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Beyond the Thomas-Fermi approximation for a trapped condensed Bose-Einstein gas
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Corrections to the zero-temperature Thomas-Fermi description of a dilute interacting condensed Bose-
Einstein gas confined in an isotropic harmonic trap arise due to the presence of a boundary layer near the
condensate surface. Within the Bogoliubov approximation, the various contributions to the ground-state con-
densate energy all have terms of orderR24ln R and R24, whereR is the number-dependent dimensionless
condensate radius in units of the oscillator lengthA\/mv0. The zero-order hydrodynamic density-fluctuation
amplitudes are extended beyond the Thomas-Fermi radius through the boundary layer to provide a uniform
description throughout all space. The first-order correction to the excitation frequencies is shown to be of order
R24. @S1050-2947~98!06810-3#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

The recent experimental realization of Bose-Einstein c
densation~BEC! of alkali-metal gases in magnetic traps@1–
3# has generated great interest in the physics of a confi
interacting, dilute Bose gas. In the Bogoliubov approxim
tion @4#, which is generally valid at temperatures well belo
the BEC transition temperature, the macroscopic occupa
of the ground state far exceeds that of excited states;
condensate is then described by the relevant Gross-Pitae
~GP! equation@5,6#. This equation has been solved nume
cally for bosons in both isotropic@7–9# and anisotropic@10#
traps, and analytically in the limits of both a nearly ideal g
~weak interparticle interactions! and a dilute nonideal ga
~strong interparticle interactions! @11,12#.

Given the resulting condensate wave functionC, the lin-
earized small normal-mode amplitudesu and v satisfy the
coupled Bogoliubov equations@6#, which contain the con-
densate densityuCu2 through the potential energy of intera
tion. An alternative hydrodynamic approach makes use
the fluctuations in the density and the velocity. It has be
shown to be wholly equivalent to the Bogoliubov descripti
@13–15#, and it accurately describes the low-lying excit
states@16–18#, as recent experiments have verified@19,20# in
considerable detail.

For large particle number, the mean kinetic energy of
condensate is much smaller than both the interaction~Har-
tree! and trap confinement energies. Neglecting the kine
energy entirely, corresponding to the Thomas-Fermi~TF! ap-
proximation, provides an accurate description of the cond
sate in the interior of the cloud. Near the surface of
trapped gas, however, the kinetic and external potential
ergies become comparable, and the TF approximation br
down. Using a boundary-layer theory, Dalfovo, Pitaevs
and Stringari@21# calculated the kinetic energy as a functio
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of the condensate radius; the formally divergent TF kine
energy is cut off by a boundary layer of thickne
d}R24/3, whereR is the ~large! dimensionless TF conden
sate radius.

The present work extends the boundary-layer formali
of Ref. @21# to determine the leading-order corrections to t
TF description of the condensate wave function, the cond
sate energy, and the low-lying collective modes. Section
summarizes the basic formalism and obtains the first cor
tion to the condensate wave function, both in the bulk~of
orderR24) and in the boundary layer~of orderd). In Sec.
III, we show that this perturbative expansion gives rise
correction terms of relative orderR24ln R and R24 in the
normalization of the condensate wave function and in
trap and interaction energies of the condensate. A comb
tion with the previously evaluated kinetic energy@21# pro-
vides the leading correction to the TF total condensate
ergy. In Sec. IV, we show that the structure of the condens
boundary layer plays an essential role in constructing
corresponding boundary layer for the analytical hydrod
namic normal modes@16#; the resulting hydrodynamic am
plitudes for the density and current fluctuations vanish ex
nentially asr→`, as expected from their equivalence to t
eigenfunctions of the coupled Bogoliubov equations.

II. CONDENSATE WAVE FUNCTION

For a dilute interacting inhomogeneous Bose gas in
isotropic trap potentialVext at zero temperature, the total oc
cupation of the excited states is small, and one can apply
Bogoliubov approximation@4,22#. The spatially varying con-
densate wave functionC(r ) is then isotropic and satisfies th
~stationary! GP @5# equation:

~T1Vext1VH2m!C~r !50, ~1!

whereT52\2¹ r
2/2m is the kinetic energy, and the trap po

tentialVext(r )5mv0
2r 2/2 is taken to be isotropic for simplic

ity. The Hartree energy is the mean energy of interaction
al
3185 © 1998 The American Physical Society
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a particle atr with all the other particles, defined asVH(r )
5*d3r 8U(r2r 8)uC(r 8)u2'guC(r )u2, where the last form
reflects the short-range two-body interactionU(r )'
gd (3)(r ). To leading order, the coupling consta
g54pa\2/m is written in terms of the~low-energy! s-wave
scattering lengtha to make contact with experiment; in th
present work we only considera.0, corresponding to inter
particle repulsion. The chemical potentialm fixes the total
number of condensed atomsN05*d3r uC(r )u2 through

mN05^T&1^Vext&1^VH&, ~2!

where the noncondensate contribution to the chemical po
tial is neglected and̂•••&[*d3r C* •••C denotes an ex-
pectation value in the condensate ground state.

