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Phase-noise influence on coherent transients and hole burning
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Kazan Physical-Technical Institute, Russian Academy of Sciences, 10/7 Sibirsky Trakt st., Kazan 420029, Russia
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Resonant excitation of an inhomogeneously broadened ensemble of two-level atoms~TLA ! by a stochastic
field with phase noise is theoretically investigated. Free-induction decay~FID!, hole burning~HB!, and tran-
sient nutation~TN! are studied. We consider two kinds of driving fields, one with a free walking phase and
another with the phase locked in a limited domain. It is shown that the resonant excitation behavior depends
strongly on the noise property. Noise induced by a walking phase gives a simple contribution to the dephasing
time, T2 , of two-level atoms whereas phase locking qualitatively changes the laser-atom interaction. In the
latter case, it is shown that even when the central part of the driving field spectrum is narrower than homo-
geneous absorption line of the TLA, the wide, low intensity wings of the spectrum~sidebands produced by the
locked phase noise!, have a strong effect on the FID, TN, and HB induced by the central, narrow part of the
spectrum. The influence of sidebands on photon echoes is also discussed.@S1050-2947~98!06210-6#

PACS number~s!: 42.50.Md
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I. INTRODUCTION

The laser and other sources of coherent radiation can
considered as oscillators with compensated damping~i.e.,
where the gain equals the losses!. If the state of this oscillator
is stable, then any external noise influencing the parame
of the oscillator gives only the background and does
affect the delta-like, sharp spectrum of the output fie
Meanwhile, it is known~see, for example, Ref.@1#! that the
phase of the laser field is in a state of indifferent equilibriu
~i.e., it is unstable!. This means that any weak external for
may shift the phase without resistance. This is a basic so
of spectral line broadening@2#. Below we consider a single
mode laser. As was shown in Ref.@2#, for example, mechani
cal vibrations and thermal fluctuations of the cavity leng
and refraction index are usually the dominant source of
broadening of single mode lasing rather than the limit set
spontaneous emission. Because of the phase shift by the
dom force, the deltalike spectrum becomes Lorentzian wi
finite width. This width depends on phase dispersion a
correlation timetc of the noise that induces the phase sh
The random walk of the phase or phase diffusion proc
does not have any selected reference point, since the pha
the field can shift far from the initial value by small jump
accumulated in a large random phase shift. Technical lock
of the device phase near some reference point results in
sential narrowing of the field spectrum~a discussion of the
phase locking process is presented in the Appendix!. Ran-
dom phase jumps~less thanp/2) near the reference phas
give the wide background and do not affect the central p
which remains a delta function. Only the walk of the refe
ence phase makes the central part broad. As the process
laser phase jump and reference phase jump are usually
ferent, the width of the central part and background are a
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different. The former is determined by the device that loc
the phase, and the latter by the laser output spectrum
amplifier.

Stabilized sources of coherent irradiation are commo
used for ultrahigh resolution spectroscopy. Optical transie
and hole burning are some of the methods of coherent s
troscopy that require a narrow laser linewidth. Therefore
influence of the field spectrum on the transient response
nal of resonant absorbers is of interest. Usually one exp
that, when the driving field spectrum is narrower than t
absorption linewidth, this field can be reliably considered
monochromatic. Using a model of phase-locked noise,
show that the latter condition on the narrow, sharp part of
field spectrum is insufficient. The weak and wide sideban
caused by the phase-locked noise, significantly change
saturation and transients of the excited quantum system

Resonant interaction of an atomic system with fluctuat
classical fields has been already studied extensively@3–55#
~the list is not exhaustive!. This paper is not aimed at pro
viding a review on this topic. We do not consider quantu
noise, as the linewidth of a single mode laser well abo
threshold is not appreciably affected by spontaneous em
sion @2#. As mentioned above, we consider only semiclas
cal sources of laser line broadening such as vibration, th
mal fluctuation, and index fluctuation. Real lasers can exh
a variety of fluctuations in phase, frequency, and amplitu
Almost all previous analyses of noisy laser-atom interactio
have been based on several models of classical fluctua
fields. Among them are phase diffusion field~PDF!, chaotic
field ~CF! or Gaussian noise irradiation, random jump pr
cesses of the frequency, phase or amplitude, and shot n
description of the fluctuating phase or frequency.

Phase diffusion field has a constant real amplitude bu
phase is a Wiener-Levy process@8,9,17,24,25,30,36
41,51,52#. The phase diffusion model is based on the form
analogy between the position of the particle performing
Brownian motion and the random phasea(t) of the field.
3099 © 1998 The American Physical Society
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3100 PRA 58R. N. SHAKHMURATOV AND ALEX SZABO
The velocity of the particle corresponds to the random f
quency of the fieldv(t)5ȧ(t), which is a Gaussian white
noise process with delta correlation

^v~ t !v~ t8!&52nPDFd~ t2t8!. ~1.1!

Even if the name PDF is strictly appropriate only in the ca
when the frequency is a white noise and the phase is de
mined by a purely diffusive Wiener-Levy process, it is com
monly used to indicate the more general case of finite co
lation time when the frequency noise is an Ornste
Uhlenbeck process@56,57#. The power spectrum of the fiel
in a generalized PDF model depends on the correlation t
of its frequency, evolving continuously from a Lorentzian
a Gaussian profile when the correlation time increases f
zero to infinity @32,35,33,41,47#. Meanwhile, a random fre
quency process produces phase velocity fluctuations and
result the phase itself changes continuously, increasing
decreasing gradually in a random way. It is impossible
select the reference phase within frequency fluctuating m
els as the phase walk is not bounded by any condition. Mo
over, any abrupt, discontinuous change of the phase is
yond PDF and generalized PDF models. For this reason
more appropiate to describe the locked phase field
bounded phase walk processes by the random phase
model. Random jump processes of the frequency, phas
amplitude of the field were considered in@3–6,10,13,
15,21,37,43–45,48,52# as they allow convenient and ver
flexible manipulation of interaction parameters, permitti
nonperturbative examination of the noisy laser-atom inter
tion. While the question ‘‘what is the origin of the noise, th
frequency fluctuation or the phase fluctuation?’’ is rath
philosophical, the close relation between the correlated ju
model and diffusion model, was shown in@6,58#.

The shot-noise model@48# of phase fluctuations assume
that the instantaneous phasea(t) of the electromagnetic field
consists of a sum of statistically independent pulses

a~ t !5(
i 51

n

a ih~ t2t i !, ~1.2!

whereh(t2t8) is a causal pulse-shape function@h(t)50 for
t,0], generated at a random timet i with amplitudea i . The
correlation function of the shot-noise phase is equivalen
the Wiener-Levy correlation function of the phase-diffusi
model. The important difference between the shot noise
PDF model is thata(t) is not a Gaussian stochastic proce
In Ref. @48# it was shown that shot noise is strongly relat
to the correlated phase jump process as both models lea
the same Burshtein-Chapman-Kolmogorov-Smoluchow
equation@5,6,10,21,43,48#.

Chaotic field ~CF! or Gaussian noise irradiatio
@11,12,14,19,20,24,25,29–31,33,34,36,40# assumes that the
amplitude and phase are random but their fluctuations
considered without introducing the amplitude-phase dec
position. The amplitude of the CF is a random Gauss
process:

E~ t !5Ex~ t !1 iEy~ t !, ~1.3!

