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Quantum corrections to the thermodynamic potential of trapped bosons
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We calculate the quantum corrections of the thermodynamic quantities of a system of confined bosons at
finite temperature. Systematically quantum corrections are written in a sertesagfich is convergent when
kT is much larger than the spacing between energy levels of the system. We apply this method to the different
physical systems. First we calculate the thermodynamic potential of spin-1 bosons confined in a general
power-law potential, and calculate the paramagnetic susceptibility of the gas including the quantum correc-
tions. Local-density approximation for charged bosons in the weak magnetic field is improved by the semi-
classical expansion. Diamagnetic susceptibility of a system of confined charged bosons is calculated using this
method. Finally we apply this method to calculate analytically the thermodynamic potential of a weakly
interacting Bose-gas confined in at three-dimensional harmonic-oscillator potential. For a large number of
particles, quantum corrections become small, and contribute to the finite-size corrections to scaling.
[S1050-294{@8)03810-4

PACS numbd(s): 03.75.Fi, 32.80.Pj

I. INTRODUCTION mation[12]. Following this procedure, we develop a semi-
classical expansion for finite Bose systems at finite tempera-
There has been renewed interest in the Bose-Einstein cottdre. The method is simple and can be effectively used even
densation(BEC) after its experimental demonstration by When the bosons are interacting. To demonstrate the useful-
Andersoret al.[1,2]. It has now become possible to measureness of the method, we first apply it to noninteracting bosons
the relevant thermodynamic quantities of a system of weaklgonfined in a general trap potential. In the case of a harmonic
interacting bosons in a magnetic trg®4]. In these experi- Potential we compare the results obtained with the known
ments, the temperature dependence of the condensate frd€sults obtained using exact calculations and check the cor-
tion and the release energy are measured. Theoretically, tfiectness of the method. We then extract physically relevant
thermodynamic properties of homogeneous Bose gas wet8ermodynamic quantities at finite temperature including the
studied by several authors starting with Lond@]. The  quantum corrections to the leading order.
thermodynamic properties of the inhomogeneous Bose gas The paper is organized as follows. In Sec. I, we develop
were studied by Leggett al. [6,7]. After the recent experi- the formalism of semiclassical expansion and apply it to the
mental developments, there is a new impetus to understarf@se of noninteracting bosons in complicated trap potentials
the thermodynamic properties of interacting inhomogeneoul) Sec. lll. Motivated by the recent experiment on spin-1
Bose gas. Within the local-density approximatitDA),  >°Na atoms[2], in Sec. IV we also calculate the paramag-
Stringariet al.[8] have calculated the thermodynamic quan-hetic susceptibility of the gas, including the quantum correc-
tities numerically and shown scaling properties of stronglytions. Section V is devoted to the application of the semiclas-
interacting bosons in a trap. Since then, several calculation§ical expansion for a system of charged bosons in a
have been reported by various auth@d.0]. In these papers homogeneous magnetic field, and the diamagnetic suscepti-
the thermodynamic properties of inhomogeneous gas hawility of the Bose gas above the critical temperature is cal-
been calculated within the LDA, neglecting the quantum corculated. Here we show that the diamagnetic susceptibility
rections. comes entirely from the quantum corrections. In Sec. VI, we
In this paper we develop a systematic semiclassical analytically calculate the thermodynamic quantities of an en-
expansion for thermodynamic quantities of an interactingsemble of weakly interacting Bose gas confined in at three-
Bose gas, which takes into account the quantum correction§imensional harmonic-oscillator potential including the
Since the self-consistent potential is quite complicated andfading-order quantum corrections. We show that the
device-dependent, the formalism is kept as general as potading-order thermodynamic quantities are functions of
sible. We follow a method analogous to the highly successfupnly two scaling parameters. The quantum corrections, how-
extended Thomas-Fermi meth@&TF), which has been suc- €Ver, give rise to small but finite-size corrections to scaling
cessfully applied in the case of finite fermion systems, suck(1/N?%). Section VII contains a summary and conclusions.
as nuclei, atoms, clusters, etc. It is well known that the
smoo_th part of the q_uantum density of st:?\tes can_be _semi— Il EXTENDED THOMAS-FERMI APPROXIMATION
classically expanded in powers®f The leading term in this FOR BOSONS
expansion is the Thomas-Fermi level density. Systentatic
corrections to the leading approximation may then be ob- We first develop a systematit expansion using the
tained using the well known Wigner-Kirkwod@lVK) expan-  Wigner-Kirkwood (WK) method[11]. Consider the single-
sion[11]. In the case of finite fermion systems this is what isparticle HamiltoniarH for a system of particles, which sat-
usually referred to as the extended Thomas-Fermi approxisfies the Schidinger equation,
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Hyn=Enn, ) zerg are to the right side of the line. This integral is well
defined and convergent. Since the chemical potential
where E,, are eigenvalues ang, are corresponding wave <E, (for all n) for bosons, we close the contour from the
functions. The canonical partition function of the system isright. Summing over all the residues at the positive poles
defined as inside the contour, we obtain the well known result for the
thermodynamic potentidll3],