It is convenient to use the oscillator lengthd05A\/mv0
and the oscillator energy\v0 as the basic dimensional unit
Thus we introduce the dimensionless lengthz[r /d0 , and
the dimensionless parameter

h05
N0a

d0
~3!

that characterizes the strength of the interparticle inte
tions. Experimental conditions typically giveh0@1, corre-
sponding to a strongly interacting system@11# ~but the
Bogoliubov approximation still requires a dilute syste
with a large interparticle spacingn21/3 relative to a). In
this TF limit, the repulsive interactions expand the co
densate cloud beyondd0 to a large dimensionless radiu
R}N0

1/5 ~expressed in units ofd0) @11#. The kinetic energy
in Eq. ~1! then becomes small, and the condensate den
has a simple parabolic formn05uCu2'g21(m2Vext)
5(m/g)(12z2/R2). Sinceh0}N0 scales likeR5, it is con-
venient to define

h0[h̃0R5, ~4!

whereh̃0 approaches a constant value for largeR. Defining
a scaled variablex5z/R, the full Gross-Pitaevskii equatio
~1! becomes

@2 1
2 e¹x

21 1
2 x21uC̃~x!u22m̃#C̃~x!50, ~5!

wheree51/R4 is a small coefficient in the present limitR

→`, and m̃5m/R2 is the scaled chemical potential. He
the scaled condensate wave function

uC̃u2[
4pd0

3h0

N0R2
uCu25

4pd0
3R3h̃0

N0
uCu2 ~6!

becomes independent ofR for largeR.
The normalization of the condensate wave function

then written

h̃0[
h0

R5 5E
0

`

dx x2uC̃~x!u2, ~7!

which defines the condensate radius in terms of the par
number. Correspondingly, the scaled chemical potential
lows from Eq.~2! as m̃5^Ṽext1ṼH1T&, where
n-

c-

-

ity

s

le
l-

^Ṽext&[
^Vext&

R2
5

N0

2h̃0
E

0

`

dx x4uC̃~x!u2, ~8!

^ṼH&[
^VH&

R2
5

N0

h̃0
E

0

`

dx x2uC̃~x!u4, ~9!

^T̃&[
^T&
R2 5

N0e

2h̃0
E

0

`

dx x2uC̃8~x!u2, ~10!

where all the energies are expressed in units of\v0 , and
C̃85dC̃/dx is the scaled radial derivative.

In the TF limit, one sets the small parametere to zero
in Eq. ~5!. The approximate condensate wave functi

C̃(x)'C̃TF(x)u(12x)5A1
2 (12x2)u(12x) accurately de-

scribes the condensate in the bulk@10,11#, where we take
m̃5 1

2 , definingthe condensate radius byR(m)5A2m. With
this choice, the normalization condition Eq.~7! then deter-
mines the condensate numberN0 in terms of the radiusR and
the chemical potential.

The Thomas-Fermi approximation fails near the surface
x51, however, whereṼext5

1
2 x2 is comparable tom̃; in this

region, the kinetic term in Eq.~5! becomes significant, giv-
ing rise to a logarithmic divergence in Eq.~10!. For small
positive e, a boundary layer of thicknessd forms in the
vicinity of x51 where the condensate wave function var
rapidly. Using standard techniques in boundary-layer the
@23#, we define an outer solutionC̃outer[x(x) valid in the
bulk region 0<x<x0,1, and an inner solutionC̃ inner, valid
throughout the surface regionx0<x<`; an asymptotic
analysis matches these two solutions near the boundax
'x0 .

The outer~bulk! solutionx may be expressed as a pertu
bation series in powers ofe:

x~x!5x0~x!1ex1~x!1•••, 0<x<x0 . ~11!

Substituting Eq.~11! into Eq. ~5! yields

O~e0!: x0
2~x!5 1

2 ~12x2!, ~12!

O~e1!: 2x0~x!x1~x!5
¹x

2x0

2x0
5

x22 3
2

~x221!2
, ~13!

where we have setm̃5 1
2 , and specialized to the present ca

of a real isotropic condensate wave function. In order
determine the asymptotic behavior of the outer solution n
the boundary, one may writex511dX with duXu!1 and
uXu@1 ~where X is large and negative!. As X→2`, a
straightforward calculation reveals

x~X!;d1/2~2X!1/2S 11
1

8X3D2
d3/2~2X!3/2

4 S 12
21

8X3D
1•••, ~14!

where the leading-order behavior (}d1/2) agrees with previ-
ous calculations@24#.
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The asymptotic behavior of the outer solution implies th
the inner solution has the formC̃ inner(X)[d1/2F(X); it may
be expanded as a series ind:

C̃ inner~X!5d1/2@F0~X!1dF1~X!1•••#, ~15!

whereX0<X,` andX0 is large and negative. Substitutin
Eq. ~15! into Eq. ~5! immediately gives the ‘‘distinguished
limit’’ @23# e52d3 that balances the leading-order~gradient
and nonlinear! terms in the resultant differential equatio
We readily obtain

O~d0!: F09~X!2@X1F0
2~X!#F0~X!50, ~16!

O~d1!: F19~X!2@X13F0
2~X!#F1~X!

522F08~X!1 1
2 X2F0 .

~17!

It is straightforward to verify that, forX→2`, the inner
functionsF(X) exactly reproduce Eq.~14!:

F0~X!;~2X!1/2S 11
1

8X3D , ~18!

F1~X!;2
~2X!3/2

4 S 12
21

8X3D . ~19!

