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Quantum corrections to the thermodynamic potential of trapped bosons

Subhasis Sinha
The Institute of Mathematical Sciences, Madras 600 113, India

~Received 22 January 1998; revised manuscript received 22 April 1998!

We calculate the quantum corrections of the thermodynamic quantities of a system of confined bosons at
finite temperature. Systematically quantum corrections are written in a series of\, which is convergent when
kT is much larger than the spacing between energy levels of the system. We apply this method to the different
physical systems. First we calculate the thermodynamic potential of spin-1 bosons confined in a general
power-law potential, and calculate the paramagnetic susceptibility of the gas including the quantum correc-
tions. Local-density approximation for charged bosons in the weak magnetic field is improved by the semi-
classical expansion. Diamagnetic susceptibility of a system of confined charged bosons is calculated using this
method. Finally we apply this method to calculate analytically the thermodynamic potential of a weakly
interacting Bose-gas confined in at three-dimensional harmonic-oscillator potential. For a large number of
particles, quantum corrections become small, and contribute to the finite-size corrections to scaling.
@S1050-2947~98!03810-4#

PACS number~s!: 03.75.Fi, 32.80.Pj
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I. INTRODUCTION

There has been renewed interest in the Bose-Einstein
densation~BEC! after its experimental demonstration b
Andersonet al. @1,2#. It has now become possible to measu
the relevant thermodynamic quantities of a system of wea
interacting bosons in a magnetic trap@3,4#. In these experi-
ments, the temperature dependence of the condensate
tion and the release energy are measured. Theoretically
thermodynamic properties of homogeneous Bose gas w
studied by several authors starting with London@5#. The
thermodynamic properties of the inhomogeneous Bose
were studied by Leggetet al. @6,7#. After the recent experi-
mental developments, there is a new impetus to unders
the thermodynamic properties of interacting inhomogene
Bose gas. Within the local-density approximation~LDA !,
Stringariet al. @8# have calculated the thermodynamic qua
tities numerically and shown scaling properties of stron
interacting bosons in a trap. Since then, several calculat
have been reported by various authors@9,10#. In these papers
the thermodynamic properties of inhomogeneous gas h
been calculated within the LDA, neglecting the quantum c
rections.

In this paper we develop a systematic semiclassica\
expansion for thermodynamic quantities of an interact
Bose gas, which takes into account the quantum correcti
Since the self-consistent potential is quite complicated
device-dependent, the formalism is kept as general as
sible. We follow a method analogous to the highly succes
extended Thomas-Fermi method~ETF!, which has been suc
cessfully applied in the case of finite fermion systems, s
as nuclei, atoms, clusters, etc. It is well known that
smooth part of the quantum density of states can be se
classically expanded in powers of\. The leading term in this
expansion is the Thomas-Fermi level density. Systemati\
corrections to the leading approximation may then be
tained using the well known Wigner-Kirkwood~WK! expan-
sion @11#. In the case of finite fermion systems this is what
usually referred to as the extended Thomas-Fermi appr
PRA 581050-2947/98/58~4!/3159~9!/$15.00
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mation @12#. Following this procedure, we develop a sem
classical expansion for finite Bose systems at finite temp
ture. The method is simple and can be effectively used e
when the bosons are interacting. To demonstrate the us
ness of the method, we first apply it to noninteracting bos
confined in a general trap potential. In the case of a harmo
potential we compare the results obtained with the kno
results obtained using exact calculations and check the
rectness of the method. We then extract physically relev
thermodynamic quantities at finite temperature including
quantum corrections to the leading order.

The paper is organized as follows. In Sec. II, we deve
the formalism of semiclassical expansion and apply it to
case of noninteracting bosons in complicated trap poten
in Sec. III. Motivated by the recent experiment on spin
23Na atoms@2#, in Sec. IV we also calculate the parama
netic susceptibility of the gas, including the quantum corr
tions. Section V is devoted to the application of the semicl
sical expansion for a system of charged bosons in
homogeneous magnetic field, and the diamagnetic susc
bility of the Bose gas above the critical temperature is c
culated. Here we show that the diamagnetic susceptib
comes entirely from the quantum corrections. In Sec. VI,
analytically calculate the thermodynamic quantities of an
semble of weakly interacting Bose gas confined in at thr
dimensional harmonic-oscillator potential including th
leading-order quantum corrections. We show that
leading-order thermodynamic quantities are functions
only two scaling parameters. The quantum corrections, h
ever, give rise to small but finite-size corrections to scal
O(1/N2/3). Section VII contains a summary and conclusion

