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Beyond the Thomas-Fermi approximation for a trapped condensed Bose-Einstein gas
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Corrections to the zero-temperature Thomas-Fermi description of a dilute interacting condensed Bose-
Einstein gas confined in an isotropic harmonic trap arise due to the presence of a boundary layer near the
condensate surface. Within the Bogoliubov approximation, the various contributions to the ground-state con-
densate energy all have terms of ordRr*in R and R4, whereR is the number-dependent dimensionless
condensate radius in units of the oscillator lengthmw,. The zero-order hydrodynamic density-fluctuation
amplitudes are extended beyond the Thomas-Fermi radius through the boundary layer to provide a uniform
description throughout all space. The first-order correction to the excitation frequencies is shown to be of order
R™%. [S1050-29478)06810-3

PACS numbse(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

[. INTRODUCTION of the condensate radius; the formally divergent TF kinetic
energy is cut off by a boundary layer of thickness
The recent experimental realization of Bose-Einstein con-d= R™%3 whereR is the (large) dimensionless TF conden-
densationBEC) of alkali-metal gases in magnetic trajfls-  sate radius.
3] has generated great interest in the physics of a confined, The present work extends the boundary-layer formalism
interacting, dilute Bose gas. In the Bogoliubov approxima-Of Ref.[21] to determine the leading-order corrections to the
tion [4], which is generally valid at temperatures well below TF description of the condensate wave function, the conden-
the BEC transition temperature, the macroscopic occupatiofate energy, and the low-lying collective modes. Section Il
of the ground state far exceeds that of excited states; theummarizes the basic formalism and obtains the first correc-
condensate is then described by the relevant Gross-Pitaevskipn to the condensate wave function, both in the bidk
(GP) equation[5,6]. This equation has been solved numeri-orderR™%) and in the boundary layeiof order 8). In Sec.
cally for bosons in both isotropiZ—9] and anisotropi¢10] lll, we show that this perturbative expansion gives rise to
traps, and analytically in the limits of both a nearly ideal gascorrection terms of relative ordé® “InR and R™* in the
(weak interparticle interactionsand a dilute nonideal gas normalization of the condensate wave function and in the
(strong interparticle interaction$11,12. trap and interaction energies of the condensate. A combina-
Given the resulting condensate wave functibnthe lin-  tion with the previously evaluated kinetic energ31] pro-
earized small normal-mode amplitudesand v satisfy the Vides the leading correction to the TF total condensate en-
coupled Bogoliubov equation$], which contain the con- €rgy. In Sec. IV, we show that the structure of the condensate
densate densitj¥|? through the potential energy of interac- boundary layer plays an essential role in constructing the
tion. An alternative hydrodynamic approach makes use oforresponding boundary layer for the analytical hydrody-
the fluctuations in the density and the velocity. It has beefiamic normal modeg16]; the resulting hydrodynamic am-
shown to be wholly equivalent to the Bogoliubov descriptionplitudes for the density and current fluctuations vanish expo-
[13-15, and it accurately describes the low-lying excited hentially asr—co, as expected from their equivalence to the
stated 16—18, as recent experiments have verifid®,20in  eigenfunctions of the coupled Bogoliubov equations.
considerable detail.
For large particle number, the mean kinetic energy of the Il. CONDENSATE WAVE FUNCTION
condensate is much smaller than both the interactider- ) ) o )
tree and trap confinement energies. Neglecting the kinetic For a dilute interacting inhomogeneous Bose gas in an
energy entirely, corresponding to the Thomas-Fefff) ap-  1SOtropic trap poten_tla‘l/ext at zero temperature, the total oc-
proximation, provides an accurate description of the condertcupation of the excited states is small, and one can apply the
sate in the interior of the cloud. Near the surface of theBogoliubov approximatiof4,22]. The spatially varying con-
trapped gas, however, the kinetic and external potential erflensate wave functio (r) is then isotropic and satisfies the
ergies become comparable, and the TF approximation breakstationary GP[5] equation:
down. Using a boundary-layer theory, Dalfovo, Pitaevskii,
and Stringar{21] calculated the kinetic energy as a function (T+ Vet Vy—u)¥(r)=0, (1)

whereT=—#%2V?2/2m is the kinetic energy, and the trap po-
*Present address: Electron and Optical Physics Division, Nationadlential Ve,(r) = me3r /2 is taken to be isotropic for simplic-
Institute of Standards and Technology, Gaithersburg, MD 20899. ity. The Hartree energy is the mean energy of interaction of
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a particle atr with all the other particles, defined &4,(r)
=[d3"U(r=r")|W¥(r")|?~g|¥(r)|?, where the last form
reflects the short-range two-body interactiod(r)~
go®(r). To leading order,
g=4mah?/m is written in terms of thélow-energy swave

scattering lengtta to make contact with experiment; in the

present work we only consider>0, corresponding to inter-
particle repulsion. The chemical potentjal fixes the total
number of condensed atorg = [d3r|W(r)|? through

MNO=<T>+<Vext>+<VH>v i)

where the noncondensate contribution to the chemical pote

tial is neglected and- - -)=[d3 ¥*...¥ denotes an ex-
pectation value in the condensate ground state.