For large positiveX, C̃ inner(X) is asymptotically propor-
tional to an Airy function, and therefore decays expone
tially. Indeed, since Eq.~16! defines what is known as th
second Painleve´ transcendent, the boundary conditio
F0(X→`);A2Ai(X);(2p)21/2X21/4exp(22

3X
3/2) must

be imposed in order to ensure an unbounded solution
F0(X) with no critical points over allX @25#.

III. CONDENSATE ENERGIES

The normalization of the condensate wave function c
now be determined explicitly from Eq.~7! by separating the
integral into two parts atx0 . An expansion of each contribu
tion shows that the resulting sum is independent of
matching pointx0511dX0 , and yields

h̃0'
1

15
1d2I 1

1

8
e ln e1eS 1

24
2

ln 2

2
1JD , ~20!

whereI andJ are definite integrals involving the inner func
tion F0(X) ~see Appendix A for details!. In fact, I can be
shown to vanish identically, so that the leading correctio
are of orderR24ln R andR24 ~instead of orderR28/3 implicit
in the term of orderd2).

A similar analysis yields the physical quantities in Eq
~8!–~10!:

^Ṽext&'
N0

2h̃0
F 1

35
1d2I 1

1

24
e ln e1eS 5

24
2

ln 2

6
1K D G ,

~21!

^ṼH&'
N0

h̃0
F 2

105
1

1

12
e ln e1eS 2

ln 2

3
1

L

2D G , ~22!
t

-

or

n

e

s

.

^T̃&'2
N0

h̃0
F 1

24
e ln e1eS 1

12
2

ln 2

6
1

M

2 D G , ~23!

where the constantsK, L, andM are also definite integrals
involving the inner functionF0(X). A combination of ana-
lytical and numerical techniques gives the explicit results

I 50, ~24!

J5 3
4 L2 5

24 , ~25!

K5 1
4 L2 7

24 , ~26!

L'0.4539, ~27!

M5 1
2 L2 1

12 , ~28!

such thatK1L5J1M .
Inserting the explicit expressions from Eqs.~21!–~23! into

Eq. ~2!, we immediately recoverm5 1
2 R2, demonstrating the

internal consistency of the calculation. Equation~20! implies

h0~R!5S a

d0
DN0'

R5

15
2

R

2F lnS R

AD1
7

12G
'

R5

15
2

R

2
ln~1.4128R!, ~29!

where the constantA is

A5 1
2 exp~ 3

2 L1 1
4 !'1.268. ~30!

Equation~29! relates the condensate number to the chem
potential ~and hence the condensate radius!; conversely, its
inverse,

R~h0!'~15h0!1/51 3
10 ~15h0!23/5ln~84.46h0!, ~31!

relates the radius of the cloud~and the chemical potential! to
the condensate number. In each case, the first terms c
spond to the TF result@11#.

The various contributions to the total energy@Eqs. ~8!–
~10!# yield

^Vext&
N0

'
3R2

14 F11
5

3R4lnS R

AD G , ~32!

^VH&
N0

'
2R2

7 F12
10

R4 lnS R

AD G , ~33!

^T&
N0

'
5

2R2 lnS R

AD , ~34!

and the energies are expressed in units of\v0 .
The expression for the kinetic energy in Eq.~34! is a

small correction that involves only the leading contributio
to the bulk condensate wave function and the bound
layer; it reproduces the result of Ref.@21#, and is similar to
that found in Ref.@24#. It should be kept in mind, however
that the present calculation defines the condensate radiusR in
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terms of the chemical potentialm[ 1
2 R2; it therefore includes

correction terms beyond the TF approximation, as shown
Eq. ~31!.

The remaining contributions@Eqs. ~32! and ~33!# explic-
itly require the leading correctionsx1 andF1 and have not
been evaluated previously. The dimensionless total ene
per particle^E&/N05^T1Vext1

1
2 VH& is found to be

^E&
N0

'
5R2

14 F11
4

R4 lnS R

AD G , ~35!

where the first and second terms are, respectively, the s
dard TF result and the combined contribution from both
boundary layer and the first correction to the bulk condens
wave function. Equations~29! and~35! together constitute a
parametric representation of the relation^E(N0)& @26#, and it
is not difficult to verify thatm5d^E&/dN0 .

In fact, Stringari@16,27# noted that Eqs.~32!–~33! and
~35! can be obtained solely from the expression for the
netic energy~34!. The virial theorem implies that the thre
contributions to the total energy must satisfy the conditio

2^T&1 3
2 ^VH&22^Vext&50. ~36!

The leading-order contributions to the potential energ
^Vext& and ^VH& are known from TF theory, and the corre
tion terms must have the sameR dependence as the kinet
energy but with unknown coefficients. Equation~36! and the
conditionm5]^E&/]N0 together determine for the unknow
coefficients, reproducing the expressions found above by
rect integration.

As shown in Fig. 1, the results of the boundary-lay
theory agree strikingly with exact results obtained by in
grating the GP equation~5! numerically. The analytical slow
R22ln R decay of the average kinetic energy per parti
~shown dashed bold! with the universal scaling paramete
h05N0a/d0 accurately captures the behavior obtained
merically ~shown solid bold!. As a result, the boundary-laye
theory provides a much better estimate of the total ene
per particle~and therefore the chemical potential! than does
the TF approximation. In spite of the slow decrease in
magnitude of̂ T&/N0 with the number of particles, howeve
it should be emphasized that the TF approximation to
total energy and the chemical potential is correct to be
than 1% whenh0;1000, due to theirR2 increase.

