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Phase-noise influence on coherent transients and hole burning
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Resonant excitation of an inhomogeneously broadened ensemble of two-level(atok)sby a stochastic
field with phase noise is theoretically investigated. Free-induction déd®), hole burning(HB), and tran-
sient nutation(TN) are studied. We consider two kinds of driving fields, one with a free walking phase and
another with the phase locked in a limited domain. It is shown that the resonant excitation behavior depends
strongly on the noise property. Noise induced by a walking phase gives a simple contribution to the dephasing
time, T,, of two-level atoms whereas phase locking qualitatively changes the laser-atom interaction. In the
latter case, it is shown that even when the central part of the driving field spectrum is narrower than homo-
geneous absorption line of the TLA, the wide, low intensity wings of the spedfsidebands produced by the
locked phase noigehave a strong effect on the FID, TN, and HB induced by the central, narrow part of the
spectrum. The influence of sidebands on photon echoes is also disdi&be50-2948)06210-4

PACS numbd(s): 42.50.Md

[. INTRODUCTION different. The former is determined by the device that locks
the phase, and the latter by the laser output spectrum or
The laser and other sources of coherent radiation can bemplifier.
considered as oscillators with compensated damirgg, Stabilized sources of coherent irradiation are commonly
where the gain equals the lospdbthe state of this oscillator used for ultrahigh resolution spectroscopy. Optical transients
is stable, then any external noise influencing the parameteend hole burning are some of the methods of coherent spec-
of the oscillator gives only the background and does notroscopy that require a narrow laser linewidth. Therefore the
affect the delta-like, sharp spectrum of the output field.influence of the field spectrum on the transient response sig-
Meanwhile, it is known(see, for example, Refl]) that the  nal of resonant absorbers is of interest. Usually one expects
phase of the laser field is in a state of indifferent equilibriumthat, when the driving field spectrum is narrower than the
(i.e., it is unstable This means that any weak external force absorption linewidth, this field can be reliably considered as
may shift the phase without resistance. This is a basic souramonochromatic. Using a model of phase-locked noise, we
of spectral line broadeninf®]. Below we consider a single show that the latter condition on the narrow, sharp part of the
mode laser. As was shown in RgZ], for example, mechani- field spectrum is insufficient. The weak and wide sidebands,
cal vibrations and thermal fluctuations of the cavity lengthcaused by the phase-locked noise, significantly change the
and refraction index are usually the dominant source of linesaturation and transients of the excited quantum system.
broadening of single mode lasing rather than the limit set by Resonant interaction of an atomic system with fluctuating
spontaneous emission. Because of the phase shift by the ragiassical fields has been already studied extensif@hb5|
dom force, the deltalike spectrum becomes Lorentzian with &the list is not exhaustiye This paper is not aimed at pro-
finite width. This width depends on phase dispersion andiding a review on this topic. We do not consider quantum
correlation timer, of the noise that induces the phase shift.noise, as the linewidth of a single mode laser well above
The random walk of the phase or phase diffusion procesthreshold is not appreciably affected by spontaneous emis-
does not have any selected reference point, since the phasesién[2]. As mentioned above, we consider only semiclassi-
the field can shift far from the initial value by small jumps cal sources of laser line broadening such as vibration, ther-
accumulated in a large random phase shift. Technical lockingnal fluctuation, and index fluctuation. Real lasers can exhibit
of the device phase near some reference point results in ea-variety of fluctuations in phase, frequency, and amplitude.
sential narrowing of the field spectrufa discussion of the Almost all previous analyses of noisy laser-atom interactions
phase locking process is presented in the Appendan- have been based on several models of classical fluctuating
dom phase jump$less thanw/2) near the reference phase fields. Among them are phase diffusion fi¢lIDF), chaotic
give the wide background and do not affect the central partfield (CF) or Gaussian noise irradiation, random jump pro-
which remains a delta function. Only the walk of the refer-cesses of the frequency, phase or amplitude, and shot noise
ence phase makes the central part broad. As the processesdefscription of the fluctuating phase or frequency.
laser phase jump and reference phase jump are usually dif- Phase diffusion field has a constant real amplitude but its
ferent, the width of the central part and background are alsphase is a Wiener-Levy proces§,9,17,24,25,30,36,
41,51,53. The phase diffusion model is based on the formal
analogy between the position of the particle performing a
*Electronic address: shakhmuralov@dionis.kfti.kcn.ru Brownian motion and the random phaaét) of the field.
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The velocity of the particle corresponds to the random fre-A stochastic model of the chaotic field is described in terms

quency of the fieldo(t) = a(t), which is a Gaussian white- Of Langevin equation
noise process with delta correlation

Ho(t'))=2vpped(t—t'). 1.1
(o(to(t'))=2vpppo(t—t') (.3 whereFg(t) is a random force

Even if the name PDF is strictly appropriate only in the case
when the frequency is a white noise and the phase is deter-

mined by a pur_ely_dlffuswe Wiener-Levy process, itis COM" This model is closely related to the multimode free-running
monly used to indicate the more general case of finite corre,

. . . . . “Tasing. Therefore we do not consider the CF model in this
lation time when the frequency noise is an Ornstein- aper
Uhlenbeck procesi6,57. The power spectrum of the field Paper.
in a generalized PDF model depends on the correlation time
of its frequency, evolving continuously from a Lorentzian to
a Gaussian prOfile when the correlation time increases from We consider the random pha&ét) determined by the

zero to infinity [32,35,33,41,4F Meanwhile, a random fre- density of a Markovian conditional probability
guency process produces phase velocity fluctuations and as a

result the phase itself changes continuously, increasing or ¢(ag,to| - - |a@n_1,th_1lan,tn) =¢(an_1,th_1|an,tn),

E(t)=—bE(t)+Fg(t) (1.5

(Fe(Fex(t))=2b(|E[?)a(t—t"). (1.6

Il. PHASE JUMP MODELS

decreasing gradually in a random way. It is impossible to (2.9
select the reference phase within frequency fluctuating mod- )
els as the phase walk is not bounded by any condition. Moreheréao, . . . ., are successive values of phase at the mo-

over, any abrupt, discontinuous change of the phase is b&?€nts of timeto<<- - - <t,. Condition(2.1) is a fundamental
yond PDF and generalized PDF models. For this reason it iBroPerty of a Markovian process. The theory of phase relax-
more appropiate to describe the locked phase field oftion is well developed for a stationary, discontinuous Mar-
bounded phase walk processes by the random phase jurK_BVia” proce_s_$6]. Therefore we take the stationary condi-
model. Random jump processes of the frequency, phase, §Pnal probability

amplitude of the field were considered i8-6,10,13,

15,21,37,43-45,48,52as they allow convenient and very plao tola,)=g(ao.at—to), 22
flexible manipulation of interaction parameters, permitting
nonperturbative examination of the noisy laser-atom interac- J eo(ag)e(ag,tola,t)dap=¢(a), (2.3

tion. While the question “what is the origin of the noise, the
frequency fluctuation or the phase fluctuation?” is rather,

