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Interference stabilization of Rydberg atoms enhanced by multipleV-type resonances

R. Parzyn´ski and S. Wieczorek
Quantum Electronics Laboratory, Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan´, Poland

~Received 14 April 1998!

We introduce a model of laser pulse ionization of a high Rydberg state whose core is a chain of coupled
V-type transitions with exact resonance in each arm of theV. Through this chain the population is allowed to
migrate resonantly from the initial state of low angular momentum to other bound states of higher angular
momenta, both of low and high energy. Along with the redistribution of the initial population over different
bound states, we discuss the effect of the redistribution on atomic stabilization, exploiting an analytical
solution of the model that holds in a limiting case. The resonant migration mentioned is shown to be able to
enhance atomic stabilization against ionization by an optical-frequency pulse.@S1050-2947~98!02910-2#

PACS number~s!: 32.80.Rm, 42.50.Hz
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I. INTRODUCTION

One kind of atomic stabilization against ionization by
short laser pulse is known to be the stabilization of interf
ence type@1#. It occurs when, in the manifold of a fixedl
state, the initially populated state becomes broadened by
ization to an extent comparable with its separation from
nearest initially empty neighbor. Under this condition, so
population can be transferred from the initial state to
neighbor due to degenerate Raman transition. Then, des
tive interference of the ionization paths from two~or more!
populated states can result in a substantial suppressio
ionization. The main concepts of interference stabilizat
were verified theoretically in numerical simulation as well
experimentally with the use of atoms prepared in hig
Rydberg states@2#.

In the standard theoretical approaches to interference
bilization, the models with two or several@3# and a large
number of discrete states@4# of the same angular momentu
were applied. More sophisticated models@5# allowed for the
population to leave a fixed-l band of states and migrate t
higher-angular-momentum Rydberg bands due to nonr
nant degenerate Raman transitions. Also, models wit
single fixed-l Rydberg band resonantly coupled by laser lig
to low-lying states were considered@6#.

It is the aim of the present paper to describe a mode
interference stabilization whose core is a number ofV-type
resonances linked in a chain. EachV-type resonance bridge
two Rydberg bands of the angular momentum quantum n
bers differing by 2. At the bottom of theV there is a low-
lying resonant state of the angular momentum quantum n
ber intermediate between the numbers of the Rydberg ba
lying at the two tops of theV. As a matter of fact, we shal
focus in the present paper on a specific limit of the mode
which the solution to the population dynamics is reach
analytically irrespective of how long the coupling chain
We shall use the solution found to study the resonant mig
tion of the population along the chain, i.e., to higher-l states
placed both in the bottom and at the tops of the subseq
V. Finally, we will be able to conclude that this migratio
makes the Rydberg atom more resistant to ionization by
optical-frequency pulse.
PRA 581050-2947/98/58~4!/3051~7!/$15.00
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II. THE MODEL AND ITS SOLUTION

Initially, the hydrogen atom is in the stateu0&
5un0l 0m05 l 0&, distinguished by the black dot in Fig. 1
which is a high Rydberg state (n0@1) of a low angular
momentum (l 0!n0). The initial state, along with other Ry
dberg states (nÞn0) of the same angular momentum as th
of the initial one, forms a Rydberg band denoted byj 50 in
Fig. 1. It is the lowest-angular-momentum Rydberg band
our model. The higher-angular-momentum Rydberg band
the model are those denoted byj 51,2,...,N in the figure and
they have their angular momenta determined byl 012, l 0
14,..., l 012N, respectively. An optical frequency field o
linear polarization along thez axis (Dm50) couples per-
fectly resonantly the initial state to a lower lying state,l
51 in the figure, of relatively low principal quantum numb
of the order of several units. Through the chain of reson
electric dipole couplingsl51→ j 51→l52→ j 52→¯

→l5N→ j 5N, the population migrates then to bot
higher-angular-momentum Rydberg bands (j 512N) and
higher-angular-momentuml states (l522N), with all the
latter ones of the principal quantum number the same as
of the l51 state. The length of the chain of couplings d
pends on the angular momentum of the initial state and
principal quantum number of thel51 state and, e.g., fo