IV. EXCITED-STATE WAVE FUNCTIONS

In the Bogoliubov approximation at zero temperature,
interparticle repulsions excite only a small fraction of all t
particles out of the ground state into self-consistent nor
modes. The resulting eigenfunctionsuj (x) and v j (x) and
eigenvaluesEj for the noncondensate modes satisfy t
coupled linear Bogoliubov equations@4,6,22#. For the
present purpose, it is convenient to factor out the exact~real!
GP condensate wave functionC, defining sum and differ-
ence amplitudes@15#
in
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F j~x![
uj~x!1v j~x!

C~x!

and

Gj~x![
uj~x!2v j~x!

C~x!
, ~37!

which are essentially the hydrodynamic amplitudes. Spec
cally, the perturbation in the velocity potentialf j is propor-
tional toF j ~so that the perturbation in the current density
proportional toC2¹F j ) and the density perturbationr j is
proportional toC2Gj . In the TF limit, it is convenient to
rescale these amplitudes, withF j5RF̃j and Gj5G̃j /R,
yielding the coupled linear equations

2 1
2 ¹–~C̃2¹F̃ j !5EjC̃

2G̃j , ~38!

2C̃4G̃j2
1
2 e¹–~C̃2¹G̃j !5EjC̃

2F̃ j , ~39!

whereC̃2 is the ~real! scaled condensate density from E
~6!. Equations~38! and ~39! are self-adjoint, with a normal-
ization integral*d3xC̃2(F̃ j* G̃j1G̃j* F̃ j )51 chosen to ensure
positive energiesEj for the stable solutions@22#.

In the TF regime (R→`), Stringari @16# solved these
coupled equations for a stationary isotropic condensate,
the resulting hydrodynamic eigenfunctions are defined o

FIG. 1. Contribution of the kinetic energy in units of\v0 is
shown as a function of the universal scaling parameterh0

5N0a/d0 . The kinetic energy per particle is calculated numerica
by direct integration of the GP equation~solid bold!, and analyti-
cally by the boundary-layer theory~dashed bold!, whose result is
given in Eq.~34!. The dashed thin line is the difference between t
exact total energy per particle~computed numerically! and the full
boundary-layer theory in Eq.~35!. The solid thin line corresponds
to the similar difference keeping only the approximate result of
TF theory@the first term of Eq.~35!#. The total energies per particl
for a restricted range ofh0 are shown in the inset for the exac
~solid!, boundary-layer~dashed!, and TF~long dashed! theories. On
this restricted scale, the curves for the boundary-layer and e
results coincide.
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inside the condensate (x<1). In contrast, the original Bogo
liubov equations are well defined throughout the whole
gion, including the classically forbidden region (x@1). Thus
it is interesting to develop a boundary-layer description
the excited states similar to that for the condensate.

A. Outer „bulk … region

In the ‘‘outer’’ region (0<x<x0,1), we follow the pro-
cedure for the condensate and expand the outer scaled
plitudes~37! and eigenvalues in powers ofe:

F̃ j'F̃ j
01eF̃ j

e1•••, ~40!

G̃j'G̃j
01eG̃j

e1•••, ~41!

Ej'Ej
01eEj

e1•••. ~42!

Substituting these expressions into Eqs.~38! and ~39!, and
including the outer expansion of the condensate given in
~11!, one obtains

O~e0!: 2¹–~x0
2¹F̃ j

0!2~Ej
0!2F̃ j

050, G̃j
05

Ej
0F̃ j

0

2x0
2

,

~43!

O~e1!: 2¹–~x0
2¹F̃ j

e!2~Ej
0!2F̃ j

e

5
~Ej

0!2

4x0
2 ¹–Fx0

2¹S F̃ j
0

x0
2D G

12¹–~x0x1¹F̃ j
0!12Ej

0Ej
eF̃ j

0 , ~44!

G̃j
e5

Ej
0

8x0
4¹–Fx0

2¹S F̃ j
0

x0
2D G1

1

2x0
2~Ej

0F̃ j
e1Ej

eF̃ j
0!2

Ej
0x1F̃ j

0

x0
3

.

~45!

The spherical symmetry of the condensate density per
a decomposition into spherical harmonics, with the norm
mode amplitudes proportional toYlm(u,f). Equations~43!
may then be solved explicitly, and the corresponding~unnor-
malized! zeroth-order radial amplitudes can be taken as

F̃nl
0 ~x![rnl

0 ~x!5xl Pnl~x2!, G̃nl
0 5

Enl
0 F̃nl

0

2x0
2

, ~46!

where the radial quantum numbern denotes the number o
nodes. Here the eigenvalues take the well-known result@16#

Enl
0 5Al 1n~2n12l 13!, ~47!

and Pnl(x
2)5F(2n,n1 l 1 3

2 ; l 1 3
2 ;x2) is a hypergeometric

function @28# that terminates to give a polynomial of ord
x2n.