. : i -~ 'where
philosophical, the close relation between the correlated jump
model and diffusion model, was shown Dﬁ,58]'. o(a)= lim ¢(ag,tola,t) (2.4)
The shot-noise mod¢Hk8] of phase fluctuations assumes t—tg—o
that the instantaneous phasg) of the electromagnetic field N _ _
consists of a sum of statistically independent pulses is a probability density that does not depend on the previous

history of the process. It describes the probability of finding
n the phasex at any cross section of the process.
a(t)=2, ah(t—t), (1.2 After Burshtein[6] we consider the discontinuous process
=1 of phase change. The random value of pha88 is constant
inside each time interval(,t;, 1) and jumps stepwise at the

whereh(t—t’) is a causal pulse-shape functidr(t) =0 for end of it. This time interval has a Poisson distribution

t<0], generated at a random timewith amplitudec; . The

correlation function of the shot-noise phase is equivalent to tio—t] dt g
the Wiener-Levy correlation function of the phase-diffusion dW(ti+1—ti)=ex;{ - =, (2.5
model. The important difference between the shot noise and Tolai) J7oei)

e e DIOCe S wherer () is & mean cuel tme between jumps, generaly
' gly gepending on the value af; inside the time interval. The

to the correlated phase jump process as both models lead Onditional probability of a phase jump from valy to

the same Burshtein-Chapman-Kolmogorov-Smoluchowsk] Lt :
equation[5,6,10,21,43,4B Value « is given by the functionf(B|a). When the dwell

Chaotic field (CF) or Gaussian noise irradiation time does not depend on phase value, the density of condi-
tional probability of discontinuous Markovian process obeys
[11,12,14,19,20,24,25,29-31,33,34,36,48sumes that the .
; . . the forward Kolmogorov-Feller equatid®,43,45,48,59
amplitude and phase are random but their fluctuations are

considered without introducing the amplitude-phase decom- 1
position. The amplitude of the CF is a random Gaussian  — ¢(ag,to|a,t)=— —¢(ag,to|a,t)
process: Jt o

1
E(t)=Ex(t) +IiEy(1), (1.3 +T—J ¢(ao.tol B,1)T(Bla)dp

(E(1))=0. (1.4 (2.6)
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with the initial condition is centered near the valug,, then the latter is a reference
point, as the phase walks randomly near it. The phase has a
¢(ag,tola,to) = 8(a—ag). (29 mean value of
Solution of this equation describes the normalized, stationary
density of the conditional probability if the relations <a):f ap(a—ag)da=ay, (2.17
J' f(Bla)da=1, (2.8  Whereas for the process with phase distributiari4), we
have(a)=0 since the value o is indefinite.

f o(ag)f(agla)day=¢(a) (2.9 lil. PHASE DIFFUSION FIELD

_ . _ The correlated phase jump modél=1) without a refer-
are valid. The random proces4t) is completely determined ence pointe(a)=const[see Egs.(2.14 and (2.15] is a

by the functionse(a), f(aol@) and dwell timer,. good description of the phase diffusion process when the
Classification of the phase noise was first introduced byump size is small. This model was developed[h6] to
Burshtein[6]. He defined the functiofi(ag| @) as analyze the influence of noise on atom evolution in a reso-
nant field. The Rabi oscillation of the population difference,
f(agla)=f(a—{ag)=f(£ao—a), (210 {ransition probability, and luminescence of the atom excited

where the parameter characterizes the correlation between _by the field with co rrelate(k, 6] and unporrelateEB,4] phase .
two successive values of phase. jumps were considered. We apply this model to a theoretical

(1) When £=0 the random process is uncorrelated study of polarization transients and hole burning in the inho-
P mogeneous spectrum of impurity-ion crystals excited by

f(agla)=¢(a) (2.1)  Phase-noise field. o .
To define the parameters of the phase diffusion field

since the phase does not depend on its value prior to the E(t)= Eqe'“t %) we consider the field correlation function
jump. Here each jump reproduces the stationary distribution . ) o(t—to)
of phaseg (). (E(DE*(to))=EgK(t—tg)e' "0, (3.1

(2) Phase jump is anticorrelated whérs — 1. A two-state
jump processy= *a (telegraph noisewith transition prob-
ability of

K(t—to) — <eia(t)—ia(t0)>

:f f €/(=20 o ag) @( g to| ar,t) dardarg.

(3.2

f(agla)=d8(a+ ag) (2.12

satisfies this condition.

(3) When ¢—1, the phase jump is a correlated processMultiplying the Kolmogorov-Feller equation(2.6) on
The functionf(a— ay) is even and its width gives the phase e'(*~ %) () and integrating the result over and ag, we
shift value after the jump. When this width is zero, get

flapla)=6(a—«a 2.1 J 1 )

(adle) = o(a= a0 249 K-t =-—(1-(e)DK(t-t), (33
the process is ineffective. A small width specifies a process 0
with small phase jumps from the initial value,. For this
process, the Kolmogorov-Feller equatith5) is reduced to (e”’>=f e'’f(6)do, (3.9
the Fokker-Plank equatiof6,58]. Solution of the latter de-
scribes the phase diffusion when-£<1. By means of \yhereg=a— a,. Fourier transform of its solution
small jumps, the phase of the field can go very far from the
initial value. K(t)=exp(—t/ry), (3.5

We introduce a new addition to the phase noise classifi-
cation. Whereas the functioi{«o|a) describes the correla- 1
tion between successive jumps, the stationary distribution 7_1:(1_<C056>)7'—0 (3.9
function ¢(«) specifies the reference point of phase. When

gives the Lorentzian power spectrum of the field
¢(a)=const, (2.19

S(w’)=Re£f (E(t)E*(0))e~'*"tdt
f o(a)da=1, (2.15 mJo

. . |E0|2 T1
the reference point is absent as all values of the phase have = .
equal probability and it is not possible to select some par- m 1+(w—w')2ﬁ
ticular reference phase. If the function

(3.7)

When, for example, the phase jump size has a Gaussian dis-
o(a)=¢(a—agy)=@(ayg— a) (2.19 tribution
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f(6) - p( - (3.8
= exp —— .
ay2m 2a?
then the half width of the power spectrum is
1 1—exp—a??2
y=—= p(—) (3.9

71 70
For a process with a small jump siza<£1), the half width
is reduced to

(3.10

and the effective dwell time; becomes much longer than
7. Therefore the field spectral widthis much smaller than
the phase jump frequenay= 1/7y when the phase changes
by small jumps. With growing jump sizea1), the condi-
tional probabilityf(6#) tends to a uniform one and finally it
coincides with the phase distributias( «) =const. As a re-

sult, the correlated process approaches the uncorrelated pro-

cess and the effective dwell timg becomes equal to the

real dwell timery. Thus the increase of the phase jump size
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. . 1 1 —
<0'12:<O'21>*:(iA—T—Z—T—1><O'12>+igw, (316)

which are derived from Eq3.11) by simple averaging. Here
T, andT, are relaxation times of population difference and
polarization, respectivelyA = wg— w is a detuning param-
eter from the atomic resonant frequeney; x=2uEq/# is
the Rabi frequency, angl = u1,= u,; is a dipole transition
matrix element. We also defing, as the thermal equilib-
rium population difference.