FIG. 1. Model of ionization from a high Rydberg state includin
a chain ofV-type resonances through which the population migra
from the initial state to other bound states of higher angular m
menta.
3051 © 1998 The American Physical Society
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3052 PRA 58R. PARZYŃSKI AND S. WIECZOREK
l 050 andul51&58p the length is determined byN54. As
seen, nonresonant migration of population between
neighboring Rydberg bands of our model was ignored
negligible when compared to resonant migration. We
clude, however, nonresonant Raman mixing via the c
tinuum between different Rydberg states from a given an
lar momentum band.

Let Vl,n j stand for the resonant Rabi frequency for t
transition from thel state to thenth Rydberg state in thej th
band, andDn j ,n8 j for the nonresonant Raman coupling v
the continuum between any two Rydberg states from
same band. The solution procedure, to be presented late
is substantially simplified due to the fact that, for high pri
cipal quantum numbers, the above couplings are to a g
approximation factorized@4,7# asVl,n j5 f nVl j andDn j ,n8 j
5 f nf n8D j , where f n5n23/2. We use this factorization an
satz throughout the paper as well as the rotating-wave
rectangular-pulse approximations. We also neglect
continuum-continuum transitions. Under these approxim
tions, we write out standard differential equations for t
Schrödinger population amplitudes of thel states,bl , and
thenth Rydberg states in allj bands,Bn j . Finally, we apply
the Laplace transformation to these differential equation~t
→s, bl→b̃l , Bn j→B̃n j!, which results in the following se
of coupled algebraic equations:

sb̃l1 iVl,l21Kl211 iVl,lKl50, ~1!

B̃n j5
2 f n

s2 iDn
~ iV j , j b̃ j1 iV j 11,j b̃ j 111D jK j !1

d j 0dnn0

s2 iDn
,

~2!

whereK j5(nf nB̃n j , dab is the Kronecker symbol showin
where the population initially was, andDn is the difference
in frequency between the initially populatedu0& state and any
other Rydberg state. When writing these equations we u
the condition of the exact resonance between the initi
populatedu0& and thel51 states as well as the fact thatDn
was independent ofj due to the orbital degeneracy of th
hydrogenic levels.

Multiplying Eq. ~2! by f n and then summing it over alln
in a given Rydberg band we obtain the alternative expres
for B̃n j :

B̃n j5
f n

s2 iDn

1

P
S K j2

f n0

s
d j 0D 1

d j 0dnn0

s2 iDn
, ~3!

where

K j52 iPGj~V j , j b̃ j1V j 11,j b̃ j 11!1
f n0

s
Gjd j 0 , ~4!

P5(
n

f n
2

s2 iDn
, ~5!

Gj5
1

11PDj
. ~6!

By the use of the aboveK j we convert Eq.~1! into the
matrix-form equation forb̃l alone:
e
s
-
-
-

e
on,

od

nd
e
-

ed
ly

n

MF b̃1

b̃2

]

b̃N

G5F 2 iV1,0f n0
G0 /s

0
]

0

G , ~7!

whereM is the tridiagonal symmetric matrix

M53
A1 B1 0 0 0 ... 0

B1 A2 B2 0 0

0 B2 A3 B3 0

] �

BN22 AN21BN21

0 BN21AN

4
~8!

with the elements

Aa5s1PGa21Va,a21
2 1PGaVa,a

2 , ~9!

Ba5PGaVa,aVa11,a , ~10!

where a runs 1,2,...,N. To remind, the left index inVa,b
refers to thel state while the right one to thej band in our
model from Fig. 1.