^E~ t !&50. ~1.4!
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A stochastic model of the chaotic field is described in ter
of Langevin equation

Ė~ t !52bE~ t !1FE~ t ! ~1.5!

whereFE(t) is a random force

^FE~ t !FE* ~ t !&52b^uEu2&d~ t2t8!. ~1.6!

This model is closely related to the multimode free-runni
lasing. Therefore we do not consider the CF model in t
paper.

II. PHASE JUMP MODELS

We consider the random phasea(t) determined by the
density of a Markovian conditional probability

w~a0 ,t0u•••uan21 ,tn21uan ,tn!5w~an21 ,tn21uan ,tn!,
~2.1!

wherea0 , . . . ,an are successive values of phase at the m
ments of timet0,•••,tn . Condition~2.1! is a fundamental
property of a Markovian process. The theory of phase rel
ation is well developed for a stationary, discontinuous M
kovian process@6#. Therefore we take the stationary cond
tional probability

w~a0 ,t0ua,t !5w~a0,0ua,t2t0!, ~2.2!

E w~a0!w~a0 ,t0ua,t !da05w~a!, ~2.3!

where

w~a!5 lim
t2t0→`

w~a0 ,t0ua,t ! ~2.4!

is a probability density that does not depend on the previ
history of the process. It describes the probability of findi
the phasea at any cross section of the process.

After Burshtein@6# we consider the discontinuous proce
of phase change. The random value of phasea(t) is constant
inside each time interval (t i ,t i 11) and jumps stepwise at th
end of it. This time interval has a Poisson distribution

dW~ t i 112t i !5expF2
t i 112t i

t0~a i !
G dti 11

t0~a i !
, ~2.5!

wheret0(a i) is a mean dwell time between jumps, genera
depending on the value ofa i inside the time interval. The
conditional probability of a phase jump from valueb to
value a is given by the functionf (bua). When the dwell
time does not depend on phase value, the density of co
tional probability of discontinuous Markovian process obe
the forward Kolmogorov-Feller equation@6,43,45,48,59#

]

]t
w~a0 ,t0ua,t !52

1

t0
w~a0 ,t0ua,t !

1
1

t0
E w~a0 ,t0ub,t ! f ~bua!db

~2.6!
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PRA 58 3101PHASE-NOISE INFLUENCE ON COHERENT . . .
with the initial condition

w~a0 ,t0ua,t0!5d~a2a0!. ~2.7!

Solution of this equation describes the normalized, station
density of the conditional probability if the relations

E f ~bua!da51, ~2.8!

E w~a0! f ~a0ua!da05w~a! ~2.9!

are valid. The random processa(t) is completely determined
by the functionsw(a), f (a0ua) and dwell timet0 .

Classification of the phase noise was first introduced
Burshtein@6#. He defined the functionf (a0ua) as

f ~a0ua!5 f ~a2ja0!5 f ~ja02a!, ~2.10!

where the parameterj characterizes the correlation betwe
two successive values of phase.

~1! Whenj50 the random process is uncorrelated

f ~a0ua!5w~a! ~2.11!

since the phasea does not depend on its value prior to th
jump. Here each jump reproduces the stationary distribu
of phasew(a).

~2! Phase jump is anticorrelated whenj521. A two-state
jump processa56a ~telegraph noise! with transition prob-
ability of

f ~a0ua!5d~a1a0! ~2.12!

satisfies this condition.
~3! When j→1, the phase jump is a correlated proce

The functionf (a2a0) is even and its width gives the phas
shift value after the jump. When this width is zero,

f ~a0ua!5d~a2a0! ~2.13!

the process is ineffective. A small width specifies a proc
with small phase jumps from the initial valuea0 . For this
process, the Kolmogorov-Feller equation~2.5! is reduced to
the Fokker-Plank equation@6,58#. Solution of the latter de-
scribes the phase diffusion when 12j!1. By means of
small jumps, the phase of the field can go very far from
initial value.

We introduce a new addition to the phase noise clas
cation. Whereas the functionf (a0ua) describes the correla
tion between successive jumps, the stationary distribu
function w(a) specifies the reference point of phase. Wh

w~a!5const, ~2.14!

E w~a!da51, ~2.15!

the reference point is absent as all values of the phase
equal probability and it is not possible to select some p
ticular reference phase. If the function

w~a!5w~a2a0!5w~a02a! ~2.16!
ry
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is centered near the valuea0 , then the latter is a referenc
point, as the phase walks randomly near it. The phase h
mean value of

^a&5E aw~a2a0!da5a0 , ~2.17!

whereas for the process with phase distribution~2.14!, we
have^a&50 since the value ofa0 is indefinite.

III. PHASE DIFFUSION FIELD

The correlated phase jump model (j51) without a refer-
ence pointw(a)5const @see Eqs.~2.14! and ~2.15!# is a
good description of the phase diffusion process when
jump size is small. This model was developed in@5,6# to
analyze the influence of noise on atom evolution in a re
nant field. The Rabi oscillation of the population differenc
transition probability, and luminescence of the atom exci
by the field with correlated@5,6# and uncorrelated@3,4# phase
jumps were considered. We apply this model to a theoret
study of polarization transients and hole burning in the inh
mogeneous spectrum of impurity-ion crystals excited
phase-noise field.

To define the parameters of the phase diffusion fi
E(t)5E0eivt1 ia(t) we consider the field correlation functio

^E~ t !E* ~ t0!&5E0
2K~ t2t0!eiv~ t2t0!, ~3.1!

K~ t2t0!5^eia~ t !2 ia~ t0!&

5E E ei ~a2a0!w~a0!w~a0 ,t0ua,t !dada0 .

~3.2!

Multiplying the Kolmogorov-Feller equation~2.6! on
ei (a2a0)w(a0) and integrating the result overa anda0 , we
get

]

]t
K~ t2t0!52

1

t0
~12^eiu&!K~ t2t0!, ~3.3!

^eiu&5E eiu f ~u!du, ~3.4!

whereu5a2a0 . Fourier transform of its solution

K~ t !5exp~2t/t1!, ~3.5!

1

t1
5~12^cosu&!

1

t0
~3.6!

gives the Lorentzian power spectrum of the field

S~v8!5Re
1

pE0

`

^E~ t !E* ~0!&e2 iv8tdt

5
uE0u2

p

t1

11~v2v8!2t1
2

. ~3.7!

When, for example, the phase jump size has a Gaussian
tribution
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f ~u!5
1

aA2p
expS 2

u2

2a2D ~3.8!

then the half width of the power spectrum is

n5
1

t1
5

12exp~2a2/2!

t0
. ~3.9!

For a process with a small jump size (a!1), the half width
is reduced to

n5
a2

2t0
~3.10!

and the effective dwell timet1 becomes much longer tha
t0 . Therefore the field spectral widthn is much smaller than
the phase jump frequencyn051/t0 when the phase change
by small jumps. With growing jump size (a@1), the condi-
tional probability f (u) tends to a uniform one and finally
coincides with the phase distributionw(a)5const. As a re-
sult, the correlated process approaches the uncorrelated
cess and the effective dwell timet1 becomes equal to th
real dwell timet0 . Thus the increase of the phase jump s
leads to an increase in width of the field spectrum from
valuen ~3.10! to n0 .

To calculate the two-level atom response to such ph
fluctuations, we first use Burshtein’s@5,6# equation for the
partial density matrixr̂(a):

dr̂~a!

dt
52

i

\
@Ĥ~a!,r̂~a!#2

1

t0
r̂~a!