Zo(B)=2 e 5, 2
" AzT)=-2 In(1—ze 5/kT), ©)
whereg is, for our purposes, a parameter with the dimension "
of inverse energy and should not be confused with the physithis immediately checks the correctness of the weight func-
cal temperature of the system. tion wg for bosons. From the above thermodynamic potential

“We first briefly review the semiclassical method as apye can calculate all thermodynamic quantities. One impor-
plied to the finite fermion systeifd 2], which is well known. (4t difference between the finite fermion and the finite bo-

To extract thermodynqmic qugntites of'the finite; fermionggp systems is the existence of a critical temperature in the
system from the canonical partition function, a weight func-jatter. Care must therefore be exercised in using the semi-

tion is defined as classical formalism close to the critical temperature. We
7BKT clarify this point as we go along.
e (3) To do a systematié expansion of bosons, we start from
sin(7BkT) the high-temperature limit. Neglecting the zero point energy

and the occupation number of the ground state, we can do
the WK expansion of a canonical partition function. For the
semiclassical expansion of the partition function, it is most

By using this weight function, one can write the thermody-
namic potential of the system in the following way:

7 convenient to take the plane-wave basis for calculation of the
KTQ(T,2)= uN—E+TS= L1<0(L)WF (4  canonical partition function,
H I 2 .
B
1 - -

In the integral representation, Zo(/ﬂ’)=ﬁ dSpJ dire~ P Thg=BHgip-t/h (1)

1 Fioo Z W . . . .

kTq(T,2)= —_F eﬁMO(LZ)Fd/g, (55  whereH is the single particle Hamiltonian. To evaluate the
2 ) e-ice B partition function, we introduce the function

where the contour is closed from the left #85<<« and from u(r,p,8) = e BHaIr- 5/;1,

the right for E,>x. Summing over all residues, we obtain

the well known resulf13] — e BHugir f)/hW(F )

11
A(T,2)=2 In(1+ze =/KT), 6
" whereH is the classical HamiltoniarH ;= p%/2M + V(r),
wherez=e*T is the fugacity and’ is the temperature. Us- andV(r) is the self-consistent single-particle potential. It is

ing this thermodynamic potential all the relevant thermody-€2SY t0 see that the functienobeys the Bloch equation

namic quantities related to the finite fermion system may be au

obtained. —+Hu=0 (12
The method can now be extended to the case of bosons. B

Here we propose a form of the weight function for bosons, so . -

that all calculations done for finite fermion systems can baVith the boundary condition

extended to the finite Bose systems at finite temperature. The ) -

weight function for bosons is given by llglmou:e'p'”ﬁ. (13

—cog wBKkT)wBKT

VBT T Gin( Bk T)

(7) Substitutingu in the above equation, we obtain the following
equation forw:

