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Interference stabilization of Rydberg atoms enhanced by multiplev-type resonances
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We introduce a model of laser pulse ionization of a high Rydberg state whose core is a chain of coupled
V-type transitions with exact resonance in each arm ofMh&hrough this chain the population is allowed to
migrate resonantly from the initial state of low angular momentum to other bound states of higher angular
momenta, both of low and high energy. Along with the redistribution of the initial population over different
bound states, we discuss the effect of the redistribution on atomic stabilization, exploiting an analytical
solution of the model that holds in a limiting case. The resonant migration mentioned is shown to be able to
enhance atomic stabilization against ionization by an optical-frequency p8iE@50-29478)02910-2

PACS numbd(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION Il. THE MODEL AND ITS SOLUTION

One kind of atomic stabilization against ionization by a:|lnn||t|a::y,:|tr>1e di?tliirol?igﬂedatgmthles bllgcktr;i?)t isr:aﬁm 1
short laser pulse is known to be the stabilization of interfer—WhiCOhOiSOa ﬁig']h R dgerg stater)q&>1) of 2 low angl?l;ar ’
ence type[1]. It occurs when, in the manifold of a fixdd- y

o ._momentum [p,<€ng). The initial state, along with other Ry-
state, the initially populated state becomes broadened by 'O'Eiberg statesr(#n,) of the same angular momentum as that

ization tq an extent comparable with its sgparatiqp from th%f the initial one, forms a Rydberg band denotedjky0 in
nearest'mltlally empty neighbor. Under th!s_qondltlon, SOMerjg 1. It is the lowest-angular-momentum Rydberg band of
population can be transferred from the initial state to they;r model. The higher-angular-momentum Rydberg bands of
neighbor due to degenerate Raman transition. Then, destruge model are those denoted py 1,2,...N in the figure and
tive interference of the ionization paths from td@r more  they have their angular momenta determinedigy 2, I,
populated states can result in a substantial suppression af4  |,+2N, respectively. An optical frequency field of
ionization. The main concepts of interference stabilizationinear polarization along the axis (Am=0) couples per-
were verified theoretically in numerical simulation as well asfectly resonantly the initial state to a lower lying state,
experimentally with the use of atoms prepared in high-=1 in the figure, of relatively low principal quantum number
Rydberg statef2]. of the order of several units. Through the chain of resonant

In the standard theoretical approaches to interference stalectric dipole couplings\=1—j=1—-A=2—j=2—--
bilization, the models with two or severB] and a large —A=N—j=N, the population migrates then to both
number of discrete stat¢4] of the same angular momentum higher-angular-momentum Rydberg bands=(L—N) and
were applied. More sophisticated modg3$ allowed for the  higher-angular-momenturk states § =2—N), with all the
population to leave a fixebband of states and migrate to latter ones of the principal quantum number the same as that
higher-angular-momentum Rydberg bands due to nonres®f the A\=1 state. The length of the chain of couplings de-
nant degenerate Raman transitions. Also, models with &€ends on the angular momentum of the initial state and the
single fixedt Rydberg band resonantly coupled by laser lightPrincipal quantum number of the=1 state and, e.g., for
to low-lying states were consideréél].

It is the aim of the present paper to describe a model of

interference stabilization whose core is a numbekVdfpe CONTINUUM
resonances linked in a chain. Ea¢kype resonance bridges
two Rydberg bands of the angular momentum quantum num Jaka X /N / A

bers differing by 2. At the bottom of th¥ there is a low-

lying resonant state of the angular momentum quantum num
ber intermediate between the numbers of the Rydberg band ™
lying at the two tops of th&/. As a matter of fact, we shall
focus in the present paper on a specific limit of the model at
which the solution to the population dynamics is reached ,
analytically irrespective of how long the coupling chain is. =1 1= =3 AN
We shall use the solution found to study the resonant migra-
tion of the population along the chain, i.e., to highatates
placed both in the bottom and at the tops of the subsequent F|G. 1. Model of ionization from a high Rydberg state including
V. Finally, we will be able to conclude that this migration a chain ofV-type resonances through which the population migrates
makes the Rydberg atom more resistant to ionization by afrom the initial state to other bound states of higher angular mo-
optical-frequency pulse. menta.

