueQ0 /M. Generally
there are three eigenvectors corresponding to this eigenva
but for linear SC’s only two independent rotations are p
sible.

Now consider a variation of the trajectory caused by
shifting of time over an infinitesimal intervalt→t1dt, using
a similar technique. For the system in a SC, the part
coordinates are incremented in this case by

drW j
~SC!5vW jdt5

df

dt
rW jdt. ~A7!

The form of Newtonian equations of motion obviously r
mains invariant under the shift of the time variable. The
fore, Eq.~A3! remains valid fordrW j5drW j

(SC). An analogue of
Eq. ~A4! now reads

d2drW j
~SC!

dt2
5S df

dt D
21 d3f

dt3
drW j

~SC! . ~A8!
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Differentiating Eq.~A5!, we obtain

d3f

dt3
5

2Q0

M
1

f3

df

dt
, ~A9!

which finally brings us to
.

ys

J

Z.

ol
A

-

y

pe
1

mj
(
i 51

N

Vji drW i
~SC!52

2Q0

M drW j
~SC! . ~A10!

Since the grand vectord r (SC) is proportional to the grand
vector r which defines the SC shape, we conclude that
latter vector is an eigenvector of the grand matrixKV with
the eigenvalue22Q0 /M.
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@7# M. S. Dimitriević, P. Grujić, and N.S. Simonovic´, J. Phys. B
27, 5717 ~1994!; W. Ihra, F. Mota-Furtado, and P. F
O’Mahony, Phys. Rev. A55, 4263~1997!.

@8# A. K. Kazansky and V. N. Ostrovsky, J. Phys. IV3, 159
~1993!; J. Phys. B27, 447 ~1994!; 28, 1453~1995!; 28, L333
~1995!; Phys. Rev. A51, 3712 ~1995!; 51, 3698 ~1995!; 52,
1175 ~1995!; Few-Body Syst., Suppl.8, 80 ~1995!; P. O.
Bogdanovich, A. K. Kazansky, and V. N. Ostrovsky, J. Ph
B 30, 921 ~1997!.

@9# J. Macek and S. Yu. Ovchinnikov, Phys. Rev. A49, R4273
~1994!; 50, 468 ~1994!.

@10# N. S. Simonovic´, Phys. Rev. A50, 4390~1994!.
@11# A. K. Kazansky, V. N. Ostrovsky, and L. Yu. Sergeeva,

Phys. B27, 5197~1994!.
@12# A. K. Kazansky, V. N. Ostrovsky, and L. Yu. Sergeeva,

Phys. D33, 181 ~1995!.
@13# P. Ashley, J. Moxom, and G. Laricchia, Phys. Rev. Lett.77,

1250 ~1996!.
@14# S. Watanabe and D. Kato, J. Phys. B29, L779 ~1996!; S.

Watanabe, D. Kato, and M. Matsuzawa, Comments At. M
Phys.33, 95 ~1996!; D. Kato and S. Watanabe, Phys. Rev.
56, 3687~1997!.

@15# J. Macek and W. Ihra, Phys. Rev. A55, 2024~1996!; W. Ihra,
F. Mota-Furtado, P. F. O’Mahony, and J. H. Macek,ibid. 55,
3250 ~1997!.

@16# A. K. Kazansky and V. N. Ostrovsky, in5th International
Workshop on Autoionization Phenomena in Atoms, edited by
V. V. Balashov, A. A. Grum-Grzhimailo, and E. A. Ro
manovsky ~Moscow University Press, Moscow, 1996!, pp.
67–71.

@17# M. Yu. Kuchiev, J. Phys. B30, 3499~1997!.
@18# W. Ihra, J. Macek, F. Mota-Furtado, and P. F. O’Mahon

Phys. Rev. Lett.78, 4027~1997!.
@19# J. M. Feagin and M. J. Goddard, J. Phys. B30, 693 ~1997!.
@20# J. M. Rost and T. Pattard, Phys. Rev. A55, R5 ~1997!.
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@47# P. Grujić, J. Phys. B15, 1913~1982!.



ht
-

ly
e of

PRA 58 335THRESHOLD LAWS FOR THE BREAKUP OF ATOMIC . . .
@48# It is worth mentioning that, at variance with Klar and Schlec
we obtain a correct value ofm without appealing to the con
tributions from undetermined angular variablesc and w; see
p. 1709 of Ref.@22#.

@49# The SC’sLb and P for this system were discussed original
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