Equations(3.15 and (3.16 are reduced to the conven-
tional Bloch equations by the substitution

U=(ot02); v=—i{01— 021). (3.17
Their solution gives the mean value of polarization in the
instant reference frame linked rigidly to the field phase and
hence allows calculation of the field absorption. Phase noise
results in additional dephasing of polarization in this frame,
as its decay rate is modified as

1 1 1

Tom T2

(3.18

71

leads to an increase in width of the field spectrum from the

value v (3.10 to v,.

Therefore the correlated phase walk leads to broadening of

To calculate the two-level atom response to such phaste absorption line in the same way as fluctuation of the

fluctuations, we first use Burshteinf§,6] equation for the
partial density matrixp(a):

1(. A
+T—J p(B)f(Bla)dB+R(p(a)), (3.11)
0

where™{(a) is a Hamiltonian of the two-level atom excited
during a dwell timer, by the field portion of phase and

resonant frequency.

IV. RANDOM PHASE FIELD WITH A REFERENCE
POINT: HOLE BURNING AND POLARIZATION
TRANSIENTS

As an example of a random phase field with a reference
point, we consider the well-known phase telegraph noise
(PTN) model. The phase changes instantly between two val-
uesa and —a, whereas its mean value is zero and just this
value is the reference phase of the field. Oscillations of popu-
lation difference and luminescence of a two-level atom ex-

R(p()) is an operator that describes the density matrix recited by the field with PTN were considered[45,48. We
laxation induced by internal interactions. We have to find theextend this analysis to hole burning and polarization tran-
mean phase difference of the field and induced atomic polasients.

ization, as just this value characterizes the field absorption. As the transition probability of PTN is described by ex-

This phase difference is defined by a variable
o a)=pa)exp —iot—ia+ikz),

(3.12

where 1(2) denotes groundexcited state andk is a field

wave number. Its mean value, as well as the mean value of

the population difference

(0:9= [ ruserda @13
w= f [p2A @) = pra(@)]da (3.14
satisfy the equations
- 1 _
w=ix((o19)—(022)) — T_l(W_WO)’ (3.19

pression(2.12, the Kolmogorov-Feller equatiof®.6) is re-
duced to

1 1
(ag,0la,t)=——o¢(ag,0a,t)+ —o¢(ag0—a,t).
70 70
4.1

E‘P

For the initial condition

¢(ao,0a,0)=d(a—ap)

1+exp<

1 { '{ Zt”
+ 508, _o|l—exg ——||. (4.3
2 it )

4.2)

its solution is

1
QD(aO7O| (I,t) = E 5a,a0
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ample, the linewidths of stabilized lasers used in an ultrahigh

Econ resolution spectroscopy of solids are in the range 300—2000
E(a) E(-a) Hz [60-63. As this width is much smaller than homoge-
neous absorption linewidth of most impurity ions in solids,

a A the field is considered to be coherent and one can drop its

contribution toT, [see Sec. lll, Eq(3.18)]. Here we assume
that the phase of the reference oscillator undergoes a diffu-
sion process.

If the spectrum of a power source with unlocked phase
has, for example, a 1-MHz half width, then because of phase
Enoise “Enoice locking to the phase of the reference oscillator, the output
spectrum shows two components: a sharp one with HW of
say 1000 Hz and a broad one with HW of 1 MHz. When the
integral intensities of both components are equestf (r/4),
the spectral power density of the sharp component differs
Taking into account that the equilibrium distribution function Strongly from that of the wide component. The wide compo-
of PTN is nent is 30 dB less intense than the narrow one.

Below we show that this weak, broad component strongly
<p(ao)=%5ao‘a+% ag.—a (4.4  influences the two-level atom saturation by the coherent
component, whereas saturation by the wide component is
one can calculate a two-dimensional distribution function forunaffected by the coherent part. The resultant saturation is
this process seen to be a two-component line. The narrow part of the line
is produced by combined effect of the fielHs,, and E, ise
W ag,0la,t)=e(ap) e(ap,0a,t) (4.5  ontwo-level atoms while the second, wide part is burnt only
by incoherent fieldE, ise-
and then an autocorrelation function To describe this saturation, we use the Burshtein equation
(3.1) as in a previous section. First we calculate the two-
sinza], level atom response to the coherent figlg,,, i.e., the fol-
lowing mean values

FIG. 1. Phase diagram of phase-telegraph noise figlg, is a
coherent component with a constant phase and amplifjgdg.is a
noise component with phase jumping randomly ovet.

(E()E*(0))= Egei“"[ coga+ ex;{ - Tl

(4.9

Ugon 10 cor=2 exp—iot+ikz), (4.1
where 7= 74/2 is the correlation time of PTN. The power con't 10 con=2{pral @) exXp( ~iw ). (410

spectrum of the driving field is given by the Fourier spec-

trum of the function(4.6) W=({p2d @)~ pra(@)) (4.19

5 ] [compare them with expressio(&12—(3.14), (3.17)]. They

S(w')= E cofa 8w’ —w)+ Tesina are defined in the reference frame related to the phase of field
1+(0' —w)?7 ' E.on. Then the Burshtein equation takes the form
@n . . A
] ) o X(Wheises ) = — (Lo + Wigisd-1) X(Whgises ) + X( — Wigise, 7)
The PTN field can be considered as consisting of two ~
fields, one is coherent with an amplitulig,,= E,cosa and + @(Whoisd A, (4.12
the other is random with a constant amplitudg,,se _ . A
=Eg|sina| and fluctuating phase 7/2, the total phase jump X(— Wi gise» T) = — (Lo— Wigisd- 1) X( — Wigises T)
being 7 (see Fig. 1L Therefore its spectrum contains two .
lines, the sharp deltalike line and broad Lorentzian one. The +X(Whoises 7) + @(—Wpgisd A,
ratio of the integral intensities of these fields is given by 4.13
[,
In0|se: tanza, (4.8) where
con [ Ucon t, z 0
|i:J S(w')dw’, 4.9 X=|Veon|; Lol =2 o = Weon|;
- L w O WCOh tl

wherei denotesnoiseor cohand$; is the spectrum off field "0 0 1 0
component. When, for exampla= 7/4, both fields have the R .
same integral power. However, the power of the coherent L= 0; A=wo(t;—-1)| 0. (419
field E.qp, is stored in an infinitely narrow frequency band, -1 0 O 1

whereas the power of noise component is spread over a

broad line with half width(HW) of y=1/7.. We realize that Variablesu.,,, v, andw are defined relative to the phase
the phase of the coherent field also walks in a real experiof field E.p, i.e., W=py(a)—pia), Ugntiven
ment due to instability of the reference oscillator. For ex-=2p1,(a)exp(—iwt+ikz). Two dimensionless parameters,
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W, on= xToc0sa and W,,ise= x 7oSina, correspond to Rabi t_z z 0
frequencies of the coherent and incoherent fietdsA 7 is - —
a dimensionless detuning and timés chosen in unitsg; Lo=| =2tz ~Weon|. (4.29
0 Wcoh t]_
70
t1’2:1+ T_ (415 i —
12 Calculation of thev o(p) component of the column vector