There is one case, at least, that allows a compact ana
cal solution to Eq.~7! and then a relatively simple analytica
transformation of this Laplace solution to the time doma
(b̃l→bl) irrespective of how largeN is. The case we focus
hereafter on is determined byl-independent couplings
~Vl, j5V, D j5D! and results inA15A25¯5AN5A5s
12PGV25s12B and B15B25¯5BN5B5PGV2,
whereG5G15G25¯5GN . Though departing from wha
we meet in the real hydrogen atom, the approximation
l-independent couplings is sometimes applied@8# to achieve
qualitative insight into the population dynamics of a mul
state atom in an intense optical-frequency field. In this
proximation, which, in fact, overestimates the couplings
large-l numbers, the close-form solution to Eq.~7! is a far
fetched generalization of the formula of Grobeet al. @8# and
reads

b̃l5 i ~21!l
f n0

V

1

sP
Fl , ~11!

where

Fl5
sin@~N112l!f#

sin@~N11!f#
~12!

and

f5arccosS A

2BD . ~13!

Fl has its poles determined by the equation
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A

2B
5cosS kp

N11D , k51,...,N, ~14!

which, for a givenk, has to be solved with respect to th
Laplace variable, leading top solutionssp,k . The residuum
Rp,k

l of Fl at sp,k is then found asRp,k
l 5V2Cp,k

l , where

Cp,k
l 5Ck

lS PG

12s
G

P

dP

ds
D

s5sp,k

~15!

with

Ck
l5~21!k11

2

N11
sinS kp

N11D sinS N112l

N11
kp D .

~16!

All this enables us to decomposeFl into the elementary
fractions

Fl5V2(
p,k

Cp,k
l

s2sp,k
. ~17!

Similarly, we decompose 1/(sP), namely,

1

sP
5

)
nÞn0

~s2 iDn!

(
n8

f n8
2 )

nÞn8
~s2 iDn!

5
f ~s!

g~s!

5a1
h~s!

g~s!
5a1(

q

Rq

s2sq
, ~18!

wherea andh(s) are found when dividing the two polyno
mials f (s) andg(s) of the same order,sq are the poles of the
rational functionh(s)/g(s), andRq is the residuum of this
function at a givensq . As a result, Eq.~11! for b̃l is re-
placed by

b̃l5 i ~21!l f n0
V(

p
(
k51

N S a1(
q

Rq

s2sq
D Cp,k

l

s2sp,k
.

~19!

By the use of the convolution theorem, the aboveb̃l is
straightforwardly transformed into the time-depende
Schrödinger population amplitudebl :

bl5 i ~21!l f n0
V(

p
(
k51

N Fa1(
q

Rqf ~sq2sp,k ,t !G
3Cp,k

l esp,kt, ~20!

where

f ~x,t !5
ext21

x
. ~21!

Now, we go back to Eq.~3! and Eq.~4! in order to find
B̃n j and thenBn j in closed forms under the approximation
l-independent couplings. In this context, the first thing
t

wish to stress is thatB̃n j includes as its part the termG/(s
2 iDn), which is convenient to decompose into the eleme
tary fractions:

G

s2 iDn
5

)
n8Þn

~s2 iDn8!

)
n8

~s2 iDn8!1D(
n9

f n9
2 )

n8Þn9
~s2 iDn8!

5(
r

Rr

s2sr
, ~22!

wheresr are the roots of the denominator. The other thing
that V0,050, if j 50, as well asVN11,N50, if j 5N. With
these points and Eq.~19! for b̃l taken into account, one
obtains~i! for j 50,

B̃n052 i f nVT̃n12
f n0

f nD

s (
r

Rr

s2sr
1

dnn0

s
; ~23!

~ii ! for j 5N,

B̃nN5 i ~21!Nf nVT̃nN ; ~24!

~iii ! for j 51,2, . . . ,N21,

B̃n j5 i ~21! j f nV~ T̃n j2T̃n j11!; ~25!

where

T̃nl5~21!l11b̃l(
r

Rr

s2sr

52 i f n0
V(

r

Rr

s2sr
(

p
(
k51

N S a1(
q

Rq

s2sq
D Cp,k

l

s2sp,k
.

~26!

