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Bose-Einstein condensation in a two-dimensional, trapped, interacting gas

M. Bayindir and B. Tanatar
Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey

~Received 1 April 1998!

We study the Bose-Einstein condensation phenomenon in a two-dimensional~2D! system of bosons sub-
jected to a harmonic-oscillator-type confining potential. The interaction among the 2D bosons is described by
a d function in configuration space. Solving the Gross-Pitaevskii equation within the two-fluid model we
calculate the condensate fraction, ground-state energy, and specific heat of the system. Our results indicate that
interacting bosons have similar behavior to those of an ideal system for weak interactions.
@S1050-2947~98!00210-8#

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Kh
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The observation of the Bose-Einstein condensation~BEC!
phenomenon in dilute atomic gases@1–4# has caused a lot o
attention, because it provides opportunities to study the t
modynamics of weakly interacting systems in a control
way. The condensate clouds obtained in the experim
consist of a finite number of atoms~ranging from severa
thousands to several millions!, and are confined in externall
applied confining potentials. The ground-state properties
the condensed gases, including the finite size effects on
temperature dependence of the condensate fraction, a
primary interest. At zero temperature, the mean-field
proximation provided by the Gross-Pitaevskii equation@5#
describes the condensate rather well and at finite temp
tures a self-consistent Hartree-Fock-Bogoliubov~HFB! ap-
proximation is developed@6#. Path integral Monte Carlo
~PIMC! simulations @7# on three-dimensional, interactin
bosons appropriate to the current experimental conditi
demonstrate the effectiveness of the mean-field-type
proaches. Various aspects of the mean-field theory, as
as detailed calculations corresponding to the available
perimental conditions, are discussed by Giorginiet al. @8#.

In this work we examine the possibility of BEC in a two
dimensional~2D! interacting atomic gas, under a trap pote
tial. Such a system may be realized by making one dim
sion of the trap very narrow so that the oscillator states
largely separated. Possible experimental configurations
spin polarized hydrogen and magnetic waveguides are
rently under discussion@9#. The study of 2D systems is als
interesting theoretically, since even though the homogene
system of 2D bosons does not undergo BEC@10#, a number
of examples@11# have indicated such a possibility upon th
inclusion of confining potentials. We employ the two-flui
mean-field model developed by Minguzziet al. @12# to study
the 2D Bose gas. Similar approaches@13# are gaining atten-
tion because of their simple and intuitive content; these
proaches also provide semianalytical expressions for the
sity distribution of the condensate. Recently, Mullin@14#
considered the self-consistent mean-field theory of 2D B
particles interacting via a contact interaction within t
Popov and semiclassical approximations. His conclusi
were that a phase transition occurs for a 2D Bose system
the thermodynamic limit, at some critical temperature,
not necessarily to a Bose-Einstein condensed state. How
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in the current experiments the finite number of atomsN pre-
vents various divergences from giving rise to behavior a
to noninteracting systems.

Our work is motivated by the success of mean-field, tw
fluid models@12,13# vis àvis more involved calculations and
direct comparison with experiments. In the following w
briefly describe the two-fluid model of Minguzziet al. @12#
and present our results for the 2D Bose gas.

The condensate wave functionC(r ) is described by the
Gross-Pitaevskii~GP! equation@5#

2
\2

2m
¹2C~r !1Vext~r !C~r !

12gn1~r !C~r !1gC3~r !5mC~r !, ~1!

where g is the repulsive, short-range interaction streng
Vext(r )5mv2r 2/2 is the confining~or trap! potential, and
n1(r ) is the distribution function for the noncondensed p
ticles. We note that unlike in a three-dimensional systemg
in our case is not simply related to thes-wave scattering
length, but will be treated as a parameter. In the two-fl
model developed by Minguzziet al. @12# the noncondensed
particles are treated as bosons in an effective poten
Veff(r)5Vext(r )12gn1(r )12gC2(r ), and having the same
chemical potentialm with that of the condensate. The densi
distribution is given by

n1~r !5E d2p

~2p\!2

1

exp$@p2/2m1Veff~r !2m#/kBT%21
,

~2!

and the chemical potential is fixed by the relation

N5N01E r~E!dE

exp@~E2m!/kBT#21
, ~3!

whereN05*C2(r )d2r is the number of condensed atom
and the semiclassical density of states is calculated u
@12,15,16#

r~E!5
m

2p\2 E
Veff~r !,E

d2r . ~4!
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The GP equation admits a simple solution within t
Thomas-Fermi approximation, i.e., when the kinetic ene
term is neglected,

C2~r !5
1

g
@m2Vext~r !22gn1~r !#u„m2Vext~r !22gn1~r !…,

~5!

whereu(x) is the unit step function. Thomas-Fermi approx
mation is regarded to be rather good except for the reg
close to the phase transition@17#. Minguzzi et al. @12# have
numerically solved the above set of equations s
consistently. They have also introduced a simpler appro
mation scheme which treats the interaction effects pertu
tively. Encouraged by the success of even the zero-o
solution in describing the fully numerical self-consistent s
lution in the 3D case, we attempt to look at the situation
2D. In a similar vein, we treat the interactions among
noncondensed particles perturbatively. To zero order
gn1(r ), the number of condensed particles is calculated to

N05
p\2

gm S m

\v D 2

, ~6!

and the density of states is obtained as

r0~E!5H E/~\v!2 if m,0

2~E2m!/~\v!2 if 2m.E ~m.0!