We define two variables that are symmetric and asymme X(p) gives the result

ric combinations of the previous ones, i.e.,

— Wot; WeornBta
- V(P = —————, (420
X=X(Whoise +X(—Whaise (4.19 Plim z + Weor(tom/tim) + Btomt
Xa= X(Wnoise) —X(— Wnoise) . (4.17 where
The first is the averaged density matrix. These variables obey tam=t1+ (Wagied D) (11 +2)(t5+2),
the equations
L B i i tom= 1o+ (W2, /D) (to+2)?, 4.27
== (Lo=1)X—Wygisd 1Xa+ A, (4.18
. R P Bil:l—’_(wﬁoisJD)tZa
Xa=— (Lot 1)Xa— Wigisd-1X. (4.19
D=27%(t;+2) + W2, (t,+2)+(t;+2)(t,+2)%
By Laplace transformatiofLT) (it 2y Wealtz+2)+ (ir 2)(12+2) 4.29
— * If the value W,,isc=0 is taken, then the expressign.26
= p7 noise
X(p) fo e "x(m)d7 (4.20 reduces to the solution of the conventional Bloch equations.

The stationary solution of equatio4.12 and(4.13 is ob-
the differential equationg4.18 and (4.19 are converted to t@ined from the limit

algebraic equations — I
(Veonst= lIM pu oH(P) - (4.29
. — . A — PO
(Lo+p—1)X(P) +Wheisd 1Xa(P) = — +X(0), . . . . .
p It contains the information about the hole burnt into the in-
(4.2 homogeneous spectrum of an ensemble of two-level atoms
by an infinitely long driving field pulse.

Wnoisj_l;( p)+(Lo+p+1)Xa(p)=Xa(0), (4.22 We consider the noise with a short correlation time given
the inequality 70<T1,T2,Xoon XnoeeA ™1 Where xcon

wherex(0) andx,(0) are initial values of the variable§7) =X €osa and xn.ise= x Sina are Rabi frequencies of the co-
andx(7). herent and incoherent fields. Then we can approximate the

Solution of these equations gives the Laplace transform oyaluesD, B, tyy, andt;, whenp=0 byD~8; B~1 and
the averaged density matrix

o ¢ _To n Wﬁoise (4.30

X()={(Lo+ p— 1) ~Wagedla( Lo+ pr1) 1Ly (dn=7 "2 |

A — A A _ For these conditions, expressith?29 takes the form
x| 5 X0 Wagel 1ot P+ 1) a(0) pressioh29

(4.23 (v_coh)st:% Xcol T'u/T'w)

. , (4.3
T A2"_)(§oh(rlu/l_‘w)"_(FU/TZ) (430

Before switching on the fiel&(t), the_valuexA(O) was zero
and the avgraged density matrix we)=A/(t;—1). By  where
substitutingt ; ,=t; ,+ p—1, expressioti4.23 can be rewrit-

ten as 1 1
ruzT—2+r, FW:T—1+F, I=x2dc. (4.32
X(P)=[Lo~W2yed 1(Lo+2) 1L ]*1—&_l -
P)=[Lo~Whoisd-1(Lo 1 p(t,—p)’ The variable {..)s describes the absorption of the field

(4.24) E.on. Moreover it is proportional to the deviation of the sta-
tionary saturated population difference from the unperturbed

where value:wg—Wwyg;, as
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Wo Wo Il— Xgoh(rulrw)
T[T A% )T D)+ (D/Ty))
(4.33

WhenI'>1/T, , (or XﬁoiseTcT1,2> 1), the hole half width for

strong saturation x§0h>FW/T2) approaches the Rabi fre-

guency of the coherent fielg.,,, as the rated’, andTl',
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where ( )ens denotes an average over the inhomogeneous
spectrum

<Pcoh(t)>ens: f Peor(t, wo) P (wg)dwg (4.37

and® (wy) is the particle number distribution over the inho-

become equal. This behavior is markedly different from thatmogeneous spectrum. If the driving field frequencyalls at
of saturation of solids by a monochromatic field, i.e., by theine centerw,, of the symmetric spectrum, theng(A,t) be-

field Ey, without noiseE,, ise- The latter burns a hole with
HW of xcon/T1/T,, which is much larger tham.q (Since
T,>T,). The associated free induction ded@®iD) after a
long saturating pulse with phase noise has a decay rate

1 [T, T,
FFID_T_2+ T—2+)( F_W

(4.39

When I' =T, (or I'>1/T,,), this rate becomes anoma-

lously slow as in experimen{$0,64,65.
We now consider the transient nutatiGfiN) excited by

coherent fieldE.,, when the incoherent field is present. The

induced coherent polarization per particle is given by

(4.39

mo— — _
pcoh(t):E(ucoh"_|Ucoh)elwt |kz1

comes an even function df, andUcoh(A,t) is odd since its
Laplace transform is proportional to resonant detuning
=Ar, e,

WOt 1 ZWcoh

Plim 22+W§oh(t2m/tlm) + Btht_Z .
(4.39

Ugor(P) = —

In the limit of infinite inhomogeneous width, expression
(4.24) simplifies to

<Pcoh(t)>ens:i %(I)(wc)eiwt_isz U_coh(wO!t)dwO-
(4.39

where the overbar denotes an average over the noise states.

We consider an ensemble of particles with iahomoge-

The Laplace transform of functioﬁcoh(wo,t) is given by

neousspectrum. The ensemble response to the driving fielded- (4.26. We consider time scales of the function

IS

Vo wg,t) that are longer tham, . Therefore it is possible to
restrict the analysis to smafl(|p|<1). This approximation
corresponds to neglecting the fast decay@rate 1f;) part

I ot—ikz
(Poo() ens 2 {Ucont 10 conens® ' (4.36 of the solution. For this condition, E¢4.26) is reduced to
|

- — W XeoTut P) (LT, +p)

U co( p):_O — 2 o 1— > — (4.40
P (Tyw+p)[A°+(Ty+p)(UT2+p) ]+ xcor Tyt p)
|
wherep=p/,. — UT,+T
Averaging over the inhomogeneous spectrum (Veo(1))ens™ TP (@) WoXcomlo( Xmt) €X 5t

(4.43

<U_coh(a)>ens:q)(wc) f U_cot{ wo 'E)dwo (4.4))

gives the Laplace transform of the ensembkis,i(P) Yens
component

T (w)WoXeod UT14P)  [Ty+p
PV Xt (Tt P)(UTo+p) ¥ Tyt p

(4.42

<U_c0h(3)>ens:

WhenT;—o, we can use the approximation applied @]
and obtain

where xm= XxconV1—¢% gz(l_)(ﬁoiseTcTZ)/ZXcohTZ and
Jo(x) is the zeroth-order Bessel function.