It is convenient to use the oscillator lenglh= V% /mw,
and the oscillator energyw, as the basic dimensional units.
Thus we introduce the dimensionless lengtar/d,, and
the dimensionless parameter

Noa

o=

i ®

that characterizes the strength of the interparticle mteracx 1. however, wher&

tions. Experimental conditions typically givg,>1, corre-
sponding to a strongly interacting systefhl] (but the

Bogoliubov approximation still requires a dilute system

-1/3

with a large interparticle spacing relative toa). |

this TF limit, the repulsive interactions expand the con-
densate cloud beyond, to a large dimensionless radius

RoNg U5 (expressed in units o) [11]. The kinetic energy

ALEXANDER L. FETTER AND DAVID L. FEDER

the coupling constant

&y

PRA 58
o’ =<Vext>_& * ~ 2
(Ve = 2 —2}.10f0 dx X W (x)|?, (8
W H>—<V”>=—f Tl ©
<’T>E<—2: fdxx2|x1f (x)|?, (10)

where all the energies are expressed in unit% ef,, and

=d¥/dx is the scaled radial derivative.
In the TF limit, one sets the small parameteto zero
in Eg. (5). The approximate condensate wave function

P (x) ~P(X) 0(1—x) =\ 3(1—x?) 6(1—x) accurately de-
scrlbes the condensate in the biill0,11], where we take
w=1%, definingthe condensate radius R(x)=\2u. With
this ch0|ce the normalization condition E() then deter-
mines the condensate numiéy in terms of the radiu® and
the chemical potential.

The Thomas-Fermi apprOX|mat|on fails near the surface at

oxt= 5x% is comparable tqu; in this
region, the kinetic term in Eq5) becomes significant, giv-
ing rise to a logarithmic divergence in EL0). For small
positive €, a boundary layer of thicknes8 forms in the
vicinity of x=1 where the condensate wave function varies
rapidly. Using standard techniques in boundary-layer theory

[23], we define an outer solutioW .= x(x) valid in the

in Eq (1) then becomes small, and the condensate densitjulk region 0<x<x,<1, and an inner SOIUtioR e, Valid

has a simple parabolic forrmg=|¥|?~g~ }(u—Vey)
=(u/g)(1—2%/R?). Sinceny=N, scales likeR®, it is con-
venient to define
—7 pb
70= 10R", 4
where 7, approaches a constant value for laRjeDefining
a scaled variabla=2z/R, the full Gross-Pitaevskii equation
(1) becomes
[—2eVi+ax?

+| ¥ (x) |2~ 1]¥(x)=0, (5)

where e=1/R* is a small coefficient in the present linfR

—oo, and u=pu/R? is the scaled chemical potential. Here

the scaled condensate wave function

V2= 2_
Bp= 2T e 2T

I*I'I2 (6)

becomes independent Bffor largeR.

hroughout the surface regiory<x<o; an asymptotic
analysis matches these two solutions near the bounxlary
%Xo.

The outer(bulk) solution y may be expressed as a pertur-
bation series in powers af.

x(X)=xo(X)+ex1(xX)+--+, O0=<x=<Xq. (11
Substituting Eq(11) into Eq. (5) yields
O(e%):  x5(x)=3(1=x?), (12
VxXO Xz_%
O(eh):  2xo(X)x1(X)=—%5_— 2% 0E1)? (13)

where we have sgi= 3, and specialized to the present case
of a real isotropic condensate wave function. In order to
determine the asymptotic behavior of the outer solution near
the boundary, one may write=1+ 6X with §|X|<1 and
|>1 (where X is large and negatiye As X——x, a

X
The normalization of the condensate wave function |s straightforward calculation reveals

then written

7o

0= = [ ol T ool @

1 ) a\?’z(—xﬁ’?( 21)
8x?) a4 |7 8xt
" (14)

X(x)~51/2(_x)1/2( 1+

+ ..

which defines the condensate radius in terms of the particle
number. Correspondingly, the scaled chemical potential folwhere the leading-order behavior §?) agrees with previ-
lows from Eq.(2) asu=(Vet+ Vy+T), where ous calculation§24].
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The asymptotic behavior of the outer solution implies that

~ No
the inner solution has the forfit,,e(X) = 62 (X); it may (My~—=5;
be expanded as a seriesdn 7o