The thermodynamic potential of an ensemble of bosons can W 3 1 72
therefore be written in terms of the following integral, as in —— _ _ ;% Z— (5. _ _(ph. A Y 2
B if M(p VV)w (p-Vw) +2M[,8 (VV)“w

the case of fermions: M
_ 2 20 .
1 [rhie Zo(B)We BVV)W+Vw—28(VV-Vw)]. 14
kKTo(T,2)= —f efr———dp, (8) , ,
271 ) =i B? The above equation can be solved order by ordef ,irby

expandingw as a power series if,
whereZy(B) is the same as in EqR). The line of integration

is chosen in such a way that all the positive pdlescluding w=1+7AW;+A2Wo+ - - -, (15
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wherew,,w,, ... are determined at each order using the Bloch equation. Up to thefdrdéne canonical partition may then
be written ad12]
Zuu(B)=—— f d3pe—ﬁ92’2Mf dore-min| 1 B vav(i) - £ wvii?) |+ o (16)
WP 2mh)3 12m 2 '
After doing integration by parts, the above expression can be written in the following form:
B2ﬁ2
3 Bp2/2M 3, 4—BV(r) N1 4
Zwk(B)= ﬁ)3f d°pe FP fd re Dl1- M Vv V(r))+0(h ), a7

whereV(r) is the effective single-particle potential. We note that at this stage the above result is true for both fermions and
bosons because the statistics has not yet been imposed.

Inserting the expression fat for the canonical partition function in Eg8), we obtain the thermodynamic potential of
the normal state of the Bose system,

2 2

1 h d
azm) == ——— [ ap [ o ('”(1 ze (PRIVONT) - 2RV oin(1 - ze” [p2/2M+V(r)]/kT))+O(h4)
(27h) ap?

(18

After substituting Eq(16) into Eq. (8), we get the following form of the density of the thermodynamic potential or the local
thermodynamic potential up to ordéf:

2

1 - - N -
F(r)= (95/2( 7)— {VZV(r)gl,z(z)-l—V~[VV(r)gl,2(Z)]}), (19

24M (KT)?

where theg,(x) and the thermal wavelengthare defined as Ill. APPLICATION TO NONINTERACTING BOSONS

ok i We fir_st apply the formalism to a system of noninteracting
= g,(0=> —, (200  but confined bosons and check its correctness. To show the
V2mMKT =1in simplicity as well as the usefulness of the method, we first
consider a general power-law-type confinement and special-
and the effective fugacity is=ze V(KT Equation(19) is  ize to the harmonic traps later. The general power-law po-
the central result of the paper, and in the following sectiongential is given by{9]:
we use this expression to calculate the quantum corrections
of various thermodynamic quantities of the Bose system. V(F)=e (f
Here we have calculated the local thermodynamic potential Hi
up to 42 order, butz* and higher-order terms can also be
calculated easily following the same procedure. Unlike thevhereL is a length parameter angl have the dimensions of
calculation of the Wigner distribution function, this method €nergy. The exponents,q,| are positive but arbitrary. No-
provides a much simpler way to calculate the quantum cortice that since the potential is complicated, it is not, in gen-
rections order by order . eral, possible to get the exact spectrum and therefore exact
From the thermodynamic potential, we can derive thef€sults are not known except in special cases. To calculate

number of particles and the energy of the normal state, the thermodynamic potential including the leading-order
guantum correction, we use the expression of the local ther-

2p 2l
y
+ e E

2q
+ €3 E) y (23)

9q modynamic potential derived earlier in E4.9). Substituting
Ne=2 9z 2D for V(r), and after doing some algebra, we obtain the fol-
lowing expression for the thermodynamic potential including
a9 corrections up to ordef?:
U=(kT 2(—) 22
KD akm . 22 q(z,T)=0o(z,T)+0(z,T). (24)

This completes our discussion of single-particle propertie$lo(z, T) denotes the leading contribution in the semiclassical
of a finite Bose system using a systematic semiclassical exexpansion, which is given by
pansion. While we have given the results up orde?)( in
principle the method can be continued to higher orders. In
the next section we consider a simple application of this
formalism to noninteracting bosons confined in an arbitrary
power-law potential. where

Co
qO(Z!T): F95/2+ 7)’(2)1 (25)
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L3I (1/2p)T(1/2)T(1/2q)

= . (26

% pql(er [KT)Y® (e, /KT)V2 (€5 /KT) M2 29
111 ,
Ui _E+E+ﬁ’ (27)
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Density of states can be calculated by taking the inverse
Laplace transform of the canonical partition function with
respect tg3 from which the above expressions for the num-
ber and energy follow up to ordérP. Similar results may be
obtained by the Eular-Maclaurin summation metha€].