II. EXTENDED THOMAS-FERMI APPROXIMATION
FOR BOSONS

We first develop a systematic\ expansion using the
Wigner-Kirkwood ~WK! method@11#. Consider the single-
particle HamiltonianH for a system of particles, which sa
isfies the Schro¨dinger equation,
3159 © 1998 The American Physical Society
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Hcn5Encn , ~1!

where En are eigenvalues andcn are corresponding wav
functions. The canonical partition function of the system
defined as

Z0~b!5(
n

e2bEn, ~2!

whereb is, for our purposes, a parameter with the dimens
of inverse energy and should not be confused with the ph
cal temperature of the system.

We first briefly review the semiclassical method as a
plied to the finite fermion system@12#, which is well known.
To extract thermodynamic quantites of the finite fermi
system from the canonical partition function, a weight fun
tion is defined as

wF5
pbkT

sin~pbkT!
. ~3!

By using this weight function, one can write the thermod
namic potential of the system in the following way:

kTq~T,z!5mN2E1TS5Lm
21S Z0~b!wF

b2 D . ~4!

In the integral representation,

kTq~T,z!5
1

2p i Ee2 i`

e1 i`

ebm
Z0~b!wF

b2
db, ~5!

where the contour is closed from the left forEn,m and from
the right for En.m. Summing over all residues, we obta
the well known result@13#

q~T,z!5(
n

ln~11ze2En /kT!, ~6!

wherez5em/kT is the fugacity andT is the temperature. Us
ing this thermodynamic potential all the relevant thermod
namic quantities related to the finite fermion system may
obtained.

The method can now be extended to the case of bos
Here we propose a form of the weight function for bosons
that all calculations done for finite fermion systems can
extended to the finite Bose systems at finite temperature.
weight function for bosons is given by

wB5
2cos~pbkT!pbkT

sin~pbkT!
. ~7!

The thermodynamic potential of an ensemble of bosons
therefore be written in terms of the following integral, as
the case of fermions:

kTq~T,z!5
1

2p i Eh2 i`

h1 i`

ebm
Z0~b!wB

b2
db, ~8!

whereZ0(b) is the same as in Eq.~2!. The line of integration
is chosen in such a way that all the positive poles~excluding
s
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zero! are to the right side of the line. This integral is we
defined and convergent. Since the chemical potentiam
,En ~for all n) for bosons, we close the contour from th
right. Summing over all the residues at the positive po
inside the contour, we obtain the well known result for t
thermodynamic potential@13#,

q~z,T!52(
n

ln~12ze2En /kT!. ~9!

This immediately checks the correctness of the weight fu
tion wB for bosons. From the above thermodynamic poten
we can calculate all thermodynamic quantities. One imp
tant difference between the finite fermion and the finite b
son systems is the existence of a critical temperature in
latter. Care must therefore be exercised in using the se
classical formalism close to the critical temperature. W
clarify this point as we go along.

To do a systematic\ expansion of bosons, we start from
the high-temperature limit. Neglecting the zero point ene
and the occupation number of the ground state, we can
the WK expansion of a canonical partition function. For t
semiclassical expansion of the partition function, it is mo
convenient to take the plane-wave basis for calculation of
canonical partition function,

Z0~b!5
1

h3E d3pE d3re2 ipW •rW/\e2bHeipW •rW/\, ~10!

whereH is the single particle Hamiltonian. To evaluate th
partition function, we introduce the function

u~rW,pW ,b!5e2bHeirW•pW /\,

5e2bHcleirW•pW /\w~rW,pW ,b!,
~11!

whereHcl is the classical Hamiltonian,Hcl5p2/2M1V(rW),
andV(r ) is the self-consistent single-particle potential. It
easy to see that the functionu obeys the Bloch equation

]u

]b
1Hu50 ~12!

with the boundary condition

lim
b→0

u5eipW •rW/\. ~13!

Substitutingu in the above equation, we obtain the followin
equation forw:

]w

]b
52 i\S b

M
~pW •“V!w2

1

M
~pW •“w! D1

\2

2M
@b2~“V!2w

2b~¹2V!w1“

2w22b~“V•“w!#. ~14!

The above equation can be solved order by order in\, by
expandingw as a power series in\,

w511\w11\2w21•••, ~15!
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wherew1 ,w2 , . . . are determined at each order using the Bloch equation. Up to the order\2, the canonical partition may the
be written as@12#

ZWK~b!5
1

~2p\!3E d3pe2bp2/2ME d3re2bV~rW !F12
b2\2

12M S“2V~rW !2
b

2
„“V~rW !…2D G1O~\4!. ~16!