lL=my g+l 2 1pt3 b4 IphS .
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lo=0 and|]\ =1)=8p the length is determined By=4. As Bl —iQ4 of 1 Go/s
seen, nonresonant migration of population between the B ’O 0
neighboring Rydberg bands of our model was ignored as Ml 2| = .
negligible when compared to resonant migration. We in- : :
clude, however, nonresonant Raman mixing via the con- by 0
tinuum between different Rydberg states from a given angu-
lar momentum band. whereM is the tridiagonal symmetric matrix
Let Q, ,; stand for the resonant Rabi frequency for the _

transition from the\ state to thenth Rydberg state in thgth AL B 0O 0 O .. 0
band, andD,,; ,/; for the nonresonant Raman coupling via B, A, B, 0 0
the continuum between any two Rydberg states from the

0 B, A; B; O

: )

same band. The solution procedure, to be presented later on,
is substantially simplified due to the fact that, for high prin-
cipal quantum numbers, the above couplings are to a good
approximation factorize@4,7] as Q) n;="f,Q,; andDy; n/;
=f,fnD;, wheref,=n"32 We use this factorization an- A B
satz throughout the paper as well as the rotating-wave and N-1EN-1
rectangular-pulse approximations. We also neglect the | 0 Bn-1AN J
continuum-continuum transitions. Under these approxima-

tions, we write out standard differential equations for the

Schralinger population amplitudes of thestatesb, , and ~ With the elements

the nth Rydberg states in ajlbandsB;. Finally, we apply
the Laplace transformation to these differential equati¢ns
—S, by—Dby, Bnj—By)), which results in the following set
of coupled algebraic equations:

Bn-2

®

A,=s+PG, 0%, +PG,Q2

a,a’

(€)

Ba: PGaQa,a‘Q‘a+l,av (10)

S’E})\‘i‘iQ)\')\_lK)\_l‘f‘iQ)\’)\K)\:O, (1) wherea runs 1,2,.N. To remind, the left index i},
refers to the\ state while the right one to thieband in our
~ —f, o~ - 6j05nn0 model from Fig. 1.
B“j:s—T (1Q;jbj+iQj,1;bj1+DjK)) + STiA There is one case, at least, that allows a compact analyti-
n n @) cal solution to Eq(7) and then a relatively simple analytical

transformation of this Laplace solution to the time domain

wherek; =2nfn~an, 84 i the Kronecker symbol showing (by,—b,) irrespective of how largél is. The case we focus

where the population initially was, anti, is the difference

hereafter on is determined b{rindependent couplings

in frequency between the initially populatf@j state and any (2, ;=€, D;=D) and results inA;=A,=---=Ay=A=sS
other Rydberg state. When writing these equations we usett2PGQ?=s+2B and B;=B,=--'= By=B= PGQO?,
the condition of the exact resonance between the initiallywhereG=G,=G,="---=Gy. Though departing from what

populated0) and thex =1 states as well as the fact thay

we meet in the real hydrogen atom, the approximation of

was independent of due to the orbital degeneracy of the I-independent couplings is sometimes appligfito achieve

hydrogenic levels.
Multiplying Eq. (2) by f,, and then summing it over afl

qualitative insight into the population dynamics of a multi-
state atom in an intense optical-frequency field. In this ap-

in a given Rydberg band we obtain the alternative expressioproximation, which, in fact, overestimates the couplings for

for Bp;:

5]05nn0

e, @

B.. = fn i K-—bﬁ-
NTs—iA, P T s IO

where

~ ~ fn
KJ:_IPG](QJ,JbJ+Q]+1,ij+1)+?oG](SJO! (4)

f2

n
P_; s—iA,’ ®
6=t 6
I 1+PD;” ©

By the use of the abov&; we convert Eq.(1) into the
matrix-form equation fob, alone:

larged numbers, the close-form solution to E) is a far
fetched generalization of the formula of Grobeal. [8] and
reads

~ nn 1
bA=K—4J*?§gEFX, (11
where
_sir[(N+ 1-N)¢]
F“‘sme+n¢] (12)
and
A
¢=arcco% ﬁ) (13

F, has its poles determined by the equation
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ka

54
E_CO m s N, (14)

which, for a givenk, has to be solved with respect to the

Laplace variable, leading tp solutlonssp k- The residuum
p « of F) ats is then found ast k—QZCp «» Where

\ N PG
Sl —Gap 13
1- SEE )
S_Sp,k
with
2 km N+1-—\
M_(_q\k+1 ;
Ci=(-1) NT 1sm(N+l sm( NT1 kw).
(16)