It is therefore clear that thermodynamic quantities may be
expanded in a series of a dimensionless paranfeigk T

and\ is the thermal wavelength given in the preceding seCwhen the trap potential is harmonic. The expansion param-
tion. Further,q,(z,T) is the second-order quantum correc- eter is in factf w/kT. Therefore, the series converges only
tion [O(%7)] of the thermodynamic potential, and is given when # w/kT<1. However, at low temperatured%w~1,

by

EO €1 p
Tl [ TP i) Gzt -14(2)

2
e\ 1
+1f(l) KT 932+ ' —14(2)

1/q
932+ 7 —110(2)

] . (28

The parameters in the above equation are

_ 2x(2x-1)T'(1-1/2x)

f(x)= T (172 ’ (29
h2

Thus for any giverp,q,l, it is possible to obtain the relevant
thermodynamic quantities from the closed form for the ther

modynamic potential given above.

As an example, we choose the parameters of the potenti
so that it specializes to the harmonic trap. This can be don

by setting p=I=q=1, e;=e,=e3=hw/2, and L2

=f/Mw, so that the potential becomes an isotropic simple
harmonic potential. By substituting the values of the param-
eters of the potential in the above expressions for the ther-

modynamic potential, we obtain

3 1

94(2)— 3

X0

2
kT) gZ(Z)

o . (31

q(z,T)=

and hence the Wigner-Kirkwood expansion breaks down. At
these temperatures, only a few low-energy states are occu-
pied, so energy levels cannot be taken as continuous. Obvi-
ously one should treat the semiclassical expansion derived in
this section as a high-tempertaure expansion.

IV. QUANTUM CORRECTIONS TO THE
PARAMAGNETISM OF SPIN-1 BOSONS

As an application of the formalism developed in the pre-
ceding sections, we do the semiclassical expansion of free
energy of the spin-1 bosons in a general power-law-type con-
finement. Very recently it has become possible to observe
Bose-Einstein condensation of diluféNa atoms in an opti-
cal dipole trap. Total spin of &Na atom isF =1, and it has
three degenerate states labeled by zheomponent of the
total spin,F,=0,1—1. In the previous experiments in mag-
netic trap spin degrees of freedom of alkali atoms are frozen.
But in the optical trap, Stamper-Kuret al. [2] have pro-
duced a stable condensate of three spin staté&\af atoms.
This experiment opens a new window to study the spin dy-
namics of the trapped bosons. In this section, we consider the
ﬁ!‘apped spin-1 bosons in a weak magnetic field and calculate

e magnetic properties of the gas and the quantum correc-
ions in the high-temperature limit.
The Hamiltonian of the system in a uniform weak mag-
netic fieldB can be written as

2

H=om

+V(r)— uBmg, (35)

where u, is the magnetic moment of the atom amgl is the
z component of the spin of the atom. Simkin and Coftkfi

From this Fhermodynamic potential we can derive the' NUMhave recently shown that trecomponent of the magnetic
ber of particles and the energy of the normal state. Using thg,oment of a23Na atom is,= jup/2, Whereuy, is the Bohr

definitions given in Egs(21) and(22), we have

kT\® 1/ hw)\?
Nf(m) 93(2)—§(ﬁ> 91(2)

3

, (32

U=KT

ho

1/ 7w)?
394(2)_§<ﬁ) 02(2) |. (33

magneton. In the noninteracting case the three spin states of
spin-1 boson behave as a three-component fluid, and there-
fore their thermodynamic potential will add up. Generalizing
the expression for the thermodynamic potential to spin-1
bosons and including the Zeeman term, we obtain the fol-
lowing expression for the thermodynamic potential:

Qtot(ZvTvB):Q(Zey:T)"'Q(ZyT)+Q(ZeiyaT): (36)

Indeed, the above expression may also be derived from

the exact quantum-mechanical density of states of a thre

dimensional(3D) harmonic oscillatofHO). The exact ca-
nonical partition function of the 3D HO is given by

Z(B)= (39

[2 sinhBhw/2)]®

Svhere g(z,T) is the thermodynamic potential of one-
component gas, which we have already derived, &nd
= uB/KT. Here we investigate the magnetization and para-
magnetic susceptibility of the gas above the critical tempera-
ture. Therefore, all the atoms are in the normal state. Mag-
netization of the gas is defined as
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~ N(D)-N(-1) Mo _09(z€,T) _dq(zeY,T)
oM
whereN(1),N(—1) are the number of spin-upmg=+1) X~ £|B:o- (39

and spin-down ;= —1) particles. In terms of the grand
potential of each spin state, magnetization and paramagnetkhe paramagnetic susceptibility of the gas confined in a
susceptibility can be written as power-law potential described in E(R3) is given by