After doing integration by parts, the above expression can be written in the following form:

ZWK~b!5
1

~2p\!3E d3pe2bp2/2ME d3re2bV~rW !S 12
b2\2

24M
“

2V~rW ! D1O~\4!, ~17!

whereV(r ) is the effective single-particle potential. We note that at this stage the above result is true for both fermio
bosons because the statistics has not yet been imposed.

Inserting the expression forZWK for the canonical partition function in Eq.~8!, we obtain the thermodynamic potential o
the normal state of the Bose system,

q~z,T!52
1

~2p\!3E d3pE d3r S ln~12ze2[ p2/2M1V~rW !]/kT!2
\2

24M
¹2V~rW !

]2

]m2
ln~12ze2[ p2/2M1V~rW !]/kT!D 1O~\4!.

~18!

After substituting Eq.~16! into Eq. ~8!, we get the following form of the density of the thermodynamic potential or the lo
thermodynamic potential up to order\2:

F~rW !5
1

l3S g5/2~ z̃!2
\2

24M ~kT!2
$¹2V~rW !g1/2~ z̃!1“•@“V~rW !g1/2~ z̃!#% D , ~19!
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where thegn(x) and the thermal wavelengthl are defined as

l5
2p\

A2pMkT
, gn~x!5(

i 51

`
xi

i n
, ~20!

and the effective fugacity isz̃5ze2V(r )/kT. Equation~19! is
the central result of the paper, and in the following sectio
we use this expression to calculate the quantum correct
of various thermodynamic quantities of the Bose syste
Here we have calculated the local thermodynamic poten
up to \2 order, but\4 and higher-order terms can also b
calculated easily following the same procedure. Unlike
calculation of the Wigner distribution function, this metho
provides a much simpler way to calculate the quantum c
rections order by order in\.

From the thermodynamic potential, we can derive
number of particles and the energy of the normal state,

Ne5zS ]q

]zD
T

, ~21!

U5~kT!2S ]q

]~kT! D
z

. ~22!

This completes our discussion of single-particle proper
of a finite Bose system using a systematic semiclassical
pansion. While we have given the results up order (\2), in
principle the method can be continued to higher orders
the next section we consider a simple application of t
formalism to noninteracting bosons confined in an arbitr
power-law potential.
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III. APPLICATION TO NONINTERACTING BOSONS

We first apply the formalism to a system of noninteracti
but confined bosons and check its correctness. To show
simplicity as well as the usefulness of the method, we fi
consider a general power-law-type confinement and spe
ize to the harmonic traps later. The general power-law
tential is given by@9#:

V~rW !5e1S x

L D 2p

1e2S y

L D 2l

1e3S z

L D 2q

, ~23!

whereL is a length parameter ande i have the dimensions o
energy. The exponentsp,q,l are positive but arbitrary. No-
tice that since the potential is complicated, it is not, in ge
eral, possible to get the exact spectrum and therefore e
results are not known except in special cases. To calcu
the thermodynamic potential including the leading-ord
quantum correction, we use the expression of the local th
modynamic potential derived earlier in Eq.~19!. Substituting
for V(r ), and after doing some algebra, we obtain the f
lowing expression for the thermodynamic potential includi
corrections up to order\2:

q~z,T!5q0~z,T!1q2~z,T!. ~24!

q0(z,T) denotes the leading contribution in the semiclassi
expansion, which is given by

q0~z,T!5
C0

l3
g5/21h8~z!, ~25!

where
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C05
L3G~1/2p!G~1/2l !G~1/2q!

pql~e1 /kT!1/2p~e2 /kT!1/2l~e3 /kT!1/2q
, ~26!

h85
1

2p
1

1

2q
1

1

2l
, ~27!

andl is the thermal wavelength given in the preceding s
tion. Further,q2(z,T) is the second-order quantum corre
tion @O(\2)# of the thermodynamic potential, and is give
by

q2~z,T!52
C0

l3

E0

24kTH F f ~p!S e1

kTD 1/p

g3/21h821/p~z!

1 f ~ l !S e2

kTD 1/l

g3/21h821/l~z!

1 f ~q!S e3

kTD 1/q

g3/21h821/q~z!G J . ~28!

The parameters in the above equation are

f ~x!5
2x~2x21!G~121/2x!

G~1/2x!
, ~29!

E05
\2

ML2
. ~30!

