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Bose-Einstein condensation in a two-dimensional, trapped, interacting gas

M. Bayindir and B. Tanatar
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey
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We study the Bose-Einstein condensation phenomenon in a two-dimen&@adystem of bosons sub-
jected to a harmonic-oscillator-type confining potential. The interaction among the 2D bosons is described by
a ¢ function in configuration space. Solving the Gross-Pitaevskii equation within the two-fluid model we
calculate the condensate fraction, ground-state energy, and specific heat of the system. Our results indicate that
interacting bosons have similar behavior to those of an ideal system for weak interactions.
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PACS numbe(s): 03.75.Fi, 05.30.Jp, 67.40.Kh

The observation of the Bose-Einstein condensa8®C)  in the current experiments the finite number of atdwnpre-
phenomenon in dilute atomic gagds-4] has caused a lot of vents various divergences from giving rise to behavior akin
attention, because it provides opportunities to study the theto noninteracting systems.
modynamics of weakly interacting systems in a controlled ~Our work is motivated by the success of mean-field, two-
way. The condensate clouds obtained in the experimenfdlid models[12,13 vis avis more involved calculations and
consist of a finite number of atomsanging from several direct comparison with experiments. In the following we
thousands to several millionsand are confined in externally Priefly describe the two-fluid model of Minguzet al. [12]
applied confining potentials. The ground-state properties of"d present our results for the 2D Bose gas.
the condensed gases, including the finite size effects on the 1N€ condensate wave functioh(r) is described by the
temperature dependence of the condensate fraction, are Gf0SS-Pitaevski{GP) equation[5]

primary interest. At zero temperature, the mean-field ap- 52

proximation provided by the Gross-Pitaevskii equat[6ih — —— V2P (1) + Vo (1) W (r)

describes the condensate rather well and at finite tempera- 2m

tures a self-consistent Hartree-Fock-BogoliubeiFB) ap- +2gny ()W (r)+gW3(r)=uW(r), (1)

proximation is developed6]. Path integral Monte Carlo

(PIMC) simulatigns[?] on three-dimensiqnal, interacti.n.g where g is the repulsive, short-range interaction strength,
bosons appropriate to _the current experlmentgl cond|t|on§/ext(r):mwzr2/2 is the confining(or trap potential, and
demonstrate the effectiveness of the mean-field-type ap; (1) is the distribution function for the noncondensed par-
proaches. Various aspects of the mean-field theory, as weliles. We note that unlike in a three-dimensional systgm,
as detailed calculations corresponding to the available eXn our case is not simply related to tlewave scattering
perimental conditions, are discussed by Giorginal. [8]. length, but will be treated as a parameter. In the two-fluid
In this work we examine the possibility of BEC in a two- model developed by Minguzzat al.[12] the noncondensed
dimensional2D) interacting atomic gas, under a trap poten-particles are treated as bosons in an effective potential
tial. Such a system may be realized by making one dimenV (r)=V,,(r) +2gn,(r)+2g¥?(r), and having the same
sion of the trap very narrow so that the oscillator states arehemical potential: with that of the condensate. The density
largely separated. Possible experimental configurations idistribution is given by
spin polarized hydrogen and magnetic waveguides are cur-

rently under discussiof®]. The study of 2D systems is also _ d%p 1
interesting theoretically, since even though the homogeneousnl(r)_ (27h)? exp{[p?/2m+ Veu(r) — u]/kg T} —1°
system of 2D bosons does not undergo BHQGJ, a number 2

of exampleqd11] have indicated such a possibility upon the

inclusion of confining potentials. We employ the two-fluid, and the chemical potential is fixed by the relation
mean-field model developed by Minguztial.[12] to study

the 2D Bose gas. Similar approachés] are gaining atten- p(E)dE

tion because of their simple and intuitive content; these ap- N:N0+J XA (E—)/kgT] =1’
proaches also provide semianalytical expressions for the den- .

sity distribution of the condensate. Recently, Mullib4] whereNy=[¥2(r)d?r is the number of condensed atoms

considered the self-consistent mean-field theory of 2D Bosgny e semiclassical density of states is calculated using
particles interacting via a contact interaction within theL12 15,14

Popov and semiclassical approximations. His conclusion

were that a phase transition occurs for a 2D Bose system, in m

the thermodynamic limit, at some critical temperature, but p(E)= 57— J' d?r. (4)
not necessarily to a Bose-Einstein condensed state. However, 2h" Jyeyr<e

()
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FIG. 2. Temperature dependence of the chemical potentiat

FIG. 1. Condensate fractidd, /N as a function ofT/T,, for a ] ‘ )
_various interaction strengths.

system ofN=10° atoms. The various interaction strengths are de
scribed by the parametey. . )
condensate fractioN,/N for a system olN= 10" particles,

The GP equation admits a simple solution within the@nd for various values of the interaction strength. Also

Thomas-Fermi approximation, i.e., when the kinetic energysNown for comparison is the result for an ideal 2D Bose gas
term is neglected, in a harmonic trap, given byNy/N=1—(T/T,)? where

ksTo=Aw[N/{(2)]"% We observe that BEC-like behavior
5 1 occurs for small values of the parameter mg/ 742, i.e.,

v (r):E[M_Vext(r)_Zgnl(r)]H(M_Vext(r)_Zin(r)): the weakly interacting system. Here we identify the BEC