The transient nutation signéd.36) with amplitude(4.43
demonstrates an additional decay rate

1/ 1
Lo

Fn= 2\ T, (4.44

which is intensity dependent ad8= y2...7.. This depen-
dence is qualitatively similar to the observed one in [R&T]

I‘Iexp: a+Bx, (4.45

where a~1/2T, and 8=2.4x10 2 (sample No. 1 Both
decay rates grow with excitation intensity increase, however,
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one is square and the other is linearly dependent on the Rabi
frequency. The linear dependencdad is described in Ref.

[68] by a different model of the phase-locked noise, where
the phase distribution near the reference phase is Lorentzian.
To clarify this effect, we reconstruct from Laplace trans-

forms Ueo(P), veor(P) andw(p) the modified Bloch equa-

tions
Ucon= — Avcon—I'yUcons (4.46
U_coh: AUcoh"' XcohW_ I‘vv_coha (4.47)

— - WO

=~ XcotV con— LwW+ T, (4.48
1

which are valid for the frequency range [af| < 1/7, when

t> .. Modified relaxation rates are

r,=—+T, T,=—, T,=—+I. (4.49

Then we consider the two-level atofLA) as a spinS
=1/2 in a constant magnetic field,. Interaction of theS,
spin component with this fieldz(axis is parallel tdH,) leads
to energy splitting of the TLA. The fieltH,(t), rotating in

the x-y plane is similar to resonant excitation when the rota-

Enoise

<l

Ecoh
u
FIG. 2. Two-level atom interaction with coherent and incoherent
fields. These fields induce precession of the components that are
transverse to them. THe,, field induces change of the anduv g,

components. Th& ;. field causes random change of theand
Ugon COMponents.

see that thé& ., field induces a resonant transition since it is
transverse to thes component. The effective spin undergoes

a precession arounf,, and its projection on thev axis is
changed. FieldE, ;s induces a resonant transition for the
same reason. Moreovdt ;.. induces the change af.qy
component in a random way, as it is transverse to this com-
ponent also. Thus the noise fiel,,s. contributes to the

relaxation of theu, andw components, i.e., to thE, and

tion frequency is equal to the TLA transition frequency. In al w rates. Since this field is parallel tq,, component, it has
reference frame rotating with field, (t), spinSdoes not see NO effect on this component and tlig rate remains un-
the field H, and therefore it undergoes precession aroun§nanged.

field H,. The result is the resonant spin-flip or resonant TL

A Equations(4.46—(4.48 with modified relaxation rates

transitions. This simple picture is well known in nuclear (4-49 describe TLA saturation by the coherent component of

magnetic resonancgs9]. Within this picture it is easy to
explain TLA behavior in the two fieldsk.,, and Eise-

Since thew component is equivalent to tH& spin compo-
nent, U.yy IS equivalent to theS, component(which is in
phase with the coherent field in the rotating frapendu .,

the field when, in addition, the incoherent component in-
duces relaxation and saturatitthe noise saturates TLA with

a rateI' = y2.7c). Modified equations(4.46—(4.48 are
valid over a frequency range that is smaller than the noise
bandy=1/7;.. Over a frequency range comparable with

we must use the exact soluti¢h.24) of equationg4.12 and

is equivalent to theS, component, we can represent TLA (4.13. Then, for example, the Laplace transform of TLA

interaction with field€ ., andE,, e @S shown in Fig. 2. We

population difference takes the form

_ W, _
W(p) = Fo{l_ (Wcoh/tlm)Fl(p)}{l_ (Wnoise/tl) FZ( p)}: (4-50)
Weortom
F = = 4.5
P 22_*'VV(Z:oh(th/tlm) +Biomts @50
= (p): Wnoisg(t_z"'z) (4 52)
2 2 W (o4 2) /1, + W2, (T4 2)/ (14 2) + (1,4 2)2 '

It consists of two components. The firgtarrow) describes
TLA saturation by the fielE,,, and the secontbroad is

equations include decay rates49. The wide component is
described by the term with functiof,(p). If we put E.,

burnt by the fieldEise- The narrow component is described =0 andE,s* 0, then it is possible to reconstruct from Eq.

by the term with functiorF,(p). Relevant modified Bloch

(4.50 other modified Bloch equations
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(4.53

Unoise= — AU noise™

1
T_2 ¥ | Unoises

. 1
U noise= A Unoiset XnoisdVnoise™ T_2 + 7) Unoiser  (4.59)

Whoise~ Wo

T, (4.55

Whoise™ ~ Xnoisd’ noise

which describe TLA saturation by incoherent fielg e
We introduced here the variabl@gises; Unoiser Wnoise 1O
distinguish them from those defined in Eq&l.10 and
(4.17). It should be emphasized that the absorption of fiel

Enoise IS not described blecoh, Ucon COmponents of the

Bloch vector, although the TLA population differenceis
correct. The latter saturates as

W= Wpgise= Wt (Wo— Wst)einy (4.56
where
Xﬁo'se‘y A%+ 72
I'=— : 51 WemWo————— . (457
Aty A%+ ¥+ Xnoise¥ T1

Here, the ratd" is defined over an extended frequency range
comparable to that defined in E(f.32. Below we derive
the TLA response for the combined fiellyn+ E oise @Nd
show the validity of Eqs(4.53—(4.55.

V. ABSORPTION OF THE FIELD WITH PHASE NOISE

PHASE-NOISE INFLUENCE ON COHEREN. ..
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— Wo|
v(p)=—{ B—F(p)cosa
p t1m
2(t,+t,+2)W, BF
- ( Y )_ cotBF1(P) F,(p)sinal,
(t1+2)(ta+ 2ty
(5.4

where functiond=,(p) andF,(p) are defined in Eq94.5])
and(4.52. The TLA response consists of two parts, one with
a narrow spectrurffunctionF,(p)] and another with a wide
spectrum[function F,(p)]. If we put xon=0 and xnoise
#0, then the wide component coincides with a solution of
Bloch equations (4.53—-(4.55 for the
Unoiser Unoiser Wnoise Variables. There is only one difference,
an extra sira function which comes from the phase averag-
ing of power absorption. Below we clarify the origin of this
difference.