. (23

1 In2 M
12 6 2

7 Y, where the constants, L, andM are also definite integrals

e X) = Y Do(X) + 001 (X) - -], (19 involving the inner functior®y(X). A combination of ana-

whereX,<X<® andX, is large and negative. Substituting lytical and numerical techniques gives the explicit results
Eq. (15 into Eq. (5) immediately gives the “distinguished

limit” [23] e=26° that balances the leading-ordgradient 1=0, (24)
and nonlinear terms in the resultant differential equation. 3 5
We readily obtain J=3l—2, (25
0(8°%):  DHX)—[X+D5(X)]Do(X)=0,  (16) K=%L—%, (26)
0(8Y):  ®Y(X)—[X+3D3(X)]D(X) L~0.4539, (27)
=20 )(X)+ 1 X2D,. M=3L—1, (28)
17
] ] ) ] such thakK +L=J+ M.
It is straightforward to verify that, foX— —c, the inner Inserting the explicit expressions from E¢®1)—(23) into
functions®(X) exactly reproduce Eq14): Eq. (2), we immediately recover = R?, demonstrating the
internal consistency of the calculation. Equati@0) implies
X)~ (=X 1’2( 1+ ) 18
7o 0~ n 15
(% 21 15 2 12
~ 15~ 5 N(1.412®R), (29)

For large positiveX, ¥;,..(X) is asymptotically propor-
tional to an Airy function, and therefore decays exponen-where the constari is
tially. Indeed, since Eq(16) defines what is known as the
second Painlevetranscendent, the boundary condition A=21exp3L+1%)~1.268. (30)
D o(X—%)~\2Ai(X)~(27)  Y2X Yexp(-2Xx¥?) must
be imposed in order to ensure an unbounded solution foEquation(29) relates the condensate number to the chemical
®,(X) with no critical points over alX [25]. potential (and hence the condensate ragliwconversely, its
inverse,
I1l. CONDENSATE ENERGIES

o _ R(70)=~(1570) >+ 15(1550) ~¥An(84.46n,), (31)
The normalization of the condensate wave function can

now be determined explicitly from Eq7) by separating the relates the radius of the cloend the chemical potentjaio
integral into two parts at,. An expansion of each contribu- the condensate number. In each case, the first terms corre-
tion shows that the resulting sum is independent of the&pond to the TF resultL1].

matching pointxo=1+ 6Xy, and yields The various contributions to the total eneridyys. (8)—
(10)] yield
1 5 1 | 1 In2
7]~1—5+5|+86n6+6 >4 T+J , (20 <V6X‘> 3R? 5 R
N [1 3R4IH(K” (32
wherel andJ are definite integrals involving the inner func- 0
tion ®y(X) (see Appendix A for details In fact, | can be v > >R2 R
shown to vanish identically, so that the leading corrections H [ -= (_” (33
are of ordeR~4In RandR™* (instead of ordeR~#°implicit No A
in the term of orders?).
A similar analysis yields the physical quantities in Egs. (Mm 5 (R 34
(8)—(10): Ny 2rRZM A (34)
1,1 5 In2 and the energies are expressed in unité of,.
(Ve ~ 35+5 I+ 5genetel 52— 5 ’ The expression for the kinetic energy in E@4) is a
(21) small correction that involves only the leading contributions
to the bulk condensate wave function and the boundary
1 n2 L layer; it reproduces the result of R¢21], and is similar to
(V)= [105+ 1—26In etel——3t3|| (220 that found in Ref[24]. It should be kept in mind, however,
that the present calculation defines the condensate rRdius
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terms of the chemical potential=1R?; it therefore includes 05 o ‘

correction terms beyond the TF approximation, as shown in e
Eq. (31). 6l P
The remaining contributiongEgs. (32) and (33)] explic- 0.4 7

itly require the leading correctiong; and®; and have not
been evaluated previously. The dimensionless total energ
per particle(E)/Ng=(T+ Vet 3Vy) is found to be 0.3

R4

where the first and second terms are, respectively, the star™!
dard TF result and the combined contribution from both the
boundary layer and the first correction to the bulk condensate

wave function. Equationé29) and (35) together constitute a 0.0, 200 00 600 300 1000
parametric representation of the relatid(N,)) [26], and it n,
is not difficult to verify thatu=d(E)/dNy.