All this enables us to decompodg, into the elementary
fractions

Fr=02 1
pEk o Spk (17
Similarly, we decompose f), namely,
_'A
1 AL (=it ~f(s)
sP RO
2 200 (s-iay
n’ n#n’
3 h(s) Rq
—a+@—a+% S_Sq’ (18

wherea andh(s) are found when dividing the two polyno-
mials f(s) andg(s) of the same ordes, are the poles of the
rational functionh(s)/g(s), andRy is the residuum of this
function at a givens,. As a result, Eq(11) for b, is re-
placed by

N
bx=i(—1)”anQ§ kzl

S—Spk )
(19

By the use of the convolution theorem, the abd?me is
straightforwardly transformed into
Schralinger population amplitudb, :

N
=i(— DM 02 X
p k=1

N Syt
X Cp ePk,

at+ qu(sq—sp,k,t)}
q

(20)
where

eXt—1

fxh=—

(21)

Now, we go back to Eq(3) and Eq.(4) in order to find

Enj and thenB,,; in closed forms under the approximation of
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wish to stress is thénj includes as its part the ter@/(s
—iA,), which is convenient to decompose into the elemen-
tary fractions:

IT (s=ia

G B n’#n
—iA.
ST T (s-iay, +DE 211 (s=isn)
n’

n"#n”

-3

r

— (22
wheres, are the roots of the denominator. The other thing is
that 0 0=0, if j=0, as well asQly,15=0, if j=N. With
these points and Eq19) for b, taken into account, one
obtains(i) for j=0,

- _ fofaD R
Bro=—ifn Q2T — o 2 S—rS ”0, (23
r r
(i) for j=N
Bon=1(— DN, QT (24)
(i) for j=1,2,...N—-1,
nj_l( 1)Jf Q(Tnj nj+1) (25)
where
- ~ R
(A \\+1 r
To=(-DM 10,2 =
N A
R Cr.
=—if, Q + ) ==
"o Z s— r% kzl % S_Sq) S—Spk
(26)

The convolution theorem, when applied to the above equa-
tions, results then in the following time-dependent Sehro
dinger population amplitudeB,,; : (i) for j=0,

Bn0=—ianTn1—fn0anZ RA(S 1)+ 8o (27)
(i) for j=N
Bon=1(—1)Nf QT on; (28)
(i) for j=1,2,...N—-1,
Bnj=i(— 1) o Q(Tnj=Tnj41); (29)

with

N
Ton=— ifn092r Rresr‘Ep 2

af(sp =5 ,t)

+2

q %_%k

[f(sq Srut) f(spk Srat)]}cpk!

(30

I-independent couplings. In this context, the first thing weand the functiorf(x,t) defined by Eq(21).
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. ILLUSTRATIVE RESULTS N C)k\
- iAnty 2 ~k i T
The advantage of Ed20) for b, and Eqgs.(27)—(30) for T =~ 127U k; Sk [F(sc=iAn )= T(=14n,0].
B is that with them the problem of the population dynamics (36)

has been reduced to finding the potgs from Eq.(14), s, _ _

from Eq. (18), ands, from Eq. (22). Below, we shall con- Then, we inserfl,, of Eq. (36) into Egs.(27)—(29) for
sider two illustrative cases that allow these poles to be founghe amplitudes;, take the square modulus of these ampli-
analytically. One case is when we leave only one state ifudes, and finally sum the results oveexploiting the sum-
each Rydberg banchE&nyg), and the other when each Ryd- mation relation

berg band is approximated by a flat, infinite, equidistant

Bixon-Joertner structurg9].

For the model with the single state in each Rydberg band,

P= fﬁols. This leads to

Spk=73[— Dp,+(=1)Px], p=1.2,

. (3D

5 5 kar
%= \Dn, = 8Bidn,  Bk=1—C08 {7

Dnozfﬁoo, Qn,=fn

No
and azfrjoz, Rq=0 as well ass;=s,;=—Dy , Rr=R;=1,
resulting in

N \
c

by=i(-1)*2Q, e 2> X sinhxt/2) (32
0 k=1 Xk

and

N

—i ch (Dn
-D, t/2 0 i
e “n — | — sinh(xt/2
ZQnO ° k=1 Bk Xk r( k )