While analytical solutions to the inhomogeneous differe
tial equations ~44! and ~45! are not easy to find, the
asymptotic behavior of all the outer solutions in the vicin
of the boundary layerx;1 may be readily ascertained. Se
ting x511dX with X!21 and expanding throughO(d3),
we obtain
-

f

m-

q.

its
l-

-

O~e0!: F̃nl
0 ;rnl

0 ~1!1dXrnl
0 8~1!1 1

2 d2X2rnl
0 9~1!

1 1
6 d3X3rnl

0 -~1!, ~48!

G̃nl
0 ;2

Enl
0

2dX
$Ga

01dXGb
01d2X2Gc

01d3X3Gd
0%, ~49!

O~e1!: F̃nl
e ;

Fa
e

d3X3
1

Fb
e

d2X2
1

Fc
e

dX
1Fd

e1Fe
eln~2dX!

1F f
eln2~2dX!, ~50!

G̃nl
e ;2

Enl
0

2dXH Ga
e

d3X3
1

Gb
e

d2X2
1

Gc
e

dX
1Gd

e1Ge
eln~2dX!

1Gf
eln2~2dX!J 2

Enl
e rnl

0 ~1!

2dX
, ~51!

where the constantsFa2 f
e andGa2 f

0,e are relegated to Appen
dix B for clarity. Expansion~48! is the conventional Taylor
series of the zeroth-order amplitudesF̃nl

0 (x) about x51,
where a prime denotes a derivative evaluated atx51. A
straightforward calculation following from the properties
the hypergeometric function@15,28# shows that

rnl
0 ~1!5~21!n

G~ l 1 3
2 !n!

G~n1 l 1 3
2 !

, rnl
0 8~1!5~Enl

0 !2rnl
0 ~1!, . . . ,

~52!

with higher-order values listed in Appendix B. Sincee
52d3, the outer solutions in the regionx;1 are, respec-
tively, F̃nl'F̃nl

0 12d3F̃nl
e andG̃nl'G̃nl

0 12d3G̃nl
e .

B. Inner „boundary-layer… region

The need for a boundary-layer description of the eig
functions is clear from the form of condensate dens
C̃(x)25dF(X)2 and the gradient¹x5d21¹X ~arising from
the substitutionx511dX). As a result, the second term o
the left-hand side of Eq.~39! is now of ordere3d/d2;d2,
which is wholly comparable with the first term and thus
longer negligible in zero order. It is not difficult to see th
the proper scaling of the two inner amplitudes in the bou
ary layer is

F̃nl~x!5Anl~X! and G̃nl~x!5
Bnl~X!

d
. ~53!

The gradients in Eqs.~38! and ~39! must be expanded in
ascending powers ofd, leading to the following coupled
equations for the inner solutions

2
d

dXS F2
dAnl

dX D2d
2F2

11dX

dAnl

dX
1d2

l ~ l 11!F2

~11dX!2 Anl

52dEnlF
2Bnl , ~54!



i

d
t

n

e

,

.

m

ior

e

re
ns

-

, in
ts

m
to

n-
ch
ter
ter

bulk
en-

uld
n,
ei-

-
he

3190 PRA 58ALEXANDER L. FETTER AND DAVID L. FEDER
2
d

dXS F2
dBnl

dX D2d
2F2

11dX

dBnl

dX
1d2

l ~ l 11!F2

~11dX!2 Bnl

12F4Bnl5EnlF
2Anl . ~55!

The asymptotic expressions for the outer amplitudes
the boundary region, Eqs.~48!–~51!, indicate that a simple
expansion of the inner functions in powers ofd is insuffi-
cient. In order to ensure a match in the vicinity of the boun
ary layer to orderO(e)5O(d3), the inner solutions mus
also include the nontrivial termsd3ln d and d3ln2d. The
eigenfunctions and eigenvalues are therefore expanded i
forms

Anl~X!5Anl
0 ~X!1dAnl

1 ~X!1d2Anl
2 ~X!1d3Anl

3 ~X!

1d3ln dAnl
4 ~X!1d3ln2dAnl

5 ~X!, ~56!

Bnl~X!5Bnl
0 ~X!1dBnl

1 ~X!1d2Bnl
2 ~X!1d3Bnl

3 ~X!

1d3ln dBnl
4 ~X!1d3ln2dBnl

5 ~X!, ~57!

Enl5Enl
0 1dEnl

1 1d2Enl
2 1d3Enl

3 1d3ln dEnl
4 1d3ln2dEnl

5 .
~58!

Inserting these expansions into Eqs.~54! and~55!, and taking
into account the inner expansion for the condensateF(X)
5F0(X)1dF1(X)1•••, one obtains equations for th
lowest-order inner functions:

O~d0!: 2~F0
2Anl

0 8!850, ~59!

2~F0
2Bnl

0 8!812F0
4Bnl

0 5Enl
0 F0

2Anl
0 , ~60!

O~d1!: 2~F0
2Anl

1 8!822~F0F1Anl
0 8!822F0

2Anl
0 8

52Enl
0 F0

2Bnl
0 , ~61!

2~F0
2Bnl

1 8!822~F0F1Bnl
0 8!822F0

2Bnl
0 8

12F0
4Bnl

1 18F0
3F1Bnl

0

5Enl
0 ~F0

2Anl
1 12F0F1Anl

0 !1Enl
1 F0

2Anl
0 , ~62!

where a prime denotes a derivative with respect toX.
Equation~59! can be solved by takingAnl

0 as a constant
and comparison with the first term of Eq.~48! shows that
Anl

0 5rnl
0 (1). In contrast, Eq.~60! is inhomogeneous, with

the explicit solution

Bnl
0 ~X!52

Enl
0 rnl

0 ~1!