Thus for any givenp,q,l , it is possible to obtain the relevan
thermodynamic quantities from the closed form for the th
modynamic potential given above.

As an example, we choose the parameters of the pote
so that it specializes to the harmonic trap. This can be d
by setting p5 l 5q51, e15e25e35\v/2, and L2

5\/Mv, so that the potential becomes an isotropic sim
harmonic potential. By substituting the values of the para
eters of the potential in the above expressions for the t
modynamic potential, we obtain

q~z,T!5S kT

\v D 3Fg4~z!2
1

8S \v

kT D 2

g2~z!G . ~31!

From this thermodynamic potential we can derive the nu
ber of particles and the energy of the normal state. Using
definitions given in Eqs.~21! and ~22!, we have

Ne5S kT

\v D 3Fg3~z!2
1

8S \v

kT D 2

g1~z!G , ~32!

U5kTS kT

\v D 3F3g4~z!2
1

8S \v

kT D 2

g2~z!G . ~33!

Indeed, the above expression may also be derived f
the exact quantum-mechanical density of states of a th
dimensional~3D! harmonic oscillator~HO!. The exact ca-
nonical partition function of the 3D HO is given by

Z~b!5
1

@2 sinh~b\v/2!#3
. ~34!
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Density of states can be calculated by taking the inve
Laplace transform of the canonical partition function wi
respect tob from which the above expressions for the num
ber and energy follow up to order\2. Similar results may be
obtained by the Eular-Maclaurin summation method@10#.

It is therefore clear that thermodynamic quantities may
expanded in a series of a dimensionless parameter\v/kT
when the trap potential is harmonic. The expansion para
eter is in fact\v/kT. Therefore, the series converges on
when \v/kT<1. However, at low temperaturesb\v'1,
and hence the Wigner-Kirkwood expansion breaks down.
these temperatures, only a few low-energy states are o
pied, so energy levels cannot be taken as continuous. O
ously one should treat the semiclassical expansion derive
this section as a high-tempertaure expansion.

IV. QUANTUM CORRECTIONS TO THE
PARAMAGNETISM OF SPIN-1 BOSONS

As an application of the formalism developed in the p
ceding sections, we do the semiclassical expansion of
energy of the spin-1 bosons in a general power-law-type c
finement. Very recently it has become possible to obse
Bose-Einstein condensation of dilute23Na atoms in an opti-
cal dipole trap. Total spin of a23Na atom isF51, and it has
three degenerate states labeled by thez component of the
total spin,Fz50,1,21. In the previous experiments in mag
netic trap spin degrees of freedom of alkali atoms are froz
But in the optical trap, Stamper-Kurnet al. @2# have pro-
duced a stable condensate of three spin states of23Na atoms.
This experiment opens a new window to study the spin
namics of the trapped bosons. In this section, we consider
trapped spin-1 bosons in a weak magnetic field and calcu
the magnetic properties of the gas and the quantum cor
tions in the high-temperature limit.

The Hamiltonian of the system in a uniform weak ma
netic fieldB can be written as

H5
p2

2M
1V~rW !2mzBmf , ~35!

wheremz is the magnetic moment of the atom andmf is the
z component of the spin of the atom. Simkin and Cohen@14#
have recently shown that thez component of the magneti
moment of a23Na atom ismz5mb/2, wheremb is the Bohr
magneton. In the noninteracting case the three spin state
spin-1 boson behave as a three-component fluid, and th
fore their thermodynamic potential will add up. Generalizi
the expression for the thermodynamic potential to spi
bosons and including the Zeeman term, we obtain the
lowing expression for the thermodynamic potential:

qtot~z,T,B!5q~zey,T!1q~z,T!1q~ze2y,T!, ~36!

where q(z,T) is the thermodynamic potential of one
component gas, which we have already derived, andy
5mB/kT. Here we investigate the magnetization and pa
magnetic susceptibility of the gas above the critical tempe
ture. Therefore, all the atoms are in the normal state. M
netization of the gas is defined as
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M5mz

N~1!2N~21!

N
, ~37!

whereN(1),N(21) are the number of spin-up (mf511)
and spin-down (mf521) particles. In terms of the gran
potential of each spin state, magnetization and paramagn
susceptibility can be written as
te
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M5
mz

N S z
]q~zey,T!

]z
2z

]q~ze2y,T!

]z D , ~38!

x5
]M

]B
uB50 . ~39!