Tno)\ =

—coshxt/2)+e” Dnot’z) . (33

For the model with the Bixon-Joertner structure in the

place of Rydberg band§?=fﬁo(w/A)coth(7rs/A), whereA

means the level spacing in the units of frequency. Assuming

] ) 2
n;x f(sk—inA ) f*(s—inAt)= e f(st+s',t).
(37

As a result, we arrive at the following fraction®V,
=3.,|Byj|? of the population left in the subsequent Bixon-
Joertner bands at the end of the pulse of duratiam=1: (i)
for j=0,

t t
Wo=1+(2m)*[uD, /A[? ——4m Re(uD, /A) —

N 1~1
CiC;i t
+ 4 41,14 +7*
(2m)*(Qn, 1A)¥ul k,I2=1 22 fl zc+ 7 ,T>
t t t
—f(zk,—)—f(zf,— + =
T T T
+2(2m)3(Q /A2§ CiR u—2 f ot
(2m) (L, )k:l «Re T2 7= 7
X[ZW(UDnO/A)*—l]}; (38)
(i) for j=N,
el
- 4 4,14 +7*
Wy=(2m)*(Qy,/A4)ul kJEjl 22 fl etz )
t t t
—f(zk,—)—f(zr,— +-; (39
T T T

the laser pulse to be shorter than the specific Kepler period

for the Bixon-Joertner structure;=2x/A, the aboveP is

reduced toP = fﬁo(q-r/A) [9], and we interpref\ as the dis-
tance between the Rydberg level witlxny and its nearest

neighbor. In this case

Sp.k=Sk= _ZﬂAﬂk(Qno/A)zu,

(34)
1

YT 15 (D, /)"

@=0, s3=5,=0, Ry=R;=A/(wf}) and s=s,=iA,
=i(ng—n)A, R,=R;=u, leading to

N
bkzi(—l)*ﬂnoukz,l Cr(s,t) (35)

and

(i) for j=1,2,...N—1,

N

(Cl-ckh(cl-cl™
— 4 41,4
W= (2m)4(Qy, /4)%ul k’lZ:l s

+*t)—f t—f*t
ZkaT Zk-T Z|’T

wherez,=2ms,/A.

Figures 2 and 3 are graphical presentations of the results
obtained with the use of the close-form equati¢d®) and
(33) as well as(38)—(40). These figures were obtained as-
suming the length of the coupling chain to be determined by
N=4 and they show the population versus laser intensity in
the j-Rydberg bandsa), A states(b), and atomic continuum
(c). The assumed length of the chain is specific for the case
when, e.g., the initially populated Rydberg stats=40s is
resonantly coupled to the = 1)=8p state. As the represen-
tative atomic parameters we tooR,=101*2 and D,

t
X | f +—|; (40
T
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FIG. 2. Population vs laser intensity in th&ydberg bandsa),
low-lying resonanf\ states(b), and atomic continuun(c), for the
model with a sequence di=4 V-type resonances and only one
state included in each Rydberg baf8l. The pulse duration equals 0 -

to the Kepler period of they=40 Rydberg state. 10° 10° 10"
=20(1+i20)l, wherel is laser intensity in W/cfh The INTENSITY (W /cm?)

above (), is approximately(i.e., with the factor of 1.19
dropped the resonant Rabi frequency for thes488p tran-
sition, ReD,) is nearly(i.e., with the factor of 0.75 dropped
half of the ionization rate of the 40state, while ImD,) is  with only a single Rydberg stata & ny=40) taken into ac-
taken in analogy to the paper of Grobeal. [8]. Both (),  count in each Rydberg ban{®), while Fig. 3—to the model
and ReD,,) were calculated by us exactly using the Laplace-with each Rydberg band approximated by the Bixon-Joertner
transform approach of Feldman, Fulton, and J{i@], and  structure B-J). Both figures were made assuming the pulse
the values found in this way were checked to be close taluration to be equal to the Kepler period of thg=40 Ry-
those resulting from the quasiclassical approach of Adamsiberg state t=r=27/A=9.7 ps). For other pulse dura-
Fedorov, and Meyerhofdf7]. Figure 2 refers to the model tions, shorter than the Kepler period, we observed only quan-

FIG. 3. Same as in Fig. 2 except for the model with Rydberg
bands approximated by the Bixon-Joertner structuBeg).
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titative differences as compared to Figs. 2 and 3, without any 0.1
gualitatively new kinds of behavior.