1
1

t0
E r̂~b! f ~bua!db1R̂„r̂~a!…, ~3.11!

whereĤ(a) is a Hamiltonian of the two-level atom excite
during a dwell timet0 by the field portion of phasea and
R̂„r̂(a)… is an operator that describes the density matrix
laxation induced by internal interactions. We have to find
mean phase difference of the field and induced atomic po
ization, as just this value characterizes the field absorpt
This phase difference is defined by a variable

s12~a!5r12~a!exp~2 ivt2 ia1 ikz!, ~3.12!

where 1~2! denotes ground~excited! state andk is a field
wave number. Its mean value, as well as the mean valu
the population difference

^s12&5E s12~a!da, ~3.13!

w̄5E @r22~a!2r11~a!#da ~3.14!

satisfy the equations

ẇ̄5 ix~^s12&2^s21&!2
1

T1
~w̄2w0!, ~3.15!
ro-

e
e

se

-
e
r-
n.

of

^s12
˙ 5^s21

˙ &* 5S iD2
1

T2
2

1

t1
D ^s12&1 i

x

2
w̄, ~3.16!

which are derived from Eq.~3.11! by simple averaging. Here
T1 andT2 are relaxation times of population difference a
polarization, respectively;D5v02v is a detuning param-
eter from the atomic resonant frequencyv0 ; x52mE0 /\ is
the Rabi frequency, andm5m125m21 is a dipole transition
matrix element. We also definew0 as the thermal equilib-
rium population difference.

Equations~3.15! and ~3.16! are reduced to the conven
tional Bloch equations by the substitution

ū5^s121s21&; v̄52 i ^s122s21&. ~3.17!

Their solution gives the mean value of polarization in t
instant reference frame linked rigidly to the field phase a
hence allows calculation of the field absorption. Phase no
results in additional dephasing of polarization in this fram
as its decay rate is modified as

1

T2m
5

1

T2
1

1

t1
. ~3.18!

Therefore the correlated phase walk leads to broadenin
the absorption line in the same way as fluctuation of
resonant frequency.

IV. RANDOM PHASE FIELD WITH A REFERENCE
POINT: HOLE BURNING AND POLARIZATION

TRANSIENTS

As an example of a random phase field with a refere
point, we consider the well-known phase telegraph no
~PTN! model. The phase changes instantly between two
uesa and2a, whereas its mean value is zero and just t
value is the reference phase of the field. Oscillations of po
lation difference and luminescence of a two-level atom
cited by the field with PTN were considered in@45,48#. We
extend this analysis to hole burning and polarization tr
sients.

As the transition probability of PTN is described by e
pression~2.12!, the Kolmogorov-Feller equation~2.6! is re-
duced to

]

]t
w~a0,0ua,t !52

1

t0
w~a0,0ua,t !1

1

t0
w~a0,0u2a,t !.

~4.1!

For the initial condition

w~a0,0ua,0!5d~a2a0! ~4.2!

its solution is

w~a0,0ua,t !5
1

2
da,a0F11expS 2

2t

t0
D G

1
1

2
da,2a0F12expS 2

2t

t0
D G . ~4.3!



n

fo

r
c

w

o
Th

e
d,
r

er
x

igh
000
-
s,
its

iffu-

se
ase
put

of
he

ers
o-

gly
ent
t is
n is
line

nly

tion
o-

field

e

s,

PRA 58 3103PHASE-NOISE INFLUENCE ON COHERENT . . .
Taking into account that the equilibrium distribution functio
of PTN is

w~a0!5 1
2 da0 ,a1 1

2 da0 ,2a ~4.4!

one can calculate a two-dimensional distribution function
this process

c~a0,0ua,t !5w~a0!w~a0,0ua,t ! ~4.5!

and then an autocorrelation function

^E~ t !E* ~0!&5E0
2eivtH cos2a1expS 2

t

tc
D sin2aJ ,

~4.6!

wheretc5t0/2 is the correlation time of PTN. The powe
spectrum of the driving field is given by the Fourier spe
trum of the function~4.6!

S~v8!5
E0

2

p H cos2a d~v82v!1
tcsin2a

11~v82v!2tc
2J .

~4.7!

The PTN field can be considered as consisting of t
fields, one is coherent with an amplitudeEcoh5E0cosa and
the other is random with a constant amplitudeEnoise
5E0usinau and fluctuating phase6p/2, the total phase jump
being p ~see Fig. 1!. Therefore its spectrum contains tw
lines, the sharp deltalike line and broad Lorentzian one.
ratio of the integral intensities of these fields is given by

I noise

I coh
5tan2a, ~4.8!

I i5E
2`

`

Si~v8!dv8, ~4.9!

wherei denotesnoiseor cohandSi is the spectrum ofi field
component. When, for example,a5p/4, both fields have the
same integral power. However, the power of the coher
field Ecoh is stored in an infinitely narrow frequency ban
whereas the power of noise component is spread ove
broad line with half width~HW! of g51/tc . We realize that
the phase of the coherent field also walks in a real exp
ment due to instability of the reference oscillator. For e

FIG. 1. Phase diagram of phase-telegraph noise field.Ecoh is a
coherent component with a constant phase and amplitude.Enoiseis a
noise component with phase jumping randomly over6p.
r
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nt
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ample, the linewidths of stabilized lasers used in an ultrah
resolution spectroscopy of solids are in the range 300–2
Hz @60–63#. As this width is much smaller than homoge
neous absorption linewidth of most impurity ions in solid
the field is considered to be coherent and one can drop
contribution toT2 @see Sec. III, Eq.~3.18!#. Here we assume
that the phase of the reference oscillator undergoes a d
sion process.

If the spectrum of a power source with unlocked pha
has, for example, a 1-MHz half width, then because of ph
locking to the phase of the reference oscillator, the out
spectrum shows two components: a sharp one with HW
say 1000 Hz and a broad one with HW of 1 MHz. When t
integral intensities of both components are equal (a5p/4),
the spectral power density of the sharp component diff
strongly from that of the wide component. The wide comp
nent is 30 dB less intense than the narrow one.

Below we show that this weak, broad component stron
influences the two-level atom saturation by the coher
component, whereas saturation by the wide componen
unaffected by the coherent part. The resultant saturatio
seen to be a two-component line. The narrow part of the
is produced by combined effect of the fieldsEcoh andEnoise
on two-level atoms while the second, wide part is burnt o
by incoherent fieldEnoise.

To describe this saturation, we use the Burshtein equa
~3.11! as in a previous section. First we calculate the tw
level atom response to the coherent fieldEcoh, i.e., the fol-
lowing mean values

ūcoh1 i v̄coh52^r12~a!&exp~2 ivt1 ikz!, ~4.10!

w̄5^r22~a!2r11~a!& ~4.11!

@compare them with expressions~3.12!–~3.14!, ~3.17!#. They
are defined in the reference frame related to the phase of
Ecoh. Then the Burshtein equation takes the form

ẋ~Wnoise,t!52~ L̂01WnoiseL̂1!x~Wnoise,t!1x~2Wnoise,t!

1w~Wnoise!L̂, ~4.12!

ẋ~2Wnoise,t!52~ L̂02WnoiseL̂1!x~2Wnoise,t!