In fact, Stringari[16,27] noted that Eqs(32)—(33) and FIG. 1. Contribution of the kinetic energy in units éfw, is

(35) can be obtained solely from the expression for the ki-shown as a function of the universal scaling parameigr
netic energy(34). The virial theorem implies that the three =Noa/do. The kinetic energy per particle is calculated numerically

contributions to the total energy must satisfy the condition Py direct integration of the GP equati¢solid bold, and analyti-
cally by the boundary-layer theorfgashed bolg whose result is

given in Eq.(34). The dashed thin line is the difference between the
2(T)+ (Vi) —2(Vey =0. (36) exact total energy per particleomputed numericallyand the full
boundary-layer theory in Eq35). The solid thin line corresponds
to the similar difference keeping only the approximate result of the
The leading-order contributions to the potential energied F theory[the first term of Eq(35)]. The total energies per particle
(Vexy and(Vy) are known from TF theory, and the correc- for a restricted range ofy, are shown in the inset for t_he exact
tion terms must have the sarfedependence as the kinetic (S0lid), boundary-layefdasheqi and TF(long dashefitheories. On
energy but with unknown coefficients. Equatied6) and the this restn(_:tegl scale, the curves for the boundary-layer and exact
condition = J(E)/ N, together determine for the unknown "€Sults coincide.
coefficients, reproducing the expressions found above by di-
rect integration.
As shown in Fig. 1, the results of the boundary-layer
theory agree strikingly with exact results obtained by inte-
grating the GP equatiof) numerically. The analytical slow and
R 2InR decay of the average kinetic energy per particle
(shown dashed boJdwith the universal scaling parameter Gi(x)= uj(x) —v;j(x) (37
n0=Npa/d,y accurately captures the behavior obtained nu- y T(x)
merically (shown solid bold As a result, the boundary-layer
theory provides a much better estimate of the total energyhich are essentially the hydrodynamic amplitudes. Specifi-
per particle(and therefore the chemical potenighan does ~ cally, the perturbation in the velocity potenti@| is propor-
the TF approximation. In spite of the slow decrease in thdional toF; (so that the perturbation in the current density is
magnitude of T)/N, with the number of particles, however, Proportional to¥?VF;) and the density perturbatiop; is
it should be emphasized that the TF approximation to thdroportional to¥?G; . In the TF limit, it is convenient to
total energy and the chemical potential is correct to betterescale these amplitudes, wiﬁﬁjzRT:j and Gj=éj/R,
than 1% wheny,~ 1000, due to theiR? increase. yielding the coupled linear equations

uj(x) +v;(x)

—3V-(V2VF)) =E;T%G;, (39
IV. EXCITED-STATE WAVE FUNCTIONS

In the Bogoliubov approximation at zero temperature, the 2\1'4(31'_ %GV'(\I’ZVGQ: EJ‘PZFJ ' (39)
interparticle repulsions excite only a small fraction of all the <y ]
particles out of the ground state into self-consistent normayhere¥< is the (rea) scaled condensate density from Eq.
modes. The resulting eigenfunctions(x) and v;(x) and  (6). Equations(38) and(39) are self-adjoint, with a normal-
eigenvaluesk; for the noncondensate modes satisfy theization integralfd3x\P2(F}‘Gj+G}* F;)=1 chosen to ensure
coupled linear Bogoliubov equation4,6,22. For the positive energie&; for the stable solutiong22].
present purpose, it is convenient to factor out the ekaet) In the TF regime R—x), Stringari[16] solved these
GP condensate wave functioki, defining sum and differ- coupled equations for a stationary isotropic condensate, but
ence amplitudefl5] the resulting hydrodynamic eigenfunctions are defined only
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|n3|de the co.ndensatexﬁl). In contrast, the original Bogo- 0(€%): ﬁﬂ|~p2,(1)+ 5Xpﬂ|’(1)+%52X2p2,”(1)
liubov equations are well defined throughout the whole re-
gion, including the classically forbidden regioxs{1). Thus + %53X3p2,”'(1), (48
it is interesting to develop a boundary-layer description of
the excited states similar to that for the condensate. 0
=0 En 0 04 52%2G%+ 53X3G0
' Gp~— 25)({Ga+ SXGy+ 8°X“G¢+ 8°X°Ggl, (49
A. Outer (bulk) region
In the “outer” region (0<x=<xy<1), we follow the pro- . . .
cedure for the condensate and expand the outer scaled am-o . Fe Fa N Fb N E+FE+FEIn(— 5%
plitudes(37) and eigenvalues in powers ef ' o3 g2x2 oxX 4 e
Fi~F)+eFi+- -, (40) +F{In?(— 8X), (50)
= =0, =
|~ - + + = tGgt+Geln(—
Ej~E+eEf+ - .. (42) 28X X3 %2 eX T T
Substituting these expressions into E(8) and (39), and 2 Esipm(1)
: ! : A +G{IN?(—=0X) | — —Hmv— (51
including the outer expansion of the condensate given in Eq. 256X
(11), one obtains
EORO where the constan®s:_; andG2<; are relegated to Appen-
O(€%: _V.(ngfz?)_(E?)Z'ﬁ?:o, (”;JQ: J 2‘ , dix B for clarity. Expansion48) is the conventional Taylor
2Xo series of the zeroth-order amplitud@%’,(x) about x=1,
(43 where a prime denotes a derivative evaluatedkatl. A
~ e Ovo=e straightforward calculation following from the properties of
O(e):  —V-(xgVFj)—(E))°F;j the hypergeometric functiofl5,28 shows that
(EJ-O)2 ﬁ?) l 3
= V- x3v| —= 0 rda+sn! 0 02 0
4xo |70\ X2 p(D=(—1)"—————, pp(V=(Ep)?pRi(1), . ..,
Xo Xo ni T(n+l1+3) nl nt) Pni
+2V-(xoxaVFO) +2EPESFY, (44) (52
0 =0 0, FO with higher-order values listed in Appendix B. Sinee
~. Ej F| s ~o. EMXiF| 1€5 I _
Gi=2—72V- x&v ||t F(E?FH EJ-EF?)——3, =26% the outer solutions in the regiax~1 are, respec-
Xo Xo Xo Xo 45 tively, Fr,~F%+256°F¢, andG,,~G0 +25°G¢,.
The spherical symmetry of the condensate density permits B. Inner (boundary-layer) region