IU’ZZCO

E
X= kT N {91/24—77 (Z) 24£T|: *EI q f(X)

€|
k_T> O, —1/2- 1/x(Z)H, (40)

whereC,, f(x), Ey, and »’ are given by Eqs(26), (29), of the ground state. To include the effect of a magnetic field
(30), and(27), respectively. It is an interesting point to note in the thermodynamic potential, we first do the Wigner-

that for ' <1/2, susceptibility diverges at critical tempera- Kirkwood expansion of the canonical partition function. In

ture. Susceptibility of Bose gas in an anisotropic harmonidhe symmetric gauge, the vector potential can be written as
oscillator potential is given by

-

11
2us [ kT (hw, IKT)? z A= ( 5By.5 BxO) (44)
X~ 5NkT(ﬁ ) (92 VA C ks |

(4)  whereB is the magnitude of the field. The Hamiltonian of

. . . the system is then given b
wherew, ,w, are the frequencies of the harmonic-oscillator 4 g y

potential in thex-y plane and in the direction, respectively, 1 . ) )
and 6= w,/w, . The second term in the expression for sus- H=-—[p+(e/c)A]?+V(r)=Ho+Hy, (45
ceptibility is the quantum correction. In the high-temperature 2M
limit, susceptibility can be expanded as a power series in the

fugacity variablez, Where
2
2 us z ) Ho=m +V(F) (46)
X= 35T 1t > (17 a)+0(Z29) |, (42) 2M
where e’B*> , eB
BE l—m“_'ﬁ‘mu, (47)
== 2 f0(Be) 2V -1). (43
24 x%plq and
As to be expected in the high-temperature limit, the leading r2=(x2+y?) (48)
term in susceptibility does not depend on the nature of con- + '
finement or quantum corrections. P P
I =—|h(x——y ) (49)
V. CHARGED BOSONS IN MAGNETIC FIELD ay

The local-density approximatiofLDA) has been widely For simplicity, here we consider only the spherically sym-
used[8] to calculate thermodynamic quantities, albeit nu-metric trap. The Wigner-Kirkwood expansion of the canoni-
merically. However, the major limitation of the local-density cal partition function in the magnetic field has been done by
approximation is that it fails to describe the physical quanti-Jennings and Bhadufil5]. Here we use their result, and
ties correctly for a system of charged particles in a magnetigriefly mention the steps needed for the calculation of the
field. The effect of a magnetic field is incorporated only partition function. In terms of the single-particle Hamil-

through the quantum corrections. tonian, the canonical partition function can be written as
The situation, however, may be rectified in the case of

charged bosons in a weak magnetic field where the strength  7(B,B)=Tre AHotHI~ Ty e AHoe~AH14 O(B4).

is used as an expansion parameter. Consider a system of (50)
charged bosons in a weak magnetic field applied along the

axis. Here we consider the system of bosons above the critiFo the leading order in a magnetic field, the partition func-
cal temperature, so that there is no macroscopic occupatiaion can be written as
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,32 2 2
Tr(e PHoy[12—Mr?/p],

(51)

Z(B,B)=2(B, 0)+

SUBHASIS SINHA

PRA 58

The thermodynamic potential of the charged boson system
can be written as

where is a parameter as in Sec. | with energy dimensions.

Performing the Wigner-Kirkwood expansion, the canonical

partition function up to ordeB? and#? is given by A2T)= 7 21 T g 2By )WBd,B (53)
i n—i®
1 B%h?
[ 3ra-BV(N| 1 _
208.8)= o f re sV 1- 0
2Rp2
x| v2v(r)— e’B . (52) where the weight factowg is given by Eq.(7). The thermo-
24M 2 dynamic potential is given by
|
1 ~ 2 . ~
z,T=—fd3r 72)— ————[V2V(r)+ M o? 2|, 54
9(zT)= (95/2( ) el VYO Metlan@) (54)
|
where, VI. APPLICATION TO WEAKLY INTERACTING
BOSE GAS
E:ze*V(D/kT, wc:,\e/l—B- (55) Having checked the formalism, we now apply the semi-
c

classical method to nonideal Bose gas. This is much closer to
the realistic case. For example, in a recent experiment, En-

The diamagnetic susceptibility of the trapped Bose gas cagheret al. [3] measured the thermodynamic quantities of an

then be written as

_ kTdé%q(z,T,B)
TN g2

12N|\/|2 2T )ﬁf 912(2)
B=0

(56)

Sincey is proportional ta%?, the susceptibilitdiamagnetic
contribution) is entirely due to the quantum corrections.