The paramagnetic susceptibility of the gas confined in
power-law potential described in Eq.~23! is given by
x5
mz

2

kT

2

N

C0

l3H g1/21h8~z!2
E0

24kTF (
x5p,l ,q

f ~x!S ex

kTD 1/x

gh821/221/x~z!G J , ~40!
eld
r-

In
as

f

-
ni-
by

d
the
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c-
whereC0 , f (x), E0 , andh8 are given by Eqs.~26!, ~29!,
~30!, and~27!, respectively. It is an interesting point to no
that for h8<1/2, susceptibility diverges at critical temper
ture. Susceptibility of Bose gas in an anisotropic harmo
oscillator potential is given by

x5
2mz

2

dNkTS kT

\v'
D 3S g2~z!2

~\v' /kT!2

24
~21d!

z

12zD ,

~41!

wherev' ,vz are the frequencies of the harmonic-oscilla
potential in thex-y plane and in thez direction, respectively,
andd5vz /v' . The second term in the expression for su
ceptibility is the quantum correction. In the high-temperatu
limit, susceptibility can be expanded as a power series in
fugacity variablez,

x5
2

3

mz
2

kTS 11
z

2h813/2
~12a!1O~z2!D , ~42!

where

a5
bE0

24 (
x5p,l ,q

f ~x!~bex!
1/x~2111/x21!. ~43!

As to be expected in the high-temperature limit, the lead
term in susceptibility does not depend on the nature of c
finement or quantum corrections.

V. CHARGED BOSONS IN MAGNETIC FIELD

The local-density approximation~LDA ! has been widely
used @8# to calculate thermodynamic quantities, albeit n
merically. However, the major limitation of the local-densi
approximation is that it fails to describe the physical quan
ties correctly for a system of charged particles in a magn
field. The effect of a magnetic field is incorporated on
through the quantum corrections.

The situation, however, may be rectified in the case
charged bosons in a weak magnetic field where the stre
is used as an expansion parameter. Consider a syste
charged bosons in a weak magnetic field applied along thz
axis. Here we consider the system of bosons above the c
cal temperature, so that there is no macroscopic occupa
c
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e
e

g
-

-

-
ic

f
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of the ground state. To include the effect of a magnetic fi
in the thermodynamic potential, we first do the Wigne
Kirkwood expansion of the canonical partition function.
the symmetric gauge, the vector potential can be written

AW 5S 2
1

2
By,

1

2
Bx,0D , ~44!

whereB is the magnitude of the field. The Hamiltonian o
the system is then given by

H5
1

2M
@pW 1~e/c!AW #21V~rW !5H01H1 , ~45!

where

H05
p2

2M
1V~rW ! ~46!

H15
e2B2

8Mc2
r'

2 1
eB

2Mc
l z , ~47!

and

r'
2 5~x21y2!, ~48!

l z52 i\S x
]

]y
2y

]

]xD . ~49!

For simplicity, here we consider only the spherically sym
metric trap. The Wigner-Kirkwood expansion of the cano
cal partition function in the magnetic field has been done
Jennings and Bhaduri@15#. Here we use their result, an
briefly mention the steps needed for the calculation of
partition function. In terms of the single-particle Hami
tonian, the canonical partition function can be written as

Z~b,B!5Tr e2b~H01H1!'Tr e2bH0e2bH11O~B4!.
~50!

To the leading order in a magnetic field, the partition fun
tion can be written as
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Z~b,B!5Z~b,0!1
b2e2B2

8M2c2
Tr~e2bH0!@ l z

22Mr'
2 /b#,

~51!

whereb is a parameter as in Sec. I with energy dimensio
Performing the Wigner-Kirkwood expansion, the canoni
partition function up to orderB2 and\2 is given by

Z~b,B!5
1

8p3/2b3/2S 2M

\2 D 3/2E d3re2bV~rW !F12
b2\2

24M

3S ¹2V~rW !2
e2B2

24Mc2D G . ~52!
ca

e
by

es

a

te
tl
se
.
l

The thermodynamic potential of the charged boson sys
can be written as

q~z,T!5
1

kT

1

2p i Eh2 i`

h1 i`

ebm
Z~b,B!

b2
wBdb, ~53!

where the weight factorwB is given by Eq.~7!. The thermo-
dynamic potential is given by
q~z,T!5
1

l3E d3r S g5/2~ z̃!2
\2

24M ~kT!2
@¹2V~rW !1Mvc

2#g1/2~ z̃!D , ~54!
i-
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z̃5ze2V~rW !/kT, vc5
eB

Mc
. ~55!

The diamagnetic susceptibility of the trapped Bose gas
then be written as

x5
kT

N

]2q~z,T,B!