Figures 2 and 3 point to a potentially possible resonant
migration of the population along the coupling chain, i.e.,
from the initially populated high-Rydberg state of low angu-
lar momentum to both thgRydberg bands and states of
higher angular momentaj €1—4; N=2-—4). Strikingly,
the migration appears to be efficient at intensities intermedi-
ate between low and high ones and it stops in the limit of
high intensities. This conclusion emerges from both models,
i.e., theSmodel with a single state left in each Rydberg band
and the B-J) model with the Bixon-Joertner structure of the
bands. There is, however, a fundamental difference between
the predictions of the two models. In ti&model, no popu-
lation is left in any discrete state at the end of the pulse if
intensity is high and, as a result, the ionization is complete in
this intensity limit[see, Fig. #&)]. By contrast, the B-J)
model predicts that, at high intensities, all the population is (b)
kept in the lowest-angular-momentum Rydberg béjnd 0 B-J
in Fig. 3(@], i.e., the band including the initially populated tir=1
state. This gives rise to the high-intensity stabilization as
shown in Fig. &c). Figure 3c), when compared with Fig.
2(c), presents the dramatic effect of the number of states in
consecutive Rydberg bands and, thus, the interference be-
tween different ionization paths on ionization/stabilization.
Let us note that the threshold of stabilization observed

0.05 4

IONIZATION

0.5 - Im(D,)=0

IONIZATION

(~10° Wicn?) nearly satisfies the conditioft,=A rather 0-
than ReD,)=A, where A=6.5x 10" s 1. It would corre- 107 1'010 10"
spond to what Fedorov and Poluektp®] call the V-type
interference stabilization. INTENSITY (W / cm?)
Figure 4a) corresponds to theB-J) model, and it shows
a comparison of the ionization curve from FigcB(N=4) FIG. 4. lonization vs laser intensity for thé8{J) model and

with the corresponding curves obtained by having restrictedlifferent numberN of V-type resonances in the migration chain
(N=1) or completely neglected\(=0) the resonant migra- (N=4.1,0).

tion of the population from the lowest-angular-momentum

Rydberg band to bound states of higher angular moment#6] this higher threshold intensity could be the manifestation
The curve forlN=1 was prepared allowing the population to of the A-type interference stabilization.

migrate to thex=1 state andj=1 band only, while the

curve forN=0 with ignoring the coupling of th¢=0 band

to theh =1 state at all. The main effect of restriction/neglect IV. CONCLUSIONS

of the population migration is manifested in the height of the . . o
The general conclusion emerging from our analysis is

curve of ionization versus laser intensity—with the migration ; .
restricted/neglected the curve rises, i.e., the ionization inzhat’ when an atom prepared in a high Rydberg state of low

creases. Thus, as results from Figa)dthe interference sta- angular momentum is one-photon 'OT"ZG‘?' by an optlc_al-
bilization is enhanced upon the resonstype migration of frequency pulse, then the resonant migration of population

the population towards bound states of the angular momemI Wt”“ds bound state_s.of higher angular momenta thr_ough the
higher than that of the initial state. chain of V-type transitions makes the atom more resistant to

We have verified this general conclusion by changing grionization. This conclusion, derived from our analytical so-

bitrarily the imaginary part in the nonresonant-Raman Cou_Iutlon restricted to pulses not longer than one Kepler period

pling parameteD,,. The conclusion remained unchanged of the initial high-Rydberg state, is planned to be verified in

but we made two additional observations. The one is that thguture In the '°U9'p”'se scale. In this scale and with many
height of the curves from Fig.(d) increases when diminish- States included in the subsequent Rydberg bands of different

ing the imaginary part i, . The curves were found to be angular momenta, substantial numerical effort is expected to

the highest when Ini§,)=0. This case is shown in Fig(. be unavoidable, as distinct from the present paper.
The other observation, evident from Figb# concerns the
shift of the threshold of stabilization towards higher intensi-
ties when diminishing Inid,,). In the case of Fig. &), the
stabilization begins at the intensity of Y0N/cn?, close to One of us(R.P) gratefully acknowledges support from
that resulting from the condition RBf)=A rather than(),  the Polish Committee for Scientific Research under Grant
=A. In the language of the paper of Fedorov and PoluektoWo. 2 PO3B 078 12.
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