a decomposition into spherical harmonics, with the normal-
mode amplitudes proportional 6,,(6,¢). Equations(43)
may then be solved explicitly, and the correspondingnor-
malized zeroth-order radial amplitudes can be taken as

The need for a boundary-layer description of the eigen-
functions is clear from the form of condensate density
P (x)%2= 6®(X)? and the gradienV,= 81V (arising from
the substitutiorx=1+ 6X). As a result, the second term on

EO EO the left-hand side of Eq:39) is now of orderex &/ §°~ &2,
EO(x)=p%(x)=x'Py(x?), &°=—1 2"', (46)  which is wholly comparable with the first term and thus no
Xo longer negligible in zero order. It is not difficult to see that
where the radial quantum numberdenotes the number of :]rf/ l[;r;epreirsscallng of the two inner amplitudes in the bound
nodes. Here the eigenvalues take the well-known rg¢46lt
0 ~ ~ Bnl(x)
EX=\l+n(2n+21+3), (47) Fra()=Ay(X) and Gu(x)=—%—. (53

and P (x2)=F(—n,n+1+2;1+32;x? is a hypergeometric

function [28] that terminates to give a polynomial of order The gradients in Eqs38) and (39) must be expanded in

x2N, ascending powers of, leading to the following coupled
While analytical solutions to the inhomogeneous differen-equations for the inner solutions

tial equations(44) and (45 are not easy to find, the

asymptotic behavior of all the outer solutions in the vicinity d| ,dA, 20% dA, | LI(I+1)®?

qf the boundary.layex~1 may be read|_ly ascertained. Set- ﬁ( dx ) 1+ X dX + (1+ 0X)2 Ani

ting x=1+ 6X with X<—1 and expanding througb(5°),

we obtain =26E,D?B,, (54)
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d( ,dBy 292 dB, L +1)P? While a closed-form solution cannot be found, the behavior
T dx @ dX | %1+ sX dXx (1+ 6X)2 Bni in the overlap regiorK— —« is easily obtained:
g - 2 EQpm(L) 1\ Efpm(D)
+204B,, =E,D?A,,. (55) BL (%)~ — n|p2m (Eﬁ.z— E) B mg; (64

The asymptotic expressions for the outer amplitudes in
the boundary region, Eq$48)—(51), indicate that a simple Matching the inner solutiol?, with the outer functiorG,

expansion of the inner functions in powers &fis insuffi- g orders requwesEn,—O It then becomes possible to wrlte
cient. In order to ensure a match in the vicinity of the bound-, expression foB. 1 (X) valid for all X:

ary layer to orderO(e)=0(6%), the inner solutions must

also include the nontrivial terms®in 6 and &°In*s. The ) E® p0,(1)E.(X)+E%p, (1) E y(X)
eigenfunctions and eigenvalues are therefore expanded inthe  B;,(X)= Dy(X) , (65
forms 0

where the two function& , and =, satisfy inhomogeneous

0 1 202
Ani(X) = Aqi(X) + 8A (X) + 62A5(X) + 8°Aqi(X) equations similar to Eq17) for @ :