]B2 U
B50

5
2e2\2

12NM2c2kT

1

l3E g1/2~ z̃!d3r .

~56!

Sincex is proportional to\2, the susceptibility~diamagnetic
contribution! is entirely due to the quantum corrections.

The diamagnetic susceptibility of ideal Bose gas confin
in an isotropic harmonic-oscillator potential is then given

x52
e2\2

12M2c2kT

g2~z!

g3~z!
. ~57!

Sincez→1 near the critical point, the susceptibility becom

x~Tc!52
e2\2

12M2c2kTc

z~2!

z~3!
. ~58!

In the high-temperature limit it reduces to the usual Land
diamagnetic susceptibility,

x~T→`!52
e2\2

12M2c2kT
. ~59!

Thus the semiclassical expansion as applied to nonin
acting Bose systems reproduces the know limits correc
We next apply the formalism to the weakly interacting Bo
gas.
n

d

u

r-
y.

VI. APPLICATION TO WEAKLY INTERACTING
BOSE GAS

Having checked the formalism, we now apply the sem
classical method to nonideal Bose gas. This is much close
the realistic case. For example, in a recent experiment,
sheret al. @3# measured the thermodynamic quantities of
interacting Bose system consisting of 40 00087Rb atoms, for
which thes-wave scattering length is'100a0 , wherea0 is
the Bohr radius.

In the preceding sections we dealt with the Bose system
the high-temperature limit, where the system is in the norm
~or noncondensate! phase. However, atT,TC , we have to
consider the system in both condensate and nonconden
phases. The usual procedure is to treat the condensate
noncondensate mixture as two fluids. Small amplitude fl
tuations may then be described by a set of coupled Bog
ubov’s equations,

@H02m12ur~rW !#ul~rW !1uf2vl5\vlul~rW !, ~60!

@H02m12ur~rW !#vl~rW !1uf* 2ul~rW !5\vlvl~rW !,
~61!

wheref(rW) is the condensate wave function andH0 is the
noninteracting part of the full Hamiltonian, given by

H05
p2

2M
1V~rW !. ~62!

The total density of the gas isr5ufu21rnc, wherernc(rW) is
the noncondensate density. The interaction strength is g
by u54p\2a/M . The particle (ul) and the hole (vl) exci-
tations are necessary to describe the low-lying excitation
the system. These excitations are important in describing
low-temperature properties of the system. Classical pha
space dynamics of such a quasiparticle and a hole was
cently investigated by Fliesseret al. @16#. They have also
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discussed the validity of Bogoliubov equations as well
Hartree-Fock equations to describe the excitations.

As is generally known, the single-particle-like excitatio
are described by the Hartree-Fock~HF! equation, which is
given by @6,7,17#

@H012ur~rW !#c i~rW !5eic i~rW !. ~63!

Unlike in the bulk, in the case of a confined Bose syste
condensate density vanishes beyond the turning point
locally the Bogoliubov equations reduce to the HF equati
For this reason the density of states of the excitations ca
lated from these two different equations match almost
actly, except for a few low-lying excitations@17#. In this
paper, therefore, we use the HF approximation hereafte
describe the thermodynamic properties of the weakly in
acting Bose gas.

Within the Hartree-Fock theory of bosons, noncondens
density is given by

rnc~rW !5(
i

uc i u2

e~ei2m!/kT21
. ~64!

The condensate density, for a Bose system in an isotr
harmonic trap, is obtained as a solution of the Gro
Pitaevskii equation@18#,

S 2
\2

2M
¹21

1

2
Mv2r 212urnc~r !1urc~r ! Df~r !5e0f~r !,

~65!

wherernc(r ) andrc(r ) are the densities of the nonconde
sate and condensate part. Neglecting the kinetic energ
the condensate, the lowest energy eigenvalue may be
proximated by

e0'e112urnc~0!, ~66!

where l 5A\/Mv and e15 1
2 \v„15N0(a/ l )…2/5. Further

within the same approximation, condensate density can
written as

rc~r !5
1

u
@e12V~r !#. ~67!