E/~\v!2 if 2m,E ~m.0!.

~7!

If we use the above form of the density of states, valid
E.0, then we obtain

N5N01t2Fp2

3
2dilog~12e2a/t!G , ~8!

where t5kBT/\v, and a5m/\v. The chemical potentia
m(N,T) is obtained as the solution of this transcenden
equation.

In Fig. 1 we show the temperature dependence of

FIG. 1. Condensate fractionN0 /N as a function ofT/T0 , for a
system ofN5105 atoms. The various interaction strengths are
scribed by the parameterh.
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condensate fractionN0 /N for a system ofN5105 particles,
and for various values of the interaction strength. Al
shown for comparison is the result for an ideal 2D Bose
in a harmonic trap, given byN0 /N512(T/T0)2 where
kBT05\v@N/z(2)#1/2. We observe that BEC-like behavio
occurs for small values of the parameterh5mg/p\2, i.e.,
the weakly interacting system. Here we identify the BE
with the macroscopic occupation of the ground state aT
50 and the depletion of it aboveT0 . As the strength of
interactions is increased we find that the temperature de
dence ofN0 /N deviates from the noninteracting case mo
noticeably. Mullin @14# has argued that there is no BEC
2D in the thermodynamic limit. We consider a system w
finite number of particles, and we were able to obtain a s
consistent solution for the chemical potential for various v
ues of the interaction strength as displayed in Fig. 2. We n
evaluate the temperature dependence of the internal en
^E&5@^E&nc(N2N0)/21^E&c#/N which consists of contri-
butions from the noncondensed particles

^E&nc5kBT0S z~2!

N D 1/2

3Fp2at2

3
1t3S 2z~3!1E

0

a/t x2dx

ex21D
2a2t ln~12e2a/t!G , ~9!

and the condensed particles

^E&c5kBT0

1

3h S z~2!

N D 1/2

a3. ~10!

In the above expressionsz(n) is the Riemann zeta function
The kinetic energy of the condensed particles is neglecte
accordance with our Thomas-Fermi approximation to the
equation. In Fig. 3 we display the temperature dependenc
^E& for different values of the interaction strength. Th
noninteracting energy is simply^E&/NkBT05@z(3)/
z(2)#(T/T0)5. For smallh, andT,T0 , the behavior of̂ E&
resembles that in a 3D system. Ash increases, a bump in

-

FIG. 2. Temperature dependence of the chemical potentialm for
various interaction strengths.
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^E& develops forT,T0 , which perhaps indicates the brea
down of the present approximation or an artifact of the c
culation. We have no physical explanation for this behav
The corresponding results for the specific heatCV
5d^E&/dT are shown in Fig. 4. In contrast to the noninte
acting case where a sharp peak atT5T0 is seen, the effects
of short-range interactions smoothes out the transition. H
ever, this smoothing is partly due to the finite number
particles in the system@8#. The effects of interactions an
finite number of particles are not disentangled in our tre
ment.

It is a straightforward generalization to include the effe
of anisotropy within the present formalism. For an exter
potential of the typeVext(r )5mvx

2(x21l2y2)/2, wherel
5vy /vx is the anisotropy parameter, bothN0 and r0(E)
depend inversely onl. Similarly, our analysis may be ex
tended to study other power law potentials such asV;r g for
which g'1 appears to be interesting@18,19#.

Our calculations using the two-fluid model of Minguz
et al. @12# show that the BEC, in the sense of macrosco
occupation of the ground state, may occur in a 2D trap
Bose gas when the short-range interparticle interactions
not too strong. As the interaction strength increases we co

FIG. 3. Ground-state energy^E& of the 2D bosons as a functio
of temperature for various interaction strengths. The Maxw
Boltzmann result is shown by the thin solid line.
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not find self-consistent solutions to the mean-field equati
signaling the breakdown of our approach. We note that
stead of using the lowest-order perturbation appro
adopted here, the full solution to the self-consistent equati
may alleviate the situation. Given the unclear nature of
phase transition@14,18# in 2D and the interest of future ex
periments, we think it is worthwhile to perform first
principles calculations. Recent PIMC simulations@19# on 2D
hard-core bosons confirm the possibility of BEC in the se
that a sharp drop inN0 /N around kBTc'0.78N1/2 is ob-
served for finite systems.

In summary, we have applied the mean-field, semicla
cal two-fluid model for trapped interacting Bose gases to
case in two dimensions. We have found that for a range
interaction strength parameters the behavior of the ther
dynamic quantities resembles that of noninteracting bos
in a harmonic trap.
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FIG. 4. Specific heatCV5d^E&/dT as a function of temperature

for various interaction strengths.
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