2 5
+ 8% 6AM(X) + 8%In26A3 (X), (56) — B4 (X+3DD)E,

Bni(X)=BY,(X)+ 8B (X) + 82BE,(X) + 6°B3 (X) d @, d [P}
=4(I)0<D6<D1—2¢>05((X+—)— - |

+8%In 8B, (X) + 6°In?6B3,(X), (57) Do/ dX| Dy
(66)
En=ES + SEL + 6%E2,+ 6°E3 + 6%In 6E1 + 5°In?6E2,
(58) —Ep+ (X+3D3)E,=XD,. (67)
Inserting these expansions into E¢$) and(55), and taking  For large negative X, the solutions approach=,
into account the inner expansion for the condenga(&)  ~1(—Xx)¥2 and Ey~-1(-X)¥2 so that B}, indeed
=Po(X)+6P(X)+---, one obtains equations for the matches the first correction term in E¢9). Each additional
lowest-order inner functions: term in 8 may be analyzed in a similar fashion; the procedure
_ 200 1us is straightforward but extremely tedious, so explicit solutions
O(&8%:  —(PgAn") =0, (59 for the inner functions in the overlap regidmwhich are
0 4n0 lengthy) are omitted for brevity. It is important to note, how-
—(PFBn) +2®Bn=Ep @AY, (60)  ever, thatboth inner functionsA,, and B, be properly
matched to their outer region counterparts at each stage, in
O(8Y): — (DALY —2(De®,AY") —2D3AY) order to yield conditions on both the unknown coefficients
and the eigenvalue corrections.
_2Eﬂ|cp n,, (61) By following the above prescription in turn for each term
in the inner expansion, it can be shown that all corrections to
_(cp2|31 ')'—2(¢o¢152|')'—2¢332|' the eigenvalue with prefactors smaller tHags®) [including
the O(5°%In 8) andO(5°%In?8) termg must vanish identically.
+2dBp+8D5P,BY, This result may be formally understood as follows. The den-
sity perturbation and the velocity-potential perturbation each
=EQ (DAL +2dD,A%) +EL DAY, (62  have corrections to all orders both in the inner and outer
regions; in contrast, the only correction term in the outer
where a prime denotes a derivative with respecXio perturbation expansion of the ener@®) is of orders°. In

Equation(59) can be solved by takingﬂ, as a constant, order to ensure a smooth asymptotic match between the bulk
and comparison with the first term of E@8) shows that and surface amplitudes to each successive order, all the en-
A% =p%(1). In contrast, Eq(60) is inhomogeneous, with €rgy corrections appearing in the inner expangi®) with

the explicit solution coefficients smaller thad® must match to zer¢the orders
case was considered explicitly abgv@he introduction of
0 Enipmi(1) d®o(X) o o, dindg(X)? logarithmic terms to the outer perturbation expansions would
Bni(X)=— DoX)dX =—3Enpni )—gx - dive rise to additional contributions in the overlap region,

(63) leading to inconsistencies in the asymptotic match. The ei-
genvalue correction of ordes® is finite, however:E3,
By inserting the asymptotic expressi@B) for ®y(X), itis  =2Ep,. Thus
simple to verify thatB? a1(X) matches the leading term of Eq.
(49).
The solution to Eq(61) is readily found to beAl 21(X)
—pnI "(1)X, which is identical to the second correction term
of the outer solution. The other correcti@f,(X) satisfies a Equations(31) and (68) together yield the number depen-
somewhat more complicated inhomogeneous equd6@n  dence of the excitation frequencies in the TF limit. The

Ee
En=E%+— (69)
R4
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asymptotic match reveals an energy correction of order dent upomn andl, or if the number of atoms were very low
=R~ % exists, but unfortunately it does not indicate its mag-(small R). One may estimate the difference between0

nitude nor its variation witm,|. o energies obtained with and without a logarithmic correction,
The presgnt boundary-layer theory |_nd|c:_;\tes that the erpy assuminge§ ~I(1—1)8,/2 [16] where 8,=InR and 3,
ergy correction of ordes’ln & vanishes identically. In con-  Z7 respectively. The deviation between the two approxima-

trast, a sum-rule approa¢h6,29 does yield a logarithmic ons is independent of angular momentum, is largest when

correction to the eigenvalues, proportional to the ratio of then0~30, and is at most 2% of the mode frequency when

average kinetic energy34) and external potential energy _1 at present, therefore, the data are consistent with either
(32). This latter approach assumes that a single frequenc, eory

exhausts the sum rule. Such an assumption is thought to be The (n,1) dependence of the energy correcti8f in E
valid in the hydrodynamic regime where a given perturbation ' P €19y ﬁ] 9
excites essentially all of the atoms into a particular low-(88 cannot be found by conventional perturbation theory.

energy collective modE80,31. In the vicinity of the bound- This. situation arisgs pecguse the explicit ?ntegrals, yvhich
ary layer, however, the density of atoms decreases considefliminate the logarithmic divergences, contain the nominally
ably, and the single-mode approximation may becoméinperturbed inner functions; these functions, in turn, are
insufficient. In practice, any |Ogarithmic correction to the themselves solutions of differential equations that ImpIICItIy

energy eigenvalues would be experimentally or numericallynclude the perturbing terms. Consequently, we have consid-
detectable only if the magnitude &f, were strongly depen- ered the readily derived variational expression

j AV[ET2VES VE, + 204G G, + 1 F2VGF . VG, ]