When the driving field

E(t)=2E,cod wt+ @) (5.5

has a random phase, we cannot use the common expres-
sion for field absorption. We must start from first principles
and derive a modified one. It is well known that power ab-
sorption takes place when there is a phase difference be-
tween the field and TLA response. Power absorption by a
unit volume is described bly70]

w (t=T
A ﬂft:o E(O)dP(t),  P(t)=N(m1p21F #21012),
(5.6

where P(t) is the TLA polarization;N is the number of
TLAs per unit volume and’ =2x/w is the field oscillation

The mean value of polarization in the reference frameyeriod. There are two possibilities of defining TLA polariza-

linked rigidly to the field phase is described byand v
functions defined in Eq:3.17). We need not derive the equa-

tions for them, as there is a relation between v, and
Ucohs Ucon COMpoNents, i.e.,

V=0 C0Sa— UpSina,
(5.2

U= UccoSa+uvpSina;

whereu, and v, are asymmetric combinations of partial
Bloch-vector componen{see Eqs(4.16) and(4.17)]

Ua=UcoH(@) —Ugor( —@);  UaA=Ucon(@) —Vcon( — ).

tion. The first one is

P(t)=uN[ucoq wt+a)—v sin(wt+ a)], (5.7

whereu+iv=20,, ando, is defined in a reference frame
linked with the instant phase of the fie[dee Eq.(3.12].
Substitution of this polarization into E¢6.6) and calculation
of the integral ovet gives the resultit is assumed that the
phasea has not changed during the field oscillation period
sincer.>T)

A=—wuEyNv. (5.9
Then the phase average
<A>a: _w,LLEoN<U>a (59)

The latter are related to the mean value of the Bloch vector

according to Eqs(4.21)—(4.24) as

Xa(P)=~Whoisd Lo+2) "L 1x(p). (53
Only the mean value of polarizatignalculated in the instan-
taneous reference framprovides reliable information about

the field absorption coefficienfproportional tov compo-
neny. Substitution of Eq.(5.3 into Eqg. (5.1) gives its
Laplace transform

gives an expression for the field absorption. Since de-
fined in the instant reference frame, the mean vdllg,

coincides withv. Therefore thev(t) function calculated
from Eq.(5.4) can be used directly in the expression for field
absorption(5.9). We see that the result coincides with the
usual expression for power absorption of the field with con-
stant phasé5.9).

The second way to define polarization is

P(t)= uN(UgrCoSwt — v gsinwt), (5.10
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E() e E(-a) particles with ahomogeneousbsorption spectrum is de-
e scribed by Eq(5.15 or Eq.(5.9). Taking the limit(4.29 of
a u‘a @) function (5.4) on thep variable, one gets an exact expression
“ * for power absorption:
v(a) \
\ w|T
Veoh a = 1
\ <A>a__NWO%[F_BXcthl(A)+Xnoise,I:2(A)
) Eooh_L w
-a y(y+I'1+1) “
(-a) / X|1— B Ay,
V / Ty F T (y+ T XeaF2()
EJ_(-a) (516)
FIG. 3. Phase diagram of the noise field and Bloch-vector comWhere
ponents. E.,,, E(*a) represent phases of these two fields.
E,(*=a) and Ey,, indicate vectors with phases shifted hy?2 F.(A)= Xcotl u
relative to the corresponding fieldg¢,,, veon, @andov(+a) are 1 A2+Xgoh(rulrw)+BFqu,

Bloch-vector components defined in reference frames linked to the
phase of the coherent fiel..,, and random-phase field(*a), r
respectively. Fo(A)= Xnoisd Y+ 1'2)

AP+ X2@+ (7T 2) %+ Xagied Y+ T2)/T

where u.,, and v, are defined relative to the reference
phase. For this case, calculation of the integ¥ab) gives 1 I'r, v+T,

=—, B l=1+ . g= ,
12T, (yIT)(y+Ty)" 97 5T,

A=—wuEgN(voH0Sa— UgSine). (5.11

Phase average of the latter gives a new expression for powg\rn d decay rates are defined in explicit form without approxi-

absorption mation
. 1 1 1
(A)a=— 0 uEN((vorC0Sa) o = (UcorSiN @) o) - Iy==—+gl, I,=— Iy==—+I, (5.17)
(5.12 T2 T2 L
For phase telegraph noise, one can calculate these average Xﬁoise(y+ T,
functions in the following way. Consider the phase diagram =5 2 (5.18
A +Xcohg+(7+r2)

of the field and Bloch-vector components.y, vcon,
v(=*a), presented in Fig. 3. Here,, denotes the coherent

component of the fieldE(a) andE(—a) show the relative Fig. 4. They consist of two lines; a narrow one sitting on a

phases of the field for _the o StatdSn , _Ei(a)’ _and broad one. The broad line arises from the incoherent compo-
E,(—a) are vectors with ther/2 phase shift relative to .0t of the field. Its half width

Ec.on, E(a), and E(—a), respectively. The Bloch-vector

componentu.qy, is in phase withE.., whereasv .o, v(a), Cincor™ VY2 + X2oe T (5.19
andv(—a) are phase shifted relative #..,,, E(a), and ineon notse? T4

E(—a), respectively. Projection of the,, component on may become much larger than the half width of the broad
E,(*xa) directions does not change with phase shift andcomponent of the field spectruny. For example, when

Examples of absorption specfiaq. (5.16] are shown in

therefore Xnoise! (277) = xcon/ (27m) =200 kHz, y/(27w)=1 MHz and
_ T,=4 msec, the valud'j,.on/(27)=31.7 MHz becomes
(U coHC0SA) = [V o @) + U o — @) ]cOSa= v o1 cOSa. comparable with frequency tunin@tark shift[71]) of reso-

(5.13 nant atoms or exciting beam frequency shift in photon echo
experiments. Therefore atoms removed from resonance with
the central field component are still excited by the broad
component of the field. This gives a contributibrto the T,
- ; - and T, relaxation times measured by two-pulse and three-
<uc0hs|na)a—[ucoh(a)—ucoh(—a)]sma—uAsma(.S 14 pulse lechoes. For example, when tri/e freqF:Jency shift is 25
' MHz, this contribution to decay ratesTl/and 1T, is 64 Hz
Substitution of Eqgs(5.13 and (5.14 into Eq. (5.12 gives for the above conditions and 1.6 kHz whefise/ (27)
the result =xcon/(27m)=1 MHz. For this reason, one has to be care-
ful in the interpretation of the intensity dependenceTgf
(A),= —wMEoN(U_cohCOS&l— uasina) (5.15 since the broad component of the excitation field spectrum
can give a contribution similar to the instantaneous diffusion
coinciding with that obtained by substitution of E&.1) in effect.
Eq. (5.9. Our consideration is not related to the photon-echo in-
Thus, we have shown that the power absorption of theluced by delayed incoherent pulsp$6,49,50,53,54 In
field with phase telegraph noise for an ensemble of two-levethese studies an incoherent optical pulse is produced by a