1x~Wnoise,t!1w~2Wnoise!L̂,

~4.13!

where

x5F ucoh

vcoh

w
G ; L̂0F t2 z 0

2z t2 2Wcoh

0 Wcoh t1

G ;

L̂15F 0 0 1

0 0 0

21 0 0
G ; L̂5w0~ t121!F 0

0

1
G . ~4.14!

Variablesucoh, vcoh, andw are defined relative to the phas
of field Ecoh, i.e., w5r22(a)2r11(a), ucoh1 ivcoh
52r12(a)exp(2ivt1ikz). Two dimensionless parameter
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3104 PRA 58R. N. SHAKHMURATOV AND ALEX SZABO
Wcoh5xt0cosa and Wnoise5xt0sina, correspond to Rab
frequencies of the coherent and incoherent fields;z5Dt0 is
a dimensionless detuning and timet is chosen in unitst0 ;

t1,2511
t0

T1,2
. ~4.15!

We define two variables that are symmetric and asymm
ric combinations of the previous ones, i.e.,

x̄5x~Wnoise!1x~2Wnoise!, ~4.16!

xA5x~Wnoise!2x~2Wnoise!. ~4.17!

The first is the averaged density matrix. These variables o
the equations

ẋ̄52~ L̂021!x̄2WnoiseL̂1xA1L̂, ~4.18!

ẋA52~ L̂011!xA2WnoiseL̂1x̄. ~4.19!

By Laplace transformation~LT!

x̄~p!5E
0

`

e2ptx̄~t!dt ~4.20!

the differential equations~4.18! and ~4.19! are converted to
algebraic equations

~ L̂01p21!x̄~p!1WnoiseL̂1xA~p!5
L̂

p
1 x̄~0!,

~4.21!

WnoiseL̂1x̄~p!1~ L̂01p11!xA~p!5xA~0!, ~4.22!

wherex̄(0) andxA(0) are initial values of the variablesx̄(t)
andxA(t).

Solution of these equations gives the Laplace transform
the averaged density matrix

x̄~p!5$~ L̂01p21!2Wnoise
2 L̂1~ L̂01p11!21L̂1%

21

3H L̂

p
1 x̄~0!2WnoiseL̂1~ L̂01p11!21xA~0!J .

~4.23!

Before switching on the fieldE(t), the valuexA(0) was zero
and the averaged density matrix wasx̄(0)5L̂/(t121). By
substitutingt̄ 1,25t1,21p21, expression~4.23! can be rewrit-
ten as

x̄~p!5@ L̂̄02Wnoise
2 L̂1~ L̂̄012!21L̂1#21

L̂ t̄ 1

p~ t̄ 12p!
,

~4.24!

where
t-

ey

of

L̂̄05F t̄ 2 z 0

2z t̄ 2 2Wcoh

0 Wcoh t̄ 1

G . ~4.25!

Calculation of thev̄coh(p) component of the column vecto
x̄(p) gives the result

v̄c~p!5
w0 t̄ 1

pt1m

WcohBt2m

z21Wcoh
2 ~ t2m /t1m!1Bt2mt̄ 2

, ~4.26!

where

t1m5 t̄ 11~Wnoise
2 /D !~ t̄ 112!~ t̄ 212!,

t2m5 t̄ 21~Wnoise
2 /D !~ t̄ 212!2, ~4.27!

B21511~Wnoise
2 /D ! t̄ 2 ,

D5z2~ t̄ 112!1Wcoh
2 ~ t̄ 212!1~ t̄ 112!~ t̄ 212!2.

~4.28!

If the value Wnoise50 is taken, then the expression~4.26!
reduces to the solution of the conventional Bloch equatio
The stationary solution of equations~4.12! and ~4.13! is ob-
tained from the limit

~ v̄coh!st5 lim
p→0

pv̄coh~p!. ~4.29!

It contains the information about the hole burnt into the
homogeneous spectrum of an ensemble of two-level at
by an infinitely long driving field pulse.

We consider the noise with a short correlation time giv
the inequality t0!T1 ,T2 ,xcoh

21 ,xnoise
21 ,D21, where xcoh

5x cosa andxnoise5x sina are Rabi frequencies of the co
herent and incoherent fields. Then we can approximate
valuesD, B, t2m , andt1m whenp50 by D'8; B'1 and

~ t1,2!m5
t0

T1,2
1

Wnoise
2

2
. ~4.30!

For these conditions, expression~4.29! takes the form

~ v̄coh!st5
w0

T1
•

xcoh~Gu /Gw!

D21xcoh
2 ~Gu /Gw!1~Gu /T2!

, ~4.31!

where

Gu5
1

T2
1G , Gw5

1

T1
1G , G5xnoise

2 tc . ~4.32!

The variable (v̄coh)st describes the absorption of the fie
Ecoh. Moreover it is proportional to the deviation of the st
tionary saturated population difference from the unperturb
value:w02w̄st, as
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w̄st5
w0

T1Gw
H 12

xcoh
2 ~Gu /Gw!

D21xcoh
2 ~Gu /Gw!1~Gu /T2!

J .

~4.33!

WhenG@1/T1,2 ~or xnoise
2 tcT1,2@1), the hole half width for

strong saturation (xcoh
2 @Gw /T2) approaches the Rabi fre

quency of the coherent fieldxcoh, as the ratesGu and Gw
become equal. This behavior is markedly different from t
of saturation of solids by a monochromatic field, i.e., by t
field Ecoh without noiseEnoise. The latter burns a hole with
HW of xcohAT1 /T2, which is much larger thanxcoh ~since
T1@T2). The associated free induction decay~FID! after a
long saturating pulse with phase noise has a decay rate

GFID5
1

T2
1AGu

T2
1x2

Gu

Gw
. ~4.34!

When Gu'Gw ~or G@1/T1,2), this rate becomes anoma
lously slow as in experiments@60,64,65#.

We now consider the transient nutation~TN! excited by
coherent fieldEcoh when the incoherent field is present. Th
induced coherent polarization per particle is given by

Pcoh~ t !5
m

2
~ ūcoh1 i v̄coh!e

ivt2 ikz, ~4.35!

where the overbar denotes an average over the noise s
We consider an ensemble of particles with aninhomoge-
neousspectrum. The ensemble response to the driving fi
is

^Pcoh~ t !&ens5
m

2
^ūcoh1 i v̄coh&ense

ivt2 ikz, ~4.36!
t

tes.

ld

where ^ &ens denotes an average over the inhomogene
spectrum

^Pcoh~ t !&ens5E Pcoh~ t,v0!F~v0!dv0 ~4.37!

andF(v0) is the particle number distribution over the inh
mogeneous spectrum. If the driving field frequencyv falls at
the centervc of the symmetric spectrum, thenv̄coh(D,t) be-
comes an even function ofD, andūcoh(D,t) is odd since its
Laplace transform is proportional to resonant detuningz
5Dtc , i.e.,

ūcoh~p!52
w0 t̄ 1

pt1m

zWcoh

z21Wcoh
2 ~ t2m /t1m!1Bt2mt̄ 2

.

~4.38!

In the limit of infinite inhomogeneous width, expressio
~4.24! simplifies to

^Pcoh~ t !&ens5 i
m

2
F~vc!e

ivt2 ikzE v̄coh~v0 ,t !dv0 .

~4.39!

The Laplace transform of functionv̄coh(v0 ,t) is given by
Eq. ~4.26!. We consider time scales of the functio

v̄coh(v0 ,t) that are longer thantc . Therefore it is possible to
restrict the analysis to smallp(upu!1). This approximation
corresponds to neglecting the fast decaying~at rate 1/tc) part
of the solution. For this condition, Eq.~4.26! is reduced to
v̄coh~ p̄!5
w0

p

xcoh~Gu1 p̄!~1/T11 p̄!