F0~X!

dF0~X!

dX
52 1

2 Enl
0 rnl

0 ~1!
d ln F0~X!2

dX
.

~63!

By inserting the asymptotic expression~18! for F0(X), it is
simple to verify thatBnl

0 (X) matches the leading term of Eq
~49!.

The solution to Eq.~61! is readily found to beAnl
1 (X)

5rnl
0 8(1)X, which is identical to the second correction ter

of the outer solution. The other correctionBnl
1 (X) satisfies a

somewhat more complicated inhomogeneous equation~62!.
n

-

the

While a closed-form solution cannot be found, the behav
in the overlap regionX→2` is easily obtained:

Bnl
1 ~X!;2

Enl
0 rnl~1!

2 S Enl
0 22

1

2D2
Enl

1 rnl~1!

2X
. ~64!

Matching the inner solutionBnl
1 with the outer functionG̃nl

0

to orderd requiresEnl
1 50. It then becomes possible to writ

an expression forBnl
1 (X) valid for all X:

Bnl
1 ~X!5

Enl
0 rnl

0 ~1!Ja~X!1Enl
0 rnl

0 8~1!Jb~X!

F0~X!
, ~65!

where the two functionsJa andJb satisfy inhomogeneous
equations similar to Eq.~17! for F1 :

2Ja91~X13F0
2!Ja

54F0F08F122F0

d

dXS X1
F1

F0
D d

dXS F08

F0
D ,

~66!

2Jb91~X13F0
2!Jb5XF0 . ~67!

For large negative X, the solutions approachJa

; 1
4 (2X)1/2 and Jb;2 1

2 (2X)1/2, so that Bnl
1 indeed

matches the first correction term in Eq.~49!. Each additional
term ind may be analyzed in a similar fashion; the procedu
is straightforward but extremely tedious, so explicit solutio
for the inner functions in the overlap region~which are
lengthy! are omitted for brevity. It is important to note, how
ever, that both inner functionsAnl and Bnl be properly
matched to their outer region counterparts at each stage
order to yield conditions on both the unknown coefficien
and the eigenvalue corrections.

By following the above prescription in turn for each ter
in the inner expansion, it can be shown that all corrections
the eigenvalue with prefactors smaller thanO(d3) @including
the O(d3ln d) andO(d3ln2d) terms# must vanish identically.
This result may be formally understood as follows. The de
sity perturbation and the velocity-potential perturbation ea
have corrections to all orders both in the inner and ou
regions; in contrast, the only correction term in the ou
perturbation expansion of the energy~42! is of orderd3. In
order to ensure a smooth asymptotic match between the
and surface amplitudes to each successive order, all the
ergy corrections appearing in the inner expansion~58! with
coefficients smaller thand3 must match to zero~the orderd
case was considered explicitly above!. The introduction of
logarithmic terms to the outer perturbation expansions wo
give rise to additional contributions in the overlap regio
leading to inconsistencies in the asymptotic match. The
genvalue correction of orderd3 is finite, however: Enl

3

52Enl
e . Thus

Enl5Enl
0 1

Enl
e

R4
. ~68!

Equations~31! and ~68! together yield the number depen
dence of the excitation frequencies in the TF limit. T
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asymptotic match reveals an energy correction of ordee
5R24 exists, but unfortunately it does not indicate its ma
nitude nor its variation withn,l .

The present boundary-layer theory indicates that the
ergy correction of orderd3ln d vanishes identically. In con
trast, a sum-rule approach@16,29# does yield a logarithmic
correction to the eigenvalues, proportional to the ratio of
average kinetic energy~34! and external potential energ
~32!. This latter approach assumes that a single freque
exhausts the sum rule. Such an assumption is thought t
valid in the hydrodynamic regime where a given perturbat
excites essentially all of the atoms into a particular lo
energy collective mode@30,31#. In the vicinity of the bound-
ary layer, however, the density of atoms decreases cons
ably, and the single-mode approximation may beco
insufficient. In practice, any logarithmic correction to th
energy eigenvalues would be experimentally or numeric
detectable only if the magnitude ofEnl

e were strongly depen
lu
d

io
t

on
th
te

rd

s
t
d
.

ia
-

n-

e

cy
be
n
-

er-
e

y

dent uponn and l , or if the number of atoms were very low
~small R). One may estimate the difference betweenn50
energies obtained with and without a logarithmic correctio
by assumingE0l

e ' l ( l 21)b l /2 @16# whereb l5 ln R and b l

51, respectively. The deviation between the two approxim
tions is independent of angular momentum, is largest w
h0'30, and is at most 2% of the mode frequency whel
510. At present, therefore, the data are consistent with ei
theory.

The (n,l ) dependence of the energy correctionEnl
e in Eq.

~68! cannot be found by conventional perturbation theo
This situation arises because the explicit integrals, wh
eliminate the logarithmic divergences, contain the nomina
unperturbed inner functions; these functions, in turn,
themselves solutions of differential equations that implici
include the perturbing terms. Consequently, we have con
ered the readily derived variational expression
Ej5

E dV@ 1
2 C̃2¹F̃ j* •¹F̃ j12C̃4G̃j* G̃j1

1
2 eC̃2¹G̃j* •¹G̃j #

E dV C̃2~G̃j* F̃ j1F̃ j* G̃j !