Meanwhile, projection of thel;,;, component on these direc-
tions changes the sign and hence
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quires an additional damping due to the saturation of the
broad “incoherent” hole. The latter process is described by
_E Bloch equation withT,; and T, modified according to Egs.
s (5.17) and (5.18. The same considerations are true for the
2 stimulated photon echo.
g 06 The accumulated photon echo is sensitive to the relative
- phases of the exciting pulses. As was showi58,72,73,
N / \ one can even get zero signal at a particular value of the phase
g 04 A ~ difference of the exciting pulses, which may be helpful in_
S / \ photon echo data erasure. We do not consider this effect in
< detail. We only show that there is additional damping caused
02 by saturation of the “incoherent” hole when an
-1000 -500 0 500 1000 accumulated-stimulated echo is produced by frequency tun-
@ Frequency (kHz) ing and excitation by a single mode laser with locked phase.
1
VI. FID AFTER SATURATION BY THE FIELD
5 WITH PHASE-TELEGRAPH NOISE
= 0.998
g' We consider an ensemble of particlegth aninhomoge-
2 neousabsorption spectrupexcited by the field
< (.99
3 // \\ E(t) = Eqexpliwt+ia) 6.1)
]
g 0994 whose phaser undergoes a random telegraph process. Exci-
=2 / \ tation is switched on at= —<. It is assumed that saturation
0.992 reaches a stationary state before titse0. The hole burnt

-1000

-500

0

500

1000

into the inhomogeneous spectrum is described by the popu-

(b)

FIG. 4. Phase-telegraph-noise field absorption oficenoge-
neouslybroadened line vs resonant tunitig kHz). TLA relaxation
times areT;=4 msec andl,=15 usec. Half width of the broad
component of the field spectrum/(27) is 1 MHz. Rabi frequen-
cies of the coherent and noise components of the field are equal #at time t=0, the field frequencyv is shifted instantly taw
@ Xcon/(27) = Xnoise/ (2m) =6 kHz and (b)  xcon/(27) +0:
= Xnoise/ (27m) =100 kHz.

Frequency (kHz) lation difference(4.50

W(A):wo{l— @Fl(A)Hl—Xn—mser(A) . (6.2
T, T,

E(t)=Egexpiot+iQt+ia). (6.3

dye “laser” with only one mirror or a light-emitting diode.

Therefore the irradiation arises as enhanced spontaneoM$e assume that the frequency sHiftis much larger than

emission with statistical properties close to the chaotic fielchole width, and consider saturated particles to be removed

(see Introduction Since the pulse sequence is realized byfrom excitation att=0. Two response fields appear in the

optical delay of a single pulse, both pulses are correlated isample, one at frequeney—+ () and the other at frequency

phase in spite of their incoherent property. w, i.e.,
We consider excitation with a single mode laser with

locked phase. Pulses of lengthare, in effect, produced by

fast frequency tuning of the CW output beam or resonant

frequency of the atoms. Thus a certain group of the atoms arghe peam reaching the detector is the sum of the laser field
in resonance with the field only during these frequency tun{g 3) and emitted sample fiel(6.4). Since the optical detec-

ing periods and out of resonance between tuning periods. Agy s 3 square law device, we must calculate the intensity
the phase of the field fluctuates, there is no correlation bepresent at the detector. which is

tween excitation pulses although the reference phase is as-
sumed to be fixed. When the pulse duratigis shorter than
dwell time of the phase jump.(t,<7.), each pulse can be
considered coherent and atom excitation is described by the )
Bloch equations with relaxation and phase fluctuation bein%vghere Eq(t)=E(t) + E((t). Now E,<E, for any optically
neglected. The phase of the two-pulse echo signal dependfdn sample, so the term, proportional 6, [* may be ig-
on the relation between phases of the pulses. For exampl80red and
the phase difference between the second pulse and echo sig-

nal is a,,+ 37, wherea,, is the phase difference between

second and first pulses. The echo amplitude does not depend

on this difference. As was shown above, this amplitude acwhere

E,(t)=E (1)@t E (t)el et (6.4

I(t)=CeoE4(DEX (1), 6.5

[(t)=1g+1,(t)+1,(1), (6.6
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lo=CeoE3,
I 1(t)=ceo{EoE} (t)e'“+c.c},
I,(t)=ceo{EoES (1)e' M e+ c.c).

The last term on the right-hand side of E.6) contains the

FID signal of particles removed from excitation and second
term corresponds to transient nutation signal of particles

tuned to resonance &t 0. We consider the FID signal that
is due to oscillations on the carrier frequeriQy
The response fiel&,(t) is driven by the free precessing

polarizations of all particles excited before the frequency

switch, i.e.,

. | [
et &= 2 Plog®oodos, (67

P(00)= %[ Ueotl @0) + i1 cof @) leXpli ot —t/Ty),
(6.9

where e is the field phase at switching time=0. Substitu-
tion of Egs.(6.7) and(6.8) into thel,(t) function gives

1,(t)=uEqwl e YT2{(cog At— Qt— &) v o @o) dens
+(SI(At—Qt— @) Ucor{ @0) Veng» (6.9

where ( )ons denotes average over the inhomogeneous

broadening. Since the phasechanges with time, we must
average the intensitl,(t) using the phase transition prob-
ability (4.3):

<|z(t)>a=J 15(t) @(p,0 a,t) da. (6.10
The result is
(1) = uEowl e VT V() +U(1)],  (6.11

V(t)=([cogA—Q)t cosxg
+e "'sin(A — Qt sinag] v ol @o) Yens: (6.12)
U(t)=([sin(A—Q)t cosrg—e ™ "'cog A — Q)t sinag]
X Ugor( a0)>ens- (6.13

Bloch-vector components ., ag) andv o ag) are defined

in a reference frame linked to the phase of the coherent part

of the field E..,. Their values are defined by the simple
relations:

UeoH *a) = %(ucohi ua),

(6.19
(6.15

Vool TA)= %(UcohiUA)-

When an ensemble of two-level particles is excited by the
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veo(A) andu(A) are even functions. This allows simplifi-

cation of Eq.(6.11) in terms of theUn, vcons Ua, andova
components as follows:

1
(I 2(t)>a:§MEow| e T2 (M(t))encos2t

—%Mz(t»ensnﬂt} (6.16

M (t) = (v eorc0sa—e~ " upsina)cost+ (Ugycosa

(6.19

+e "y, sina)sinAt,

M, (t)=(upscosa+e” 7tv_cor§ina)coﬁt —(vacosa
(6.18

The FID intensity(6.16) consists of two terms, on@vith
sinQt function depends on the sign af, while the other
(with cod)t function) does not. In FID experiments, the
phasex, at the time of the frequency shift changes randomly
from shot to shot. The probability of finding phaseor
—a is equal[see Eq.(4.4)]. Therefore averaging a large
number of FID signal sweeps will cancel out the contribution
of the term with the sifd function. Then the average FID
signal detected by the heterodyne technique is

((12(0))) 0, ap= 2 #Eowl € T2(M (1)) eng0s2t,

—e My ysina)sinAt.