~Gw1 p̄!@D21~Gu1 p̄!~1/T21 p̄!#1xcoh
2 ~Gu1 p̄!

~4.40!
er,
wherep̄5p/t0 .
Averaging over the inhomogeneous spectrum

^v̄coh~ p̄!&ens5F~vc!E v̄coh~v0 ,p̄!dv0 ~4.41!

gives the Laplace transform of the ensemble’s^v̄coh( p̄)&ens
component

^v̄coh~ p̄!&ens5
pF~vc!w0xcoh~1/T11 p̄!

pAxcoh
2 1~Gw1 p̄!~1/T21 p̄!

AGu1 p̄

Gw1 p̄
.

~4.42!

WhenT1→`, we can use the approximation applied in@66#
and obtain
^v̄coh~ t !&ens5pF~vc!w0xcohJ0~xmt !expS 1/T21G

2
t D ,

~4.43!

where xm5xcohA12z2; z5(12xnoise
2 tcT2)/2xcohT2 and

J0(x) is the zeroth-order Bessel function.
The transient nutation signal~4.36! with amplitude~4.43!

demonstrates an additional decay rate

GTN5
1

2S 1

T2
1G D , ~4.44!

which is intensity dependent asG5xnoise
2 tc . This depen-

dence is qualitatively similar to the observed one in Ref.@67#

Gexp5a1bx, ~4.45!

where a'1/2T2 and b52.431022 ~sample No. 1!. Both
decay rates grow with excitation intensity increase, howev
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one is square and the other is linearly dependent on the
frequency. The linear dependence ofGTN is described in Ref.
@68# by a different model of the phase-locked noise, wh
the phase distribution near the reference phase is Lorent

To clarify this effect, we reconstruct from Laplace tran
forms ūcoh(p), v̄coh(p) andw̄(p) the modified Bloch equa
tions

u̇̄coh52D v̄coh2Guūcoh, ~4.46!

v̇̄coh5Dūcoh1xcohw̄2Gvv̄coh, ~4.47!

ẇ̄52xcohv̄coh2Gww̄1
w0

T1
, ~4.48!

which are valid for the frequency range ofuDu!1/tc when
t@tc . Modified relaxation rates are

Gu5
1

T2
1G, Gv5

1

T2
, Gw5

1

T2
1G. ~4.49!

Then we consider the two-level atom~TLA ! as a spinS
51/2 in a constant magnetic fieldH0 . Interaction of theSz
spin component with this field (z axis is parallel toH0) leads
to energy splitting of the TLA. The fieldH1(t), rotating in
thex-y plane is similar to resonant excitation when the ro
tion frequency is equal to the TLA transition frequency. In
reference frame rotating with fieldH1(t), spinS does not see
the field H0 and therefore it undergoes precession arou
field H1 . The result is the resonant spin-flip or resonant TL
transitions. This simple picture is well known in nucle
magnetic resonance@69#. Within this picture it is easy to
explain TLA behavior in the two fields,Ecoh and Enoise.
Since thew̄ component is equivalent to theSz spin compo-
nent, ūcoh is equivalent to theSx component~which is in
phase with the coherent field in the rotating frame!, andv̄coh
is equivalent to theSy component, we can represent TL
interaction with fieldsEcoh andEnoiseas shown in Fig. 2. We
d

bi

e
n.

-

-

d

see that theEcoh field induces a resonant transition since it
transverse to thew̄ component. The effective spin undergo
a precession aroundEcoh and its projection on thew̄ axis is
changed. FieldEnoise induces a resonant transition for th
same reason. MoreoverEnoise induces the change ofūcoh
component in a random way, as it is transverse to this co
ponent also. Thus the noise fieldEnoise contributes to the
relaxation of theūcoh and w̄ components, i.e., to theGu and
Gw rates. Since this field is parallel tov̄coh component, it has
no effect on this component and theGv rate remains un-
changed.

Equations~4.46!–~4.48! with modified relaxation rates
~4.49! describe TLA saturation by the coherent componen
the field when, in addition, the incoherent component
duces relaxation and saturation~the noise saturates TLA with
a rate G5xnoise

2 tc). Modified equations~4.46!–~4.48! are
valid over a frequency range that is smaller than the no
bandg51/tc . Over a frequency range comparable withg,
we must use the exact solution~4.24! of equations~4.12! and
~4.13!. Then, for example, the Laplace transform of TL
population difference takes the form

FIG. 2. Two-level atom interaction with coherent and incoher
fields. These fields induce precession of the components tha

transverse to them. TheEcoh field induces change of thew̄ andv̄coh

components. TheEnoise field causes random change of thew̄ and

ūcoh components.
w̄~p!5
w0

p
$12~Wcoh/t1m!F1~p!%$12~Wnoise/ t̄ 1!F2~p!%, ~4.50!

F1~p!5
Wcoht2m

z21Wcoh
2 ~ t2m /t1m!1Bt2mt̄ 2

, ~4.51!

F2~p!5
Wnoise~ t̄ 212!

z21Wnoise
2 ~ t̄ 212!/ t̄ 11Wcoh

2 ~ t̄ 212!/~ t̄ 112!1~ t̄ 212!2
. ~4.52!
q.
It consists of two components. The first~narrow! describes
TLA saturation by the fieldEcoh, and the second~broad! is
burnt by the fieldEnoise. The narrow component is describe
by the term with functionF1(p). Relevant modified Bloch
equations include decay rates~4.49!. The wide component is
described by the term with functionF2(p). If we put Ecoh

50 andEnoiseÞ0, then it is possible to reconstruct from E
~4.50! other modified Bloch equations
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u̇noise52Dvnoise2S 1

T2
1g Dunoise, ~4.53!

v̇noise5Dunoise1xnoisewnoise2S 1

T2
1g D vnoise, ~4.54!

ẇnoise52xnoisevnoise2
wnoise2w0

T1
, ~4.55!

which describe TLA saturation by incoherent fieldEnoise.
We introduced here the variablesunoise, vnoise, wnoise to
distinguish them from those defined in Eqs.~4.10! and
~4.11!. It should be emphasized that the absorption of fi
Enoise is not described byūcoh, v̄coh components of the
Bloch vector, although the TLA population differencew̄ is
correct. The latter saturates as

w̄5wnoise5wst1~w02wst!e
2Gt, ~4.56!

where

G5
xnoise

2 g

D21g2
, wst5w0

D21g2

D21g21xnoise
2 gT1

. ~4.57!

Here, the rateG is defined over an extended frequency ran
comparable to that defined in Eq.~4.32!. Below we derive
the TLA response for the combined fieldEcoh1Enoise and
show the validity of Eqs.~4.53!–~4.55!.

V. ABSORPTION OF THE FIELD WITH PHASE NOISE

The mean value of polarization in the reference fra
linked rigidly to the field phase is described byū and v̄
functions defined in Eq.~3.17!. We need not derive the equa
tions for them, as there is a relation betweenū, v̄, and
ūcoh, v̄coh components, i.e.,

ū5ūcohcosa1vAsina; v̄5 v̄cohcosa2uAsina,
~5.1!

where uA and vA are asymmetric combinations of parti
Bloch-vector components@see Eqs.~4.16! and ~4.17!#

uA5ucoh~a!2ucoh~2a!; vA5vcoh~a!2vcoh~2a!.
~5.2!