(5) with the macroscopic occupation of the ground statdl at
=0 and the depletion of it abov&,. As the strength of

whered(x) is the unit step function. Thomas-Fermi approxi- interactions is increased we find that the temperature depen-

mation is regarded to be rather good except for the regioence ofNy/N deviates from the noninteracting case more

close to the phase transiti¢hi7]. Minguzziet al.[12] have  noticeably. Mullin[14] has argued that there is no BEC in

numerically solved the above set of equations self-2D in the thermodynamic limit. We consider a system with

consistently. They have also introduced a simpler approxifinite number of particles, and we were able to obtain a self-

mation scheme which treats the interaction effects perturbasonsistent solution for the chemical potential for various val-

tively. Encouraged by the success of even the zero-ordares of the interaction strength as displayed in Fig. 2. We next

solution in describing the fully numerical self-consistent so-evaluate the temperature dependence of the internal energy

lution in the 3D case, we attempt to look at the situation in{E)=[{E),.(N—Ng)/2+(E).]/N which consists of contri-

2D. In a similar vein, we treat the interactions among thebutions from the noncondensed particles

noncondensed particles perturbatively. To zero order in

gn,(r), the number of condensed particles is calculated to be (E}n= kBTO( {(2)\12
nc
N
7Tﬁ2 2
No=—ry i) (6) mat? alt x2dx
gm \fhew X +13 2§(3)+f -
o €-—-1
and the density of states is obtained as
_ .2 _a—alt
El(fhw)? if u<O a‘tin(l-e )}, 9

2E-w)l(hw)? if 2u>E (u>0) (7)
El(fhw)? if 2u<E (u>0).

po(E)= and the condensed particles
1 g(z) 1/2 5

If we use the above form of the density of states, valid for <E>c=kBT05 (T) @ (10)
E>0, then we obtain
In the above expressiorfgn) is the Riemann zeta function.
The kinetic energy of the condensed particles is neglected in
accordance with our Thomas-Fermi approximation to the GP
equation. In Fig. 3 we display the temperature dependence of
wheret=kgT/Aw, and a=u/hw. The chemical potential (E) for different values of the interaction strength. The
w(N,T) is obtained as the solution of this transcendentahoninteracting energy is simply(E)/NkgTo=[{(3)/
equation. £(2)]1(T/Ty)®. For smally, andT<T,, the behavior of E)

In Fig. 1 we show the temperature dependence of theesembles that in a 3D system. Agincreases, a bump in

2

N=Ng+t? 7T?—dilog(l—e‘““) , 8
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FIG. 3. Ground-state enerd¥) of the 2D bosons as a function FIG. 4. Specific heat,=d(E)/dT as a function of temperature
of temperature for various interaction strengths. The Maxwell-for various interaction strengths.
Boltzmann result is shown by the thin solid line. . . . . )
not find self-consistent solutions to the mean-field equations

(E) develops foff <T,, which perhaps indicates the break- signaling the breakdown of our approach. We note that in-

down of the present approximation or an artifact of the cal-s’tead of using the lowest-order perturbation approach

culation. We have no physical explanation for this behaVioradopted here, the full solution to the self-consistent equations
: ; phy P - may alleviate the situation. Given the unclear nature of the
The corresponding results for the specific he@t,

— d(E)/dT are shown in Fig. 4. In contrast to the noninter- phase transitiofil4,18 in 2D and the interest of future ex-

. . eriments, we think it is worthwhile to perform first-
acting case where a sharp peaklat T, is seen, the effects b b

£ short int i h tthe t tion. H Wprinciples calculations. Recent PIMC simulatigi8] on 2D
of short-range interactions Smootnes out the transttion. HOWg 44 core posons confirm the possibility of BEC in the sense
ever, this smoothing is partly due to the finite number of

. . . : that a sharp drop ifNy/N aroundkgT.~0.78\*? is ob-
particles in the systerf8]. The effects of interactions and served for finite systems.

finite number of particles are not disentangled in our treat- " summary, we have applied the mean-field, semiclassi-

ment. ; . ,
X . o . cal two-fluid model for trapped interacting Bose gases to the
¢ It IS atstra|ghFIﬁrW?r:d generalt|zfat|on Itp mc'I:ude the etffeCtSIcase in two dimensions. We have found that for a range of
of anisotropy within the present formalsm. ~or an externah, e action strength parameters the behavior of the thermo-

: _ 20y,2 2,,2
potential _Of the typeVext(r)—mwX(x +A7y%)/2, whereh dynamic quantities resembles that of noninteracting bosons
=wylw, is the anisotropy parameter, bolty, and p(E) in a harmonic trap.

depend inversely oix. Similarly, our analysis may be ex-
tended to study other power law potentials sucWag ” for This work was partially supported by the Scientific and
which y~1 appears to be interestif@8,19. Technical Research Council of TurkefUBITAK). We
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