, ~69!
e

be-

ic

d

ion’s
ory
n,

at

he
e. In
o-

-

-
t

which is stationary for small variations about the exact so
tions F̃ j andG̃j . As a trial function, we use the unperturbe
outer solutions in Eqs.~46!, and the corresponding two-term
inner solutions given in Eqs.~56! and ~57!; taken together,
these expressions constitute uniform unperturbed solut
throughout all space. If the various integrals are divided a
point x0511dX0 , with X0!21 andduX0u!1, the correc-
tion terms arising from the behavior of the outer soluti
near the TF boundary precisely cancel with those from
inner boundary-layer solutions, leaving dimensionless in
grals of order lnd through d3ln2d. The asymptotic match
requires that only the term proportional tod3 remains finite,
and a detailed evaluation shows that the integrals up to o
d2ln d indeed vanish. The explicit calculation to orderd3 is
prohibitive, however, due to the profusion of relevant term

The boundary-layer solutions given above now suffice
determine the approximate density fluctuation amplitu
rnl}C̃2G̃nl to orderd throughout the whole physical region
Inside the condensate, away from the boundary (0<x<x0
,1), the outer solution is simply the zero-order polynom
rnl

0 (x) found by Stringari@16#. The uniformly matching in-
ner solutionF(X)2Bnl(X) in the intervalX0<X,` ~where
x0511dX0 , with duX0u!1 andX0!21) reduces to

rnl'2rnl
0 ~1!

dF0~X!2

dX
12drnl

0 8~1!F0~X!Jb~X!

12drnl
0 ~1!FF0~X!Ja~X!22F1~X!

dF0

dX G . ~70!

It is not difficult to verify that the third term in Eq.~70!
-

ns
a

e
-

er

.
o
e

l

vanishes forX→6`, although it is nonzero inside th
boundary region. For large positiveX, each term in Eq.~70!
vanishes exponentially, so that the density fluctuations
come negligible beyond the surface region.

Figure 2 shows the spatial variation of the hydrodynam
amplitudes in the inner~boundary-layer! region, including
corrections of orderd andd2. The velocity potential pertur-
bationfnl(X)}Anl(X) ~dot-dashed line! to orderd or d2 is a
linear or quadratic function of the inner coordinateX and
therefore diverges at large positiveX. In contrast, both the
density fluctuationrnl(X)}F2(X)Bnl(X) from Eq. ~70!
~solid line! and the perturbation in the current densityj nl

}F2(X)Anl8 (X) ~short dashed line! vanish exponentially in
the limit X→`. In fact, such behavior of the density an
current-density amplitudes forX→` holds to all orders ind
as a direct consequence of the condensate wave funct
exponential decay. The results of the boundary-layer the
differ from those obtained within the TF approximatio
where the density-fluctuation amplitudes are merely finite
the TF radius.

The inner solutions provide a more detailed view of t
behavior of these amplitudes near the condensate surfac
particular, the velocity potential and density perturbation c
incide only in the outer regionX!21, reflecting the fact that

in the limit e→0 the zeroth-order amplitudesF̃nl
0 andx0

2G̃nl
0

obey the same differential equation~43!. Since these unper
turbed outer amplitudes are polynomials of order 2n1 l in
the variablex511dX, the inner functions must be ex
panded to at least orderd2n1 l in order to ensure a perfec
asymptotic match.
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V. DISCUSSION

The zero-temperature Thomas-Fermi description of an
teracting dilute Bose-Einstein gas confined in an isotro
harmonic trap has been extended to include contributi
from the condensate surface. For the condensate wave f
tion, we have generalized the boundary-layer formalism
Ref. @21#, obtaining analytic expressions for the expectat
values of the trap and interaction energy that include
leading corrections due to the surface layer and to the b
condensate wave function. The resulting total ground-s
energy, which includes all terms of orderR24ln R andR24,
has not been evaluated previously.

The Bogoliubov equations for the excited states are
written in hydrodynamic form, and solved to incorporate t
boundary layer to third order in the boundary-layer thickn
d}R24/3. This analysis provides a uniform extension of t
hydrodynamic normal modes found by Stringari@16# beyond
the TF condensate throughout the classically forbidden
gion. The lowest-order correction to the excitation freque
cies has the formEnl

e /R4 ~namely, of ordere[R24). Al-

FIG. 2. The~unnormalized! hydrodynamic amplitudes and con
densate wave function in the boundary layer are shown as a f
tion of inner coordinateX. Bold and thin lines correspond to resul
calculated numerically to ordersd andd2, respectively. The univer-
sal parameter ish051000 givingd'0.06, and thereforeX528
corresponds tox'0.5. With units chosen appropriately, the veloci
potential to orderd ~bold dot-dashed line! and the density pertur
bation @bold solid line to orderd, from Eq. ~70!# coincide in the
overlap regionX!21; while the former diverges asX→`, the
latter decays exponentially. The perturbations in the current den
~dashed lines! to order d ~bold! and d2 ~thin! are, respectively,
linear and quadratic in the overlap region, and decay exponent
at large distances. The results are presented for (n,l )5(0,2); the
overall sign of the inner hydrodynamic amplitudes is odd inn, and
the magnitude of the asymptotic slope~for large negativeX) in-
creases withl . The inset shows the various amplitudes in the b
region as a function of outer coordinatex. In the outer region, the
velocity potential and density perturbation coincide~shown as the
solid line!; the former matches smoothly with that from the inn
region to orderd2 ~thin dot-dashed line!. A perfect asymptotic
match of the outer current density}x(12x2) ~dashed line! to its
inner counterpart would require an inner expansion to orderd3.
-
c
s