The above approximation is valid for a large number of co
densate atomsN0 and for strong repulsive interaction be
tween the atoms in the condensate. This approximat
however, breaks down within a small region near the criti
temperature, where the number of condensate atoms
comes very small. For the noncondensate part we may
the semiclassical formalism developed earlier for the nor
Bose fluid. Using Eq.~19!, the local thermodynamic poten
tial of the noncondensate atoms may be written as,
s

,
nd
.

u-
-

to
r-

te

ic
-

of
p-

be

-

n,
l
e-
se
al

F~r !5
1

l3S g5/2~ z̃eff!2
\2

24M ~kT!2
¹2Veffg1/2~ z̃eff!D ,

~68!

wherez̃eff5e[m2Veff(r )]/kT andVeff(r )5V(r )12ur(r ).
The perturbative expansion is best done by writing

effective fugacity in the following form:

z̃eff5 z̃ exp„$e12V~r !22urc~r !12u@rnc~0!

2rnc~r !#%/kT…, ~69!

where z̃5e(m2e0)/kT, which is always less than 1 sincem
,e0 . Assuming weak coupling, we expand the functions
terms of the small parameter 2u@rnc(0)2rnc(r )#. The per-
turbative expansion in this method turns out to be well b
haved @9#. Excluding the noncondensate part, the lead
term in the effective fugacity can be written as

z̃eff5 z̃e[V~r !2e1]/kT for r ,r 0 , ~70!

5 z̃e[ e12V~r !]/kT for r .r 0 ,

where r 0 is the turning point of the Thomas-Fermi densi
rc . From the above expression it is easy to see that ther
no expansion parameter for the condensate part. We th
fore approximate the local chemical potential within the co
densate by its mean value. To calculate the free energy o
system within mean-field theory, we subtract the self-ene
from the total energy of the system. The self-energy con
bution is given by

Es5uE rnc
2 ~r !d3r . ~71!

In the following calculation, we replace the coupling by
dimensionless parameterh5@A(2/p)(a/ l )N1/6#2/5. Up to or-
der h5/2 and\2, the thermodynamic potential is given by

q~z,T!/N5q0~ z̃,t,h!1
1

N2/3
q2~ z̃,t,h!. ~72!

The first termq0( z̃,t,h) is the leading-order scale invarian
part of the thermodynamic potential and is given by

q0~ z̃,t,h!5t3g̃~4,z̃,1/2,ahb̃!1
2

Ap
t3A~ahb̃!

3S g7/2~ z̃!1
2

3
ahb̃g5/2~ z̃e22/5ahb̃! D

12h5/2t7/2S z~3/2!g3~ z̃!2
1

2
F~3/2,3/2,3/2,z̃! D .

~73!

The scale noninvariant part is due to the quantum correct
and is given by



he

tio

m

si

n-

er-

ed
e

nd
the
are
ss

ive
y-

But
the

ical
r-
ri-

sate
the

ur
a

ro-
ller
tant
the

ex-
sys-
on
e
he
may

n en-
er-
nite

ther
ion
po-

e.
be

f

d the
a-
em
. In
h a

3166 PRA 58SUBHASIS SINHA
q2~ z̃,t,h!52
1

8
tF g̃~2,z̃,1/2,ahb̃!1

2

Ap
A~ahb̃!

3S g3/2~ z̃!2
2

3
ahb̃g1/2~ z̃e22/5ahb̃! D

12h5/2t1/2@z~3/2!g1~ z̃!2F~1/2,21/2,5/2,z̃!

2F~3/2,21/2,3/2,z̃!#G , ~74!

where the new functions and parameters are defined by

g̃~s,x,t,y!5(
i 51

`
xi

i s
I ~ t,iy !;

I ~ t,y!5
1

Ap
E

0

`

dxe2x~x1y!~ t21!, ~75!

F~a8,b8,g8,x!5(
i 51

`

(
j 51

`
x~ i 1 j !

i a8 j b8~ i 1 j !g8
, ~76!

a5
1

2S 15Ap

2
N0 /ND 2/5

; t51/b̃5kT/~\vN1/3!.

~77!

The condensate fraction can now be calculated from the t
modynamic potential as

N0 /N512z
]@q~z,T!/N#

]z
. ~78!

Close to the critical temperature, the condensate frac
goes to zero, i.e.,N0→0, and using Eq.~77! we geta→0.
Then the functiong̃(s,z̃,1/2,ahb̃) can be written asgs( z̃).
Therefore, above the critical temperature the thermodyna
potential of the full system is given by

q~z,T!/N5q0~ z̃,t,h!1
1

N2/3
q2~ z̃,t,h!. ~79!

Again q0( z̃,t,h) denotes the leading term in the semiclas
cal expansion, which is given by

q0~z,T!5t3g4~z!12h5/2t7/2

3S z~3/2!g3~ z̃!2
1

2
F~3/2,3/2,3/2,z̃! D , ~80!

and the termq2( z̃,t,h) coming from the second-order qua
tum correction@O(\2)# is given by

q2~ z̃,t,h!52
1

8
t$g2~ z̃!12h5/2t1/2@z~3/2!g1~ z̃!