The convolution theorem, when applied to the above eq
tions, results then in the following time-dependent Sch¨-
dinger population amplitudesBn j : ~i! for j 50,

Bn052 i f nVTn12 f n0
f nD(

r
Rr f ~sr ,t !1dnn0

; ~27!

~ii ! for j 5N,

BnN5 i ~21!Nf nVTnN ; ~28!

~iii ! for j 51,2, . . . ,N21,

Bn j5 i ~21! j f nV~Tn j2Tn j11!; ~29!

with

Tnl52 i f n0
V(

r
Rre

sr t(
p

(
k51

N Fa f ~sp,k2sr ,t !

1(
q

Rq

sq2sp,k
@ f ~sq2sr ,t !2 f ~sp,k2sr ,t !#GCp,k

l ,

~30!

and the functionf (x,t) defined by Eq.~21!.
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III. ILLUSTRATIVE RESULTS

The advantage of Eq.~20! for bl and Eqs.~27!–~30! for
Bn j is that with them the problem of the population dynam
has been reduced to finding the polessp,k from Eq. ~14!, sq
from Eq. ~18!, andsr from Eq. ~22!. Below, we shall con-
sider two illustrative cases that allow these poles to be fo
analytically. One case is when we leave only one state
each Rydberg band (n5n0), and the other when each Ryd
berg band is approximated by a flat, infinite, equidist
Bixon-Joertner structure@9#.

For the model with the single state in each Rydberg ba
P5 f n0

2 /s. This leads to

sp,k5 1
2 @2Dn0

1~21!pxk#, p51,2,

xk5ADn0

2 28bkVn0

2 , bk512cosS kp

N11D , ~31!

Dn0
5 f n0

2 D, Vn0
5 f n0

V,

and a5 f n0

22, Rq50 as well assr5s152Dn0
, Rr5R151,

resulting in

bl5 i ~21!l2Vn0
e2Dn0

t/2(
k51

N Ck
l

xk
sinh~xkt/2! ~32!

and

Tn0l5
2 i

2Vn0

e2Dn0
t/2(

k51

N Ck
l

bk
S Dn0

xk
sinh~xkt/2!

2cosh~xkt/2!1e2Dn0
t/2D . ~33!

For the model with the Bixon-Joertner structure in t
place of Rydberg bands,P5 f n0

2 (p/D)coth(ps/D), whereD

means the level spacing in the units of frequency. Assum
the laser pulse to be shorter than the specific Kepler pe
for the Bixon-Joertner structure,t52p/D, the aboveP is
reduced toP5 f n0

2 (p/D) @9#, and we interpretD as the dis-

tance between the Rydberg level withn5n0 and its neares
neighbor. In this case

sp,k5sk522pDbk~Vn0
/D!2u,

~34!

u5
1

11~pDn0
/D!

,

a50, sq5s150, Rq5R15D/(p f n0

2 ) and sr5s15 iDn

5 i (n02n)D, Rr5R15u, leading to

bl5 i ~21!lVn0
u(

k51

N

Ck
l f ~sk ,t ! ~35!

and
d
in

t

d,

g
d

Tnl52 iVn0
eiDntu2(

k51

N Ck
l

sk
@ f ~sk2 iDn ,t !2 f ~2 iDn ,t !#.

~36!

Then, we insertTnl of Eq. ~36! into Eqs.~27!–~29! for
the amplitudesBn j , take the square modulus of these amp
tudes, and finally sum the results overn exploiting the sum-
mation relation

(
n52`

`

f ~sk2 inD,t ! f * ~sl2 inD,t !5
2p

D
f ~sk1sl* ,t !.

~37!

As a result, we arrive at the following fractionsWj
5SnuBn ju2 of the population left in the subsequent Bixo
Joertner bands at the end of the pulse of durationt/t<1: ~i!
for j 50,

W0511~2p!2uuDn0
/Du2

t

t
24p Re~uDn0

/D!
t

t

1~2p!4~Vn0
/D!4uuu4 (

k,l 51

N Ck
1Cl

1

zkzl*
F f S zk1zl* ,

t

t D
2 f S zk ,

t

t D2 f S zl* ,
t

t D1
t

tG
12~2p!2~Vn0

/D!2(
k51

N

Ck
1 ReH u2

zk
F f S zk ,

t

t D2
t

t G
3@2p~uDn0

/D!* 21#J ; ~38!