The latter are related to the mean value of the Bloch ve
according to Eqs.~4.21!–~4.24! as

xA~p!52Wnoise~ L̂̄012!21L̂1x̄~p!. ~5.3!

Only the mean value of polarization~calculated in the instan
taneous reference frame! provides reliable information abou
the field absorption coefficient~proportional to v̄ compo-
nent!. Substitution of Eq.~5.3! into Eq. ~5.1! gives its
Laplace transform
d

,

e

r

v̄~p!5
w0

p H B
t̄ 1

t1m
F1~p!cosa

1F12
2~ t̄ 11 t̄ 212!WcohBF1~p!

~ t̄ 112!~ t̄ 212!t1m
GF2~p!sinaJ ,

~5.4!

where functionsF1(p) andF2(p) are defined in Eqs.~4.51!
and~4.52!. The TLA response consists of two parts, one w
a narrow spectrum@functionF1(p)] and another with a wide
spectrum@function F2(p)]. If we put xcoh50 and xnoise
Þ0, then the wide component coincides with a solution
modified Bloch equations ~4.53!–~4.55! for the
unoise, vnoise, wnoisevariables. There is only one differenc
an extra sina function which comes from the phase avera
ing of power absorption. Below we clarify the origin of th
difference.

When the driving field

E~ t !52E0cos~vt1a! ~5.5!

has a random phasea, we cannot use the common expre
sion for field absorption. We must start from first principl
and derive a modified one. It is well known that power a
sorption takes place when there is a phase difference
tween the field and TLA response. Power absorption b
unit volume is described by@70#

A5
v

2pEt50

t5T

E~ t !dP~ t !, P~ t !5N~m12r211m21r12!,

~5.6!

where P(t) is the TLA polarization;N is the number of
TLAs per unit volume andT52p/v is the field oscillation
period. There are two possibilities of defining TLA polariz
tion. The first one is

P~ t !5mN@u cos~vt1a!2v sin~vt1a!#, ~5.7!

whereu1 iv52s12 ands12 is defined in a reference fram
linked with the instant phase of the field@see Eq.~3.12!#.
Substitution of this polarization into Eq.~5.6! and calculation
of the integral overt gives the result~it is assumed that the
phasea has not changed during the field oscillation periodT
sincetc@T)

A52vmE0Nv. ~5.8!

Then the phase average

^A&a52vmE0N^v&a ~5.9!

gives an expression for the field absorption. Sincev is de-
fined in the instant reference frame, the mean value^v&a

coincides with v̄. Therefore thev̄(t) function calculated
from Eq.~5.4! can be used directly in the expression for fie
absorption~5.9!. We see that the result coincides with th
usual expression for power absorption of the field with co
stant phase~5.8!.

The second way to define polarization is

P~ t !5mN~ucohcosvt2vcohsinvt !, ~5.10!
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where ucoh and vcoh are defined relative to the referenc
phase. For this case, calculation of the integral~5.6! gives

A52vmE0N~vcohcosa2ucohsina!. ~5.11!

Phase average of the latter gives a new expression for po
absorption

^A&a52vmE0N~^vcohcosa&a2^ucohsina&a!.
~5.12!

For phase telegraph noise, one can calculate these ave
functions in the following way. Consider the phase diagr
of the field and Bloch-vector componentsucoh, vcoh,
v(6a), presented in Fig. 3. HereEcoh denotes the coheren
component of the field;E(a) andE(2a) show the relative
phases of the field for the two states;Ecoh' , E'(a), and
E'(2a) are vectors with thep/2 phase shift relative to
Ecoh, E(a), and E(2a), respectively. The Bloch-vecto
componentucoh is in phase withEcoh whereasvcoh, v(a),
and v(2a) are phase shifted relative toEcoh, E(a), and
E(2a), respectively. Projection of thevcoh component on
E'(6a) directions does not change with phase shift a
therefore

^vcohcosa&a5@vcoh~a!1vcoh~2a!#cosa5 v̄cohcosa.
~5.13!

Meanwhile, projection of theucoh component on these direc
tions changes the sign and hence

^ucohsina&a5@ucoh~a!2ucoh~2a!#sina5uAsina.
~5.14!

Substitution of Eqs.~5.13! and ~5.14! into Eq. ~5.12! gives
the result

^A&a52vmE0N~ v̄cohcosa2uAsina! ~5.15!

coinciding with that obtained by substitution of Eq.~5.1! in
Eq. ~5.9!.

Thus, we have shown that the power absorption of
field with phase telegraph noise for an ensemble of two-le

FIG. 3. Phase diagram of the noise field and Bloch-vector co
ponents. Ecoh, E(6a) represent phases of these two field
E'(6a) and Ecoh' indicate vectors with phases shifted byp/2
relative to the corresponding fields.ucoh, vcoh, and v(6a) are
Bloch-vector components defined in reference frames linked to
phase of the coherent fieldEcoh and random-phase fieldE(6a),
respectively.
er

age

d

e
el

particles with ahomogeneousabsorption spectrum is de
scribed by Eq.~5.15! or Eq. ~5.9!. Taking the limit~4.29! of
function ~5.4! on thep variable, one gets an exact expressi
for power absorption:

^A&a52Nw0

v

\ H G1

Gw
BxcohF1~D!1xnoiseF2~D!

3F12
g~g1G11G2!

Gw~g1G1!~g1G2!
BxcohF1~D!G J ,

~5.16!

where

F1~D!5
xcohGu

D21xcoh
2 ~Gu /Gw!1BGuGv

,

F2~D!5
xnoise~g1G2!

D21xcoh
2 g1~g1G2!21xnoise

2 ~g1G2!/G1

,

G1,25
1

T1,2
, B21511

GG2

~g1G1!~g1G2!
, g5

g1G2

g1G1
,

and decay rates are defined in explicit form without appro
mation

Gu5
1

T2
1gG, Gv5

1

T2
, Gw5

1

T1
1G, ~5.17!

G5
xnoise

2 ~g1G2!

D21xcoh
2 g1~g1G2!2

. ~5.18!

Examples of absorption spectra@Eq. ~5.16!# are shown in
Fig. 4. They consist of two lines; a narrow one sitting on
broad one. The broad line arises from the incoherent com
nent of the field. Its half width

G incoh'Ag21xnoise
2 gT1 ~5.19!

may become much larger than the half width of the bro
component of the field spectrumg. For example, when
xnoise/(2p)5xcoh/(2p)5200 kHz, g/(2p)51 MHz and
T154 msec, the valueG incoh/(2p)531.7 MHz becomes
comparable with frequency tuning~Stark shift@71#! of reso-
nant atoms or exciting beam frequency shift in photon ec
experiments. Therefore atoms removed from resonance
the central field component are still excited by the bro
component of the field. This gives a contributionG to theT2
and T1 relaxation times measured by two-pulse and thr
pulse echoes. For example, when the frequency shift is
MHz, this contribution to decay rates 1/T2 and 1/T1 is 64 Hz
for the above conditions and 1.6 kHz whenxnoise/(2p)
5xcoh/(2p)51 MHz. For this reason, one has to be ca
ful in the interpretation of the intensity dependence ofT2 ,
since the broad component of the excitation field spectr
can give a contribution similar to the instantaneous diffus
effect.