2F~1/2,21/2,5/2,z̃!2F~3/2,21/2,3/2,z̃!#%,

~81!
r-

n

ic
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wherez̃5ze22ur(0)/kT. In the noninteracting limit,h50, and
Eq. ~79! for the thermodynamic potential reduces to the th
modynamic potential of noninteracting Bose gas@Eq. ~31!#.

For T,Tc , z̃'1, then some terms in the series defin
in Eqs. ~75! and ~76! become divergent. To regulate som
divergent terms appearing in the\2 corrections, we setz̃
'e2b\v, which is the natural energy gap from the grou
state@19#. From the above expression we can see that
condensate fraction and other thermodynamic quantities
not fully scale invariant with respect to the dimensionle
scaling parametersh andt. But the extra terms coming from
the quantum corrections contain a factor 1/N2/3. These terms
depend on the number of particles in the system, and g
finite-size corrections to the scaling form of the thermod
namic quantities. In the large-N limit and also in the high-
temperature phase, quantum corrections are negligible.
for small quantum confined systems the corrections to
free energy are finite and non-negligible.

For the physical systems under consideration, the typ
value of the parameterh that determines the two-body inte
action strength varies from 0.1 to 0.25. In recent expe
ments, the number of trapped atoms isN'1042105. We
have estimated the quantum corrections of the conden
fraction for such systems, and the order of magnitude of
quantum corrections isdN0 /N'1023, which is typically
two orders smaller than the leading-order contribution. O
calculation shows that for confined systems containing
large number of atoms ('105), the LDA is sufficient for the
calculation of the thermodynamic properties and the hyd
dynamics of the system. But for the systems with a sma
number of atoms, quantum corrections become impor
and, further, their magnitude depends on the shape of
trap.

VII. CONCLUSION

To summarize, in this paper, we have developed an
tended Thomas-Fermi method at finite temperature for a
tem of bosons. This is done by introducing a weight functi
wB given in Eq. ~7!, which facilitates the extension of th
well known methods for the finite fermion systems to t
case of bosons also. Systematic quantum corrections
then be written as a series in powers of\, which converges
for temperatures larger than the average spacing betwee
ergy levels. This method can be applied to calculate the th
modynamic quantities of the noncondensed Bose gas at fi
temperature, including the quantum corrections. Yet ano
difficulty in the systems that show macroscopic occupat
of ground state at finite temperature is that the chemical
tential of the system tends to zero, i.e.,z→1. As a result, the
higher-order terms in\ expansion show infrared divergenc
To regulate such divergences, fugacity of the system can
replaced byze2DE/kT, whereDE is the natural energy gap o
finite-size systems@19#. This is equivalent to introducing an
infrared momentum cutoff'1/L, whereL is the system size
and does not cause any problem. We have demonstrate
utility of the semiclassical expansion with several applic
tions: We first calculate the quantum correction to a syst
of spin-1 bosons trapped in a general power-law potential
general, an exact quantum-mechanical spectrum of suc
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system is not known except in special cases, but our me
provides a simple way of calculating the quantum corr
tions systematically. AtT.Tc , the paramagnetic suscept
bility of the gas is obtained including the leading-order qua
tum correction. Semiclassical expansion is then applied
improve the local-density approximation for a system
charged bosons in a homogeneous magnetic field. Within
simple Thomas-Fermi approximation it is not possible to c
culate the susceptibility of the system, because energy
free energy do not depend on the magnetic field. We h
calculated the diamagnetic susceptibility of the gas in a n
mal state and it is shown that only quantum corrections c
tribute to the susceptibility. This method may also be appl
to the interacting Bose system at finite temperature to e
mate the effect of interaction on the susceptibility. Lastly,
have used our method to calculate the thermodynamic po
tial of a system of weakly interacting Bose gas confined in
an
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n,
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n

isotropic harmonic-oscillator potential. The thermodynam
potential and condensate fraction are calculated analytic
up to order\2. Leading terms in\ are the functions of
scaling parameterst ~or temperature! and h only, but the
leading-order quantum corrections giveN-dependent correc
tions to the scaling form. In the present situation, quant
corrections are negligibily small when the number of p
ticles is large, of the order of 105. However, quantum cor-
rections may be important for a small number of partic
and in low-dimensional systems. Further, its magnitude
pends on the nature of the confinement potential.
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