The diamagnetic susceptibility of ideal Bose gas confine
in an isotropic harmonic-oscillator potential is then given by

e?h?  gi(2)
12M2c2kT 93(2)

x=- (57)

Sincez— 1 near the critical point, the susceptibility becomes

e’h?  {(2)

12M2c%kT, £(3) 8

X(Te)=—

In the high-temperature limit it reduces to the usual Landau

diamagnetic susceptibility,

e?#?

To0)=— ———.
X( ) 12M2c?kT

(59

interacting Bose system consisting of 40 C0Rb atoms, for
which thes-wave scattering length is* 1008y, whereay is
the Bohr radius.

In the preceding sections we dealt with the Bose system in
the high-temperature limit, where the system is in the normal
(or noncondensatephase. However, ai<T., we have to
consider the system in both condensate and noncondensate
phases. The usual procedure is to treat the condensate and

oncondensate mixture as two fluids. Small amplitude fluc-
uations may then be described by a set of coupled Bogoli-
ubov’s equations,

[Ho— s+ 2up(1)Juy (1) +ud?o, = o, (F),  (60)

[Ho— m+2up(n)]oy(r)+ug*2uy(r)=hwyw,(r),
(61)

where qb(F) is the condensate wave function aHg is the
noninteracting part of the full Hamiltonian, given by

2

Ho= oM +V(r)

(62

The total density of the gas js=| ¢|%+ pnc, Wherep,(r) is
the noncondensate density. The interaction strength is given
by u=4mh%a/M. The particle (1,) and the hole §,) exci-
tations are necessary to describe the low-lying excitations of

Thus the semiclassical expansion as applied to nonintethe system. These excitations are important in describing the

acting Bose systems reproduces the know limits correctlylow-temperature properties of the system. Classical phase-
We next apply the formalism to the weakly interacting Bosespace dynamics of such a quasiparticle and a hole was re-
gas. cently investigated by Fliesseat al. [16]. They have also
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discussed the validity of Bogoliubov equations as well as 1 5 22 ~
Hartree-Fock equations to describe the excitations. F(r)=—| 95/ Zerr) — 2V2Veﬁgl,2(zeﬁ) ,

As is generally known, the single-particle-like excitations A 24M (KT)
are described by the Hartree-Fod) equation, which is (68)

given by[6,7,17
wherezgg= el#~VetOVKT and Vv (r) =V(r) +2up(r).
The perturbative expansion is best done by writing the
[Ho+ 2up(F)]4i(F)=e i (). (63) effective fugacity in the following form:

Zeii=2 expl{e1— V(1) — 2up(r) +2u[ ppd 0)

Unlike in the bulk, in the case of a confined Bose system, —pnd N HKT), (69)
condensate density vanishes beyond the turning point and
locally the Bogoliubov equations reduce to the HF equation., = (u-eg)lkT Lo :
For this reason the density of states of the excitations Calcayherez-e o', which is always less than 1 singe

lated from these two different equations match almost ex— €o- Assuming weak coupling, we expand the functions in

actly, except for a few low-lying excitationgl7]. In this ter[)nst_of the smqll paratrr?eteugt,r)]ncéoz _p”C(r)t]t' TSe pelrl_b
paper, therefore, we use the HF approximation hereafter t r ad'vg e>|<Epar|13(|j(_)n mth IS me Od urn;s ou to the v;/e di e
describe the thermodynamic properties of the weakly inter- avec [9]. Exclu INg the noncondensate part, the feading
acting Bose gas. term in the effective fugacity can be written as