~ii ! for j 5N,

WN5~2p!4~Vn0
/D!4uuu4 (

k,l 51

N Ck
NCl

N

zkzl*
F f S zk1zl* ,

t

t D
2 f S zk ,

t

t D2 f S zl* ,
t

t D1
t

tG ; ~39!

~iii ! for j 51,2,...,N21,

Wj5~2p!4~Vn0
/D!4uuu4 (

k,l 51

N
~Ck

j 2Ck
j 11!~Cl

j2Cl
j 11!

zkzl*

3F f S zk1zl* ,
t

t D2 f S zk ,
t

t D2 f S zl* ,
t

t D1
t

tG ; ~40!

wherezk52psk /D.
Figures 2 and 3 are graphical presentations of the res

obtained with the use of the close-form equations~32! and
~33! as well as~38!–~40!. These figures were obtained a
suming the length of the coupling chain to be determined
N54 and they show the population versus laser intensity
the j-Rydberg bands~a!, l states~b!, and atomic continuum
~c!. The assumed length of the chain is specific for the c
when, e.g., the initially populated Rydberg staten0s540s is
resonantly coupled to theul51&58p state. As the represen
tative atomic parameters we tookVn5107I 1/2 and Dn
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520(11 i20)I , where I is laser intensity in W/cm2. The
above Vn is approximately~i.e., with the factor of 1.19
dropped! the resonant Rabi frequency for the 40s→8p tran-
sition, Re(Dn) is nearly~i.e., with the factor of 0.75 dropped!
half of the ionization rate of the 40s state, while Im(Dn) is
taken in analogy to the paper of Grobeet al. @8#. Both Vn
and Re(Dn) were calculated by us exactly using the Laplac
transform approach of Feldman, Fulton, and Judd@10#, and
the values found in this way were checked to be close
those resulting from the quasiclassical approach of Ada
Fedorov, and Meyerhofer@7#. Figure 2 refers to the mode

FIG. 2. Population vs laser intensity in thej-Rydberg bands~a!,
low-lying resonantl states~b!, and atomic continuum~c!, for the
model with a sequence ofN54 V-type resonances and only on
state included in each Rydberg band~S!. The pulse duration equal
to the Kepler period of then0540 Rydberg state.
-

o
s,

with only a single Rydberg state (n5n0540) taken into ac-
count in each Rydberg band~S!, while Fig. 3—to the model
with each Rydberg band approximated by the Bixon-Joert
structure (B-J). Both figures were made assuming the pu
duration to be equal to the Kepler period of then0540 Ry-
dberg state (t5t52p/D59.7 ps). For other pulse dura
tions, shorter than the Kepler period, we observed only qu

FIG. 3. Same as in Fig. 2 except for the model with Rydbe
bands approximated by the Bixon-Joertner structures (B-J).
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titative differences as compared to Figs. 2 and 3, without
qualitatively new kinds of behavior.

Figures 2 and 3 point to a potentially possible reson
migration of the population along the coupling chain, i.
from the initially populated high-Rydberg state of low ang
lar momentum to both thej-Rydberg bands andl states of
higher angular momenta (j 5124; l5224). Strikingly,
the migration appears to be efficient at intensities interme
ate between low and high ones and it stops in the limit
high intensities. This conclusion emerges from both mod
i.e., theSmodel with a single state left in each Rydberg ba
and the (B-J) model with the Bixon-Joertner structure of th
bands. There is, however, a fundamental difference betw
the predictions of the two models. In theS model, no popu-
lation is left in any discrete state at the end of the pulse
intensity is high and, as a result, the ionization is complete
this intensity limit @see, Fig. 2~c!#. By contrast, the (B-J)
model predicts that, at high intensities, all the population
kept in the lowest-angular-momentum Rydberg band@j 50
in Fig. 3~a!#, i.e., the band including the initially populate
state. This gives rise to the high-intensity stabilization
shown in Fig. 3~c!. Figure 3~c!, when compared with Fig
2~c!, presents the dramatic effect of the number of state
consecutive Rydberg bands and, thus, the interference
tween different ionization paths on ionization/stabilizatio
Let us note that the threshold of stabilization observ
(;109 W/cm2) nearly satisfies the conditionVn.D rather
than Re(Dn).D, where D56.531011 s21. It would corre-
spond to what Fedorov and Poluektov@6# call the V-type
interference stabilization.