Our consideration is not related to the photon-echo
duced by delayed incoherent pulses@46,49,50,53,54#. In
these studies an incoherent optical pulse is produced b

-
.
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dye ‘‘laser’’ with only one mirror or a light-emitting diode
Therefore the irradiation arises as enhanced spontan
emission with statistical properties close to the chaotic fi
~see Introduction!. Since the pulse sequence is realized
optical delay of a single pulse, both pulses are correlate
phase in spite of their incoherent property.

We consider excitation with a single mode laser w
locked phase. Pulses of lengthtp are, in effect, produced by
fast frequency tuning of the CW output beam or reson
frequency of the atoms. Thus a certain group of the atoms
in resonance with the field only during these frequency t
ing periods and out of resonance between tuning periods
the phase of the field fluctuates, there is no correlation
tween excitation pulses although the reference phase is
sumed to be fixed. When the pulse durationtp is shorter than
dwell time of the phase jumptc(tp!tc), each pulse can be
considered coherent and atom excitation is described by
Bloch equations with relaxation and phase fluctuation be
neglected. The phase of the two-pulse echo signal dep
on the relation between phases of the pulses. For exam
the phase difference between the second pulse and echo
nal is a211

3
2 p, wherea21 is the phase difference betwee

second and first pulses. The echo amplitude does not de
on this difference. As was shown above, this amplitude

FIG. 4. Phase-telegraph-noise field absorption of ahomoge-
neouslybroadened line vs resonant tuning~in kHz!. TLA relaxation
times areT154 msec andT2515 msec. Half width of the broad
component of the field spectrumg/(2p) is 1 MHz. Rabi frequen-
cies of the coherent and noise components of the field are equ
~a! xcoh/(2p)5xnoise/(2p)56 kHz and ~b! xcoh/(2p)
5xnoise/(2p)5100 kHz.
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quires an additional damping due to the saturation of
broad ‘‘incoherent’’ hole. The latter process is described
Bloch equation withT1 and T2 modified according to Eqs
~5.17! and ~5.18!. The same considerations are true for t
stimulated photon echo.

The accumulated photon echo is sensitive to the rela
phases of the exciting pulses. As was shown in@55,72,73#,
one can even get zero signal at a particular value of the ph
difference of the exciting pulses, which may be helpful
photon echo data erasure. We do not consider this effec
detail. We only show that there is additional damping cau
by saturation of the ‘‘incoherent’’ hole when a
accumulated-stimulated echo is produced by frequency
ing and excitation by a single mode laser with locked pha

VI. FID AFTER SATURATION BY THE FIELD
WITH PHASE-TELEGRAPH NOISE

We consider an ensemble of particles~with an inhomoge-
neousabsorption spectrum! excited by the field

E~ t !5E0exp~ ivt1 ia! ~6.1!

whose phasea undergoes a random telegraph process. Ex
tation is switched on att52`. It is assumed that saturatio
reaches a stationary state before timet50. The hole burnt
into the inhomogeneous spectrum is described by the po
lation difference~4.50!

w̄~D!5w0F12
xcoh

Gw
F1~D!GF12

xnoise

G1
F2~D!G . ~6.2!

At time t50, the field frequencyv is shifted instantly tov
1V:

E~ t !5E0exp~ ivt1 iVt1 ia!. ~6.3!

We assume that the frequency shiftV is much larger than
hole width, and consider saturated particles to be remo
from excitation att50. Two response fields appear in th
sample, one at frequencyv1V and the other at frequenc
v, i.e.,

Er~ t !5E1~ t !ei ~v1V!t1E2~ t !eivt. ~6.4!

The beam reaching the detector is the sum of the laser
~6.3! and emitted sample field~6.4!. Since the optical detec
tor is a square law device, we must calculate the inten
present at the detector, which is

I ~ t !5c«0Es~ t !Es* ~ t !, ~6.5!

where Es(t)5E(t)1Er(t). Now Er!E0 for any optically
thin sample, so the term, proportional touEr u2 may be ig-
nored and

I ~ t !5I 01I 1~ t !1I 2~ t !, ~6.6!

where

to
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I 05c«0E0
2 ,

I 1~ t !5c«0$E0E1* ~ t !eia1c.c.%,

I 2~ t !5c«0$E0E2* ~ t !eiVt1 ia1c.c.%.

The last term on the right-hand side of Eq.~6.6! contains the
FID signal of particles removed from excitation and seco
term corresponds to transient nutation signal of partic
tuned to resonance att50. We consider the FID signal tha
is due to oscillations on the carrier frequencyV.

The response fieldE2(t) is driven by the free precessin
polarizations of all particles excited before the frequen
switch, i.e.,

E2~ t ! eivt52 i
v l

«0cE2`

`

P~v0!F~v0!dv0 , ~6.7!

P~v0!5
m

2
@ucoh~a0!1 ivcoh~a0!#exp~ iv0t2t/T2!,

~6.8!

wherea0 is the field phase at switching timet50. Substitu-
tion of Eqs.~6.7! and ~6.8! into the I 2(t) function gives

I 2~ t !5mE0v l e2t/T2$^cos~Dt2Vt2a! vcoh~a0!&ens

1^sin~Dt2Vt2a! ucoh~a0!&ens%, ~6.9!

where ^ &ens denotes average over the inhomogene
broadening. Since the phasea changes with time, we mus
average the intensityI 2(t) using the phase transition prob
ability ~4.3!:

^I 2~ t !&a5E I 2~ t !w~a0,0ua,t ! da. ~6.10!

The result is

^I 2~ t !&a5mE0v l e2t/T2@V~ t !1U~ t !#, ~6.11!

V~ t !5^@cos~D2V!t cosa0

1e2gtsin~D2Vt sina0# vcoh~a0!&ens, ~6.12!

U~ t !5^@sin~D2V!t cosa02e2gtcos~D2V!t sina0#

3ucoh~a0!&ens. ~6.13!

Bloch-vector componentsucoh(a0) andvcoh(a0) are defined
in a reference frame linked to the phase of the coherent
of the field Ecoh. Their values are defined by the simp
relations:

ucoh~6a!5 1
2 ~ ūcoh6uA!, ~6.14!

vcoh~6a!5 1
2 ~ v̄coh6vA!. ~6.15!

When an ensemble of two-level particles is excited by
field ~6.1! at the center of the inhomogeneous line, then co
ponentsūcoh(D) andvA(D) are odd functions ofD, whereas
d
s

y

s

rt

e
-

v̄coh(D) anduA(D) are even functions. This allows simplifi
cation of Eq.~6.11! in terms of theūcoh, v̄coh, uA , andvA
components as follows:

^I 2~ t !&a5
1

2
mE0v l e2t/T2F ^M1~ t !&enscosVt

2
a0

a
^M2~ t !&enssinVt G , ~6.16!

M1~ t !5~ v̄cohcosa2e2gt uAsina!cosDt1~ ūcohcosa

1e2gt vAsina!sinDt, ~6.17!

M2~ t !5~uAcosa1e2gt v̄cohsina!cosDt2~vAcosa

2e2gtūcohsina!sinDt. ~6.18!

The FID intensity~6.16! consists of two terms, one~with
sinVt function! depends on the sign ofa0 while the other
~with cosVt function! does not. In FID experiments, th
phasea0 at the time of the frequency shift changes random
from shot to shot. The probability of finding phasesa or
2a is equal @see Eq.~4.4!#. Therefore averaging a larg
number of FID signal sweeps will cancel out the contributi
of the term with the sinV function. Then the average FID
signal detected by the heterodyne technique is

^^I 2~ t !&&a,a0
5 1

2 mE0v l e2t/T2^M1~ t !&enscosVt,
~6.19!