Within the Hartree-Fock theory of bosons, noncondensate

density is given by Zeg=2zeV kT for r<r,, (70
=7eles™VIOVKT - for r>r,
. il _ _ _ o
Pnc(r)_Z m- (64) wherer is the turning point of the Thomas-Fermi density

pc. From the above expression it is easy to see that there is

no expansion parameter for the condensate part. We there-

fore approximate the local chemical potential within the con-
The condensate density, for a Bose system in an isotropigensate by its mean value. To calculate the free energy of the
harmonic trap, is obtained as a solution of the Grosssystem within mean-field theory, we subtract the self-energy
Pitaevskii equation18], from the total energy of the system. The self-energy contri-

R bution is given by

- ;—MV2+ %Mw2r2+ 2uppr) +Upc(r) | (1) =€o(r),
65 E=u f p2r)d3r. (71)

wherep,(r) andp.(r) are the densities of the nonconden- In the following calculation, we replace the coupling by a
sate and condensate part. Neglecting the kinetic energy afimensionless parameter=[ \/(2/7)(a/I)NY¢]?>. Up to or-
the condensate, the lowest energy eigenvalue may be ader »°? and7#?, the thermodynamic potential is given by
proximated by

~ 1 ~
60%614‘ 2Upnc(0), (66) q(Z,T)/N:qo(Z,t,77)+@Q2(Z,t,7]). (72)

where |=VA/Mw and e;=3Ahw(15Ny(a/1))?®. Further

within the same approximation, condensate density can b-ghe first termog(z,t, ) is the leading-order scale invariant

part of the thermodynamic potential and is given by

written as
~ ~ ~ 2 =
pe(r)= E[el—V(r)]. ©n Gzt )=t9(4z.1/2a7B)+ \/—;te‘V(anﬂ)
u
~ 2 ~ ~
The above approximation is valid for a large number of con- X | g7(2) + §a77,895,2(ze‘2’5“”5))

densate atom&ly and for strong repulsive interaction be-

tween the atoms in the condensate. This approximation, 1 _
however, breaks down within a small region near the critical + 27;5/2t7/2( §(3/2)g3(z)—EF(3/2,3/2,3/22)) .
temperature, where the number of condensate atoms be-

comes very small. For the noncondensate part we may use (73

the semiclassical formalism developed earlier for the normal
Bose fluid. Using Eq(19), the local thermodynamic poten- The scale noninvariant part is due to the quantum corrections
tial of the noncondensate atoms may be written as, and is given by
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~ 1. 2 _ wherez=ze 2% (0T |n the noninteracting limity=0, and
92(z,t,7)=— gt 9(2z,112anp)+ \/——V(anﬁ) Eq. (79) for the thermodynamic potential reduces to the ther-
m modynamic potential of noninteracting Bose ¢&s. (31)].
2 e For T<T., z~1, then some terms in the series defined
X| 932) — §a7],8g1/2(2e ") in Egs. (75 and (76) become divergent. To regulate some
. ~ divergent terms appearing in tHe® corrections, we set
+297°2Y3 £(3/12)9,(z) — F(1/2,— 1/2,5/27) ~e Ao which is the natural energy gap from the ground

state[19]. From the above expression we can see that the
condensate fraction and other thermodynamic quantities are
not fully scale invariant with respect to the dimensionless
scaling parameters andt. But the extra terms coming from
where the new functions and parameters are defined by the quantum corrections contain a factoN¥?. These terms
depend on the number of particles in the system, and give
_ * finite-size corrections to the scaling form of the thermody-
a(s.x,ty)=> ~(tiy); namic quantities. In the largs-limit and also in the high-
= temperature phase, quantum corrections are negligible. But
for small quantum confined systems the corrections to the
1 (=, _ _ free energy are finite and non-negligible.
H(ty)= \/_;fo dxe *(x+y) Y, (79 For the physical systems under consideration, the typical
value of the parametey that determines the two-body inter-
w action strength varies from 0.1 to 0.25. In recent experi-
Fla' By =2 — (76y ~ ments, the number of trapped atomsNs-10'—10°. We
=1L R (i+]) have estimated the quantum corrections of the condensate
fraction for such systems, and the order of magnitude of the
1 P 215 _ quantum corrections i$N,/N~10"3, which is typically
a= 5( 15\/;N0/N) ;. t=1B=KkT/(hwN). two orders smaller than the leading-order contribution. Our
77) calculation shows that for confined systems containing a
large number of atoms~10°), the LDA is sufficient for the

The condensate fraction can now be calculated from the thegalculation of the thermodynamic properties and the hydro-

—F(3/2~1/2,3127)1]|, (74)

(i +1)

modynamic potential as dynamics of the system. But for the systems with a smaller
number of atoms, quantum corrections become important
d[a(z,T)/N] and, further, their magnitude depends on the shape of the

No/Nzl—zT. (79 trap.