Figure 4~a! corresponds to the (B-J) model, and it shows
a comparison of the ionization curve from Fig. 3~c! (N54)
with the corresponding curves obtained by having restric
(N51) or completely neglected (N50) the resonant migra
tion of the population from the lowest-angular-momentu
Rydberg band to bound states of higher angular mome
The curve forN51 was prepared allowing the population
migrate to thel51 state andj 51 band only, while the
curve forN50 with ignoring the coupling of thej 50 band
to thel51 state at all. The main effect of restriction/negle
of the population migration is manifested in the height of t
curve of ionization versus laser intensity—with the migrati
restricted/neglected the curve rises, i.e., the ionization
creases. Thus, as results from Fig. 4~a!, the interference sta
bilization is enhanced upon the resonantV-type migration of
the population towards bound states of the angular mom
higher than that of the initial state.

We have verified this general conclusion by changing
bitrarily the imaginary part in the nonresonant-Raman c
pling parameterDn . The conclusion remained unchang
but we made two additional observations. The one is that
height of the curves from Fig. 4~a! increases when diminish
ing the imaginary part inDn . The curves were found to b
the highest when Im(Dn)50. This case is shown in Fig. 4~b!.
The other observation, evident from Fig. 4~b!, concerns the
shift of the threshold of stabilization towards higher inten
ties when diminishing Im(Dn). In the case of Fig. 4~b!, the
stabilization begins at the intensity of 1010 W/cm2, close to
that resulting from the condition Re(Dn).D rather thanVn
.D. In the language of the paper of Fedorov and Poluek
y

t
,

i-
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s,

en
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ta
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-

v

@6# this higher threshold intensity could be the manifestat
of the L-type interference stabilization.

IV. CONCLUSIONS

The general conclusion emerging from our analysis
that, when an atom prepared in a high Rydberg state of
angular momentum is one-photon ionized by an optic
frequency pulse, then the resonant migration of populat
towards bound states of higher angular momenta through
chain ofV-type transitions makes the atom more resistan
ionization. This conclusion, derived from our analytical s
lution restricted to pulses not longer than one Kepler per
of the initial high-Rydberg state, is planned to be verified
future in the long-pulse scale. In this scale and with ma
states included in the subsequent Rydberg bands of diffe
angular momenta, substantial numerical effort is expecte
be unavoidable, as distinct from the present paper.
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~1994!; R. R. Jones and P. H. Bucksbaum, Phys. Rev. Lett.67,
3215~1991!; L. D. Noordam, H. Stapelfeldt, D. I. Duncan, an
T. F. Gallagher,ibid. 68, 1496~1992!; J. H. Hoogenraad, R. B
Vrijen, and L. D. Noordam, Phys. Rev. A50, 4133 ~1994!;
N. E. Tielking and R. R. Jones,ibid. 52, 1371~1995!.

@3# J. Parker and C. R. Stroud, Jr., Phys. Rev. A41, 1602~1990!;
L. Roso-Franco, G. Orriols, and J. H. Eberly, Laser Phys2,
741 ~1992!.

@4# M. V. Fedorov, Laser Phys.3, 219~1993!; M. V. Fedorov, M.
Yu. Ivanov, and A. M. Movsesyan, J. Phys. B23, 2245S
~1990!; M. V. Fedorov and A. M. Movsesyan, J. Opt. So
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Phys.7, 551 ~1997!.
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