nc-
f

n
e
lk
te

-

s

e-
-

though a detailed calculation of the coefficientEnl
e appears

prohibitive, the shift in excitation frequencies due to finit
number effects should be relevant for current experime
even whenh0@1; both the sum-rule approach@16# and nu-
merical calculations@32# indicate thatEnl

e increases dramati
cally with bothn and l .
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APPENDIX A: CONSTANTS FOR THE CONDENSATE

The constantsI -M appearing in Eqs.~7!–~10! are defined
as follows:

I 5E
2`

0

dX~F0
21X!1E

0

`

dX F0
2 , ~A1!

J5E
2`

21

dXS 2F0
41

5XF0
2

2
1

X2

2
2

3

8XD
1E

21

`

dXS 2F0
41

5XF0
2

2 D , ~A2!

K5E
2`

21

dXS 2F0
41

7XF0
2

2
1

3X2

2
2

1

8XD
1E

21

`

dXS 2F0
41

7XF0
2

2 D , ~A3!

L5E
2`

21

dXS F0
42X22

1

2XD1E
21

`

dX F0
4 , ~A4!

M5E
2`

21

dXS F0
41XF0

22
1

4XD1E
21

`

dX~F0
41XF0

2!.

~A5!

Note thatK1L5J1M . The integralI can be evaluated ana
lytically by setting the lower limit toX0→2` and integrat-
ing by parts:

I 5 lim
X0→2`

X0
2

2
22E

X0

`

dX XF0F08 . ~A6!

Multiplying Eq. ~16! by F08 and integrating, one readily ob
tains

E
X0

`

dX XF0F085
1

2FF08
22

F0
4

2 G
X0

`

. ~A7!
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The asymptotic behaviors~18! andF0(X→`)50 immedi-
ately give the resultI 50.

The derivation of the expressions forJ andK makes use
of the relation

E
2`

`

dX F0F152 23
16 2 3

4 E
2`

21

dX X2

1E
2`

`

dX~2F0
41 3

2 XF0
2! ~A8!

which may be verified by integrating by parts, compari
with Eqs.~16!–~19!, and employing the readily proved iden
tity

E
2`

`

dX F08
25

1

2
2E

2`

`

dX~F0
41XF0

2!. ~A9!

Furthermore, with the identity

2E
2`

`

dX XF0
252

1

6
2E

2`

21

dX X22E
2`

`

dX F0
4 ,

~A10!

which may be easily confirmed by integrating by parts a
making use of the governing equation~16! for F0(X), the
expressions~A2!–~A5! are found to be related:

J5 3
4 L2 5

24 , ~A11!

K5 1
4 L2 7

24 , ~A12!

M5 1
2 L2 1

12 . ~A13!

APPENDIX B: CONSTANTS FOR THE EXCITATIONS

The constants appearing in the asymptotic expansion
the outer amplitudesFnl

0,e and Gnl
0,e , Eqs.~48!–~51!, are ex-

plicitly written @wherer0(1)[rnl
0 (1) andE0[Enl

0 ]:

r08~1!5E0
2r0~1!, ~B1!

r09~1!5 1
2 @E0

423E0
21 l ~ l 11!#r0~1!, ~B2!
an

n,
tt.

et

s,
d

of

r0-~1!5 1
6 $E0

6210E0
415E0

2@ l ~ l 11!15#

213l ~ l 11!%r0~1!, ~B3!

Ga
05r0~1!, ~B4!

Gb
05@E0

22 1
2 #r0~1!, ~B5!

Gc
05 1

4 @E0
425E0

21 l ~ l 11!11#r0~1!, ~B6!

Gd
05 1

72 $2E0
6229E0

415E0
2@2l ~ l 11!119#

235l ~ l 11!29%r0~1!, ~B7!

Fa
e50, ~B8!

Fb
e50, ~B9!

Fc
e5 1

16 @E0
427E0

213l ~ l 11!#r0~1!, ~B10!

Fd
e5Ca

e , ~B11!

Fe
e5Cb

e , ~B12!

F f
e52 1

16 $E0
42E0

2@4l ~ l 11!13#15l ~ l 11!%r0~1!,
~B13!

Ga
e52 3

8 r0~1!, ~B14!

Gb
e52 1

8 @E0
2212#r0~1!, ~B15!

Gc
e52 1

32 @E0
4223E0

2211l ~ l 11!166#r~1!, ~B16!

Gd
e52 1

32 $E0
6215E0

42E0
2@3l ~ l 11!270#

18l ~ l 11!266%r0~1!1Ca
e , ~B17!

Ge
e5Cb

e , ~B18!

Gf
e52 1

16 $E0
42E0

2@4l ~ l 11!13#15l ~ l 11!%r0~1!,
~B19!

whereCa
e andCb

e are constants of integration.
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