E;

, (69
[ERECTER

which is stationary for small variations about the exact soluvanishes forX— o, although it is nonzero inside the

tionsF; andG; . As a trial function, we use the unperturbed boundary region. For large positivg each term in Eq(70)
outer solutions in Eqg46), and the corresponding two-term vanishes exponentially, so that the density fluctuations be-
inner solutions given in Eq¥56) and (57); taken together, come negligible beyond the surface region.

these expressions constitute uniform unperturbed solutions Figure 2 shows the spatial variation of the hydrodynamic
throughout all space. If the various integrals are divided at amplitudes in the innefboundary-layer region, including
point Xo= 1+ 6X,, with Xg<—1 and §|Xo|<1, the correc- corrections of ordes and 8°. The velocity potential pertur-
tion terms arising from the behavior of the outer solutionpation,,(X)=A,(X) (dot-dashed lingto orders or 6% is a
near the TF boundary precisely cancel with those from theinear or quadratic function of the inner coordinateand
inner boundary-layer solutions, leaving dimensioniess intetherefore diverges at large positie In contrast, both the
grals_ of order I through 6°In?6. The asymptotic match density fluctuation p,,(X)=®2(X)B,(X) from Eg. (70)
requires that only the term proportional &8 remains finite, (solid line) and the perturbation in the current densjty

and a detailed evaluation shows that the integrals up to ord%gcpz XA’ (X) (sh hed i ish iallv i
5%In 8 indeed vanish. The explicit calculation to ordgt is (X)An(X) (short dashed linevanish exponentially in
the limit X—oo. In fact, such behavior of the density and

rohibitive, however to the profusion of relevant terms. : . )
prohibitive, however, due to the profusion of relevant te Scurrent-den3|ty amplitudes fot— o holds to all orders in§

The boundary-layer solutions given above now suffice to di £ th q : .
determine the approximate density fluctuation amplitude®S & direct consequence of the condensate wave function's

Pm“q’zém o order throughout the whole physical region, exponential decay. The results of the boundary-layer theory

. differ from those obtained within the TF approximation,
Inside the condensate, away from the boundary: X8 X, . : . -
L e ._where the density-fluctuation amplitudes are merely finite at
<1), the outer solution is simply the zero-order polynomlalthe TF radius
p(x) found by Stringari16]. The uniformly matching in- '

ner soluiont (X)%By () in the intervalX =< (where o8 U ST ECE T densate surtace. I
Xo=1+ 86X, with 8| Xo|<1 andXy,<—1) reduces to P '

particular, the velocity potential and density perturbation co-
o dby(X)2 o _ incide only in the outer regioK < — 1, reflecting the fact that
o=~ Pni(1) — 5 +28pn (1) Po(X) Ep(X) in the limit e—0 the zeroth-order amplitudés), and 3G,
obey the same differential equatiof3d). Since these unper-
turbed outer amplitudes are polynomials of order+d in
the variablex=1+ 6X, the inner functions must be ex-
panded to at least orde®®""' in order to ensure a perfect
It is not difficult to verify that the third term in Eq(70) asymptotic match.

0 _ dd,
+28pn(1)| Po(X)Ea(X) = 2@ (X) 55| (70
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20 - ‘ ‘ - though a detailed calculation of the coefficidffi, appears
1.0 prohibitive, the shift in excitation frequencies due to finite-
number effects should be relevant for current experiments

% even whenzgy>1; both the sum-rule approa¢h6] and nu-
157 = 05 1 A i ) merical calculation$32] indicate thatE, increases dramati-
X - AN #7  cally with bothn and|.
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FIG. 2. The(unnormalizedl hydrodynamic amplitudes and con-
densate wave function in the boundary layer are shown as a func-
tion of inner coordinat&. Bold and thin lines correspond to results  The constant$-M appearing in Eqd.7)—(10) are defined
calculated numerically to ordesand %, respectively. The univer- a5 follows:
sal parameter igjo=1000 giving 6~0.06, and therefor&X=—8
corresponds ta~0.5. With units chosen appropriately, the velocity | f