Close to the critical temperature, the condensate fraction

goes to zero, i.eNy—0, and using Eq(77) we geta—O0. VII. CONCLUSION

Then the functiorg(s,z,1/2a7pB) can be written ag(z). ~ To summarize, in this paper, we have developed an ex-
Therefore, above the critical temperature the thermodynamigended Thomas-Fermi method at finite temperature for a sys-
potential of the full system is given by tem of bosons. This is done by introducing a weight function

wg given in Eqg.(7), which facilitates the extension of the
~ ~ well known methods for the finite fermion systems to the
q(Z'T)/NZQO(Z't’”)+N_zxqu(Z’t'”)' (79 case of bosons also. Systematic quantum corrections may
then be written as a series in powersfigfwhich converges
for temperatures larger than the average spacing between en-
ergy levels. This method can be applied to calculate the ther-
modynamic quantities of the noncondensed Bose gas at finite
temperature, including the quantum corrections. Yet another
difficulty in the systems that show macroscopic occupation
~ 1 - of ground state at finite temperature is that the chemical po-
X| £(3/295(2)— 5F(3/2,3/2,3/22) |, (80)  tential of the system tends to zero, i&= 1. As a result, the
higher-order terms ifh expansion show infrared divergence.
To regulate such divergences, fugacity of the system can be
replaced by e 2¥KT whereAE is the natural energy gap of
finite-size system§l9]. This is equivalent to introducing an
1 infrared momentum cutof 1/L, whereL is the system size
G2(zt,m) =~ gt{gz(~2)+2775/2t1/2[§(3/2)91(~z) and does not cause any problem. We have demonstrated the
utility of the semiclassical expansion with several applica-
CF(12,- 1/2,5/%7) — F(3/2,~ 112,312 ]}, tions: We first calculate the quantum correction to a system
of spin-1 bosons trapped in a general power-law potential. In
(81 general, an exact quantum-mechanical spectrum of such a

Again qo(z,t, ) denotes the leading term in the semiclassi-
cal expansion, which is given by

Qo(z,T)=t3g4(2) +27°2™"

and the termy,(z,t, ) coming from the second-order quan-
tum correction[ O(%2)] is given by
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system is not known except in special cases, but our methodotropic harmonic-oscillator potential. The thermodynamic
provides a simple way of calculating the quantum correcpotential and condensate fraction are calculated analytically
tions systematically. AT>T,, the paramagnetic suscepti- up to order#?. Leading terms ini are the functions of
bility of the gas is obtained including the leading-order quan-scaling parameters (or temperatureand » only, but the
tum correction. Semiclassical expansion is then applied t@eading-order quantum corrections gidedependent correc-
improve the local-density approximation for a system oftions to the scaling form. In the present situation, quantum
Charged bosons in a homogeneous magnetic field. Within th@orrections are neg||g|b||y small when the number of par-
Simple Thomas-Fermi apprOXimation it is not pOSSible to Cal'tic|es is |arge, of the order of io However, guantum cor-
culate the susceptibility of the system, because energy angctions may be important for a small number of particles
free energy do not depend on the magnetic field. We havgnd in low-dimensional systems. Further, its magnitude de-

calculated the diamagnetic susceptibility of the gas in a norpends on the nature of the confinement potential.
mal state and it is shown that only quantum corrections con-

tribute to the susceptibility. This method may also be applied

to the interacting Bose system at finite temperature to esti- ACKNOWLEDGMENTS

mate the effect of interaction on the susceptibility. Lastly, we

have used our method to calculate the thermodynamic poten- | would like to thank M.V.N. Murthy, R.K. Bhaduri, and
tial of a system of weakly interacting Bose gas confined in arR. Shankar for helpful discussions.
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