M1~ t !5 v̄mcosDt1ūmsinDt, ~6.20!

v̄m5 v̄cohcosa2uA e2gtsina, ~6.21!

ūm5ūcohcosa1vA e2gtsina, ~6.22!

where double bracketŝ̂ &&a,a0
denote averaging overa

and a0 phases. The effective componentsūm and v̄m differ
from the ū and v̄ functions, defined in the instant referenc
frame@see Eq.~5.1!# by the exponente2gt. Their stationary
subcomponents are

ūcoh52
G1

Gw

Dxcohw0

D21Gcoh
2

, ~6.23!

v̄coh5B
G1

Gw

Guxcohw0

D21Gcoh
2

, ~6.24!

uA52
gxnoisew0

D21G incoh
2 F12

g~g1G11G2!

Gw~g1G1!~g1G2!
BxcohF1~D!G ,

~6.25!

vA52
Dxnoisew0

D21G incoh
2 F12

g~G22G1!

GwGu~g1G1!
xcohF1~D!G ,

~6.26!

where
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Gcoh5ABGuGv1xcoh
2 Gu

Gw
, ~6.27!

G incoh5A~g1G2!21xcoh
2 g1xnoise

2 S g1G2

G1
D . ~6.28!

The main contribution to the FID signal is given by th
ūmsinDt term. Averaging over the inhomogeneous line giv
the following expression for the FID signal:

Š^I 2~ t !&‹a,a0
52

px2Nv lw0

2\D̄
H sin2ae2~Gn1g!t

1
cos2a

GwT1
e2GctJ e2t/T2cosVt, ~6.29!

whereD̄ is the inhomogeneous line half-width — assumed
be much larger than the widest hole in the spectrum. Here
simplify this expression, we keep only the first largest ter
in the expansion of the exponents’ coefficients. The ti
dependence of Eq.~6.29! is shown in Fig. 5. The FID con
sists of a fast and slow component. The fast part is cause
the broad~‘‘incoherent’’! hole and the slow by the narrow
~‘‘coherent’’! hole. The narrow hole demonstrates non-Blo
saturation@60,64,65#.

VII. CONCLUSION

We considered resonant excitation of an ensemble of t
level atoms by a phase-noise field. A new equation of
field absorption~5.9!, which does not depend on the type
random phase process, was derived. Then random-w
phase~phase diffusion model without reference point! and
phase fluctuation in the limited domain~model of random
phase locked near some reference point! were considered a
examples of two different processes. We showed that in
action of a phase diffusion field with two-level atoms is d
scribed by a Bloch equation with modified dephasing rat

1

T2m
5

1

T2
1n, ~7.1!

FIG. 5. FID vs time ~in msec). Parameters of the field an
two-level atom relaxation times are the same as in Fig. 4~case b!.
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wheren is a half width of the~Lorentzian! field spectrum.
Thus, the random walk of the phase produces only an a
tive broadening of the absorption line. As the saturation
this line is described by a Bloch model with modifiedT2m ,
the saturation broadening also increases ifT1 is the longest
relaxation time of TLA. It is easy to show that free inductio
decay and transient nutation are described by the same m
fied Bloch model.

Phase-telegraph noise is considered as an exampl
locked-phase noise. The power of this field is divided in
two parts. One is compressed into a narrow (d function! line
and the other is spread over a broad frequency band. E
when the integral intensities of them are comparable, th
spectral densities strongly differ. For example, at the cen
of the narrow line, the relative intensity of the broad comp
nent is infinitely small. When the reference phase underg
some additional unlocked fluctuation with a ratenc which is
smaller than basic fluctuation rateg of phase-locked noise
then the central peak acquires a finite small broadening
the ratio of spectral densities of broad and narrow com
nents at their maxima is equal tonc /g. We show that even
when this ratio is very small~for example, the broad compo
nent is three orders of magnitude less than the narrow c
ponent!, the locked-phase-noise field cannot be considere
be coherent. We show that TLA saturation by the narr
field component is affected by the broad field compone
The latter contributes to the 1/T1 and 1/T2 relaxation rates.
When they become nearly equal, non-Bloch saturation ta
place. This increase of relaxation rates also leads to an
celeration of the transient nutation decay. Moreover,
showed that the broad component of the field saturates
own hole in the spectrum. As the width of this hole is com
parable with frequency switch interval in photon echo e
periments, we surmise that saturation by the broad field c
ponent may affect the photon echo decay rate.
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APPENDIX

Let us consider excitation of the cavity by the field

E~ t !5E0cos@vt1a~ t !# ~A1!

with the pump rateP. For simplicity we assume that th
phase of the fielda jumps by the same valueu for each time
interval t0 , i.e., the field phase grows steadily with time.
the damping rateG of the cavity is the smallest paramet
and the pump rate is the largest parameter, i.e.,

G!1/t0!P ~A2!

then for each time intervalt0 , a fraction of the field with
current phaseak is stored in the cavity. The amplitude of th
stored field fraction is equal toPt0E0 at the end of the time
intervalt0 . In the time scale of the cavity excitation lifetim
Tq51/G, we have many changes of the pump field pha
since t0!Tq . For this reason many fractions of the fie
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with constant, different phases are stored during the lifet
of the cavity excitation. Thus the excited cavity field is t
sum of many field fractions with different phases. For furth
simplification we consider the cavity withTq→`. Then the
evolution of the cavity field may be presented as

En5Pt0E0~eia01eia11eia21•••1eian!, ~A3!

wherean5a01nu andn5t/t0 is considered as integer, i.e
we look for the field evolution in the process of pump ad
tion ~fraction by fraction! at the end of each time intervalt0
and do not consider fast changes within these time interv
~The field fraction with a particular phaseak grows in the
cavity during the durationt0 of the corresponding pump
field fraction. The stored fraction is not changed after
phase change of the pump as we assume infinite lifetime
the cavity excitation.! Equation~A3! is simplified as

En5Pt0E0eia0(
k50

n

eiuk5Pt0E0eia0
12eiu~n11!

12eiu
.

~A4!

If the phase changeu is small (u!1), then this equation is
reduced to

En5 i
Pt0

u
E0eia0@12eiu~n11!#. ~A5!

FIG. 6. Phase evolution of the pump field~see text!.
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In Fig. 6 the evolution of the pump field phase is show
where numbers 1,2,3, . . . indicate the current change of
phase~the arrow with subscripta0 indicates the initial phase
of the field in Figs. 6 and 7!. In Fig. 7 the evolution of the
phase and amplitude of the field stored in the cavity
shown. The bold circle shows the phase-amplitude trajec
of the stored field. Its amplitude changes between zero
(Pt0 /u)E0 . The phase of the stored field changes betwe
a0 and a01p. We see that the phase of the pump fie
grows steadily, whereas the phase of the stored field
locked near phasea01p/2 within a domain (a0 ,a01p),
i.e., the phase fluctuates by6p/2 near the phasea01p/2.

Thus we see that a regular phase change of the p
results in phase-locked change of the cavity field. If t
pump phase changes randomly according to a diffusion p
cess, then any small phase shift does not essentially ch
the phase of the cavity field that is locked to the first phase
the pump. Only an accidentally large phase jump~having a
small probability! moves the locked phase to a new sta
However, this movement takes place gradually within t
next period of small phase jumps near the new state of
pump phase.

FIG. 7. Amplitude-phase evolution of the cavity field~see text!.
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