APPENDIX A: CONSTANTS FOR THE CONDENSATE

potential to orders (bold dot-dashed lineand the density pertur-

bation [bold solid line to orders, from Eq. (70)] coincide in the

overlap regionX<—1; while the former diverges a¥— o, the

latter decays exponentially. The perturbations in the current density .
(dashed linesto order & (bold) and &% (thin) are, respectively, J=
linear and quadratic in the overlap region, and decay exponentially

at large distances. The results are presentedrfd) €(0,2); the ® 4 (2)

overall sign of the inner hydrodynamic amplitudes is oda jrand + f dX| 2P+ 2 ) (A2)
the magnitude of the asymptotic slogfer large negativeX) in- -1
creases with. The inset shows the various amplitudes in the bulk
region as a function of outer coordinate In the outer region, the
velocity potential and density perturbation coincigdown as the
solid line); the former matches smoothly with that from the inner
region to orders? (thin dot-dashed line A perfect asymptotic ® 4 (2)

match of the outer current densityx(1—x?) (dashed lingto its +J dX| 2d5+ | (A3)
inner counterpart would require an inner expansion to ofder -t

0 o
dX((D(2J+X)+f dX ®3, (A1)
— 0 0

P2 X2 3)

ax 20ty 22
AKX 2ot 5 gy

IXDE  3X? 1)

-1
_ 4, - "V, - =
K—dex<2¢0+ 5t 5~ 8%

+J XD, (Ad)
-1

-1 1
V. DISCUSSION L:f dx(@é—xz—ﬁ

The zero-temperature Thomas-Fermi description of an in-
teracting dilute Bose-Einstein gas confined in an isotropic ., 1
harmonic trap has been extended to include contributions M:f dx(q)4+x(1)2__
from the condensate surface. For the condensate wave func- —o 0 0 4x
tion, we have generalized the boundary-layer formalism of (A5)
Ref.[21], obtaining analytic expressions for the expectation )
values of the trap and interaction energy that include thé\ote thatk+L=J+ M. The integral can be evaluated ana-
leading corrections due to the surface layer and to the bullytically by setting the lower limit taXo— — and integrat-
condensate wave function. The resulting total ground-statéd by parts:
energy, which includes all terms of ordBf inR andR™ 4,
has not been evaluated previously.

The Bogoliubov equations for the excited states are re-
written in hydrodynamic form, and solved to incorporate the
boundary layer to third order in the boundary-layer thicknes\uiltiplying Eq. (16) by @/ and integrating, one readily ob-
6R~ %3 This analysis provides a uniform extension of thetains
hydrodynamic normal modes found by Stringdr6] beyond
the TF condensate throughout the classically forbidden re- o 1 g
gion. The lowest-order correction to the excitation frequen- dX XCDOCI)():E[CD()Z— >
cies has the fornE¢/R* (namely, of ordere=R™%). Al- %o

+f dX(Dg+XD3).
-1

X3 oc
I= lim 70—2 dX XD oD} (A6)
Xo

XOﬂff)O

oo

(A7)

Xo
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The asymptotic behaviord8) and ®y(X—)=0 immedi-
ately give the result=0.

The derivation of the expressions fdrand K makes use
of the relation

— o0

o -1
fdxq>0<b1=—?—?—1f dXx X2

+f_ dX(2Dg+3XD3)  (A8)

which may be verified by integrating by parts, comparing
with Egs.(16)—(19), and employing the readily proved iden-
tity

* P 4 2
_ded)o =5 _de(<I>O+X<I>O). (A9)
Furthermore, with the identity

0 1 -1 0
2f dqu>g=—g—f dxxz—f dX®g,
(A10)

which may be easily confirmed by integrating by parts and
making use of the governing equati¢h6) for ®4(X), the
expressiongA2)—(A5) are found to be related:

J=35L—2, (A11)
K=3iL—%, (A12)
M=3IL-%. (A13)

APPENDIX B: CONSTANTS FOR THE EXCITATIONS

The constants appearing in the asymptotic expansions of
the outer amplitude&° and G2, Egs.(48)—(51), are ex-
plicitly written [wherepy(1)=p°(1) andE,=E2]:

po(1)=Edpo(1), (B1)

p6(1)=3[Eg—3E5+1(1+1)]pg(1), (B2)

BEYOND THE THOMAS-FERMI APPROXIMATION FORA . ..

pe(1)=4ES—10E4+5E3[I1(1+1)+5]

—13(1+1)}po(1),
GI=po(1),
Gp=[E5—321po(1),

GI=4[Eg—5E5+I(1+1)+1]pe(1),

G=4{2ES—29E3+5E[2I(1+1)+19]

~381(1+1)~ 9pg(1),

F5=0,

Fé=&[Ef—7E2+31(1+1)]po(1),
F§=Ct.

€ __ €
I:e_ b

Gg=—3po(1),

Gi=—3[E5—12]po(1),

G§=—H{E§—15E§—EJ[31(1+1)—70]

+8I(1+1)—66}pe(1)+Csg,

Ge=Cg,

whereC; andC; are constants of integration.
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