(6.19
M1 (t) =0 COAt+ U,SinAt, (6.20
V= UcotCOSa—Up e~ "'sina, (6.21
U= UgoiCOsa+uv e "sina, (6.22

where double bracket§ )), ., denote averaging ovew

and aq phases. The effective componentg andv ,, differ
from theu andv functions, defined in the instant reference
frame[see Eq(5.1)] by the exponené~?'. Their stationary
subcomponents are

field (6.1) at the center of the inhomogeneous line, then com-

ponentsTcoh(A) andv 5(A) are odd functions oA, whereas

— 'y AXcotWo
ucoh__l—‘_WAz_l_Fgo_h, (6.23
- I'y TuxcotWo
Ucoh— P_w A2+F(2:o_h’ (6.29
YXnoisdVo | Y(y+T1+7T5) }
Up=— 1- B A) |,
AT Az | U AT () X
(6.25
AXnoisé’vo{ y(I—T4) }
VA= — — A)l,
AT a2 | Ty YeorFal )(6 .
where
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1 where v is a half width of the(Lorentzian field spectrum.
Thus, the random walk of the phase produces only an addi-
tive broadening of the absorption line. As the saturation of
this line is described by a Bloch model with modifi&g,,,

the saturation broadening also increases,ifis the longest
relaxation time of TLA. It is easy to show that free induction
decay and transient nutation are described by the same modi-
fied Bloch model.

0.1

0.01

FID Intensity I2(t) (arb. units)

Phase-telegraph noise is considered as an example of
L locked-phase noise. The power of this field is divided into
\\\ two parts. One is compressed into a narrawfinction) line
0.001 I— and the other is spread over a broad frequency band. Even
0 02 0.4 0.6 0.8 1 when the integral intensities of them are comparable, their
Time (usec) spectral densities strongly differ. For example, at the center

of the narrow line, the relative intensity of the broad compo-
nent is infinitely small. When the reference phase undergoes
some additional unlocked fluctuation with a ratewhich is
smaller than basic fluctuation rate of phase-locked noise,
ro.— /BF I 442 ﬂ 6.27 then the central peak acq_u.ires a finite small broadening and
con ute XCO"FW’ ' the ratio of spectral densities of broad and narrow compo-
nents at their maxima is equal i@/y. We show that even
Y+ T, when this ratio is very smalfor example, the broad compo-
T incon= \/('y-i- F2)2+X§0@+Xﬁois€( F—) (6.28  nent is three orders of magnitude less than the narrow com-
1 ponen}, the locked-phase-noise field cannot be considered to
. o ) L be coherent. We show that TLA saturation by the narrow
The main contribution to the FID signal is given by the fig|g component is affected by the broad field component.
umSinAt term. Averaging over the inhomogeneous line givesThe latter contributes to the Tlf and 1T, relaxation rates.
the following expression for the FID signal: When they become nearly equal, non-Bloch saturation takes
place. This increase of relaxation rates also leads to an ac-
7TX2N(1)|W0 _ - celeration of the transient nutation decay. Moreover, we
(12N a,ap=— ——{ sirfae” (M7t showed that the broad component of the field saturates its
2hA own hole in the spectrum. As the width of this hole is com-

FIG. 5. FID vs time(in usec). Parameters of the field and
two-level atom relaxation times are the same as in Figcage b.

co<a parable with frequency switch interval in photon echo ex-
+ erct] e YTcoddt, (6.29 periments, we surmise that saturation by the broad field com-
1—‘le
ponent may affect the photon echo decay rate.
whereA is the inhomogeneous line half-width — assumed to ACKNOWLEDGMENTS

be much larger than the widest hole in the spectrum. Here, to
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in the expansion of the exponents’ coefficients. The timeon Physics of Quantum and Wave Proceg3eend: Funda-
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sists of a fast and slow component. The fast part is caused by

the broad(“incoherent”) hole and the slow by the narrow APPENDIX

(“coherent”) hole. The narrow hole demonstrates non-Bloch

saturation60,64,63. Let us consider excitation of the cavity by the field
E(t)=Eqco8 wt+ a(t)] (A1)

VII. CONCLUSION

We considered resonant excitation of an ensemble of twoW'th the pump rat_eP. For simplicity we assume th"’?t the
level atoms by a phase-noise field. A new equation of theDhase of thg fiela Jumps by the same valu@f_or ee}ch yme
field absorption(5.9), which does not depend on the type of interval 7o, I.€., the field phas_e grows steadily with time. If
random phase process, was derived. Then random-waﬁk1e damping rates (_)f the cavity is the small_est parameter
phase(phase diffusion model without reference ppiand ~ @nd the pump rate is the largest parameter, i.e.,

phase fluctuation in the limited domaimodel of random
phase locked near some reference poivdre considered as
examples of two different processes. We showed that inte
action of a phase diffusion field with two-level atoms is de-

scribed by a Bloch equation with modified dephasing rate

G<1iry<P (A2)

'then for each time intervaty, a fraction of the field with
current phasey is stored in the cavity. The amplitude of this
stored field fraction is equal tBroEq at the end of the time
interval ry. In the time scale of the cavity excitation lifetime
i: i+,,’ (7.0 T'q=1/G, we have many changes of the pump field phase
Tom T2 since 7o<T,. For this reason many fractions of the field
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FIG. 6. Phase evolution of the pump figlskee text

with constant, different phases are stored during the lifetime _ ] o
of the cavity excitation. Thus the excited cavity field is the FIG- 7. Amplitude-phase evolution of the cavity figlste text
sum of many field fractions with different phases. For further
simplification we consider the cavity withi;—o. Then the
evolution of the cavity field may be presented as In Fig. 6 the evolution of the pump field phase is shown,
where numbers 1,2,3,... indicate the current change of the
phase(the arrow with subscript indicates the initial phase
wherea, = ay+n6 andn=t/7, is considered as integer, i.e., Of the field in Figs. 6 and )7 In Fig. 7 the evolution of the
we look for the field evolution in the process of pump addi-Phase and amplitude of the field stored in the cavity is
tion (fraction by fraction at the end of each time intervajy ~ Shown. The bold circle shows the phase-amplitude trajectory
and do not consider fast changes within these time interval®f the stored field. Its amplitude changes between zero and
(The field fraction with a particular phase, grows in the  (P7o/6)Eq. The phase of the stored field changes between
cavity during the durationr, of the corresponding pump @ and ap+ . We see that the phase of the pump field
field fraction. The stored fraction is not changed after thegrows steadily, whereas the phase of the stored field is
phase change of the pump as we assume infinite lifetime fdocked near phaseq+ 7/2 within a domain ¢g,a¢+ 7),
the cavity excitation). Equation(A3) is simplified as i.e., the phase fluctuates by/2 near the phasegy+ 7/2.
Thus we see that a regular phase change of the pump
results in phase-locked change of the cavity field. If the
1—ef pump phase changes randomly according to a diffusion pro-
(A4) cess, then any small phase shift does not essentially change
the phase of the cavity field that is locked to the first phase of
If the phase changé is small (f<<1), then this equation is the pump. Only an accidentally large phase juthpving a
reduced to small probability moves the locked phase to a new state.
However, this movement takes place gradually within the
next period of small phase jumps near the new state of the
pump phase.

En=737-0E0(eiao+ e v+elv24 ... +elm), (A3)

. n ) ) 1_ei o(n+1)
En = PToEOeI aOKZO el k= PToEOeI “0

Pt . .
E,=i TOEOe"*O[l—e' o+ 1), (A5)
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